( ) 2. 3 upisana je kocka. Nađite brid kocke.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "( ) 2. 3 upisana je kocka. Nađite brid kocke."

Transcript

1 Zdtk 00 (Tomislv, tehničk škol) Kugli polumje upisn je kok. Nđite id koke. Rješenje 00 ko je kugli upisn kok, ond je pomje kugle jednk postonoj dijgonli koke: =. Poston dijgonl koke čun se fomulom: D =. = => = 6 / :, jež 00 Kugli polumje Rezultt: = = = = =. upisn je kok. Nđite id koke. Zdtk 00 (Gon, tehničk škol) Jednkokčni tpez dulje osnovie 7 m, kće osnovie m i kk m oti oko veće osnovie. Izčunjte oujm (volumen) nstlog otijskog tijel. Rješenje 00 Izčunmo visinu jednkokčnog tpez: = 7 m, = m, = m v - ( - ) / v = v = v = = m. Rotijom jednkokčnog tpez oko dulje stnie nstje geometijsko tijelo koje se sstoji od vljk i dv stoš. = v = v h h ljk im visinu i polumje = v p je njegov oujm (volumen): ( ) = = v = = 6 π m. Stož im visinu h = i polumje = v p je oujm dv stoš: ( ) = h = v = = 6 π m. Oujm otijskog tijel je: = 6π m + 6π m = 5π m.

2 jež 00 Jednkokčni tpez dulje osnovie 8 m, kće osnovie m i kk 5 m oti oko veće osnovie. Izčunjte oujm (volumen) nstlog otijskog tijel. Rezultt: = 6π m. Zdtk 00 (Ines, gimnzij) Pvokutnik stni =, = 5 zotimo oko dulje stnie z 0. Nđite oujm otijskog tijel. Rješenje 00 Rotijom pvokutnik oko dulje stnie doivmo tijelo koje je po oujmu tećin oujm vljk. = = v 0 = = v = v = = 5 = 5 π. jež 00 Pvokutnik stni =, = 6 zotimo oko dulje stnie z 0. Nđite oujm otijskog tijel. Rezultt: π. Zdtk 00 (Hvoje, tehničk škol) U kuglu polumje m upisn je stož visine m. Koliki je omje oujm (volumen) stoš pem oujmu (volumenu) kugle? Rješenje 00 Oznčimo s s volumen stoš, s k volumen kugle. Iz oznčenog tokut doivmo polumje ze stoš: v R v - R = R v R = = =. ( ) ( ) Fomul z oujm (volumen) stoš glsi: = v, z oujm (volumen) kugle: = π. Gledmo omje volumen stoš i kugle:

3 ( ) v s v 9 = = = = = 9:. R k R jež 00 U kuglu polumje m upisn je stož visine m. Koliki je omje oujm (volumen) kugle pem oujmu (volumenu) stoš? Rezultt: : 9. Zdtk 005 (Di, ekonomsk škol) Pvokutnik povšine 0 m oti oko dulje stnie z 90º. Koliko je oplošje i volumen otionog tijel ko je zlik duljin stni pvokutnik 5.5 m? Rješenje 005 Iz pozntih podtk nđemo stnie i : 90 P = 0 = 0 = 0 ( + 5.5) = = 0 = 5.5 = 5.5 = ± 5.5 ± 0.5 ( 0) 5.5 ± ± 0.5, = = = =. Duljin stnie iznosi: = = =.5 m. Td je duljin stnie jednk: = = = 8 m. Rotijom pvokutnik oko dulje stnie doije se vljk čij je visin v = i polumje =. Z oplošje i volumen vljk vijede fomule: ( ) O = + v, = v. udući d pvokutnik oti z 90º =, čunmo smo četvtinu od ijelog oplošj i volumen: O = ( + v) = ( + v) = ( + ) =.5 (.5 + 8) =.5 m, = v = =.5 8 =.5 π m. jež 005 Pvokutnik povšine 0 m oti oko dulje stnie z 80º. Koliko je oplošje i volumen otionog tijel ko je zlik duljin stni pvokutnik 5.5 m? Rezultt: O = 6.5π m, = 5π m. Zdtk 006 (Gon, tehničk škol) Poočni idovi pvilne uspvne četveostne pimide sukldni su dijgonlm osnovie. ko je duljin id osnovie 6, ond volumen kugle opisne toj pimidi iznosi. 7 π. 96 π. 6 π D. π E. 6 6π Rješenje 006 Osnovi pvilne uspvne četveostne pimide je kvdt. ko je duljin stnie kvdt, ond je duljin dijgonle d =.

4 Iz uvjet zdtk slijedi = 6. = d = 6 Polem iz ti dimenzije (kugl je opisn toj pimidi) možemo peiti, pevesti n polem u dvije dimenzije (kužni je opisn jednkostničnom tokutu duljine stnie 6. Polumje kužnie opisne jednkostničnom tokutu duljine stnie čun se po fomuli =. Zto je: = 6 6 = = = olumen kugle iznosi: 6 = π = ( 6 ) π = 8 6 π = [ djelomično kojenovnje] = = π = 6π. jež 006 Poočni idovi pvilne uspvne četveostne pimide sukldni su dijgonlm osnovie. ko je duljin id osnovie 6, koliko je oplošje kugle opisne toj pimidi? Rezultt: 96π. Zdtk 007 (Ivn, tehničk škol) Svi idovi koji izlze iz jednog vh pimide međusono su okomiti i imju duljine =, =, =. Nđi polumje sfee opisne toj pimidi. Rješenje 007 d d Sfe opisn pimidi istodono je opisn i kvdu s idovim, i. Polumje sfee je: D = D = + +, gdje je D poston dijgonl kvd. jež 007 Svi idovi koji izlze iz jednog vh pimide međusono su okomiti i imju duljine = 8, = 6, = 5. Nđi polumje sfee opisne toj pimidi. Rezultt: 5 5. Zdtk 008 (Gog, gimnzij) Sfe polzi koz vhove donje osnovke koke id duljine 8 i dodiuje gonju osnovku koke. Nđite sfee. Rješenje 008 S S - D N N d

5 S slike vidi se: d d = = ( ) = + = + + d = ( ) + 8 = / = = = 6. jež 008 Sfe polzi koz vhove donje osnovke koke id duljine i dodiuje gonju osnovku koke. Nđite sfee. Rezultt: 9. Zdtk 009 (nte, gimnzij) Tokut s stnim, i oti oko stnie. ko je duljin visine n stniu jednk m, odedite volumen nstlog otijskog tijel. Rješenje 009 x olumen nstlog otijskog tijel jednk je zoju volumen dvju stož koji imju zjedničku osnovku (zu) polumje i visine x i y: = x y ( x y) m. π + π = π + = π x + y = jež 009 Tokut s stnim, i oti oko stnie. ko je duljin visine n stniu jednk 6 m, odedite volumen nstlog otijskog tijel. Rezultt: m. Zdtk 00 (Ivn, tehničk škol) Pvokutni tokut ( = 5, = 0) oti oko osi koz vh okomite n hipotenuzu. Nđite oplošje otijskog tijel. Rješenje 00 y S Uočimo pvokutn tokut i pomoću Pitgoin poučk izčunmo hipotenuzu : = + = + v = = N D = 65 / = 5. isin v pvokutnog tokut doije se pomoću fomul z povšinu tokut: P = v 5 0 = / v = = =. v 5 P = Uočimo pvokutn tokut S i pomoću Pitgoin poučk nđemo S : S = S S = 5 S = 5 S = 8 / S = 9. Nstlo je tijelo knji stož iz kojeg je izvđen mnji stož. E R = = D = = 5, = S = SE = 9 s = = DE = = 0, s = = E = = 5 Oplošje tko doivenog otijskog tijel sstoji se od: 5

6 osnovke knjeg stoš... O = R π = 5 π = 65 π, plšt knjeg stoš... O = ( R + ) s = ( 5 + 9) 0 = 680 π, plšt mnjeg stoš... O = s = 9 5 = 5 π. Oplošje otijskog tijel iznosi: O = O + O + O = 65 π π + 5 π = 0 π. jež 00 Pvokutni tokut ( = 5, = 0) oti oko osi koz vh okomite n hipotenuzu. Nđite oujm otijskog tijel. π v Rezultt: ( ) v R v = R + + R = ( R + ) = 00 π. Zdtk 0 (Ivn, gimnzij) U uspvni stož polumje = i visine v = upisn je kok. Nđite duljinu id koke. Rješenje 0 D N D N Iz dijgonlnog pesjek koke i stoš zjedno vidi se d su tokuti D i N slični. N = =, N = v =, D =, D = N DN = = Postvimo zmje: D : D = N : N : = : = ( ) = = = = /: =. jež 0 U uspvni stož polumje = i visine v = upisn je kok. Nđite duljinu id koke. Rezultt: =. Zdtk 0 (Ivn, gimnzij) Pvilnom oktedu id = 6 upisn je kugl. Koliki je polumje kugle? Rješenje 0 ko je oko sfee polumje opisn pimid kojoj je oplošje O, td se oujm pimide može izčunti n sljedeći nčin: zmislimo d je sedište sfee vh svih pimid kojim su osnovke osnovk pimide i sve njezine poočke, visin svih je polumje upisne sfee. udući d smo pimidu stvili n niz mnjih pimid, njezin oujm iznosi: 6 ( n ) = P + P + P + + P n = + P + P + P + + P = O Rčunmo oujm okted:

7 d = v d = v = v = v = / v =. Okted je jedno od pet pvilnih tijel i omeđeno je s osm jednkostničnih tokut. olumen okted iznosi: Polumje upisne kugle je: = v = =. = O = 8 8 = = / = 6 = = = = = = =. jež 0 Pvilnom oktedu id = 6 upisn je kugl. Koliko je oplošje kugle? Rezultt: O = π. Zdtk 0 (i, hotelijesk škol) U koku zdnog id upisn je kugl. Koliko u postoim iznosi oujm kugle s oziom n oujm koke? Rješenje 0 v d udući d je kugl polumje upisn u koku zdnog id, vijedi: Gledmo omje oujmov kugle i koke: =. ku 8 π 5.6 = = = = = 0.56 = = 5.6% ko jež 0 U koku zdnog id upisn je kugl. Koliko u postoim iznosi oplošje kugle s oziom n oplošje koke? Rezultt: 5.6%. Zdtk 0 (Kety, fmeutsk škol) U koku su upisni istostni vljk i kugl. Odedi : :, gdje je oujm kugle, oujm istostnog vljk i oujm koke. Rješenje 0 Ponovimo! 7

8 Oujm kugle: = π. Oujm istostnog vljk: = π (istostni vljk je uspvni kužni vljk kojemu je duljin s izvodnie jednk dijmetu znog kug, s = v = ). Oujm koke: =. udući d su istostni vljk i kugl upisni u koku duljine id, z omje oujmov vijedi: : : : : = : : : : = 8 8 pomnožimo : : : : = 6 svkičln s : : = : : : : = π : π :. 6 jež 0 U koku su upisni istostni vljk i kugl. Odedi : :, gdje je oujm koke, oujm istostnog vljk i oujm kugle. Rezultt: : π : π. Zdtk 05 (Kety, fmeutsk škol) U uspvni kužni stož oujm, čij izvodni s zom ztv kut od 60, upisn je kugl. Koliki je oujm kugle? Rješenje 05 Ponovimo! Oujm stoš: = v, gdje je polumje kug (ze), v visin stoš, Oujm kugle: = π, gdje je polumje kugle. udući d izvodni stoš s zom ztv kut od 60, dijmetlni pesjek stoš je jednkostničn tokut p oujm stoš iznosi: s = v s = s =. Kko je kugl upisn u stož njezin je polumje jednk visine stoš: v R Oujm kugle je: R = v R = R =. 8

9 = R = π π π. k k = = k 7 k 7 Gledmo omjee oujmov: 7 7 k = k = k = k = =. s 7 9 k s s s s 9 jež 05 U uspvni kužni stož oujm 8 m, čij izvodni s zom ztv kut od 60, upisn je kugl. Koliki je oujm kugle? Rezultt: 6 m. Zdtk 06 (Kety, fmeutsk škol) tnjom om oko njegove dulje dijgonle nstje tijelo oujm dv put mnjeg od oujm tijel koje nstje vtnjom om oko njegove kće dijgonle. Koliki je omje duljin dijgonl e : f? (e > f) Rješenje 06 Ponovimo! Oujm stoš: = v, gdje je polumje kug (ze), v visin stoš. Dijgonle om međusono su okomite i spolvljju se. e tnjom om oko njegove dulje dijgonle e nstje tijelo koje se sstoji od dv stoš s zjedničkom zom. f e Polumje ze tih stož je, visin svkog od njih je. Zto je volumen nstlog tijel jednk: f e f e = e = e e = f e e = f e. e tnjom om oko njegove kće dijgonle f nstje tijelo koje se sstoji od dv stoš s zjedničkom zom. e f Polumje ze tih stož je, visin svkog od njih je. Zto je volumen nstlog tijel jednk: e f e = f e f e f. f = π π π f = = f f udući d je zog petpostvke zdtk oujm e dv put mnji od oujm f, slijedi: / e e = / : :. f f e π = e f e f π f = e f f = e f = jež 06 tnjom om oko njegove dulje dijgonle nstje tijelo oujm ti put mnjeg od oujm tijel koje nstje vtnjom om oko njegove kće dijgonle. Koliki je omje duljin dijgonl e : f? (e > f) Rezultt: :. f f Zdtk 07 (Kety, gimnzij) Kvdt s stniom duljine oti oko svoje dijgonle. Koliki je volumen tko doivenog tijel? Rješenje 07 = = D = D =, DP = P = =, P = P = v = 9

10 D jež 07 Kvdt s stniom duljine tijel? Rezultt:. Nstlo tijelo sstoji se od dv stoš D i D s zjedničkom zom, kugom polumje. olumen tijel iznosi: = v = v = = = 6 = =. 6 oti oko svoje dijgonle. Koliki je volumen tko doivenog Zdtk 08 (Los-Hlos, gimnzij) Osni pesjek uspvnog stoš pvokutn je tokut. U stož je upisn vljk tko d mu jedn osnovi leži n zi stoš. Pomje ze vljk jednk je njegovoj visini. Koliki je omje volumen stoš i volumen vljk? Rješenje 08 Zto je: R v Rčunmo omje volumen stoš i volumen vljk: udući d je osni pesjek uspvnog stoš pvokutn tokut, tokut S je pvokutn jednkokčn: 0 S = S = R. Tokut P je, tkođe, pvokutn jednkokčn: P = P =. Pomje ze vljk jednk je njegovoj visini p vijedi: SP =. S = SP + P R = + R =. = h volumen stoš R R ( s s R s ) = = = v volumen vljk v 6 v = h 6 s = s = s = : 9 :. s v = v 6 v 6 v jež 08 Osni pesjek uspvnog stoš pvokutn je tokut. U stož je upisn vljk tko d mu jedn osnovi leži n zi stoš. Pomje ze vljk jednk je njegovoj visini. Koliki je omje volumen vljk i volumen stoš? Rezultt: v : s = : 9. P 5 P S v R 5 Zdtk 09 (Los-Hlos, gimnzij) U kvdt stnie = 6 upisn je kug. Lik koji je zlik kvdt i kug oti oko dijgonle kvdt. Nđite otijski volumen.

11 Rješenje 09 Ponovimo! Dijgonl kvdt stnie iznosi d =. olumen stoš: = h, volumen kugle: = π. = = =. D E ( ), Rotijom kvdt D oko, n pimje dijgonle D, doiju se dv stoš s zjedničkom zom, kugom s sedištem u točki S i polumjeom i visinom 6 = S = S = = = = 6 h = SD = S = = = = olumen nstlog tijel iznosi: ( ) 6 s = s = s = π. Rotijom kug oko dijgonle D doije se kugl polumje R = SE = olumen kugle je: = 6. k = = k 8 k Rotijski volumen iznosi: = s = 6 = 6 = 6 6 k 6. ( ) = 6 6 = 6 π. jež 09 U kvdt stnie = upisn je kug. Lik koji je zlik kvdt i kug oti oko dijgonle kvdt. Nđite otijski volumen. Rezultt: = ( ). Zdtk 00 (Los-Hlos, gimnzij) U polukuglu polumje 5 upisn je vljk čij je visin jednk pomjeu njegove ze. Nđite volumen vljk. Rješenje 00 R S 6 S olumen vljk iznosi: 5 P S slike vidi se: S =, P =, SP = 5. Uočimo pvokutn tokut SP i pomoću Pitgoin poučk nđemo polumje ze vljk: S + P = SP + = 5 ( ) ( ) + = 5 5 = 5 /:5 = =..

12 =, h = = = π = π. = h jež 00 U polukuglu polumje 5 upisn je vljk čij je visin jednk pomjeu njegove ze. Nđite volumen vljk. Rezultt: 6 π.

Priprema za ispit znanja trigonometrija pravokutnog trokuta

Priprema za ispit znanja trigonometrija pravokutnog trokuta Pipem z ispit znnj tigonometij pvokutnog tokut 1. Zoj duljin ktet pvokutnog tokut jednk je 12 m, jedn kut tokut iznosi 58⁰. Kolik je duljin hipotenuze ovog tokut? + = 12 = 58⁰ =? S oziom d se u zdnim podim

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu

Διαβάστε περισσότερα

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

1.PRIZMA ( P=2B+M V=BH )

1.PRIZMA ( P=2B+M V=BH ) .RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti

Διαβάστε περισσότερα

x y 2 9. Udaljenost točke na osi y od pravca 4x+3y=12 jednaka je 4. Koja je to točka?

x y 2 9. Udaljenost točke na osi y od pravca 4x+3y=12 jednaka je 4. Koja je to točka? MATEMATIKA Zdci s držvne mture viš rzin Brojevi i lgebr Funkcije Jedndžbe i nejedndžbe Geometrij Trigonometrij LINEARNA FUNKCIJA 1. Uz koji uvjet jedndžb A+By+C=0 predstvlj prvc?. Koje je znčenje broj

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Metode rješavanja izmjeničnih krugova

Metode rješavanja izmjeničnih krugova Strnic: V - u,i u(t) i(t) etode rešvn izmeničnih kruov uf(t) konst if(t)konst etod konturnih stru etod npon čvorov hevenin-ov teorem Norton-ov teorem illmn-ov teorem etod superpozicie t Strnic: V - zdtk

Διαβάστε περισσότερα

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi: tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz velike otvore

MEHANIKA FLUIDA. Isticanje kroz velike otvore MEANIKA FLUIDA Isticnje krz velike tvre 1.zdtk. Krz veliki ptvr u bčn zidu rezervr blik rvnkrkg trugl snve i keficijent prtk µ, ističe vd. Odrediti prtk krz tvr k su pznte veličine 1 i (v.sl.). Eleentrni

Διαβάστε περισσότερα

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke Kioco gibje meijle oke Kiemik meijle oke. dio ) Zje kiocog gibj b) Bi i ubje Položj meijle oke u skom euku eme možemo defiii slijedee ie:. Vekoski i defiij gibj (). Piodi i defiij gibj s s (). Vekoski

Διαβάστε περισσότερα

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA Sinusn terem glsi: Strnie trugl prprinlne su sinusim njim nsprmnih uglv. R sinβ sinγ Odns dužine strni i sinus nsprmng ugl trugl je knstnt i jednk je dužini

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

1 Ekstremi funkcija više varijabli

1 Ekstremi funkcija više varijabli 1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,

Διαβάστε περισσότερα

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA 5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,

Διαβάστε περισσότερα

VOLUMEN ILI OBUJAM TIJELA

VOLUMEN ILI OBUJAM TIJELA VOLUMEN ILI OBUJAM TIJELA Veličina prostora kojeg tijelo zauzima Izvedena fizikalna veličina Oznaka: V Osnovna mjerna jedinica: kubni metar m 3 Obujam kocke s bridom duljine 1 m jest V = a a a = a 3, V

Διαβάστε περισσότερα

a C 1 ( ) = = = m.

a C 1 ( ) = = = m. Zdtk 4 (Petr, gimzij) Dvije tke leće, koverget jkosti + dpt i diverget jkosti 5 dpt, slijepljee su zjedo Predmet se lzi 5 cm ispred kovergete leće Odredite gdje je slik predmet ješeje 4 C = + m -, C =

Διαβάστε περισσότερα

Primjene odreženog integrala

Primjene odreženog integrala VJEŽBE IZ MATEMATIKE Ivn Brnović Miroslv Jerković Lekcij 5 Primjen određenog integrl Poglvlje Primjene odreženog integrl. Povr²in rvninskog lik Z dni rvninski lik omežen krivuljm y = f(x) i y = g(x) te

Διαβάστε περισσότερα

Formule iz Matematike II. Mandi Orlić Tin Perkov

Formule iz Matematike II. Mandi Orlić Tin Perkov Formule iz Mtemtike II Mndi Orlić Tin Perkov INTEGRALI NEODREDENI INTEGRALI Svojstv 1. (f(x) ± g(x)) = ± g(x) 2. = Tblic integrl f(x) F(x) + C x + C x x +1 +1 + C 1 x ln x + C 1 x+b ln x + b + C e x e

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školsk 0./04. godin TEST MATEMATIKA UPUTE ZA RAD Test koji trebš riješiti im 0 zdtk. Z rd je predviđeno 0 minut. Zdtke ne morš rditi prem redoslijedu

Διαβάστε περισσότερα

Radni materijal 17 PRIZME

Radni materijal 17 PRIZME Radni materijal 17 PRIZME Odreži i zalijepi slike u bilježnicu, izvedi formule za oplošje i obujam, označi i izvedi formule za plošne i prostorne dijagonale. Oplošje OBP = + Volumen ili obujam V = Bv slika

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA Trignmetrij je prvitn predstvlj lst mtemtike kje se vil izrčunvnjem nepzntih element trugl pmću pzntih. Sm njen nziv ptiče d dve grčke reči TRIGONOS- št znči trug

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA Ncioli cetr z vjsko vredovje orzovj MATEMATIKA viš rzi KNJIŽICA FORMULA VIŠA VIŠA RAZINA RAZINA Kopleks roj: i i Mtetik Kopleks roj: Kopleks roj: i z i i z i i z R Kjižic forul VIŠA (cos RAZINA si Kopleks

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi MEHANKA FLUDA Pritisk tečnosti n rvne površi. zdtk. Tešk brn dimenzij:, b i α nprvljen je od beton gustine ρ b. Kosi zid brne smo s jedne strne kvsi vod, gustine ρ, do visine h. Odrediti ukupni obrtni

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 17. VEKORI I KVADRANE MARICE 17.1 Opcenito o vektorim Vektor je usmjeren duzin i zto im: pocetk (hvtiste), krj i smjer. Vektor se ozncv s oznkom n pr.: rpq,, Duzin PQ ili r nziv se duzin vektor, intenzitet

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

0 = 5x 20 => 5x = 20 / : 5 => x = 4.

0 = 5x 20 => 5x = 20 / : 5 => x = 4. Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine

Διαβάστε περισσότερα

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

4 Sukladnost i sličnost trokuta

4 Sukladnost i sličnost trokuta 4 Sukladnost i sličnost trokuta 4.1 Sukladnost trokuta Neka su ABC i A B C trokuti sa stranicama duljina a b c odnosno a b c. Kažemo da su ti trokuti sukladni ako postoji bijekcija f : {A B C} {A B C }

Διαβάστε περισσότερα

B) VEKTORSKI PRODUKT 1. 1) Pravilo desnega vijaka

B) VEKTORSKI PRODUKT 1. 1) Pravilo desnega vijaka B) VEKTORSKI PRODUKT 1 1) Prvilo desneg vijk Vsi smo že videli vijk, nekteri kkšneg privili, tisti, ki teg še niste storili, p prosite kog, ki se n vijke spozn, d vm pokže privijnje vijk. Večin vijkov

Διαβάστε περισσότερα

PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE

PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE . 0.: 0.0 0. 0.0 je: 5000 0.0 5 0.00. Izračunajte 0.% od : 0. 4 0. 0.0 0.00 0.. Skratite razlomak a a a 4a + 4 + a a a a a a 0.77 4. Rješenje jednadžbe =. 5 je -

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

Dinamika krutog tijela. 14. dio

Dinamika krutog tijela. 14. dio Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi NEKE POVŠI U Pvrši kje se njčešće sreću u dcim su:. Elipsidi. Hiperlidi. Prlidi 4. Knusne pvrši 5. Cilindrične pvrši. Elipsidi Osnvn jednčin elipsid ( knnsk) je : + + = c, i c su dsečci n, i si. Presek

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

GEOMETRIJA KUGLE I SFERE

GEOMETRIJA KUGLE I SFERE Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Matematički odsjek Ružica Korać GEOMETRIJA KUGLE I SFERE Diplomski rad Voditelj rada: doc.dr.sc. Maja Starčević Zagreb, rujan 2015. Svaki dan je

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21, Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj

Διαβάστε περισσότερα

( ) ( ) n. Ukupni kapacitet od n usporedno (paralelno) spojenih kondenzatora možemo naći iz izraza

( ) ( ) n. Ukupni kapacitet od n usporedno (paralelno) spojenih kondenzatora možemo naći iz izraza Zadatak 08 (Maija ginazija) Dva uspoedno spojena kondenzatoa i seijski su spojeni s kondenzatoo kapaciteta. Koliki je ukupni kapacitet? Nactajte sheu. Rješenje 08 =? Ukupni kapacitet od n seijski spojenih

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

1. Jednoliko i jednoliko ubrzano gibanje

1. Jednoliko i jednoliko ubrzano gibanje 1. JEDNOLIKO I JEDNOLIKO UBRZANO GIBANJE 3 1. Jednoliko i jednoliko ubrzano gibanje Jednoliko gibanje po pravcu je ono gibanje pri kojem se ne mijenja ni iznos ni smjer brzine. Ako se ne mijenja iznos

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

ΓΙΟΡΤΗ ΚΟΛΥΜΒΗΤΗ 13/8/2013 50Μ ΕΛΕΥΘΕΡΟ ΚΟΡΙΤΣΙΑ 9 ΕΤΩΝ

ΓΙΟΡΤΗ ΚΟΛΥΜΒΗΤΗ 13/8/2013 50Μ ΕΛΕΥΘΕΡΟ ΚΟΡΙΤΣΙΑ 9 ΕΤΩΝ 50Μ ΕΛΕΥΘΕΡΟ ΚΟΡΙΤΣΙΑ 9 ΕΤΩΝ ΚΑΡΑΤΖΙΑ ΜΥΡΤΩ ΝΑΒΕ.05.9 2 ΠΑΠΑΓΕΩΡΓΙΟΥ ΑΝΑΣΤΑΣΙΑ ΗΡΑ 3 ΓΕΩΡΓΟΥΛΗ ΚΑΛΛΙΡΟΗ ΝΕΑΠΟΛΗ 0.45.44 4 ΚΑΡΑΛΙΔΟΥ ΝΑΤΑΛΙΑ ΑΡΗΣ 0.5.58 5 ΚΩΝΣΤΑΝΤΙΝΙΔΟΥ ΧΡΥΣΑΝΘΗ ΝΟΚ 0.43.84 ΒΕΛΟΥΖΟΥ ΙΩΑΝΝΑ

Διαβάστε περισσότερα

povratnog napona 6 prekidača na slici 1.

povratnog napona 6 prekidača na slici 1. Prktikum iz elektroenergetike Lortorij Elektro Mgneti Trnzient Progrm (EMTP) Zdtk Primjer prorčun prelznog povrtnog npon (prekidnje liskog krtkog spoj) Potreno je prorčunti prijelzni povrtni npon n kontktim

Διαβάστε περισσότερα

mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja.

mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja. r1. Neka je n fiksan prirodan broj. Neka je k bilo koji prirodan broj ne veći od n i neka je S skup nekih k različitih prostih brojeva. Ivica i Marica igraju naizmjenično sljedeću igru. Svako od njih bira

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Vanjska simetrija kristâla

Vanjska simetrija kristâla Vanjska simetrija kristâla Franka Miriam Brückler PMF-MO, Zagreb Listopad 2008. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad 2008. 1 / 16 Vizualna simetrija Što je simetrija?

Διαβάστε περισσότερα

(r, φ) φ x. Polarni sustav

(r, φ) φ x. Polarni sustav olarnom u oložaj točke u ravnini možemo definirati omoću udaljenosti r od ishodišta i kuta φ koji sojnica ishodišta i točke zatvara s osi φ r (r, φ) kut φ je o konvenciji ozitivan ako ga mijenjamo u smjeru

Διαβάστε περισσότερα

Rotacija krutog tijela

Rotacija krutog tijela Rotacija krutog tijela 6. Rotacija krutog tijela Djelovanje sile na tijelo promjena oblika tijela (deformacija) promjena stanja gibanja tijela Kruto tijelo pod djelovanjem vanjskih sila ne mijenja svoj

Διαβάστε περισσότερα

1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C.

1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C. 1.1. U trokutu ABC na dužinama AC i BC odabrane su točke E i D. Simetrale kutova CAD i CBE sijeku se u točki F. Dokaži da vrijedi: AEB + ADB = 2 AF B. 1.1.* Dokaži da tvrdnja 1.1. vrijedi ako je E=C. 1.1.**

Διαβάστε περισσότερα

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Nacionalni centar za vanjsko vrednovanje obrazovanja FIZIKA. Ispitna knjižica 1 FIZ IK-1 D-S001

Nacionalni centar za vanjsko vrednovanje obrazovanja FIZIKA. Ispitna knjižica 1 FIZ IK-1 D-S001 Nacionalni centar za vanjsko vrednovanje obrazovanja FIZIKA Ispitna knjižica 1 12 Prazna stranica 99 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte test dok to ne odobri dežurni

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

7 Η ΕΞΕΡΓΕΙΑ. 7.1 Εισαγωγή και ορισμός της έννοιας της εξέργειας. 7.2 Ενέργεια, ύλη και ποιότητα

7 Η ΕΞΕΡΓΕΙΑ. 7.1 Εισαγωγή και ορισμός της έννοιας της εξέργειας. 7.2 Ενέργεια, ύλη και ποιότητα 7 Η ΕΞΕΡΓΕΙΑ 7.1 Εισαγωγή και ορισμός της έννοιας της εξέργειας Όπου υπάρχει υπολογισμός ενεργειακών μεγεθών, υπάρχει παράλληλα μεγάλη σύγχυση στα μεγέθη που πρέπει να μετρηθούν και να εκτιμηθούν. Πολύ

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) x y

( ) ( ) ( ) ( ) x y Zadatak 4 (Vlado, srednja škola) Poprečni presjek rakete je u obliku elipse kojoj je velika os 4.8 m, a mala 4. m. U nju treba staviti meteorološki satelit koji je u presjeku pravokutnog oblika. Koliko

Διαβάστε περισσότερα

Fizika 1. Ivica Sorić. Auditorne vježbe 1 Uvod. Procjena reda veličine. Vektori.

Fizika 1. Ivica Sorić. Auditorne vježbe 1 Uvod. Procjena reda veličine. Vektori. Fakultet elektotehnike, stojastva i bodogadnje Studij ačunastva Školska godina 2008/2009 Fizika 1 Auditone vježbe 1 Uvod. Pocjena eda veličine. Vektoi. 14. studenoga 2008. Ivica Soić (Ivica.Soić@fesb.h)

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

Matematika 2 za kemičare Drugi kolokvij svibnja 2016.

Matematika 2 za kemičare Drugi kolokvij svibnja 2016. Napomene. Dozvoljena pomagala za rješavanje kolokvija su: kalkulator, tiskane ili rukom pisane tablice s formulama i pribor za pisanje. Neće se bodovati nečitko pisani dijelovi testa. Napišite svoje ime,

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Planimetrija. Sličnost trouglova. GF 000 Dužine stranica trougla su 5cm, cm i 8cm. Dužina najduže stranice njemu sličnog

Διαβάστε περισσότερα

Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split

Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split DINAMIKA Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split Ova knjižica prvenstveno je namijenjena učenicima Srednje tehničke prometne škole Split. U knjižici su korišteni zadaci

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

KONSTRUKTIVNI ZADACI (TROUGAO) Rešavanje konstruktivnih zadataka je jedna od najtežih oblasti koja vas čeka ove godine.

KONSTRUKTIVNI ZADACI (TROUGAO) Rešavanje konstruktivnih zadataka je jedna od najtežih oblasti koja vas čeka ove godine. KONSRUKIVNI ZI (ROUGO) Rešvje kotruktivih zdtk je jed od jtežih olti koj v ček ove godie. Zhtev doro predzje, pozvje odgovrjuće teorije. Zto vm mi preporučujemo d e jpre podetite teorije veze z trougo

Διαβάστε περισσότερα

1. NEODREÐENI INTEGRAL

1. NEODREÐENI INTEGRAL . NEODREÐENI INTEGRAL Pitnj: Je li dn reln funkcij f : A! R, A R, derivcij neke relne funkcije g : A! R? Riješiti jedndbu g = f, pri cemu se z dni f tri g. T jedndb ili nem rješenj ili ih im beskoncno

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Rad, energija i snaga

Rad, energija i snaga Rad, energija i snaga Željan Kutleša Sandra Bodrožić Rad Rad je skalarna fizikalna veličina koja opisuje djelovanje sile F na tijelo duž pomaka x. = = cos Oznaka za rad je W, a mjerna jedinica J (džul).

Διαβάστε περισσότερα

ŽUPANIJSKO NATJECANJE IZ FIZIKE '02 UČENIKA OSNOVNIH ŠKOLA PISMENI ZADACI

ŽUPANIJSKO NATJECANJE IZ FIZIKE '02 UČENIKA OSNOVNIH ŠKOLA PISMENI ZADACI ŽUPNIJSKO NTJECNJE IZ FIZIKE '0 UČENIK OSNOVNIH ŠKOL PISMENI ZDCI 1. Na vrpci školskog vibratora (frekvencije 50 Hz) predočeno je gibanje nekog tijela. a) Kako se gibalo to tijelo? b) Nacrtaj ovisnost

Διαβάστε περισσότερα