20/12/2016. Συνεχής Ασυνεχής

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "20/12/2016. Συνεχής Ασυνεχής"

Transcript

1 20/12/2016 ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού Με τις στατιστικές μεθόδους επιδιώκεται αφενός η συνοπτική αλλά εμπεριστατωμένη παρουσίαση των ευρημάτων μιας μελέτης (περιγραφική στατιστική) και αφετέρου η συναγωγή συμπερασμάτων που βασίζονται στα ευρήματα αυτά (συμπερασματολογική στατιστική / επαγωγική στατιστική) Πιθανότητα (P, Probability) είναι μέτρο του πόσο αναμενόμενο να συμβεί ένα γεγονός ή μια θέση (ισχυρισμός) να είναι αληθής. Οι πιθανότητες παίρνουν τιμές μεταξύ 0 (δεν θα συμβεί) και 1 (θα συμβεί). Όσο μεγαλύτερη η πιθανότητα ενός γεγονότος, τόσο βέβαιοι είμαστε ότι θα συμβεί. Ως μεταβλητή θεωρούμε κάθε χαρακτηριστικό το οποίο μπορεί να μεταβληθεί ή να διαφοροποιηθεί κατά μήκος του χρόνου, από τόπο σε τόπο, από άτομο σε άτομο ή από ομάδα σε ομάδα (π.χ. ηλικία, ύψος, εισόδημα, συγκέντρωση χοληστερόλης, αρτηριακή πίεση, ρυθμός γεννητικότητας κτλ) Ποιοτική ονομάζεται η μεταβλητή που περιγράφει κάποιο ποιοτικό χαρακτηριστικό ενός ατόμου ή μιας ομάδας. Ποσοτική ονομάζεται η μεταβλητή που μπορεί να μετρηθεί με τη συνήθη έννοια του όρου Συνεχής Ασυνεχής Ως ανεξάρτητη χαρακτηρίζεται μια μεταβλητή όταν επηρεάζει μια άλλη μεταβλητή. Ως εξαρτημένη χαρακτηρίζεται μια μεταβλητή όταν επηρεάζεται από μια άλλη μεταβλητή. 1

2 20/12/2016 ΠΕΡΙΓΡΑΦΗ ΔΕΔΟΜΕΝΩΝ Γραφικές μέθοδοι Ραβδογράμματα - Ιστογράμματα (Συχνότητα) Κυκλικά διαγράμματα Διαγράμματα πλαισίου Αριθμητικοί στατιστικοί δείκτες ή μέτρα (statistics) Κεντρικής τάσης Διασποράς - Μέση τιμή (mean) - Διάμεσος (median) - Επικρατούσα τιμή (mode) - Εκατοστημόρια ή ποσοστιαία σημεία (percentiles) - Διακύμανση ή Διασπορά (Variance) - Τυπική απόκλιση (standard deviation) Διάγραμμα πίτας (Pie chart) Ραβδόγραμμα (bar chart) Διάγραμμα πλαισίου (Box plot) Max Ιστόγραμμα (Histogram) 75% 25% Median Min 2

3 20/12/2016 3

4 20/12/2016 Μέση τιμή : (mean ή average) Διάμεσος : (median) - Ταξινόμηση των μετρήσεων κατά μέγεθος - Επιλογή της τιμής στο μέσον των μετρήσεων Επικρατούσα τιμή : Η συχνότερη τιμή (mode) 4

5 20/12/2016 Εκατοστημόρια ή ποσοστιαία σημεία (percentiles) - Διατάσσουμε τα δεδομένα κατά τάξη μεγέθους - Το p-εκατοστημόριο είναι η τιμή που έχει p% των μετρήσεων μικρότερες από αυτήν Τεταρτημόρια (quartiles) Ειδικά εκατοστημόρια - Q 1 25% - Q 2 50% - Q 3 75% ΜΕΤΡΑ ΤΗΣ ΔΙΑΣΠΟΡΑΣ Έκταση ή εύρος (range) : x max - x min Διακύμανση Διασπορά (variance) : Πληθυσμού «σ 2» Δείγματος «s 2» Τυπική (ή σταθερή) απόκλιση (standard deviation) : Συντελεστής διακύμανσης (coefficient of variance) : ή Συντελεστής μεταβλητότητας (coefficient of variation) 5

6 20/12/2016 Accurate but imprecise inaccurate but precise Accurate and precise Precision: ορθότητα ή επαναληψιμότητα Accuracy: ακρίβεια Κανονική κατανομή Ν(μ,σ 2 ) 6

7 20/12/2016 Ν(0,1) Τυποποιημένη μεταβλητή ibution/standard_normal.html Φ(- < Z z)=0.5 + Φ(0 Z z) 7

8 20/12/2016 Υπολογισμός πιθανοτήτων στην Κανονική κατανομή Αν τα επίπεδα της χοληστερόλης ενός πληθυσμού σε mg/dl ακολουθούν την κατανομή`n(210, 900), ποια είναι η πιθανότητα ένα άτομο που επιλέγεται τυχαία από αυτόν τον πληθυσμό να έχει επίπεδο χοληστερόλης: Α) Μεταξύ 180 και 210 mg/dl ; Β) Μεγαλύτερο από 225 mg/dl; Γ) Μικρότερο από 150 mg/dl; Δ) Μεταξύ 195 και 225 mg/dl; μ = 210mg/dl, σ = 30mg/dl Τυποποιούμε πρώτα τα άκρα των διαστημάτων της μεταβλητής για να μπορούμε να ανατρέξουμε στον πίνακα της κανονικής κατανομής 8

9 20/12/2016 Κεντρικό οριακό θεώρημα (central limit theorem) Για αρκούντως μεγάλα δείγματα από έναν πληθυσμό, οι μέσες τιμές ακολουθούν περίπου την κανονική κατανομή, ανεξάρτητα από το είδος της κατανομής του πληθυσμού. Όσο μεγαλύτερα τα δείγματα τόσο καλύτερα προσεγγίζεται η κανονική κατανομή. Έστω Χ 1, Χ 2,, Χ n ανεξάρτητες μεταβλητές και S n =X 1 +X 2 + +X n Για μεγάλα «n», η τ.μ. ακολουθεί την κανονική κατανομή Ν(0,1) Κατανομή t του Student 9

10 20/12/2016 Η προσπάθεια της επαγωγικής στατιστικής είναι μελετώντας δείγματα να συνάγει συμπεράσματα τα οποία να γενικεύονται στον πληθυσμό. Τί είναι πληθυσμός; Τί είναι δείγμα; ΕΚΤΙΜΗΤΙΚΗ Εκτίμηση σε σημείο Δίνουμε τους αριθμητικούς δείκτες του δείγματος ως προσεγγιστική (αβέβαιη) εκτίμηση αυτών του πληθυσμού εκτιμώμενο τυπικό σφάλμα της μέσης τιμής : τυπικό σφάλμα : τυπικό σφάλμα της διακύμανσης : Εκτίμηση σε διαστήματα εμπιστοσύνης ή αξιοπιστίας (confidence intervals) Δίνουμε ένα διάστημα μέσα στο οποίο αναμένεται με συγκεκριμένη πιθανότητα να εμπίπτει μια παράμετρος του πληθυσμού x t s x Στάθμη σημαντικότητας (σ.σ): 1-a 100(1-a)% δ.ε. 1

11 20/12/2016 Διάστημα εμπιστοσύνης για τη μέση τιμή (μεγάλα δείγματα) Η μεταβλητή Ζ ακολουθεί την κανονική κατανομή Αναζητούμε την πιθανότητα για κάποιο z από πίνακες της τυποποιημένης κανονικής κατανομής X Z / 2 X n Z 2 1 n n P n / α/2 α/2 -Z α/2 Z α/2 Ο δείκτης σωματικής μάζας Χ(kgr/m 2 ) ενός ατόμου υπολογίζεται αν διαιρέσουμε το βάρος του με το τετράγωνο του ύψους του. Για άνδρες ηλικίας ετών είναι γνωστό ότι Χ~N(μ,σ 2 ). Να προσδιορισθεί το 95% δ.ε. για την σωματική μάζα μ των ανδρών εάν από τυχαίο δείγμα 49 ανδρών από αυτόν τον πληθυσμό προέκυψε και s 2 =9. Δ.ε. 95% Ζ α/2 =Z (πίνακες)->

12 20/12/2016 Διάστημα εμπιστοσύνης για τη μέση τιμή (μικρά δείγματα) Η μεταβλητή t ακολουθεί την κατανομή t Αναζητούμε την τιμή t από πίνακες για ν β.ε και a Από δείγμα 15 υγιών γυναικών ηλικίας ετών, υπολογίσθηκε για την αμυλάση του ορού ότι μονάδες/100ml και s=35 μονάδες/100ml. Να υπολογισθεί το 90% διάστημα εμπιστοσύνης για την αληθή τιμή της μέσης τιμής μ της αμυλάσης στον πληθυσμό των υγιών γυναικών στις ίδιες ηλικίες. Δ.ε. 90% t 14,0.05 (πίνακες)-> 1.76 Διάστημα εμπιστοσύνης για τη διασπορά (μεγάλα και μικρά δείγματα) Ακολουθεί την κατανομή X 2 Αναζητούμε τις τιμές X 2 από πίνακες για P(X 2 > X 2 ν;a)=a 3

13 20/12/2016 Φ(- < z Z)=0.5 + Φ(0 z Z) 4

14 20/12/2016 Διάστημα εμπιστοσύνης για τη διαφορά μέσων δύο πληθυσμών (μεγάλα ανεξάρτητα δείγματα) - Ακολουθεί την κανονική κατανομή - Αναζητούμε τις τιμές Ζ α/2 από πίνακες της τυποποιημένης κανονικής κατανομής Διάστημα εμπιστοσύνης για τη διαφορά μέσων δύο κανονικών πληθυσμών με κοινό σ 2 (μικρά ανεξάρτητα δείγματα) - Ακολουθεί την κατανομή t με ν 1 + ν 2 β.ε. - Αναζητούμε την τιμή t cr από πίνακες για ν 1 + ν 2 και α/2 5

15 20/12/2016 Διάστημα εμπιστοσύνης για τη διαφορά μέσων ζευγαρωτών δειγμάτων - Διαφορά δ μεταξύ των μέσων τιμών των δύο δειγμάτων - Ακολουθεί την κατανομή t με ν =n-1 β.ε. - Αναζητούμε την τιμή t από πίνακες για ν και α/2 Διάστημα εμπιστοσύνης για τον λόγο των διασπορών δύο κανονικών πληθυσμών - Ακολουθεί την κατανομή F με ν 1, ν 2 β.ε. - Αναζητούμε την τιμή F από πίνακες για ν 1, ν 2 και α/2 Πίνακας της κατανομής F για P(F > F (κ-1),(n-κ) ) = a ν 1 : αριθμητής ν 2 : παρονομαστής κ n-κ

16 ΔΟΚΙΜΑΣΙΑ ΥΠΟΘΕΣΕΩΝ (ΕΛΕΓΧΟΣ ΣΗΜΑΝΤΙΚΟΤΗΤΑΣ) Significance testing Συγκρίνοντας δύο πληθυσμούς διαπιστώνουμε πάντοτε διαφορές μεταξύ των μέσων αλλά και μεταξύ των διασπορών τους. Απηχούν πραγματικές διαφορές μεταξύ των πληθυσμών; Μηδενική υπόθεση (null) Η 0 : Εναλλακτική υπόθεση (alternative) Η 1 : ή ή Σφάλμα 1ου είδους (α) : Πιθανότητα εσφαλμένης απόρριψης της Η 0 Σφάλμα 2ου είδους (β) : Πιθανότητα εσφαλμένης απόρριψης της Η 1 Έλεγχος για τη μέση τιμή μ μεγάλου δείγματος, σ.σ. α Κ.Ο.Θ Το «z» ακολουθεί την κανονική κατανομή Για κάθε α αντιστοιχεί ένα κρίσιμο z α Η Η 0 απορρίπτεται όταν z > z α Έλεγχος για διαφορά δύο μέσων τιμών (μεγάλα δείγματα), σ.σ. α ακολουθεί την κανονική κατανομή Για κάθε α αντιστοιχεί ένα κρίσιμο z α Η Η 0 απορρίπτεται όταν z > z α 1

17 H 0 : μ = μ 0 Εάν θεωρήσουμε ότι ισχύει η H 0 τότε το δείγμα με μέση τιμή μ προέρχεται από την ίδια κατανομή που προέρχεται και η μέση τιμή αναφοράς μ 0. Άρα αναμένεται η μ να βρίσκεται μέσα στο διάστημα ε μ π ι σ τοσύ ν η ς γ ι α το μ 0 σ ε κ ά πο ι α σ. σ (έστω α = ). Τυποποιώντας την απόσταση δύο μέσων τιμών (μ - μ 0 ) διαιρούμε με το τυπικό σφάλμα και όχι με την τυπική απόκλιση, όπως θα ήταν εάν τυποποιούσαμε απλώς την τυχαία μεταβλητή. Εάν η διαφορά είναι >1.96 φορές το τυπικό σφάλμα του μέσου, τότε η μ βρίσκεται εκτός του δ.ε και έχει πιθανότητα εμφάνισης < Στην περίπτωση αυτή μπορεί να θεωρηθεί ότι μια τέτοια μέση τιμή δεν μπορεί να αντιπροσωπεύει την ίδια κατανομή με αυτήν της μ 0. Άρα απορρίπτουμε την H 0. Έλεγχος για τη μέση τιμή μ μικρού δείγματος, σ.σ. α ακολουθεί την κατανομή t s από τις τιμές y, β.ε.= n - 1 Έλεγχος μέσων τιμών μ 1, μ 2 δύο δειγμάτων Όταν n 1 n 2 unpaired t-test (διαφορετικά υποκείμενα) Δείγματα από ανεξάρτητους πληθυσμούς Διακυμάνσεις όχι σημαντικά διαφορετικές Π.χ. Σύγκριση τιμών γλυκόζης από ασθενείς δύο διαφορετικών νοσοκομείων Unpaired ακολουθεί την κατανομή t β.ε. = n 1 + n 2-2 =Σταθμισμένη SD t-test_immunoglobulin.xls 2

18 Έλεγχος σημαντικότητας για την διασπορά, σ.σ. α Σύγκριση δειγματικής διασποράς s 2 με θεωρητική σ 2 ακολουθεί την κατανομή Χ 2 Για κάθε α και ν=n-1 αντιστοιχεί ένα κρίσιμο X 2 α/2;v Η Η 0 απορρίπτεται όταν Χ 2 > X 2 α/2;v Σύγκριση των διασπορών δύο πληθυσμών, σ.σ. α ακολουθεί την κατανομή F Για κάθε α και ν1,ν2 αντιστοιχεί ένα κρίσιμο F ν1, ν2;α Η Η 0 απορρίπτεται όταν F F ν1,ν2;α για Folate.xls 3

19 αριθμητής ν 1, s 1 >s 2 Όταν n 1 = n 2 κατά ζεύγη (paired) t-test (ίδια υποκείμενα) Διακυμάνσεις όχι σημαντικά διαφορετικές ακολουθεί την κατανομή t s d : τυπική απόκλιση διαφορών δ, β.ε. = n -1 PO2.xls 4

20 Έλεγχος σημαντικότητας για το «p» της διωνυμικής κατανομής (μεγάλα δείγματα) Έστω «x» επιτυχίες σε «n» δοκιμές. Συγκρίνουμε την αναλογία x/n των επιτυχιών με μια δοθείσα πιθανότητα p 0 με την βοήθεια της τυποποιημένης μεταβλητής Ζ. 6_17.xls ΑΝΙΣΑ ΔΕΙΓΜΑΤΑ, ΑΝΙΣΕΣ ΔΙΣΑΠΟΡΕΣ 5

21 n = 44 Πληθυσμ. μέσος μ 0 = 20 Δειγματικός μέσος μ = 22 Τυπική απόκλιση s = 4 Τυπ.σφάλμα se = z = z cr = 1.96 Τυποποιημένη κατανομή t Διάστημα εμπιστοσύνης εάν ισχύει η H 0 : Για z = +/-1.96 οι αντίστοιχες τιμές της x σε υποθετική κατανομή με κέντρο το μ 0 = 20 θα είναι = 20 +/ (1.96) = and (1.96) = Πόση είναι η πιθανότητα να είναι μικρότερη από στην εναλλακτική κατανομή; Αυτή είναι η πιθανότητα β να αποδεχθούμε την Ho ενώ είναι λάθος. Ποια τιμή z αντιστοιχεί στην τιμή στην εναλλακτική κατανομή; 6

22 ΑΝΑΛΥΣΗ ΤΗΣ ΔΙΑΚΥΜΑΝΣΗΣ (ANOVA) Σύγκριση περισσοτέρων των δύο ανεξαρτήτων δειγμάτων από κανονικούς πληθυσμούς με ίδια διακύμανση Συνολική εκτίμηση για το αν οι μέσοι όλων των δειγμάτων είναι μεταξύ τους ίσοι ή αν τουλάχιστον ένας από αυτούς διαφέρει. Ελέγχουμε αν υπάρχει σημαντική διαφορά μεταξύ της διασποράς των μέσων τιμών και της συνολικής διασποράς των δειγμάτων. n = n 1 + n n κ κ: πλήθος δειγμάτων Hb_ANOVA.xls Η 0 : Η 1 : Τουλάχιστον ένας από τους δειγματικούς μέσους δεν είναι ίσος με κάποιον άλλον ΠΙΝΑΚΑΣ ΑΝΑΛΥΣΗΣ ΔΙΑΣΠΟΡΑΣ VR F ( k 1),( N k ), Προϋπόθεση : διασπορές των δειγμάτων ίσες. 09 3_Example.xls Η H 0 απορρίπτεται εάν F > F (κ-1),(n-κ) 7

23 Πίνακας της κατανομής F για P(F > F (κ-1),(n-κ) ) = a n-κ κ ΕΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ Προϋπόθεση όλων των «παραμετρικών δοκιμασιών» που αναφέρθηκαν είναι η «κανονικότητα» των δεδομένων. Πώς ελέγχουμε την κανονικότητα; Γράφημα συσχέτισης των ποσοστιαίων σημείων (quantiles) των δεδομένων με αυτά της κανονικής κατανομής (QQ-plot). Ευθεία γραμμή κανονικότητα Έλεγχος λοξότητας (skewness) και κύρτωσης (kurtosis) Συντ. λοξότητας Ν x i x 1 N 1 s 3 3 μετρά την ασυμμετρία της κατανομής >0 η δεξιά ουρά μεγαλύτερη από την αριστερή Συντ. κύρτωσης Ν xi x 1 N 1 s 4 4 μετρά το πόσο πιο απότομη ή πιο επίπεδη είναι η κατανομή σε σχέση με την κανονική. >0 απότομη στο κέντρο με μακρές ουρές, <0 επίπεδη στο κέντρο με μικρές ουρές 8

24 Αποδεχόμαστε ότι τα δεδομένα ακολουθούν την κανονική κατανομή, αν οι συντελεστές ασυμμετρίας και κύρτωσης είναι στο διάστημα (-1,1). P-value Στις δοκιμασίες σημαντικότητας η p-value είναι η πιθανότητα του να πάρει το στατιστικό z ή t τουλάχιστον τόσο ακραίες τιμές όσο αυτή που παρατηρήθηκε, θεωρώντας ότι ισχύει η μηδενική υπόθεση. Ο μελετητής απορρίπτει συνήθως την μηδενική υπόθεση όταν η p-value βρίσκεται να είναι μικρότερη από την στάθμη σημαντικότητας a που επέλεξε, συνήθως 0.05 ή Μια τόσο μικρή p-value δείχνει ότι το παρατηρηθέν αποτέλεσμα θα ήταν πολύ απίθανο να συμβεί εάν ισχύει η μηδενική υπόθεση (δηλαδή ότι η παρατηρηθείσα σχέση είναι πολύ απίθανο να είναι α π ο τ έ λ ε σ μ α κ α θ α ρ ή ς τύχης.) 9

25 Υπολογισμός της p-value Υπολογίζουμε το στατιστικό z x s / n Ανατρέχουμε στους πίνακες του z και βρίσκουμε την πιθανότητα Φ στην οποία αντιστοιχεί. p-value = 2 (1 Φ) για αμφίπλευρη δοκιμασία σημαντικότητας. s = 5.67, n = 100 P(- z -2.47)= 0.5 P(-2.47 z 0)= =

26 1 ΠΟΙΟΤΙΚΑ ΔΕΔΟΜΕΝΑ Κατηγορίας (nominal) - Διάταξης (ordinal) Ποσοστά - Σχετικές Συχνότητες - Αναλογίες Πλήθος εμφανίσεων κάποιου φαινομένου Σύνολο παρατηρήσεων Σε μεγάλα δείγματα ακολουθεί κανονική κατανομή Δηλ. όταν np(1-p) 10 ΣΥΓΚΡΙΣΗ ΑΝΑΛΟΓΙΑΣ ΕΝΟΣ ΔΕΙΓΜΑΤΟΣ ΜΕ ΓΝΩΣΤΗ ΑΝΑΛΟΓΙΑ (H τ.μ. παίρνει δύο τιμές) p = x/n H 0 : p = p 0 το p προκύπτει από τον ίδιο H 1 : p p 0 πληθυσμό που αναφέρεται το p 0 Διάστημα εμπιστοσύνης

27 2 ΣΥΓΚΡΙΣΗ ΑΝΑΛΟΓΙΩΝ ΑΠΟ ΔΥΟ ΠΛΗΘΥΣΜΟΥΣ H 0 : (p 1 p 2 ) = D 0, p 1 = x 1 /n 1, p 2 = x 2 /n 2 H 1 : (p 1 p 2 ) D 0 Περίπτωση Α: D 0 = 0 H 0 : p 1 = p 2 Περίπτωση Β: D 0 0 H 0 : p 1 - p 2 = D 0

28 3 ΣΥΓΚΡΙΣΗ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΔΕΙΓΜΑΤΩΝ ΚΑΤΑ ΖΕΥΓΗ Ανάλυση χ 2 (Μη παραμετρικός έλεγχος) Η τ.μ. παίρνει δύο τιμές (Κατηγορίες 1, 2) - Πίνακες 2x2 Ομάδα Κατηγορία 1 Κατηγορία 2 Σύνολο 1 2 π 11 π 12 π 11 +π 12 =N 1 π 21 π 22 π 21 + π 22 =N 2 Σύνολο π 11 +π 21 π 12 +π 22 N=N 1 +N 2 - Αναμενόμενες τιμές κατ. 1 ομάδας 1, 2 θ 11 = (π 11 +π 12 )*(π 11 +π 21 )/N, θ 21 = (π 21 +π 22 )*(π 11 +π 21 )/N - Αναμενόμενες τιμές κατ. 2 ομάδας 1, 2 θ 12 = (π 11 +π 12 )*(π 12 +π 22 )/N, θ 22 = (π 21 +π 22 )*(π 12 +π 22 )/N Εξετάζουμε την τιμή της μεταβλητής : ή η οποία ακολουθεί κατανομή χ 2 με β.ε.=1, όταν οι αναμενόμενες αναλογίες δεν είναι < 5 Η χ 2 εξετάζει αμφίπλευρα, αλλά στον πίνακα αναζητούμε για σ.σ=0.05 και όχι 0.05/2. x_square_schmerzlind.xls x_square_operation.xls

29 4 Για 2 ομάδες και 2 κατηγορίες μπορεί επίσης να χρησιμοποιηθεί ο τύπος: ΣΥΚΡΙΣΗ ΑΝΑΛΟΓΙΩΝ S ΔΕΙΓΜΑΤΩΝ ΜΕ Κ ΚΑΤΗΓΟΡΙΕΣ Ανάλυση χ 2 Πίνακες Συνάφειας (contingency tables) Κατηγορία "j" Ομάδα "i" 1 2. k Σύνολο γραμμών 1 π 11 π 12. π 1k n 1k =Σn 1j 2 π 21 π 22. π 2k n 2k =Σn 2j s π s1 π s2 π sk n sk =Σn sj Σύνολο στηλών n s1 =Σn i1 n s2 =Σn i2. n sk =Σn ik Ν=ΣΣn ij

30 5 ή απλούστερα β.ε. = (s-1) (k-1) Fisher Exact Test : Εναλλακτική για την χ2 για μικρούς αριθμούς Κρίσιμες τιμές του χ 2

31 ΜΗ ΠΑΡΑΜΕΤΡΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ Δεν προαπαιτούν να ακολουθούν οι πληθυσμοί κάποια κατανομή. Ενδιαφέρει μόνο η τάξη και όχι η τιμή της τυχαίας μεταβλητής. Δοκιμασία Kolmogorov Smirnov (Καλής προσαρμογής, Ομογένειας) Κριτήριο των Ροών ή Wald-Wolfowitz (Δοκιμασία τυχαιότητας) Δοκιμασία προσήμου (sign test) Αθροίσματα τάξεων (rank sum test) - Δοκιμασία Wilcoxon - Δοκιμασία Mann-Whithey - Δοκιμασία Kruskal-Wallis ΔΟΚΙΜΑΣΙΑ ΟΜΟΓΕΝΕΙΑΣ (Kolmogorov Smirnov) Ελέγχει αν δύο δείγματα προέρχονται από την ίδια κατανομή. H 0 = Τα δύο δείγματα προέρχονται από την ίδια κατανομή H 1 = Τα δύο δείγματα προέρχονται διαφορικές κατανομές Χρησιμοποιεί τον δείκτη D = max F 1 (x) F 2 (x) F 1 (x) και F 2 (x) είναι οι αθροιστικές συχνότητες των δύο δειγμάτων Η μηδενική υπόθεση απορρίπτεται, όταν το D D a,n1,n2 από τον πίνακα VII. α=0.05 D a, m, n m n m n α=0.01 D a, m, n m n m n 10 2_Example.xls 1

32 ΔΟΚΙΜΑΣΙΑ ΟΜΟΓΕΝΕΙΑΣ (Kolmogorov Smirnov) Για ένα δείγμα που ελέγχεται εάν είναι κανονικό: H 0 = Το δείγμα προέρχονται από κανονικό πληθυσμό H 1 = Το δείγμα δεν προέρχονται από κανονικό πληθυσμό Χρησιμοποιεί τον δείκτη D = max F 1 (x) F Ν (x) F 1 (x) και F Ν (x) είναι οι αθροιστικές συχνότητες του δείγματος και της κανονικής κατανομής Η μηδενική υπόθεση απορρίπτεται, όταν το D D a,n από τον πίνακα VI. α= a n D, n α= a n D, n ΔΟΚΙΜΑΣΙΑ ΤΩΝ ΡΟΩΝ ή WALD-WOLFOWITZ (Δοκιμασία τυχαιότητας) Εξετάζει αν μια ακολουθία παρατηρήσεων είναι τυχαία ή όχι. Π.χ. ΕΕ ΑΑ ΕΕ ΑΑΑ Ε ΑΑΑ ΕΕΕΕ ΑΑΑ Κάθε διαδοχή ομοίων συμβόλων λέγεται «ροή». Το πλήθος των συμβόλων μιας ροής λέγεται «μήκος ροής». Στο παράδειγμα έχουμε 8 ροές n 1 =9 E, n 2 =11 A Εάν n 1, n 2 10 τότε το πλήθος των ροών U ακολουθεί την Ν(μ u,σ 2 ) με και Alignment.xls 2

33 ΔΟΚΙΜΑΣΙΑ ΠΡΟΣΗΜΟΥ (Sign test) Ανάλογη προς τη δοκιμασία t Χρησιμοποιεί τον διάμεσο (median) Ζευγαρωτές παρατηρήσεις Πλήθος μη μηδενικών διαφορών > 5 H 0 : Μ 1 = M 2 H H 0 απορρίπτεται, όταν το πλήθος των αρνητικών (Ν - ) και θετικών (Ν + ) διαφορών είναι άνισο. Αυτό συμβαίνει όταν το Ν m = min(ν -,Ν + ) της μικρότερης τιμής του διαστήματος εμπιστοσύνης που προβλέπεται από πίνακες της διωνυμικής κατανομής για το πλήθος των μη μηδενικών διαφορών και για συγκεκριμένο a. Sign_test.xls N: πλήθος μη μηδενικών διαφορών 3

34 ΔΟΚΙΜΑΣΙΑ ΑΘΡΟΙΣΜΑΤΩΝ ΤΑΞΕΩΝ ή ΘΕΣΕΩΝ (rank sums) ΚΑΤA WILCOXON Ζευγαρωτές παρατηρήσεις (n 1 =n 2 ) H 0 : Μ 1 = M 2 Κατατάσσουμε τις απόλυτες τιμές των διαφορών κατά αύξουσα σειρά. Η σειρά εμφάνισης των διαφορών αποτελεί την τάξη τους. Γράφουμε δίπλα σε κάθε διαφορά την τάξη της και το πρόσημό της. Αθροίζουμε τις τάξεις των θετικών διαφορών (Τ + ) Αθροίζουμε τις τάξεις των αρνητικών διαφορών (Τ - ) Η μηδενική υπόθεση απορρίπτεται όταν: T = min {T +,T - } Τ c. (T c από τον πίνακα ΧΙ, n=πλήθος μη μηδενικών παρατηρήσεων) Για n > 25 η Τ ακολουθεί κανονική κατανομή. Εναλλακτικά, όταν Τ = Τ + - Τ - > T p (n: πλήθος μη μηδενικών διαφορών) Wilc_Sign_Rank_Sum.xls 10_12_Example.xls 4

35 Όρια ασφαλείας του δείκτη για τη δοκιμασία προσήμου αθροιστικών τάξεων κατά Wilcoxon a=0.05 a=0.025 Πλήθος διαφορών 0 T 0.95 T T p Για n > 20 z p n( n 1)(2n 1) 6 Z p : το p εκατοστιαίο σημείο της κανονικής κατανομής 5

36 ΔΟΚΙΜΑΣΙΑ ΑΘΡΟΙΣΜΑΤΩΝ ΤΑΞΕΩΝ (rank sums) ΚΑΤA MANN-WHITNEY (U-test) Δείγματα διαφορετικού μεγέθους n 1,n 2 Διατάσσουμε τις παρατηρήσεις των δύο δειγμάτων σε αύξουσα σειρά, σαν να ανήκαν στον ίδιο πληθυσμό. Σημειώνουμε την τάξη κάθε παρατήρησης. Υπολογίζουμε τα αθροίσματα Τ 1 και Τ 2 των τάξεων για κάθε δείγμα. Τ = min {T 1,T 2 } Εξετάζουμε, αν το Τ εμπίπτει στα όρια αποδοχής που βρίσκουμε σε πίνακες για n 1, n 2 και συγκεκριμένη σ.σ. Στον πίνακα το Ν 1 είναι το n του δείγματος με το μικρότερο Τ. 6

37 ΔΟΚΙΜΑΣΙΑ KRUSKAL - WALLIS Μη παραμετρικό ανάλογο της ANOVA H 0 : Τα δείγματα είναι ομογενή (οι μέσες τάξεις των κ δειγμάτων δεν διαφέρουν σημαντικά μεταξύ τους.) H τ.μ. πρέπει να έχει συνεχή κατανομή και να είναι διατάξιμη. Χρησιμοποιούμε τις τάξεις των παρατηρήσεων και τις υποβάλουμε σε ανάλυση των διακυμάνσεων. Υπολογίζουμε τον δείκτη H ο οποίος ακολουθεί την κατανομή χ 2 κ: πλήθος δειγμάτων, n j : πλήθος του δείγματος j, n=σn j R j : άθροισμα των τάξεων στο δείγμα j Για κ=3 και n j μέχρι 5 ανατρέχουμε στον πίνακα ΧΙΙ. Στην περίπτωση πολλαπλότητας «μ» των τιμών διορθώνουμε την τιμή του Η διαιρώντας με τον αριθμό C, που λαμβάνει υπόψη το άθροισμα των κύβων των βαθμών πολλαπλότητας καθώς και το άθροισμά των: 7

38 Παραμετρικές δοκιμασίες Προϋποθέσεις παραμετρικών δοκιμασιών Μη παραμετρικές εναλλακτικές Δύοανεξάρτητα δείγματα Student's t test 1) Τα δεδομένα και των δύο δειγμάτων έχουν συλλεγεί τυχαία 2) Τα δεδομένα και των δύο δειγμάτων προέρχονται από πληθυσμούς με κανονική κατανομή 3) Οι διακυμάνσεις τους είναι ίσες Mann-Whitney U test Κατά ζεύγη Student's t test 1) Η διαφορές (d i ) πρέπει να προέρχονται από πληθυσμό διαφορών με κανονική κατανομή Wilcoxon signed rank ANOVA 1) Τα δεδομένα όλων των δειγμάτων έχουν συλλεγεί τυχαία 2) Τα δεδομένα όλων των δειγμάτων προέρχονται από πληθυσμούς με κανονική κατανομή 3) Οι διακυμάνσεις τους είναι ίσες Kruskal-Wallis H test Συντελεστής συσχέτισης του Pearson 1) Τα δεδομένα Y για κάθε X πρέπει να έχουν συλλεγεί τυχαία από κανονική κατανομή των τιμών Y. 2) Τα δεδομένα X για κάθε Y πρέπει να έχουν συλλεγεί τυχαία από κανονική κατανομή των τιμών X. Συντελεστής συσχέτισης τάξεως του Spearman 8

39 20/12/2016 ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ - ΣΥΣΧΕΤΙΣΗ (Simple Linear Regression - Correlation) Εύρεση μιας μαθηματικής ευθείας που εξηγεί τα δεδομένα α : τεταγμένη επί την αρχή (intercept) β : κλίση (slope) e : τυχαίο σφάλμα x : ελεγχόμενη (predictor) y : απόκριση (response) Μέθοδος ελαχίστων τετραγώνων 1

40 20/12/2016 Προϋποθέσεις για τη χρήση της απλής γραμμικής παλινδρόμησης Τα τυχαία σφάλματα στην x είναι αμελητέα Για κάθε τιμή της x υπάρχει μια κανονική κατανομή τιμών της y. Η κατανομή του y για κάθε τιμή του x έχει την ίδια διακύμανση Linear_Regr.xls Απλή γραμμική παλινδρόμηση Παλινδρόμηση Deming 2

41 20/12/2016 Τυπικό σφάλμα της εκτίμησης (standard error of the estimation) Τυπικό σφάλμα για το b δ.ε. β = b t s b, β. ε. n-2, a Τυπικό σφάλμα για το a δ.ε. α = a t s a, β. ε. n-2, a ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ (Non Linear Regression) 3

42 20/12/2016 ΣΥΣΧΕΤΙΣΗ (Correlation) Μέθοδος για την μέτρηση του βαθμού συμμεταβλητότητας των μεταβλητών. Συντελεστής συσχέτισης Pearson (Correlation coefficient) Διάστημα εμπιστοσύνης (Confidence interval) Διάστημα πρόβλεψης (Prediction interval) y : τιμή που προβλέπεται από την γρ. παλ. για το x : μέση τιμή του x x : τιμή της ανεξ. μετ. για την οποία αναζητούμε την y x i : τιμή της ανεξ. μετ. από τις μετρήσεις 4

43 20/12/2016 Διάστημα εμπιστοσύνης για a και b Δοκιμασία ανεξαρτησίας H 0 : β = 0, απορρίπτεται όταν t > t n-2;a/2 Δοκιμασία μη συσχέτισης H 0 : ρ = 0, απορρίπτεται όταν t > t n-2;a/2 β.ε. = n - 2 5

44 20/12/2016 Πίνακας των κρίσιμων τιμών της κατανομής t Γραμμική παλινδρόμηση Deming 6

45 20/12/2016 Δοκιμασία ανεξαρτησίας Η 0 : r T =0 n 5 5 < n 10 Δεν μπορούμε να αποφανθούμε Aπορρίπτουμε την Η 0 όταν r T S n;a n > 10 To ακολουθεί την κατανομή t. Απορρίπτουμε την Η 0 όταν t T t n-2;a 7

ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού

ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού Με τις στατιστικές μεθόδους επιδιώκεται αφενός η συνοπτική αλλά εμπεριστατωμένη παρουσίαση των

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού

ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού Με τις στατιστικές μεθόδους επιδιώκεται αφενός η συνοπτική αλλά εμπεριστατωμένη παρουσίαση των

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού

ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού Με τις στατιστικές μεθόδους επιδιώκεται αφενός η συνοπτική αλλά εμπεριστατωμένη παρουσίαση των

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Χειμερινό εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Μέτρα

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 7: Παρουσίαση δεδομένων-περιγραφική στατιστική Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Αναλυτική Στατιστική

Αναλυτική Στατιστική Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

Η ΣΤΑΤΙΣΤΙΚΗ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΣΠΕΡΜΑΤΟΣ

Η ΣΤΑΤΙΣΤΙΚΗ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΣΠΕΡΜΑΤΟΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΙΑTΡΙΚΗ ΣΧΟΛΗ Η ΣΤΑΤΙΣΤΙΚΗ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΣΠΕΡΜΑΤΟΣ Έλενα Κριτσέλη, MPH PhD Επιστημονικός Συνεργάτης Επιδημιολόγος Χρόνιων Παθήσεων, Α Πανεπιστημιακή Παιδιατρική

Διαβάστε περισσότερα

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής

Διαβάστε περισσότερα

Εισαγωγή στη Βιοστατιστική Βασικές έννοιες Στατιστικής. Μαρία Γκριζιώτη Μsc Ιατρικής Ερευνητικής Μεθοδολογίας

Εισαγωγή στη Βιοστατιστική Βασικές έννοιες Στατιστικής. Μαρία Γκριζιώτη Μsc Ιατρικής Ερευνητικής Μεθοδολογίας Εισαγωγή στη Βιοστατιστική Βασικές έννοιες Στατιστικής Μαρία Γκριζιώτη Μsc Ιατρικής Ερευνητικής Μεθοδολογίας Σκοπός του μαθήματος Κατανόηση βασικών εννοιών της στατιστικής Δυνατότητα δημιουργίας βάσης

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 17 ΚΕΦΑΛΑΙΟ 1 23

Περιεχόμενα. Πρόλογος 17 ΚΕΦΑΛΑΙΟ 1 23 Περιεχόμενα Πρόλογος 17 Μέρος A ΚΕΦΑΛΑΙΟ 1 23 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ 23 1.1 Εισαγωγή 23 1.1.1 Περιγραφική Στατιστική (Descriptive Statistics) 24 1.1.2 Επαγωγική ή Αναλυτική Στατιστική (Inferential or

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2013-2014 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητή: ένα χαρακτηριστικό ή ιδιότητα που μπορεί να πάρει διαφορετικές τιμές

Διαβάστε περισσότερα

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΧΡΗΣΗ SPSS

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΧΡΗΣΗ SPSS ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΧΡΗΣΗ SPSS Πανεπιστήμιο Θεσσαλίας-Τμήμα Πολιτικών Μηχανικών Εργαστήριο Κυκλοφορίας, Μεταφορών και Διαχείρισης Εφοδιαστικής Αλυσίδας Αντικείμενα διάλεξης Σύντομη εισαγωγή

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13 ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...

Διαβάστε περισσότερα

Γ. Πειραματισμός - Βιομετρία

Γ. Πειραματισμός - Βιομετρία Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται

Διαβάστε περισσότερα

Δείγμα πριν τις διορθώσεις

Δείγμα πριν τις διορθώσεις Εισαγωγή Α ΜΕΡΟΣ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ 1 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Εισαγωγή 1.1.1 Περιγραφική Στατιστική (Descriptive Statistics) 1.1.2 Επαγωγική ή Αναλυτική Στατιστική (Inferential or Αnalytical Statistics)

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ Στατιστικά περιγραφικά μέτρα Τα στατιστικά περιγραφικά μέτρα είναι αντιπροσωπευτικές τιμές οι οποίες περιγράφουν με τρόπο ποσοτικό την κατανομή μιας μεταβλητής. Λειτουργούν

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Χειμερινό εξάμηνο 2010-2011 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Περιγραφική Στατιστική Ι users.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2017-2018 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Ανάλυση ποσοτικών δεδομένων. ΕΡΓΑΣΤΗΡΙΟ 2 ΔΙΟΙΚΗΣΗ & ΚΟΙΝΩΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΣΤΗΝ ΤΟΞΙΚΟΕΞΆΡΤΗΣΗ Dr. Ρέμος Αρμάος

Ανάλυση ποσοτικών δεδομένων. ΕΡΓΑΣΤΗΡΙΟ 2 ΔΙΟΙΚΗΣΗ & ΚΟΙΝΩΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΣΤΗΝ ΤΟΞΙΚΟΕΞΆΡΤΗΣΗ Dr. Ρέμος Αρμάος Ανάλυση ποσοτικών δεδομένων ΕΡΓΑΣΤΗΡΙΟ 2 ΔΙΟΙΚΗΣΗ & ΚΟΙΝΩΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΣΤΗΝ ΤΟΞΙΚΟΕΞΆΡΤΗΣΗ Dr. Ρέμος Αρμάος Εισαγωγή στη στατιστική Στατιστική: σύνολο αρχών και μεθοδολογιών που χρησιμοποιούνται για:

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΧ Οικονομετρικά Πρότυπα Διαφάνεια 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ Α Δημήτρης Κουγιουμτζής e-mail: dkugiu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://users.auth.gr/~dkugiu/teach/civiltrasport/ide.html Στατιστική: Δειγματοληψία

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΣΥΝΔΥΑΣΤΙΚΗ 1.1 ΒΑΣΙΚΗ ΑΡΧΗ ΑΠΑΡΙΘΜΗΣΗΣ... 13 1.2 ΠΡΟΣΘΕΤΙΚΗ ΑΡΧΗ ΑΠΑΡΙΘΜΗΣΗΣ... 15 1.3 ΔΙΑΤΑΞΕΙΣ..... 16 1.4 ΜΕΤΑΘΕΣΕΙΣ... 18 1.5 ΣΥΝΔΥΑΣΜΟΙ... 20 1.6 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΤΑΘΕΣΕΙΣ......

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι. Περιγραφική Στατιστική 1

Στατιστική Επιχειρήσεων Ι. Περιγραφική Στατιστική 1 Στατιστική Επιχειρήσεων Ι Περιγραφική Στατιστική 1 2 Πληθυσμός ή στατιστικός πληθυσμός Ονομάζεται η κατανομή των τιμών μιας τ.μ., δηλαδή η κατανομή των τιμών που παίρνει ένα χαρακτηριστικό μιας ομάδας

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 2. Περιγραφική Στατιστική Βασικά είδη στατιστικής ανάλυσης 1. Περιγραφική στατιστική: περιγραφή του συνόλου των δεδοµένων (δείγµατος) 2. Συµπερασµατολογία: Παραγωγή συµπερασµάτων για τα

Διαβάστε περισσότερα

2 ο Εξάμηνο του Ακαδημαϊκού Έτους ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3)

2 ο Εξάμηνο του Ακαδημαϊκού Έτους ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3) Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού 2 ο Εξάμηνο του Ακαδημαϊκού Έτους 2015-2016 ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3) Αντώνης Κ.

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

28/11/2016. Στατιστική Ι. 9 η Διάλεξη (Περιγραφική Στατιστική)

28/11/2016. Στατιστική Ι. 9 η Διάλεξη (Περιγραφική Στατιστική) Στατιστική Ι 9 η Διάλεξη (Περιγραφική Στατιστική) 1 2 Πληθυσμός ή στατιστικός πληθυσμός Ονομάζεται η κατανομή των τιμών μιας τ.μ., δηλαδή η κατανομή των τιμών που παίρνει ένα χαρακτηριστικό μιας ομάδας

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα)

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα) ΤΕΙ Στερεάς Ελλάδας Τμήμα Φυσικοθεραπείας Προπτυχιακό Πρόγραμμα Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα) Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Αριάδνη Αργυράκη ΣΤΑΔΙΑ ΕΚΤΕΛΕΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΓΕΩΧΗΜΙΚΩΝ ΕΡΕΥΝΩΝ 1.ΣΧΕΔΙΑΣΜΟΣ: - Καθορισμός στόχων έρευνας - Ιστορικό περιοχής 2 4.

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Π E Ρ IEXOMENA Πρόλογος... xiii ΜΕΡΟΣ ΠΡΩΤΟ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΣΤΑΤΙΣΤΙΚΩΝ Ε ΟΜΕΝΩΝ 1.1 Εισαγωγή... 3 1.2 Ορισµός και αντικείµενο της στατιστικής... 3

Διαβάστε περισσότερα

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΟΝ ΕΝΤΟΠΙΣΜΟ ΓΕΩΧΗΜΙΚΗΣ ΑΝΩΜΑΛΙΑΣ Στατιστική ανάλυση του γεωχημικού δείγματος μας δίνει πληροφορίες για τον

Διαβάστε περισσότερα

Στατιστική Ι. Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr

Στατιστική Ι. Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr Στατιστική Ι Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr Παρασκευή, 30 Νοεμβρίου 2012 Στατιστική Ι Έννοιες - Κλειδιά Μεταβλητότητα Εύρος (range) Εκατοστημόρια

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΠΕΡΙΕΧΟΜΕΝΑ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 Πιθανότητες 1.1 Πιθανότητες και Στατιστική... 5 1.2 ειγματικός χώρος Ενδεχόμενα... 7 1.3 Ορισμοί και νόμοι των πιθανοτήτων... 10 1.4 εσμευμένη πιθανότητα Ολική

Διαβάστε περισσότερα

09_Μη παραμετρικοί έλεγχοι υποθέσεων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

09_Μη παραμετρικοί έλεγχοι υποθέσεων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Ν161_(6)_Στατιστική στη Φυσική Αγωγή 09_Μη παραμετρικοί έλεγχοι υποθέσεων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Όταν δεν υπάρχουν διαθέσιμες πληροφορίες για την κατανομή των πληθυσμών,

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : , Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση

Διαβάστε περισσότερα

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας. Περιεχόμενα της Ενότητας Στατιστική Ι Ενότητα 5: Συνεχείς Κατανομές Πιθανότητας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς

Διαβάστε περισσότερα

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Κωνσταντίνος Τζιόμαλος Επίκουρος Καθηγητής Παθολογίας ΑΠΘ Α Προπαιδευτική Παθολογική Κλινική, Νοσοκομείο ΑΧΕΠΑ 1 ο βήμα : καταγραφή δεδομένων Το πιο πρακτικό

Διαβάστε περισσότερα

Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής Σεναρίων Κινητός Μέσος σε Χρονοσειρές o o o

Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής Σεναρίων Κινητός Μέσος σε Χρονοσειρές o o o ΙΩΑΝΝΗΣ Κ. ΔΗΜΗΤΡΙΟΥ Εφαρμογές Ποσοτικές Ανάλυσης με το Excel 141 ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Ανάλυση Δεδομένων Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 6-7 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ Συχνά στην πράξη το μοντέλο της απλής γραμμικής παλινδρόμησης είναι ανεπαρκές για την περιγραφή της μεταβλητότητας που υπάρχει στην εξαρτημένη

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Μοντέλα στην Επιστήμη Τροφίμων 532Ε

Μοντέλα στην Επιστήμη Τροφίμων 532Ε Μοντέλα στην Επιστήμη Τροφίμων 532Ε Ασκηση Περιγραφικής Στατιστικής Κουτσουμανής Κ. Τομέας Επιστήμης και Τεχνολογίας Τροφίμων Σχολή Γεωπονίας, Α.Π.Θ Μοντέλα στην Επιστήμη Τροφίμων 532Ε Στέλνουμε την άσκηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

5. Έλεγχοι Υποθέσεων

5. Έλεγχοι Υποθέσεων 5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ. Πίνακας 9. Ποσοστιαία Σημεία της Ελεγχοσυνάρτησης των. Προσημασμένων Τάξεων Μεγέθους του Wilcoxon

ΠΑΡΑΡΤΗΜΑ. Πίνακας 9. Ποσοστιαία Σημεία της Ελεγχοσυνάρτησης των. Προσημασμένων Τάξεων Μεγέθους του Wilcoxon ΠΑΡΑΡΤΗΜΑ ΠΙΝΑΚΕΣ Πίνακας. Διωνυμική Κατανομή Πίνακας. Τυποποιημένη Κανονική Κατανομή Πίνακας. Ποσοστιαία Σημεία της Κατανομή t Πίνακας. Ποσοστιαία Σημεία της Κατανομής X Πίνακας 5. Ποσοστιαία Σημεία της

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Α εξάμηνο 2010-2011 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Ποιοτικές και Ποσοτικές μέθοδοι και προσεγγίσεις για την επιστημονική έρευνα users.sch.gr/abouras

Διαβάστε περισσότερα

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2010-11 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

Κλωνάρης Στάθης. ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας

Κλωνάρης Στάθης. ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας Κλωνάρης Στάθης ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας Μέχρι τώρα ασχοληθήκαμε με τις τεχνικές εκτίμησης παραμέτρων για ένα πληθυσμό όπως: τον Μέσο µ και το ποσοστό p Θα συνεχίσουμε

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

ΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ. Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Πανεπιστήμιο Κρήτης

ΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ. Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Πανεπιστήμιο Κρήτης ΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Πανεπιστήμιο Κρήτης Από την περασμένη φορά... Πληθυσμός (population): ένα σύνολο ατόμων Παράμετρος (parameter): χαρακτηριστικό του

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών

ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων ΑΓΡΙΝΙΟ ΣΤΑΤΙΣΤΙΚΗ Φραγκίσκος Κουτελιέρης Αναπληρωτής

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

Στατιστική ανάλυση αποτελεσμάτων

Στατιστική ανάλυση αποτελεσμάτων HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme Στατιστική ανάλυση αποτελεσμάτων Βασίλης Αγγελής Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Πανεπιστήμιο Αιγαίου Κατερίνα Δημάκη Αν. Καθηγήτρια

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού

Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού 3 ο Εξάμηνο του Ακαδημαϊκού Έτους 2013-2014 ΟΔ 034 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Δευτέρα 10:00-13:00 Ώρες διδασκαλίας (3)

Διαβάστε περισσότερα

Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ. Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών.

Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ. Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών. Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών. Η μέση τιμή ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή

Διαβάστε περισσότερα

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς Διασπορά Μέτρηση Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς ομάδες έχουν μέση βαθμολογία 6. συνέχεια

Διαβάστε περισσότερα

Ιατρικά Μαθηματικά & Βιοστατιστική

Ιατρικά Μαθηματικά & Βιοστατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ιατρικά Μαθηματικά & Βιοστατιστική Στατιστικοί έλεγχοι για συνεχή και κατηγορικά δεδομένα Διδάσκοντες: Ευάγγελος Ευαγγέλου, Kωνσταντίνος Τσιλίδης, Ιωάννης

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΛΗΘΥΣΜΟΙ ΔΕΙΓΜΑΤΑ ΠΑΡΟΥΣΙΑΣΗ ΔΕΔΟΜΕΝΩΝ Περιγραφική Στατιστική Με τις στατιστικές μεθόδους επιδιώκεται: - η συνοπτική αλλά πλήρης και κατατοπιστική παρουσίαση των ευρημάτων μιας

Διαβάστε περισσότερα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα ΚΕΦΑΛΑΙΟ ΕΚΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Στο κεφάλαιο αυτό θα ασχοληθούμε με τον έλεγχο της υπόθεσης της ισότητα δύο μέσων τιμών με εξαρτημένα δείγματα. Εξαρτημένα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ & ΕΚΠΑΙΔΕΥΣΗ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ & ΕΚΠΑΙΔΕΥΣΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ & ΕΚΠΑΙΔΕΥΣΗ ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2008-2009 users.att.sch.gr/abouras Ορισμός Στατιστικής Ετυμολογία: στατίζω (ελληνική

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς ) Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics)

Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics) Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics) 1. Οργάνωση και Γραφική παράσταση στατιστικών δεδομένων 2. Αριθμητικά περιγραφικά μέτρα Εφαρμοσμένη Στατιστική Μέρος 1 ο Κ. Μπλέκας (1/13) στατιστικών

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 22 Μαΐου 2017 1/32 Εισαγωγή: Τυπικό παράδειγμα στατιστικού ελέγχου υποθέσεων. Ενας νέος τύπος

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού

ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού Με τις στατιστικές μεθόδους επιδιώκεται αφενός η συνοπτική αλλά εμπεριστατωμένη παρουσίαση των

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα