Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd"

Transcript

1 1 Πιθανότητες Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1

2 2 Ενότητα 2 η Πιθανότητες Σκοπός Ο σκοπός της 2 ης ενότητας είναι οι μαθητές να αναγνωρίζουν ένα πείραμα τύχης και να διακρίνουν τις διαφορές από ένα αιτιοκρατικό πείραμα, ώστε να αντιληφθούν την ανάγκη εισαγωγής της έννοιας της πιθανότητας. Σημαντικό στοιχείο στη λύση των προβλημάτων πιθανοτήτων αποτελεί η "μετάφραση" μιας έκφρασης που είναι διατυπωμένη σε κοινή γλώσσα, σε έκφραση που είναι διατυπωμένη στη γλώσσα των συνόλων και αντίστροφα. Προσδοκώμενα αποτελέσματα Πιθανότητες Όταν θα έχετε μελετήσει την ενότητα αυτή, θα μπορείτε να: Τα βασικά στοιχεία από τη θεωρία συνόλων. Τον τρόπο εύρεσης του δειγματικού χώρου ενός πειράματος τύχης. Τον κλασικό και τον αξιωματικό ορισμό της πιθανότητας. Τους κανόνες λογισμού πιθανοτήτων. Λέξεις κλειδιά Πείραμα τύχης, δειγματικός χώρος, σύνολα., δειγματικός χώρος, ενδεχόμενο 2

3 3 2.1 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΚΑΙ ΒΑΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ Ο κλάδος των Μαθηματικών που έχει ως αντικείμενο την έρευνα των νόμων που διέπουν τα τυχαία-στοχαστικά φαινόμενα και πειράματα ονομάζεται Θεωρία Πιθανοτήτων. Η σπουδαιότερη εφαρμογή της Θεωρίας Πιθανοτήτων είναι η ανάπτυξη Στατιστικών Μεθόδων. Οι στατιστικές μέθοδοι μας επιτρέπουν να βγάλουμε συμπεράσματα για όσα δε γνωρίζουμε ενώ η Θεωρία Πιθανοτήτων μας επιτρέπει να υπολογίσουμε πόσο βέβαιοι πρέπει να είμαστε για τα συμπεράσματά μας. Βασικό χαρακτηριστικό των πειραμάτων είναι ότι οι συνθήκες κάτω από τις οποίες πραγματοποιούνται δεν προκαθορίζουν το αποτέλεσμα αλλά μόνο το σύνολο των δυνατών αποτελεσμάτων. Τα διάφορα προβλήματα (επιστημονικά, κοινωνικά, πολιτικά, κ.λπ.) συνδέονται με φαινόμενα ή με πειράματα τα οποία μπορούν να ταξινομηθούν σε δύο γενικές κατηγορίες: Στα αιτιοκρατικά ή προσδιοριστικά και στα τυχαία ή στοχαστικά (Πίνακας 1). 3

4 Πίνακας 1 4 Φαινόμενα - Αιτιοκρατικά - Προσδιοριστικά Ένα φαινόμενο/πείραμα θεωρείται αιτιοκρατικό-προσδιοριστικό όταν οι συνθήκες κάτω από τις οποίες εκτελείται ή εμφανίζεται καθορίζουν σύμφωνα με την αρχή της αιτιότητας το αποτέλεσμα. Π.χ αν γνωρίζουμε το κεφάλαιο, το χρόνο και το επιτόκιο τότε γνωρίζουμε με βεβαιότητα και τον τόκο που πρέπει να εισπράξουμε στο συγκεκριμένο χρόνο ή αν γνωρίζουμε την κατανάλωση νερού και το κόστος ανά μονάδα κατανάλωσης τότε γνωρίζουμε με βεβαιότητα και το ποσό που πρέπει να πληρώσουμε. Ένα αιτιοκρατικό-προσδιοριστικό φαινόμενο είναι δυνατόν να περιγραφεί με ένα μαθηματικό μοντέλο δηλαδή με ένα μαθηματικό ανάλογο/μίμηση/ομοίωση του πραγματικού. Πειράματα Τυχαία-Στοχαστικά Ένα φαινόμενο/πείραμα θεωρείται τυχαίο-στοχαστικό όταν οι συνθήκες κάτω από τις οποίες εμφανίζεται ή εκτελείται δεν καθορίζουν το αποτέλεσμα σύμφωνα με την αρχή της αιτιότητας. Το αποτέλεσμα αποδίδεται στην «τύχη». Η έννοια του «τυχαίου» συνδέεται με το πολυσύνθετο και το περιορισμένο της γνώσης των αιτίων που προκαλούν το αποτέλεσμα. Δηλαδή, υπάρχει «έλλειμμα» αιτιότητας. Μια ασφαλιστική εταιρεία, δε γνωρίζει με βεβαιότητα ούτε τον αριθμό ούτε το ύψος των αποζημιώσεων που θα πληρώσει τον επόμενο μήνα. Επίσης, δε γνωρίζουμε με βεβαιότητα τον αριθμό των γεννήσεων που θα συμβούν την επόμενη εβδομάδα σε μια γεωγραφική περιοχή ή το αποτέλεσμα της θεραπείας ασθενών ηλικίας ετών με ένα συγκεκριμένο φάρμακο ή την απόδοση μιας καλλιέργειας ή το ύψος των πωλήσεων μιας αυτοκινητοβιομηχανίας το επόμενο εξάμηνο. Ένα τυχαίο-στοχαστικό φαινόμενο δε μπορεί να περιγραφεί πλήρως με ένα μαθηματικό τύπο αφού η ζήτηση ενός προϊόντος οφείλεται, εκτός από την τιμή του, και σε άλλους παράγοντες. 4

5 Ορισμοί Πληθυσμός (Population) : Στη Στατιστική με τον όρο πληθυσμός εννοούμε όλες τις τιμές που μπορεί να πάρει ένα κοινό χαρακτηριστικό μιας ομάδας υποκειμένων (ατόμων, αντικειμένων, τόπων και γενικότερα οποιονδήποτε οντοτήτων) το οποίο μεταβάλλεται από υποκείμενο σε υποκείμενο (ή και στο ίδιο υποκείμενο π.χ. ως προς το χρόνο) και ενδιαφερόμαστε να το μελετήσουμε. Κάθε υποκείμενο επί του οποίου μετράμε/παρατηρούμε το κοινό χαρακτηριστικό λέγεται δειγματοληπτική/πειραματική μονάδα και το κοινό χαρακτηριστικό τους, μεταβλητή. Δείγμα (Sample) είναι ένα μέρος του πληθυσμού. Ένα πείραμα διαφέρει από την παρατήρηση ενός φαινομένου κατά το ότι ο ερευνητής που εκτελεί το πείραμα παρεμβαίνει ενεργά, επιβάλλοντας μια συγκεκριμένη μεταχείριση στα άτομα ή στα αντικείμενα επί των οποίων εξελίσσεται το πείραμα. Αντιθέτως, κατά την παρατήρηση ενός φαινομένου, μετράμε ή παρατηρούμε την κατάσταση των ατόμων ή των αντικειμένων επί των οποίων συμβαίνει το φαινόμενο χωρίς να προσπαθούμε να αλλάξουμε αυτή την κατάσταση με κάποια ειδική μεταχείριση. 2.2 Βασικές έννοιες της Θεωρίας των Πιθανοτήτων Τρείς είναι οι βασικές έννοιες της Θεωρίας των Πιθανοτήτων: η έννοια του πειράματος τύχης, η έννοια του απλού γεγονότος και η έννοια του δειγματικού χώρου του πειράματος τύχης. Πείραμα τύχης λέγεται το πείραμα το οποίο όσες φορές και αν επαναληφθεί δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμά του. Αντίθετα τα πειράματα εκείνα κατά τα οποία η γνώση των συνθηκών κάτω από τις οποίες εκτελούνται καθορίζουν και το τελικό αποτέλεσμα λέγονται αιτιοκρατικά. Π.χ η ρίψη ενός ζαριού, ενός νομίσματος, οι κληρώσεις του ΛΟΤΤΟ κ.α. Τα δυνατά αποτελέσματα του πειράματος τύχης ονομάζονται απλά συμβάντα ω 1, ω 2 κ.τ.λ. Δειγματικός χώρος Ω ονομάζεται το σύνολο όλων των δυνατών αποτελεσμάτων, που μπορούν να εμφανιστούν σε ένα πείραμα τύχης. Αν ω 1, 5

6 6 ω 2, ω 3,,ω ν είναι τα δυνατά αποτελέσματα (εξαγόμενα) ενός πειράματος τύχης, τότε ο δειγματικός χώρος του πειράματος τύχης είναι Ω = {ω 1, ω 2, ω 3,,ω ν }. Ο δειγματικός χώρος Ω ενός στοχαστικού πειράματος είναι είτε πεπερασμένος, είτε αριθμησίμως άπειρος, είτε μη αριθμήσιμος. Στις δύο πρώτες περιπτώσεις ο δειγματικός χώρος Ω καλείται γενικά διακριτός και στην τρίτη περίπτωση, μη αριθμήσιμος ή υπεραριθμήσιμος. Π.χ ο χρόνος που θα χρειαστεί ένας αθλητής να τρέξει μια απόσταση, το ύψος της βροχόπτωσης σε μία περιοχή σε δεδομένη χρονική περίοδο κ.ά.. Π.χ Ρίψη νομίσματος : Ω= Θα λέμε ότι το νόμισμα θα παρουσιάσει Κ ή Γ και αυτό το λέμε βεβαιότητα που ορίζουμε ίση με 1. Είναι λογικό να υποθέτουμε ότι το νόμισμα έχει τόση πιθανότητα να πέσει στη Γη με τη μια όψη όση και με την άλλη. Έτσι η θεωρητική πιθανότητα να έρθει Κ είναι 0.5 και να έρθει Γ είναι πάλι 0.5. Όμως = 1 δηλαδή βεβαιότητα. Στην πράξη, εκτός αν ο αριθμός των ρίψεων είναι μεγάλος, η πρακτική κατανομή της πιθανότητας που προκύπτει είναι δυνατό να διαφέρει ουσιαστικά από το θεωρητικό αποτέλεσμα. Δείτε τώρα και εκτελέστε την προσομοίωση : «Η ρίψη ενός αμερόληπτου νομίσματος» ml Όσο αυξάνετε τις ρίψεις τόσο πλησιάζετε στο θεωρητικό αποτέλεσμα. Ρίψη ζαριού: Ω= Η (ταυτόχρονη) ρίψη δύο ζαριών (6,1), (6,2),..., (6,6) (2,1), (2,2),..., (2,6), (1,1), (1,2),..., (1,6) Ω = {(1,1),(1,2),...,(6,6)} Δείτε τώρα και εκτελέστε την προσομοίωση : «Το κουτί με τους αριθμούς» earch.html?qt=propability 6

7 7 Όσο αυξάνετε τις ρίψεις τόσο πλησιάζετε στο θεωρητικό αποτέλεσμα. Η επιλογή ν αντικειμένων από μία παραγωγική διαδικασία και ο προσδιορισμός του αριθμού των ελαττωματικών αντικειμένων Δ.Α.: 0, 1, 2,..., v. Ω = {0,1,2,...,ν} Ο αριθμός των εκπεμπομένων σωματιδίων από μία τυχαία ραδιενεργό πηγή σε συγκεκριμένο χρονικό διάστημα Δ.Α.: 0, 1, 2,.... Ω = {0,1,2,...} Ο χρόνος λειτουργίας ενός λαμπτήρα φωτισμού που επιλέγεται τυχαία από ένα σύνολο λαμπτήρων. Ω = {t 0} = [0,+ ). Ενδεχόμενο ή γεγονός ενός πειράματος τύχης ονομάζεται το σύνολο που έχει ως στοιχεία ένα ή περισσότερα αποτελέσματα του πειράματος τύχης. Δεχόμαστε ακόμα ως ενδεχόμενα ενός πειράματος τύχης τον ίδιο το δειγματικό χώρο Ω και το κενό σύνολο Ø. Επομένως ενδεχόμενο ενός πειράματος τύχης είναι κάθε υποσύνολο του δειγματικού χώρου Ω. Όταν έχει ένα μόνο στοιχείο του συνόλου Ω λέγεται απλό ενδεχόμενο, ενώ όταν έχει περισσότερα λέγεται σύνθετο. Το Ω λέγεται βέβαιο ενδεχόμενο, ενώ το κενό σύνολο Ø λέγεται αδύνατο. Το πλήθος των στοιχείων του ενδεχομένου π.χ Α συμβολίζεται με Ν(Α). Όταν το αποτέλεσμα ενός πειράματος τύχης σε μια συγκεκριμένη εκτέλεσή του είναι στοιχείο ενός ενδεχομένου, τότε λέμε ότι το ενδεχόμενο αυτό πραγματοποιείται ή συμβαίνει. Για αυτό το λόγο τα στοιχεία ενός ενδεχομένου λέγονται ευνοϊκές περιπτώσεις για την πραγματοποίησή του. Ασυμβίβαστα Ενδεχόμενα Δύο ενδεχόμενα Α και Β λέγονται ασυμβίβαστα, όταν, = A B Δύο ασυμβίβαστα ενδεχόμενα λέγονται επίσης ξένα μεταξύ τους ή αμοιβαίως αποκλειόμενα. Δύο ασυμβίβαστα ενδεχόμενα δεν μπορούν να συμβούν στην ίδια εκτέλεση ενός πειράματος. Για ασυμβίβαστα ενδεχόμενα, p(α Β) = p(α) + p(β). Ενδεχόμενο Α = συμπλήρωμα του Α = Ω-Α p(β) = 1 p(α) Τα ασυμβίβαστα ενδεχόμενα συνήθως αποδεικνύονται με την «εις άτοπο απαγωγή». 7

8 8 Ανεξάρτητα ενδεχόμενα Δύο ενδεχόμενα Α, Β ονομάζονται ανεξάρτητα εάν και μόνο αν p(α Β) = p(α) P(Β). Διαισθητικά, δύο ενδεχόμενα είναι ανεξάρτητα αν και μόνο αν το να συμβεί το ένα δεν κάνει περισσότερο ή λιγότερο πιθανό το να συμβεί το άλλο. Έστω E, F ενδεχόμενα. Τότε, η δεσμευμένη πιθανότητα του E δεδομένου του F, συμβολίζεται με p(e F), και ορίζεται ως p(e F) : p(e F)/p(F). Αυτή είναι η πιθανότητα να συμβεί το E, αν μας δοθεί η πληροφορία ότι το ενδεχόμενο F θα συμβεί (είναι γεγονός). Παράδειγμα: Ρίψη ενός νομίσματος και ρίψη ενός ζαριού. p(κ Γ) = p(k) p(γ) = 1/2 1/6 =1/12. Προσοχή!! Δύο ανεξάρτητα ενδεχόμενα είναι ασυμβίβαστα; Αν p(α) > 0 και p(b) > 0 και P(Α Β) = p(α) p(b), τότε P(Α Β) 0, άρα Α Β Ø. Άρα ενώ τα Α και Β είναι ανεξάρτητα, δεν είναι ασυμβίβαστα. Δύο ασυμβίβαστα ενδεχόμενα είναι ανεξάρτητα; Αν p(α)>0 και p(b)>0 και Α Β = Ø, τότε P(Α Β) = 0 p(α) p(b). Άρα ενώ τα Α και Β είναι ασυμβίβαστα, δεν είναι ανεξάρτητα. 2.3 Θεμελιώδεις πράξεις μεταξύ ενδεχομένων Ένωση Τομή Συμπλήρωμα Διαφορά 8

9 9 Το ενδεχόμενο Α Β ( Ένωση): Όταν πραγματοποιείται ένα τουλάχιστον από τα Α, Β ή διαφορετικά όταν πραγματοποιείται το Α ή το Β). Το ενδεχόμενο Α Β (Τομή): Όταν πραγματοποιούνται αμφότερα τα Α και Β ή διαφορετικά όταν πραγματοποιούνται συγχρόνως τα Α και Β). Το ενδεχόμενο Α (Συμπληρωματικό ή αντίθετο) :Όταν δεν πραγματοποιείται το Α. 9

10 10 Το ενδεχόμενο Α Β (διαφορά): Όταν πραγματοποιείται το Α αλλά όχι το Β. Ισχύει Α Β = Α Β Και (Α Β) (Α Β) = Α Και (Α Β) (Α Β) = Ø Το ενδεχόμενο (Α Β) (Β Α): Όταν πραγματοποιείται μόνο ένα από τα Α, Β ή διαφορετικά όταν πραγματοποιείται μόνο το Α ή μόνο το Β. Ισχύει (Α Β) (Β Α) = (Α Β ) (Β Α ) Το ενδεχόμενο (Α Β) : δεν πραγματοποιείται ούτε το Α ούτε το Β. 10

11 11 Ασυμβίβαστα ενδεχόμενα (Α Β = Ø ) : δεν έχουν κοινά στοιχεία. Α Β (υποσύνολο): Η πραγματοποίηση του Α συνεπάγεται την πραγματοποίηση του Β. 2.4 Ορισμός της Πιθανότητας Κατά καιρούς έχουν δοθεί διάφοροι ορισμοί για το τι είναι πιθανότητα από τους οποίους συνήθως αναφέρονται τρείς: 1) Ο κλασικός ορισμός της πιθανότητας 2) Η πιθανότητα σαν όριο της σχετικής συχνότητας 3) Ο αξιωματικός ορισμός της πιθανότητας 1) Κλασικός ορισμός της πιθανότητας : Σε πείραμα τύχης με ισοπίθανα στοιχειώδη ενδεχόμενα ορίζουμε σαν πιθανότητα 11

12 12 του ενδεχομένου Α και συμβολίζουμε με Ρ(Α) το πηλίκο Ρ(Α) = ευνοϊκών περιπτώσεων πλήθος δυνατών περιπτώσεων = Meionekt mata 2) Σχετική συχνότητα ενδεχομένου Α : Χρησιμοποιείται μόνο για ισοπίθανα στοιχειώδη ενδεχόμενα Είναι το πηλίκο όπου του ενδεχόμενου Α σε ν το πλήθος των εκτελέσεων του πειράματος. Η σχετική συχνότητα ενός ενδεχομένου είναι ίση με την πιθανότητα του. Ιδιότητες της f όπου λ το πλήθος απλών ενδεχομένων : i) 0 f i 1, i = 1, 2, 3,, λ ii) f 1 + f 2 + f f λ = 1 Ισοπίθανα απλά ενδεχόμενα : Είναι τα στοιχειώδη ενδεχόμενα των οποίων οι σχετικές συχνότητες τείνουν στον ίδιο αριθμό, όσο το πλήθος των δοκιμών αυξάνει απεριόριστα. Για αντίθετα ενδεχόμενα ισχύει : Ρ( Α ) = 1 Ρ(Α) Αν Α Β τότε ισχύει : Ρ(Α) Ρ(Β) Ισχύει ανεξαρτήτως του αν έχουμε ισοπίθανα ή μη ισοπίθανα ενδεχόμενα. 3) Αξιωματικός ορισμός πιθανότητας Έστω Ω = {ω 1, ω 2,, ω ν } ένας δειγματικός χώρος με πεπερασμένο πλήθος στοιχείων. Για μη ισοπίθανα στοιχειώδη ενδεχόμενα, Πιθανότητα του στοιχειώδους χρησιμοποιούμε ενδεχόμενου τον ω i ονομάζουμε αξιωματικό ορισμό έναν αριθμό p(ω i ) της πιθανότητας. 12

13 13 που να έχει τις ιδιότητες 0 p(ω i ) 1 p(ω 1 ) + p(ω 2 ) p(ω ν ) = 1 Αν Α = {α 1,α 2,,ακ} Ø τότε Ρ(Α) = p(α 1 ) + p(α 2 ) + + p(α κ ) και Ρ(Ø) = 0 Ισχύει ανεξαρτήτως του αν τα στοιχειώδη ενδεχόμενα είναι ή δεν είναι ισοπίθανα Απλός προσθετικός νόμος : Για οποιαδήποτε ασυμβίβαστα ενδεχόμενα Α και Β του ίδιου δειγματικού χώρου ισχύει : Ρ(Α Β) = Ρ(Α) + Ρ(Β) Για αντίθετα ενδεχόμενα ισχύει : Ρ( Α ) = 1 Ρ(Α) Ισχύει ανεξαρτήτως του αν τα στοιχειώδη ενδεχόμενα είναι ή Προσθετικός νόμος: δεν είναι ισοπίθανα Αν Α, Β ενδεχόμενα του ίδιου δειγματικού χώρου τότε Ρ(Α Β) = Ρ(Α) + Ρ(Β) Ρ(Α Β) ενδεχόμενα είναι ή δεν είναι Αν Α Β τότε ισχύει : Ρ(Α) Ρ(Β) ισοπίθανα Τρεις μορφές του προσθετικού νόμου Ρ(Α Β) = Ρ(Α) + Ρ(Β) Ρ(Α Β) Ρ(Α Β) = Ρ(Α) + Ρ(Β) Ρ(Α Β) Ισχύει ανεξαρτήτως του αν τα Ρ(Α Β) + Ρ(Α Β) = Ρ(Α) + Ρ(Β) στοιχειώδη ενδεχόμενα είναι ή δεν είναι ισοπίθανα Από διάγραμμα Venn ισχύουν Ρ(Α Β) = Ρ(Α) Ρ(Α Β) Α Β = Α Β άρα και ίσες πιθανότητες Ρ( (Α Β) (Β Α)) = Ρ(Α) Ρ(Α Β) + Ρ(Β) Ρ(Β Α) = Ρ(Α) + Ρ(Β) 2 Ρ(Α Β) (Α Β) = Α Β άρα και ίσες πιθανότητες (Α Β) = Α Β άρα και ίσες πιθανότητες 13

14 Μεθοδολογία ασκήσεων Για να βρούμε το δειγματικό χώρο ενός πειράματος τύχης, το οποίο ολοκληρώνεται σε περισσότερες από μία φάσεις, φτιάχνουμε δεντροδιάγραμμα. Όταν το πείραμα ολοκληρώνεται σε δύο φάσεις μπορούμε να φτιάξουμε πίνακα διπλής εισόδου. Όταν θέλουμε μία πρόταση να την αποδώσουμε στη γλώσσα των ενδεχομένων, φτιάχνουμε το διάγραμμα του Venn. Χρήσιμες ιδιότητες α) Α (Α Β) και Β (Α Β) β) (Α Β) Α και (Α Β) Β γ) (Α Β) (Α Β) δ) (Α Β) Α και (Β Α) Β ε) (Α Β) (Α Β) και (Β Α) (Α Β) στ) Α Β τότε (Α Β) = Α και (Α Β) = Β (διάγραμμα Venn) ζ) Α Β, Β Α ασυμβίβαστα ενδεχόμενα Α Β, Α Β ασυμβίβαστα ενδεχόμενα και η ένωσή τους είναι το Α η) (Α Β) = Α Β και (Α Β) = Α Β Παραδείγματα λυμένων ασκήσεων Γνωρίζοντας ότι οι παραπάνω έννοιες είναι αρκετές και ίσως τις συγχέετε, θα προσπαθήσουμε να τις συνδέσουμε με συγκεκριμένα παραδείγματα, ώστε να γίνουν εύκολα κατανοητές. Έπειτα θα χρειαστεί να λύσετε τις ασκήσεις που βρίσκονται στο LINK : «Ασκήσεις στις πιθανότητες», με σκοπό να εμπεδώσετε την ύλη. 1. Να βρεθεί ο δειγματικός χώρος στα παρακάτω πειράματα τύχης i) Ρίχνουμε ένα νόμισμα και βλέπουμε την πάνω όψη του ii) Ρίχνουμε ένα ζάρι και βλέπουμε την πάνω όψη του Λύση i) Ω = {κ, γ } κ = κεφάλι, γ = γράμματα ii) Ω = {1, 2, 3, 4, 5, 6} 14

15 15 2. Ρίχνουμε ένα ζάρι και στην συνέχεια ένα νόμισμα. i) Να βρείτε τον δειγματικό χώρο του πειράματος ii) Να βρείτε το ενδεχόμενο Α : το ζάρι έδειξε 5 iii) Να βρείτε το ενδεχόμενο Β : το νόμισμα έδειξε κορώνα Λύση 1 ος τρόπος λύσης i) Δεντροδιάγραμμα Ω = {1Κ,1Γ, 2Κ,2Γ, 3Κ,3Γ, 4Κ, 4Γ, 5Κ, 5Γ, 6Κ,6Γ } 2 ος τρόπος λύσης Πίνακας διπλής εισόδου Κ Γ 1 1Κ 1Γ 2 2Κ 2Γ 3 3Κ 3Γ 4 4Κ 4Γ 5 5Κ 5Γ 6 6Κ 6Γ 15

16 16 ii) Α = {5Κ, 5Γ} iii) Β= {1Κ, 2Κ, 3Κ, 4Κ, 5Κ, 6Κ} 3. Εξετάζουμε τις οικογένειες που έχουν τρία παιδιά ως προς το φύλλο και την σειρά γέννησης τους. Να βρεθούν i) Ο δειγματικός χώρος του πειράματος και τα ενδεχόμενα ii) Ενδεχόμενο Α : Το πρώτο παιδί κορίτσι iii) Ενδεχόμενο Β : Το μεσαίο παιδί αγόρι iν) Ενδεχόμενο Γ : Τουλάχιστον ένα κορίτσι ν) Ενδεχόμενο, : Ακριβώς δύο αγόρια νi) Ενδεχόμενο Ε : Το πολύ δύο κορίτσια Να βρείτε επίσης τα ενδεχόμενα Α, Β, Α Β, Α Β, Α Β, Α Β, Β Α και (Α Β ) (Β Α ) Λύση Δεντροδιάγραμμα i) Ω = { ΑΑΑ, ΑΑΚ, ΑΚΑ, ΑΚΚ, ΚΑΑ, ΚΑΚ, ΚΚΑ, ΚΚΚ } ii) Α ={ ΚΑΑ, ΚΑΚ, ΚΚΑ, ΚΚΚ} 16

17 17 iii) Β ={ΑΑΑ, ΑΑΚ, ΚΑΑ, ΚΑΚ } iν) Γ={ΑΑΚ, ΑΚΑ, ΑΚΚ, ΚΑΑ, ΚΑΚ, ΚΚΑ, ΚΚΚ } ν) Δ = { ΑΑΚ, ΑΚΑ, ΚΑΑ } νi) Ε = {ΑΑΑ, ΑΑΚ, ΑΚΑ, ΑΚΚ, ΚΑΑ, ΚΑΚ, ΚΚΑ } Επιπλέον έχουμε ότι: A = Αγόρι, Κ = κορίτσι Α ={ΑΑΑ, ΑΑΚ, ΑΚΑ, ΑΚΚ} Β ={ΑΚΑ, ΑΚΚ, ΚΚΑ, ΚΚΚ } Α Β={ ΚΑΑ, ΚΑΚ, ΚΚΑ, ΚΚΚ, ΑΑΑ, ΑΑΚ } Α Β = { ΚΑΑ, ΚΑΚ } Α Β = {ΚΑΑ, ΚΑΚ, ΚΚΑ, ΚΚΚ, ΑΚΑ, ΑΚΚ } Α Β ={ ΚΚΚ, ΚΚΑ } Β Α ={ ΑΑΑ, ΑΑΚ } και (Α Β ) (Β Α )={ΚΚΚ, ΚΚΑ, ΑΑΑ, ΑΑΚ } 4. Με την βοήθεια ενός διαγράμματος Venn να απαντήσετε αν είναι σωστή ή λάθος η ισότητα (Α Β ) (Α Β) = Α Απάντηση Είναι σωστή γιατί 17

18 18 5. Με την βοήθεια ενός διαγράμματος Venn να αν είναι σωστές ή λάθος οι ισότητες : Β ( Α Β ) = Ø και Β ( Α Β ) = (Α Β) Λύση Είναι σωστές γιατί 18

19 19 6. Ρίχνουμε διαδοχικά το ένα κατόπιν του άλλου δύο ζάρια. i) Να βρείτε τον δειγματικό χώρο του πειράματος ii) Να βρείτε τα ενδεχόμενα Α : Η πρώτη ρίψη να είναι μικρότερη της δεύτερης Β : Το άθροισμα των ενδείξεων να είναι μεγαλύτερο του 10 Γ : Ίδια ένδειξη και στις δύο ρίψεις iii) Επίσης να βρείτε τα ενδεχόμενα Α Β, Β Γ, (Α Β) Γ, (Β Γ) Α Λύση 2 ο 1 ο (1,1) (1,2) (3,1) (4,1) (5,1) (6,1) 2 (2,1) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (3,1) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (4,1) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (5,1) (2,5) (3,5) (4,5) (5,5) (6,5) 6 (6,1) (2,6) (3,6) (4,6) (5,6) (6,6) i) Ο δειγματικός χώρος του πειράματος φαίνεται στον παρακάτω πίνακα διπλής εισόδου: ii) Α = {(1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4),(2,5), (2,6), (3,4), (3,5), (3,6), (4,5),(4,6),(5,6)} Β = { (5,6), (6,5),(6,6)} Γ= {(1,1),(2,2),(3,3),(4,4),(5,5), (6,6)} iii) Α Β = {(5,6)}, Β Γ = {(6,6)} (Α Β) Γ = {(5,6), (1,1),(2,2),(3,3),(4,4),(5,5),(6,6)} (Β Γ) Α = {(5,6)} 19

20 20 7. Μία κάλπη περιέχει 4 μπάλες, δύο μαύρες Μ1, Μ2 και δύο κόκκινες Κ1, Κ2. Εξάγουμε από την κάλπη 2 μπάλες. Να βρείτε τον δειγματικό χώρο του πειράματος όταν η εξαγωγή γίνεται i) Ταυτόχρονα ii) Εξάγουμε τις μπάλες την μία μετά την άλλη χωρίς επανατοποθέτηση iii) Εξάγουμε τις μπάλες την μία μετά την άλλη με επανατοποθέτηση. Λύση i) Επειδή η εξαγωγή γίνεται ταυτόχρονα, δεν μπορούμε να μιλάμε για προτεραιότητα στην εξαγωγή, επομένως, ο δειγματικός χώρος θα αποτελείται από όλα τα διμελή υποσύνολα που μπορούμε να σχηματίσουμε με τις παραπάνω μπάλες. Άρα # ={ (Μ1,Μ2), (Μ1,Κ1),(Μ1,Κ2), (Μ2,Κ1),(Μ2,Κ2),(Κ1,Κ2) } ii) Όταν η εξαγωγή γίνεται διαδοχικά χωρίς επανατοποθέτηση, ο δειγματικός χώρος θα αποτελείται από όλα τα διατεταγμένα ζεύγη με διαφορετικά πρώτα μέλη.,δηλαδή { (Μ1,Μ2), (Μ1,Κ1), (Μ1,Κ2), (Μ2,Μ1), (Μ2,Κ1), (Μ2,Κ2), (Κ1,Μ1), (Κ1,Κ2), (Κ2,Μ1), (Κ2,Μ2), (Κ2,Κ1) } iii) Όταν η εξαγωγή γίνεται με την σειρά και με επανατοποθέτηση τότε ο δειγματικός χώρος θα είναι ο του δεύτερου ερωτήματος μαζί με τα ζεύγη(μ1,μ1),(μ2,μ2), (Κ1,Κ1),(Κ2,Κ2), αφού τώρα μπορεί και στην πρώτη και στην δεύτερη εξαγωγή να βγάλουμε την ίδια μπάλα. 8) Με την βοήθεια του παρακάτω διαγράμματος Venn χαρακτηρίστε τις προτάσεις που ακολουθούν σωστές (Σ) ή λανθασμένες (Λ) 20

21 21 Α Β, Β Α, Γ Β,,Δ Γ, (Γ Δ,) Α, (Γ Δ) Β, (Γ Δ,) Α (Β Γ) = Β, (Β Γ) Δ = Α, (Α Β) = Β, (Α Β) =Β, Β Δ =Δ, (Γ Δ) Α = Α, (Γ Α) Α = Α, (Γ Β) Α = Γ Λύση Για κάθε οριζόντια σειρά έχουμε Λ, Σ, Σ, Λ, Σ, Σ, Σ, Σ, Λ, Λ, Σ, Σ, Σ, Λ, Σ 8) Έστω Ω το σύνολο των σπουδαστών της Στρατιωτικής Σχολής Ευελπίδων, και ήταν Ε 1,Ε 2,Ε 3 Ε 4 τα σύνολα των πρωτοετών, δευτεροετών, τριτοετών και τεταρτοετών Ευελπίδων, αντιστοίχως. Επί πλέον, έστω Θ το σύνολο των σπουδαστριών και Α το σύνολο των αλλοδαπών σπουδαστών. Εκφράστε με λόγια τι ακριβώς αναπαριστούν τα ακόλουθα σύνολα : (Ε 1 Ε 2 ) Θ ΘΑ Ε 1 Θ Α Ε 3 ΘΑ και ( Ε 1 Ε 2 ) ΑΘ Απάντηση. 21

22 22 Έχουμε (Ε 1 Ε 2 )'Θ = το σύνολο όλων των Γ ετών και Δ ετών σπουδαστριών, ΘΑ' =το σύνολο των μη αλλοδαπών σπουδαστριών όλων των ετών, Ε 1 Θ Α = το σύνολο των Α ετών αρρένων αλλοδαπών σπουδαστών, Ε 3 ΘΑ' = το σύνολο των Γ ετών μη αλλοδαπών σπουδαστριών και (Ε 1 Ε 2 )ΑΘ = το σύνολο των Α ετών και Β ετών αλλοδαπών σπουδαστριών. 9. Υποθέτουμε ότι οι ομάδες αίματος A, B,O, AB κατανέμονται στον πληθυσμό σε ποσοστά 40% 14%, 42% και 4%, αντίστοιχα. Είναι γνωστό ότι ένας ασθενής με ομάδα αίματος Α μπορεί να λάβει αίμα μόνο από τις ομάδες Ο και Α, και ένα άτομο της ομάδας Β μπορεί να δώσει αίμα μόνο σε ασθενείς της ομάδας Β και ΑΒ. Αν υποθέσουμε ότι ένας εθελοντής αιμοδότης έρχεται να δώσει αίμα για ασθενή της ομάδας Α, τότε η πιθανότητα όπως το αίμα είναι συμβατό πόση είναι ; Απάντηση P({A,O}) = P({A}) + P({O}) = = 0.82 = 82%. Επίσης, αν ένα άτομο της ομάδας Β δώσει αίμα, τότε το αίμα του είναι συμβατό για το 18% του πληθυσμού, αφού P({B, AB}) = P({B}) + P({AB}) = = 0.18 = 18%. 10) Ας θεωρήσουμε μία σειρά τριών γεννήσεων σ ένα μαιευτήριο και το ενδεχόμενο Β της γέννησης ενός τουλάχιστο αγοριού. Υποθέτοντας ότι η γέννηση αγοριού είναι εξίσου πιθανή με τη γέννηση κοριτσιού, να υπολογισθεί η πιθανότητα P(B). Απάντηση Παρατηρούμε ότι το συμπληρωματικό του ενδεχομένου Β είναι το ενδεχόμενο B της γέννησης κοριτσιού και στις τρεις περιπτώσεις. Η πιθανότητα P(B ) υπολογίζεται πιο εύκολα από την P(B). Συγκεκριμένα, ο δειγματικός χώρος περιλαμβάνει 8 ισοπίθανα δειγματικά σημεία από τα οποία μόνο ένα ανήκει στο B και έτσι 22

23 23 P(B ) = και παίρνουμε P(B) = 1- P(B )= 1- = 11. Έστω ότι από μία κληρωτίδα η οποία περιέχει 10 σφαιρίδια αριθμημένα από το 0 μέχρι το 9 κληρώνεται κάθε εβδομάδα ένας αριθμός. Μετά από κάθε κλήρωση το εξαγόμενο σφαιρίδιο επανατοποθετείται στην κληρωτίδα. Ας θεωρήσουμε το στοχαστικό πείραμα 3 (διαδοχικών) κληρώσεων. Να υπολογισθεί η πιθανότητα του ενδεχομένου όπως ο μεγαλύτερος αριθμός που θα κληρωθεί είναι το 5. Απάντηση Το ενδεχόμενο, ο μεγαλύτερος αριθμός που θα κληρωθεί να είναι το 5 μπορεί να παρασταθεί ως η διαφορά A B του ενδεχομένου Α αφού ο μεγαλύτερος αριθμός που θα κληρωθεί είναι ένας από τους αριθμούς {0,1,2,3,4,5} και του ενδεχομένου Β αφού ο μεγαλύτερος αριθμός που θα κληρωθεί είναι ένας από τους αριθμούς {0,1,2,3,4}. Παρατηρούμε ότι B A και P(A B) = P(A) P(B). Ο αριθμός των στοιχείων του δειγματικού χώρου Ω των 3 διαδοχικών κληρώσεων είναι ίσος με N(Ω) = 10 3.Έχουμε τον αριθμό των διατάξεων των 10 αριθμών {0,1,2,...,9} ανά 3 με επανάληψη, ενώ ο αριθμός των στοιχείων του ενδεχομένου Α είναι ίσος με Ν(Α) = 63 και ο αριθμός των διατάξεων των 6 αριθμών {0,1,2,3,4,5} ανά 3 με επανάληψη. Ομοίως Ν(Β) = 5 3 και έτσι P(A B) = = 0.091= 9,1% Τώρα προσπαθήστε να λύσετε τα παραδείγματα και μόνοι σας. Αν δεν τα καταφέρατε, μην απογοητεύεστε αφού σίγουρα χρειάζεται χρόνος. Δείτε τα ξανά. Ωστόσο αποφύγετε να προχωρήσετε στην επίλυση των ασκήσεων προτού κατανοήσετε τα παραπάνω! 23

24 24 24

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }. 3 ΠΙΘΑΝΟΤΗΤΕΣ 3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Ένα πείραμα του οποίου δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνεται φαινομενικά τουλάχιστον κάτω από

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }. ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα Αν δηλαδή ω,,, ω2 ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος

Διαβάστε περισσότερα

1.1 Πείραμα Τύχης - δειγματικός χώρος

1.1 Πείραμα Τύχης - δειγματικός χώρος 1. ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Πείραμα Τύχης - δειγματικός χώρος Κάθε πείραμα στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως το αποτέλεσμα λέγεται αιτιοκρατικό πείραμα. Τέτοια πειράματα

Διαβάστε περισσότερα

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ 1 ΣΤΟΙΧΕΙ ΠΟ ΤΗ ΘΕΩΡΙ ΠΙΘΝΟΤΗΤΩΝ 1. Πείραμα τύχης Πείραμα τύχης (π.τ.) ονομάζουμε κάθε πείραμα που μπορεί να επαναληφθεί όσες φορές επιθυμούμε υπό τις ίδιες συνθήκες και του οποίου το αποτέλεσμα είναι

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Π ι θ α ν ό τ η τ ε ς : Ο τομέας των Εφαρμοσμένων Μαθηματικών, που ασχολείται με την αξιολόγηση κατάλληλων στοιχείων έτσι ώστε να είναι μετρήσιμη η προσδοκία μας για την πραγματοποίηση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 5o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΓΕΡΓΙΟΣ Ε. ΚΑΡΑΦΕΡΗΣ ΠΕ03 ΜΑΘΗΜΑΤΙΚΟΣ [] ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΡΙΑ: Πείραμα Τύχης Κάθε πείραμα κατά στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως

Διαβάστε περισσότερα

Α ΕΝΟΤΗΤΑ. Πιθανότητες. Α.1 (1.1 παρ/φος σχολικού βιβλίου) Α.2 (1.2 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα. Η έννοια της πιθανότητας

Α ΕΝΟΤΗΤΑ. Πιθανότητες. Α.1 (1.1 παρ/φος σχολικού βιβλίου) Α.2 (1.2 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα. Η έννοια της πιθανότητας Α ΕΝΟΤΗΤΑ Πιθανότητες Α.1 (1.1 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα Α.2 (1.2 παρ/φος σχολικού βιβλίου) Η έννοια της πιθανότητας Α.1 Δειγματικός Χώρος. Ενδεχόμενα. Απαραίτητες γνώσεις

Διαβάστε περισσότερα

5.2 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝ ΕΧΟΜΕΝΑ

5.2 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝ ΕΧΟΜΕΝΑ 1 5.2 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝ ΕΧΟΜΕΝΑ ΘΕΩΡΙΑ 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα. 2. ειγµατικός χώρος : Το σύνολο των δυνατών αποτελεσµάτων ενός πειράµατος

Διαβάστε περισσότερα

3.1 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝΑ. 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα.

3.1 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝΑ. 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα. 1 3.1 ΕΙΓΜΤΙΚΟΣ ΧΡΟΣ - ΕΝ ΕΧΟΜΕΝ ΘΕΡΙ 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα. 2. ειγµατικός χώρος : Το σύνολο των δυνατών αποτελεσµάτων του πειράµατος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 19 Οκτωβρίου 2009 ΑΞΙΩΜΑΤΙΚΗ ΘΕΜΕΛΙΩΣΗ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Ορισµός Εστω Ω δειγµατικός χώρος στοχαστικού (τυχαίου) πειράµατος (ή ϕαινοµένου).

Διαβάστε περισσότερα

ΧΑΡΑΛΑΜΠΟΣ.ΣΠ. ΛΥΚΟΥΔΗΣ - ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ

ΧΑΡΑΛΑΜΠΟΣ.ΣΠ. ΛΥΚΟΥΔΗΣ - ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Θεωρία Πιθανοτήτων Εάν οι συνθήκες τέλεσης ενός πειράματος καθορίζουν πλήρως το αποτέλεσμα του, τότε το πείραμα λέγεται αιτιοκρατικό. Είναι γνωστό ότι το αποσταγμένο νερό βράζει στους 100 βαθμού κελσίου.

Διαβάστε περισσότερα

5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ 1 5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΘΕΩΡΙΑ 1. Ισοπίθανα απλά ενδεχόµενα Είναι τα απλά ενδεχόµενα για τα οποία κάποιο εξ αυτών δεν έχει πλεονέκτηµα έναντι των άλλων όσον αφορά την επιλογή του. Με άλλα λόγια

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ( Version ) 2001

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ( Version ) 2001 ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ( Version 17-4--2016) 2001 ΘΕΜΑ 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α) Ρ (Α Β). Μονάδες 8,5 Απόδειξη: Επειδή τα ενδεχόμενα

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ Χαράλαµπος Α. Χαραλαµπίδης 12 Οκτωβρίου 2009 ΠΡΑΞΕΙΣ ΣΤΑ ΕΝ ΕΧΟΜΕΝΑ Ενωση ενδεχοµένων Η ένωση δύο ενδεχοµένων A και B (ως προς ένα δειγµατικό χώρο Ω), συµβολιζόµενη

Διαβάστε περισσότερα

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΑΛΓΕΒΡΑ - Α ΛΥΚΕΙΟΥ ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Επιμέλεια: Παπαδόπουλος Παναγιώτης Πείραμα τύχης 1 η δραστηριότητα Ρίξτε ένα κέρμα 5 φορές και καταγράψτε την πάνω όψη του: 1 η ρίψη:, 2 η ρίψη:, 3 η ρίψη:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 ο ΠΙΘΑΝΟΤΗΤΕΣ Συνοπτική Θεωρία Όλες οι αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις από την Τράπεζα Θεμάτων του Υπουργείου και προτεινόμενες Διαγωνίσματα

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 2: Θεωρία Πιθανοτήτων Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης

Διαβάστε περισσότερα

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος Τμήμα Λογιστικής και Χρηματοοικονομικής 1 Θεωρία Πιθανοτήτων Δρ. Αγγελίδης Π. Βασίλειος 2 Περιεχόμενα Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους 3 Πείραμα

Διαβάστε περισσότερα

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 3: Πιθανότητες. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 3: Πιθανότητες. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 3: Πιθανότητες Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4.

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4. ο Κεφάλαιο : Πιθανότητες. Δειγματικοί χώροι. Διαγράμματα Venn Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. Κλασικός ορισμός πιθανότητας 4. Κανόνες λογισμού πιθανοτήτων η Κατηγορία : Δειγματικοί χώροι ) Ρίχνουμε

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. Ερωτήσεις του τύπου «Σωστό - Λάθος»

ΠΙΘΑΝΟΤΗΤΕΣ. Ερωτήσεις του τύπου «Σωστό - Λάθος» ΠΙΘΑΝΟΤΗΤΕ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν είναι δειγματικός χώρος ενός πειράματος τύχης, τότε Ρ () = 1. 2. * Αν Α είναι ενδεχόμενο ενός πειράματος τύχης τότε, 0 Ρ (Α) 1. 3. * Για το αδύνατο

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Ανδρεσάκης Δ. ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΙΘΑΝΟΤΗΤΕΣ

ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Ανδρεσάκης Δ. ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΙΘΑΝΟΤΗΤΕΣ ΛΓΕΡ ΛΥΚΕΙΟΥ ΠΙΘΝΟΤΗΤΕΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙ 1 Tα πειράματα των οποίων δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνονται (φαινομενικά τουλάχιστον) κάτω από τις ίδιες συνθήκες

Διαβάστε περισσότερα

Πιθανότητες & Στατιστική. Μέρος I. Εισαγωγή στις Πιθανότητες. Τυχαία Πειράματα (φαινόμενα)

Πιθανότητες & Στατιστική. Μέρος I. Εισαγωγή στις Πιθανότητες. Τυχαία Πειράματα (φαινόμενα) Πιθανότητες & Στατιστική Μέρος I. Εισαγωγή στις Πιθανότητες. 3 βασικές έννοιες Τυχαία Πειράματα (φαινόμενα) Δειγματικός χώρος Ενδεχόμενα Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α Ερώτηση θεωρίας α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; =. β) Για δύο συμπληρωματικά ενδεχόμενα Α και Α να αποδείξετε

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 2ο Κανόνες Απαρίθμησης (συνέχεια) 2 ΙΣΤΟΣΕΛΙΔΑ ΜΕ ΔΙΑΦΑΝΕΙΕΣ, ΒΙΒΛΙΟ & ΔΕΙΓΜΑ ΘΕΜΑΤΩΝ www.unipi.gr/faculty/mkoutras/index.htm

Διαβάστε περισσότερα

ΓΕΛ ΝΕΑΣ ΠΕΡΑΜΟΥ ΠΙΘΑΝΟΤΗΤΕΣ ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ-ΛΟΓΙΣΜΟΣ. Στατιστική ομαλότητα ή Νόμος των μεγάλων αριθμών

ΓΕΛ ΝΕΑΣ ΠΕΡΑΜΟΥ ΠΙΘΑΝΟΤΗΤΕΣ ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ-ΛΟΓΙΣΜΟΣ. Στατιστική ομαλότητα ή Νόμος των μεγάλων αριθμών ΠΙΘΑΝΟΤΗΤΕΣ ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ-ΛΟΓΙΣΜΟΣ Στατιστική ομαλότητα ή Νόμος των μεγάλων αριθμών Οι σχετικές συχνότητες πραγματοποίησης των ενδεχομένων ενός πειράματος σταθεροποιούνται γύρω από κάποιους αριθμούς

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 6: Πιθανότητες Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017. HY118-Διακριτά Μαθηματικά Τρίτη, 02/05/2017 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 04-May-17 1 1 04-May-17 2 2 Γιατί πιθανότητες; Γιατί πιθανότητες; Στον προτασιακό και κατηγορηματικό

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ κεφ - ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ Σε ένα συρτάρι υπάρχουν δύο κάρτες, μία άσπρη και μία κόκκινη Παίρνουμε στην τύχη μία κάρτα από το συρτάρι, καταγράφουμε το χρώμα της και την ξαναβάζουμε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ (ημιτελές Version )

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ (ημιτελές Version ) ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ (ημιτελές Version 24-3-2016) 2001 2001 επαναληπτικές 2002 2002 επαναληπτικές 2003 2003 επαναληπτικές 2006 2006 επαναληπτικές 2005 2005 επαναληπτικές 2006 2006 επαναληπτικές 2007 2007

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 26 Οκτωβρίου 2009 Η διερεύνηση, σε γενικές γραµµές, της δεσµευµένης πιθανότητας και η σύγκρισή της µε την απόλυτη πιθανότητα αποκαλύπτει

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 1 η : Βασικές Έννοιες Πιθανότητας Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ. Άδειες

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΜΣ στη «Ναυτιλία» Τμήμα Β art time Χαράλαμπος Ευαγγελάρας hevangel@unipi.gr Η έννοια της Πιθανότητας Ο όρος πιθανότητα είναι συνδέεται άμεσα με τη μελέτη

Διαβάστε περισσότερα

3/10/2016. Στατιστική Ι. 1 η Διάλεξη

3/10/2016. Στατιστική Ι. 1 η Διάλεξη Στατιστική Ι 1 η Διάλεξη 1 2 Φαινόμενα Πειράματα Αιτιοκρατικά Προσδιοριστικά Τυχαία Στοχαστικά Ένα αιτιοκρατικό πείραμα, κάθε φορά που εκτελείται, έχει το ίδιο αποτέλεσμα το οποίο μπορεί να προβλεφθεί

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 00-0 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ Ι Παπαγρηγοράκης http://usersschgr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ-

Διαβάστε περισσότερα

1 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή

1 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή 1 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή Υπάρχει σε πολλούς η εντύπωση ότι το κύριο κίνητρο για την ανάπτυξη της Θεωρίας των Πιθανοτήτων προήλθε από το ενδιαφέρον του ανθρώπου για τα τυχερά παιχνίδια. Σημαντική μάλιστα

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ . ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Ασκήσεις σχ. βιβλίου σελίδας 7 9 Α ΟΜΑΔΑΣ. Από μία τράπουλα με 5 φύλλα παίρνουμε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχομένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν

Διαβάστε περισσότερα

3.2 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ. Σχετική συχνότητα ενδεχοµένου Α : 2. Ιδιότητες της f, λ το πλήθος απλών ενδεχοµένων :

3.2 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ. Σχετική συχνότητα ενδεχοµένου Α : 2. Ιδιότητες της f, λ το πλήθος απλών ενδεχοµένων : 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΘΕΩΡΙΑ. Σχετική συχνότητα ενδεχοµένου Α : Είναι το πηλίκο f κ A = ν ενδεχόµενου Α σε ν το πλήθος εκτελέσεις του πειράµατος όπου κ το πλήθος των πραγµατοποιήσεων του. Ιδιότητες

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

1.1 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝΑ

1.1 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝΑ 1 1.1 ΕΙΓΜΤΙΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝ ΘΕΩΡΙ 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα. 2. ειγµατικός χώρος : Το σύνολο των δυνατών αποτελεσµάτων ενός πειράµατος

Διαβάστε περισσότερα

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου Γ. ΛΥΚΕΙΟΥ ΜΘΗΜΤΙΚ ΓΕΝΙΚΗΣ ΠΙΔΕΙΣ ΠΙΘΝΟΤΗΤΕΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου Π Ι Θ Ν Ο Τ Η Τ Ε Σ ΟΡΙΣΜΟΙ Πείραμα τύχης λέγεται το πείραμα το οποίο όσες φορές και αν επαναληφθεί (φαινομενικά τουλάχιστον

Διαβάστε περισσότερα

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ Συχνότητα Σχετική συχνότητα Αν σε ν εκτελέσεις ενός πειράματος ένα ενδεχόμενο Α πραγματοποιείται va φορές,τότε va ο αριθμός va λέγεται συχνότητα του ενδεχομένου

Διαβάστε περισσότερα

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Πιθανότητες Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 7 / 0 / 0 6 Γενικής κεφάλαιο 3 94 ασκήσεις και τεχνικές σε 8 σελίδες εκδόσεις Καλό πήξιμο ΓΛΥΚΟΣ ΚΩΝ/ΝΟΣ τηλ.

Διαβάστε περισσότερα

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΜΕΡΟΣ Α. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ 77. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ Κλασικός ορισμός πιθανότητας Αν ένα στοιχείο του συνόλου του δειγματικού χώρου επιλέγεται στην τύχη και δεν έχει κανένα πλεονέκτημα έναντι των άλλων,

Διαβάστε περισσότερα

Τυχαία Μεταβλητή (Random variable-variable aléatoire)

Τυχαία Μεταβλητή (Random variable-variable aléatoire) Τυχαία Μεταβλητή (Random varable-varable aléatore) Σε πολλούς τύπους πειραμάτων τα αποτελέσματα είναι από τη φύση τους πραγματικοί αριθμοί. Παραδείγματα τέτοιων πειραμάτων αποτελούν οι μετρήσεις των υψών

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016 Βιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 06 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολο υποθέσεων και του οποίου

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων και Στατιστική

Θεωρία Πιθανοτήτων και Στατιστική Θεωρία Πιθανοτήτων και Στατιστική 2 ο Εξάμηνο Ασκήσεις Πράξης 1 Θεωρία Συνόλων - Δειγματικός Χώρος Άσκηση 1: Να βρεθούν και να γραφούν με συμβολισμούς της Θεωρίας Συνόλων οι δειγματοχώροι των τυχαίων πειραμάτων:

Διαβάστε περισσότερα

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την Μαθηματικά Πληροφορικής 8ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Θεωρία Συνόλων Σύνολο: Το σύνολο εκφράζει μία συλλογή διακριτών μονάδων οποιασδήποτε φύσης.

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ 1 1.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Ασκήσεις σχ. βιβλίου σελίδας 26 28 Α ΟΜΑΔΑΣ 1. Ένα κουτί έχει τρεις μπάλες, μια άσπρη, μια μαύρη και μια κόκκινη. Κάνουμε το εξής πείραμα : παίρνουμε από το κουτί μια

Διαβάστε περισσότερα

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 Εισαγωγικά Βασικοί Ορισµοί Πράξεις Γεγονότων Σχεδιάγραµµα της Υλης Βασικές Εννοιες της Θεωρίας Πιθανοτήτων

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ Πιθανότητες Πραγματικοί αριθμοί Εξισώσεις Ανισώσεις Πρόοδοι Βασικές έννοιες των συναρτήσεων Μελέτη βασικών συναρτήσεων ΑΛΓΕΒΡΑ Α

Διαβάστε περισσότερα

Τυχαία μεταβλητή (τ.μ.)

Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 1: Στοιχεία Πιθανοθεωρίας Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

Στοχαστικές Στρατηγικές

Στοχαστικές Στρατηγικές Στοχαστικές Στρατηγικές 3 η ενότητα: Εισαγωγή στα στοχαστικά προβλήματα διαδρομής Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο

Διαβάστε περισσότερα

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων . Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων Tα διάφορα επιστημονικά μοντέλα ή πειράματα ή γενικότερα τα φυσικά φαινόμενα μπορεί να θεωρηθεί ότι εντάσσονται σε δύο μεγάλες κατηγορίες: τα προσδιοριστικά

Διαβάστε περισσότερα

Εισαγωγή στο μάθημα Πιθανότητες - Στατιστική. Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας

Εισαγωγή στο μάθημα Πιθανότητες - Στατιστική. Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας Εισαγωγή στο μάθημα Πιθανότητες - Στατιστική Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας 1 Πειραματικά Μοντέλα Μοντέλα:» Καθοριστικά» (π.χ. ο νόμος του Ohm)» Στοχαστικά ή πιθανοτικά» (π.χ. ένταση

Διαβάστε περισσότερα

3. Να δειχτει οτι α + 110 20α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε

3. Να δειχτει οτι α + 110 20α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε ΠΙΘΑΝΟΤΗΤΕΣ Π ε ι ρ α μ α τ υ χ η ς - Δ ε ι γ μ α τ ι κ ο ς χ ω ρ ο ς. Να δειχτει οτι α + 0 0α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε το αποτελεσμα,.

Διαβάστε περισσότερα

Η Έννοια της Πιθανότητας. 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα:

Η Έννοια της Πιθανότητας. 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα: 1 Η Έννοια της Πιθανότητας Η Έννοια της Πιθανότητας 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα: α) Να εμφανιστεί περιττός αριθμός κατά την ρίψη ενός ζαριού. (1/2) β) Να εμφανιστεί τουλάχιστον

Διαβάστε περισσότερα

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ ΜΕΡΟΣ Α 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ-ΕΝΔΕΧΟΜΕΝΑ 69 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ Πείραμα τύχης- Δειγματικός χώρος Ένα πείραμα το οποίο όσες φορές και αν το επαναλάβουμε, δεν μπορούμε να προβλέψουμε το αποτέλεσμα

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 15 Οκτωβρίου 2009 ΚΛΑΣΙΚΗ ΠΙΘΑΝΟΤΗΤΑ De Moivre Ο κλασικός ορισµός της πιθανότητας αφορά πεπερασµένους δειγµατικούς χώρους και

Διαβάστε περισσότερα

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς.

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς. Πιθανότητες Α Λσκείοσ Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς www.askisopolis.gr Πιθανότητες Εφαρμογές στον ορισμό πιθανότητας. Ρίχνουμε ένα νόμισμα τρεις φορές. Ποια είναι η πιθανότητα να φέρουμε και τις

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 21 Οκτωβρίου 2009 ΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ Η ανάγκη εισαγωγής της δεσµευµένης πιθανότητας αναφύεται στις περιπτώσεις όπου µία µερική

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 4.4 : Πιθανότητα Δεσμευμένη Πιθανότητα- Όρια (ΙV). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ i) 50% ii) 30% ,

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ i) 50% ii) 30% , ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Έστω ο δειγματικός χώρος Ω = {0,,,,, 00} Δίνονται και οι πιθανότητες κ =,,, 00 Να υπολογίσετε την πιθανότητα P(0) Έστω Ω ένας δειγματικός χώρος με πεπερασμένο πλήθος στοιχείων και

Διαβάστε περισσότερα

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 2 Πιθανότητες Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 2-2 2 Πιθανότητες Χρησιμοποιώντας την Στατιστική Βασικοί ορισμοί: Ενδεχόμενα, Δειγματικός χώρος και Πιθανότητες

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f =

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f = ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 16 (version 9-6-16) 1. A Να δώσετε τον ορισμό της παραγώγου μιας συνάρτησης σε ένα σημείο x του πεδίο ορισμού της. Απάντηση: Παράγωγος μιας συνάρτησης σε ένα σημείο x του πεδίο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017 Βιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 07 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολο υποθέσεων και του οποίου

Διαβάστε περισσότερα

Βασικά στοιχεία της θεωρίας πιθανοτήτων

Βασικά στοιχεία της θεωρίας πιθανοτήτων Η έννοια του Πειράµατος Τύχης. 9 3 Το σύνολο των πιθανών εκβάσεων ενός πειράµατος τύχης καλείται δειγµατοχώρος ήδειγµατικόςχώρος (sample space)καισυµβολίζεταιµεωήµε S.Έναστοιχείοω ή s του δειγµατικού χώρου

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΚΑΨΑΛΗΣ ΘΕΜΙΣΤΟΚΛΗΣ ΤΣΑΚΟΥΜΑΓΚΟΣ ΣΤΕΛΙΟΣ

ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΚΑΨΑΛΗΣ ΘΕΜΙΣΤΟΚΛΗΣ ΤΣΑΚΟΥΜΑΓΚΟΣ ΣΤΕΛΙΟΣ ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΚΑΨΑΛΗΣ ΘΕΜΙΣΤΟΚΛΗΣ ΤΣΑΚΟΥΜΑΓΚΟΣ ΣΤΕΛΙΟΣ ΔΙΑΝΕΜΕΤΑΙ ΔΩΡΕΑΝ ΣΤΟΥΣ ΜΑΘΗΤΕΣ ΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΩΝ ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ... σελ. 4 ΚΕΦΑΛΑΙΟ ο ΠΙΘΑΝΟΤΗΤΕΣ... σελ. ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΙΟΥΝΙΟΥ 07 ΕΚΦΩΝΗΣΕΙΣ Α. Αν οι συναρτήσεις f και g είναι παραγωγίσιµες στο, να αποδείξετε ότι f ( x) + g( x) = f ( x) + g ( x), για κάθε

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156

Βιομαθηματικά BIO-156 ιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 03 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολουποθέσεωνκαιτουοποίουτο αποτέλεσμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Tόμος 5ος 22-0088_l_c_math_bm_146-192_28b.indd 1 18/09/2017 10:10 ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ ΣΥΓΓΡΑΦΕΙΣ: Αδαμόπουλος Λεωνίδας Επ. Σύμβουλος Παιδαγωγικού

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 7: Ανεξάρτητα ενδεχόμενα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Σχολικός Σύµβουλος ΠΕ03

Σχολικός Σύµβουλος ΠΕ03 Α Σ Κ Η Σ Ε Ι Σ Π Ι Θ Α Ν Ο Τ Η Τ Ω Ν ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ0 e-mail@p-theodoropoulos.gr Πρόλογος Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηµατικών µε πολλά

Διαβάστε περισσότερα

ιδιαιτεραμαθηματα.gr ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ιδιαιτεραμαθηματα.gr ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ [Δεν είναι σκόπιμο να αποκαλύψεις στο παιδί σου ότι οι μεγάλοι άντρες δεν είχαν ιδέα από άλγεβρα] ΕΠΙΜΕΛΕΙΑ ΣΗΜΕΙΩΣΕΩΝ: ΠΑΠΑΔΟΠΟΥΛΟΣ Μ. ΕΠΙΜΕΛΕΙΑ ΣΗΜΕΙΩΣΕΩΝ: ΠΑΠΑΔΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ Πιθανότητες και Αρχές Στατιστικής (3η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 38 Περιεχόμενα

Διαβάστε περισσότερα

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ 1. Ο Γυμναστής ενός λυκείου προκειμένου να στελεχώσει την ομάδα μπάσκετ του λυκείου ψάχνει στην τύχη μεταξύ των μαθητών να βρει τρεις κοντούς (Κ) και τρεις ψηλούς (Ψ). Να

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 07 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ(3)

Διαβάστε περισσότερα

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ 3ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 3ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

Μάθηµα 1 ο. Πιθανότητα-Έννοιες και Ορισµοί. Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων.

Μάθηµα 1 ο. Πιθανότητα-Έννοιες και Ορισµοί. Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων. Μάθηµα 1 ο Πιθανότητα-Έννοιες και Ορισµοί Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων. http://compus.uom.gr/inf267/index.php 1 Εισαγωγικά Βασικές Έννοιες

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 Ο «ΠΙΘΑΝΟΤΗΤΕΣ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 Ο «ΠΙΘΑΝΟΤΗΤΕΣ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΠΙΘΑΝΟΤΗΤΕΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα

Διαβάστε περισσότερα

Πιθανότητες. Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους

Πιθανότητες. Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους Πιθανότητες Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους «Πείραμα» Tύχης Οτιδήποτε συμβαίνει και δεν γνωρίζουμε από πριν το ακριβές αποτέλεσμά του. Απασχόλησαν

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του τέταρτου φυλλαδίου ασκήσεων.

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του τέταρτου φυλλαδίου ασκήσεων. Θεωρία Πιθανοτήτων, εαρινό εξάμηνο 207-8 Λύσεις του τέταρτου φυλλαδίου ασκήσεων 2 2 = 8 Ίδια Ρίχνουμε ένα νόμισμα τρεις φορές και θεωρούμε το ενδεχόμενο να προκύψουν και οι δυο όψεις του νομίσματος καθώς

Διαβάστε περισσότερα