7. Troškovi Proizvodnje

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "7. Troškovi Proizvodnje"

Transcript

1 MIKROEKONOMIJA./. 7. Troškovi Proizvodnje Autori: Penezić Andrija Miković Ivana Pod vodstvom: Prof.dr. Đurđice Fučkan Prezentacije su napravljene prema : Pindyck, R.S./ Rubinfeld, D.L. () MIKROEKONOMIJA Mate, Zagreb. PPT prezentacije su stavljene na korištenje isključivo za potrebe stjecanja znanja potrebnog za ispit (i šire) na predmetu Mikroekonomija, Ekonomskog fakulteta u Zagrebu studijske grupe koja pohađa nastavu kod Prof.dr. Đurđice Fučkan. UKUPNI, FIKSNI I VARIJABILNI TROŠAK UKUPNI TROŠAK = fiksni trošak + varijabilni trošak =C=+ Trošak (dolara godišnje) Graf 7. Troškovne krivulje tvrtke (a) FIKSNI TROŠAK ne mijenja se s razinom proizvodnje, može ga se eliminirati samo s prestankom poslovanja VARIJABILNI TROŠAK mijenja se s promjenom razine proizvodnje VAŽNO!!! Fiksni troškovi Nepovratni troškovi npr. Menadžerske Trošak pogona plaće i opreme Proizvodnja (jedinica godišnje) 4 Zadatak. Zadatak. Rješenje () Dana je tablica troškova proizvodnje kruha: Izračunajte fiksne, varijabilne i ukupne troškove za pojedine razine proizvodnje..dio: Izračunamo fiksne troškove za. razinu proizvodnje. =+ = = = Izradili: Penezić Andrija & Miković Ivana

2 MIKROEKONOMIJA./. Zadatak. Rješenje () Zadatak. Rješenje ().dio: Izračunamo ukupne troškove za. razinu proizvodnje. =+ =+ =.dio: Izračunamo varijabilne troškove za. razinu proizvodnje. =+ = = = 7 8 KRATKOROČNI TROŠKOVI Granični trošak GRANIČNI TROŠAK () PROSJEČNI UKUPNI TROŠAK (A) PROSJEČNI FIKSNI TROŠAK (A) PROSJEČNI VARIJABILNI TROŠAK (A) 9 porast troška koji nastaje zbog proizvodnje jedne dodatne jedinice proizvoda ω L ω = = = = MPL (uz pretpostavku da je rad jedini input) Prosječni ukupni trošak (Ekonomski trošak) Prosječni fiksni i varijabilni trošak ukupni trošak podijeljen s razinom proizvodnje, sastoji se od prosječnog fiksnog troška i prosječnog varijabilnog troška A = AC= = A+ A A= A= Izradili: Penezić Andrija & Miković Ivana

3 MIKROEKONOMIJA./. Trošak (dolara godišnje) Graf 7. Troškovne krivulje tvrtke (b) A A A Proizvodnja (jedinica godišnje) Primjer. Dana je tablica kratkoročnih troškova neke tvrtke. Iz navedenih podataka trebamo izračunati sljedeće troškove: A A A Primjer. Rješenje () Primjer. Interpretacija A 4 49, 4,,,,8,4 9, A,7, 8, 7,4,, 4, A 9,7 8,,9 Min () = 4 za =4 = min (A) za =7 = min (A) za =8, A se smanjuju povećanjem razine proizvodnje Zadatak. Zadatak. () Prosječni fiksni troškovi tiskanja udžbenika iz Mikroekonomije iznose $ po udžbeniku. Ukupni troškovi tiskanja udžbenika iznose 7$, a udžbenika 9$. Odredite: A A A. A=/ =A* =* =$ 7 9 A 7 9 A A A A A 7 8 Izradili: Penezić Andrija & Miković Ivana

4 MIKROEKONOMIJA./. Zadatak. () Zadatak. () =+ = =7 =$; 7 9 A A A A=/ A=/ A = 4 $/udž A A A =9 =7$ 7 A A A 7 A 4 A A Zadatak. (4) Zadatak. () A=/ A=/ A= $/udž 7 A 4 A A A=/ A=7/ A=4 $/udž 7 A 4 A A A=7/ A=8,$/udž 7 9 A A A A=A+A A=48,$/udž 7 9 A 8, A A , 7 9 8, 48, Zadatak. () Zadatak. = / = / =/ 7 A 4 A A 4 A A A = $/udž 7 9 8, 48, A A A , 4 48, 7 9 8, 48, 4 Izradili: Penezić Andrija & Miković Ivana 4

5 MIKROEKONOMIJA./. TROŠAK U DUGOM ROKU TROŠAK U DUGOM ROKU UPORABNI TROŠAK KAPITALA zbroj godišnjeg troška posjedovanja i korištenja imovine, jednak je ekonomskoj amortizaciji i propuštenim kamatama Trošak upotrebe kapitala = ekonomska amortizacija + (kamatna stopa)(vrijednost kapitala) Uporabni trošak kapitala možemo izraziti i kao stopu po dolaru kapitala: r = stopa amortizacije + kamatna stopa Primjer. Primjer. Delta Airlines razmišlja o kupnji novog zrakoplova Boeing777 po cijeni od milijuna $. Cijena se amortizira na razdoblje od godina (vijek trajanja zrakoplova). Ako tvrtka ne kupi novi zrakoplov može zaraditi kamate na svojih milijuna $ (oportunitetni trošak). Pretpostavimo da je kamatna stopa %. C trošak upotrebe kapitala A ekonomska amortizacija k kamatna stopa P vrijednost kapitala t vijek trajanja (razdoblje amortizacije) a stopa amortizacije r stopa po dolaru kapitala 7 8 Primjer. Izotroškovna Crta (Izokosta) P= milijuna $ t= godina k=% Za vrijeme.godine nakon kupnje: A=P/t=/= milijuna $ na godinu C=A+k*P=+,*= milijuna $ Do.godine posjedovanja zrakoplov će se amortizirati za milijuna $ i vrijediti milijuna $: C=+,*= milijuna $ Ako uporabni trošak kapitala izrazimo kao stopu po dolaru kapitala: a=/t=/=,% godišnje pokazuje sve moguće kombinacije rada i kapitala koje se mogu kupiti uz neki zadani ukupni trošak C = ωl+ rk nagib : r=a+k=,+=,% godišnje 9 K L = ω r Izradili: Penezić Andrija & Miković Ivana

6 MIKROEKONOMIJA./. Primjer. Ako je nadnica $, a cijena kapitala $, tvrtka može zamijeniti jedinicu rada sa jedinice kapitala bez ikakve promjene ukupnog troška. w=$; r=$ C=wL+rK npr. w+r=4w+r=$ Zadatak. Poduzeće koristi inputa, rad i kapital. Nadnica iznosi 4$, a kapitalna renta $. Granični proizvod kapitala je. a) Minimalizira li to poduzeće troškove ako je granični proizvod rada 4? b) Kolika je granična stopa tehničke supstitucije? Zadatak. w=4$ r=$ MP K = MP L =4 a) MINIMALNI TROŠKOVI: b) MRTS= K/ L MRTS=MPL/MPK MRTS=w/r MRTS=4/ MRTS=,4 Ekonomije Obujma ostvaruju se kad tvrtka može udvostručiti razinu proizvodnje, a da se troškovi povećaju manje nego dvostruko MP L /w=mp K /r MP L =w*mp K /r MP L =4*/=4 4 Ekonomije Obujma Ekonomije Obuhvata MJERENJE EKONOMIJE OBUJMA C E c = = C AC zajednička proizvodnja dva proizvoda jedne tvrtke je veća od razine proizvodnje koju bi mogle postići dvije odvojene tvrtke od kojih svaka proizvodi samo jedan proizvod E c elastičnost troška s obzirom na razinu outputa; postotna promjena troška proizvodnje koja je posljedica porasta proizvodnje od % Izradili: Penezić Andrija & Miković Ivana

7 MIKROEKONOMIJA./. Ekonomije Obuhvata Zadatak 4. STUPANJ EKONOMIJE OBUHVATA ) + ), ) =, ) Odredite Ec ako porast proizvodnje s na jednica nekog outputa, uzrokuje porast troškova s 7$ na: a) 88$ b) 9$ 7 8 Zadatak 4. (a) Zadatak 4. (b) E c =( C/ )/(C/) E c =[(887)/()]/(88/) E c =(/)/(88/) E c =/4,7 E c =,8 E c < pa imamo ekonomije obujma E c =( C/ )/(C/) E c =[(97)/()]/(9/) E c =(9/)/(9/) E c =9/8, E c =, E c > pa imamo disekonomije obujma 9 4 Zadatak. Zadatak. (a) Troškovi proizvodnje prvog proizvoda su 8$, a drugog 9$. Odredite stupanj ekonomija obuhvata. Imamo li ekonomije ili disekonomije obuhvata? Troškovi zajedničke proizvodnje su: a) $ b) $ ) + ), ) =, ) =(8+9)/ =7/ =,7 > pa imamo ekonomije obuhvata 4 4 Izradili: Penezić Andrija & Miković Ivana 7

8 MIKROEKONOMIJA./. Zadatak. (b) ) + ), ) =, ) =(8+9)/ =/ =, < pa imamo disekonomije obuhvata 4 Izradili: Penezić Andrija & Miković Ivana 8

VJEŽBE 4. Proizvodnja i organizacija poslovanja, analiza troškova

VJEŽBE 4. Proizvodnja i organizacija poslovanja, analiza troškova VJEŽBE 4. Proizvodnja i organizacija poslovanja, analiza troškova I SKUPINA ZADATAKA 1. Proizvodna funkcija predstavlja odnos između a) inputa i outputa b) troškova i radnika c) ukupnog proizvoda i graničnog

Διαβάστε περισσότερα

Analiza savršene konkurencije u kratkom roku

Analiza savršene konkurencije u kratkom roku Analiza savršene konkurencije u kratkom roku Jedanaesto predavanje, 11. svibnja 2016. godine Pripremljeno iz: Binger i Hoffman, Microeconomics with Calculus Maksimizacija profita poduzeća koje posluje

Διαβάστε περισσότερα

Vježbe 6. ass. Lejla Dacić

Vježbe 6. ass. Lejla Dacić Vježbe 6 ass. Lejla Dacić TEORIJA TROŠKOVA TEORIJA TROŠKOVA Troškovi predstavljaju vrijednosni izraz utrošaka faktora proizvodnje Fiksni i varijabilni roškovi Troškovi u kratkom i dugom vremenskom periodu

Διαβάστε περισσότερα

VELEPRODAJNO I MALOPRODAJNO POSLOVANJE - VJEŽBE 9 - Sveučilišni preddiplomski studij Ekonomika poduzetništva

VELEPRODAJNO I MALOPRODAJNO POSLOVANJE - VJEŽBE 9 - Sveučilišni preddiplomski studij Ekonomika poduzetništva VELEPRODAJNO I MALOPRODAJNO POSLOVANJE - VJEŽBE 9 - Sveučilišni preddiplomski studij Ekonomika poduzetništva 08.01.2013. Sadržaj 1. Cjenovna elastičnost potražnje 2. Izračunavanje marže, prodajne cijene

Διαβάστε περισσότερα

Varijabilni. troškovi. Ukupni. troškovi. Granični troškovi

Varijabilni. troškovi. Ukupni. troškovi. Granični troškovi Ovisnost troškova o promjenama opsega proizvodnje Stalni troškovi Varijabilni troškovi Ukupni troškovi Granični troškovi Prosječni troškovi troškovi proizvodnje su različiti po: svom porijeklu (prirodnim

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

TROŠKOVI, PONUDA I PROFIT. PREDAVANJE 8 Prof.dr Jovo Jednak

TROŠKOVI, PONUDA I PROFIT. PREDAVANJE 8 Prof.dr Jovo Jednak TROŠKOVI, PONUDA I PROFIT PREDAVANJE 8 Prof.dr Jovo Jednak Troškovi, ponuda i profit U prethodnom poglavlju bavili smo se proizvodnom tehnologijom preduzeća, koja opisuje kako se inputi transformišu u

Διαβάστε περισσότερα

Производна функција. Тематска целина. 6.1 Производња, производна функција и гранична стопа техничке супституције

Производна функција. Тематска целина. 6.1 Производња, производна функција и гранична стопа техничке супституције 1 Производна функција Радна недеља 6 Тематска целина 6. Производна функција Тематска јединица 6.1 Производња, производна функција и гранична стопа техничке супституције 6.2 Укупан, просечан и граничан

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Prema stupnju iskorištenja kapaciteta troškovi se dijele na: 1. Promjenjive (varijabilne) troškove 2. Nepromjenjive (fiksne) troškove

Prema stupnju iskorištenja kapaciteta troškovi se dijele na: 1. Promjenjive (varijabilne) troškove 2. Nepromjenjive (fiksne) troškove TROŠKOVI I KALKULACIJE Troškove je moguće definirati kao novčanu vrijednost inputa korištenih u proizvodnom procesu tijekom vremena. Visina troškova ovisi o količini korištenih inputa i njihovoj cijeni.

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

6. Proizvodnja. doc. dr. sc. Katarina Bačić, kolegij Mikroekonomija, 2013.

6. Proizvodnja. doc. dr. sc. Katarina Bačić, kolegij Mikroekonomija, 2013. 6. Proizvodnja Proizvodnja Kako tvrtke mogu učinkovito proizvoditi? Kako donose odluke o optimalnoj p? Kako se mijenjaju troškovi kao posljedica promjene ulaznih troškova i razina proizvodnje? Odgovor:

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

PROIZVODNA FUNKCIJA PREDAVANJE 7 Prof. d r dr J ovo Jovo J ednak Jednak

PROIZVODNA FUNKCIJA PREDAVANJE 7 Prof. d r dr J ovo Jovo J ednak Jednak PROIZVODNA FUNKCIJA PREDAVANJE 7 Prof. dr Jovo Jednak Proizvodnja, proizvodna funkcija, dodata vrednost i priroda inputa Transformacija faktora proizvodnje (inputa) u učinak zove se proces proizvodnje.

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

UPRAVLJANJE TROŠKOVIMA

UPRAVLJANJE TROŠKOVIMA UPRAVLJANJE TROŠKOVIMA Troškovi Predstavljaju novčano izražena trošenja sredstava i rada. Postoji više različitih klasifikacija troškova, u zavisnosti od aspekta posmatranja. Vrste troškova U zavisnosti

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Osnovni pojmovi iz teorije proizvodnje

Osnovni pojmovi iz teorije proizvodnje Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva Inženjerska ekonomika (41251) Zagreb, 10. travnja 2013. Osnovni pojmovi iz teorije proizvodnje Bilješke s predavanja Dubravko Sabolić Inzeko

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

3 FUNKCIJE VIŠE VARIJABLI Homogene funkcije, homogenost Parcijalne derivacije Totalni diferencijal

3 FUNKCIJE VIŠE VARIJABLI Homogene funkcije, homogenost Parcijalne derivacije Totalni diferencijal Sadržaj 3 FUNKCIJE VIŠE VARIJABLI 34 3. Homogene funkcije, homogenost................. 34 3.2 Parcijalne derivacije........................ 38 3.3 Totalni diferencijal........................ 40 3.4 Koeficijenti

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

III. TEORIJA PROIZVODNJE

III. TEORIJA PROIZVODNJE III. TEORIJA PROIZVODNJE 3.1. ČIMBENICI PROIZVODNJE stvaranje nove vrijednosti u proizvodnim procesima glavna je funkcija svih proizvodnih organizacija.... proizvodnja je proces u kojem se dobra ili usluge

Διαβάστε περισσότερα

VVR,EF Zagreb. November 24, 2009

VVR,EF Zagreb. November 24, 2009 November 24, 2009 Homogena funkcija Parcijalna elastičnost Eulerov teorem Druge parcijalne derivacije Interpretacija Lagrangeovog množitelja Ako je (x, y) R 2 uredjeni par realnih brojeva, onda je s (x,

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

D. Čičin-Šain, viši pred. 1

D. Čičin-Šain, viši pred. 1 Tržišna moć: monopol i monopson Predavanje iz Mikroekonomije Monopol kao jedini proizvođač nekog proizvoda, monopolist ima jedinstvenu poziciju ako monopolist odluči povisiti cijenu proizvoda, ne treba

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Program za tablično računanje Microsoft Excel

Program za tablično računanje Microsoft Excel Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Orjentaciona pitanja sa odgovorima za kolokvijum II iz Osnova ekonomije

Orjentaciona pitanja sa odgovorima za kolokvijum II iz Osnova ekonomije Orjentaciona pitanja sa odgovorima za kolokvijum II iz Osnova ekonomije Budžetsko ograničenje predstavlja potrošačke korpe (sve moguće kombinacije) dobara koje potrošač može sebi da priušti sa raspoloživim

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije Sadržaj REALNE FUNKCIJE JEDNE REALNE VARIJABLE 7. Elementarne funkcije....................... 7. Primjeri ekonomskih funkcija.................. 78.3 Limes funkcije........................... 8.4 Neprekidnost

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Maksimalizacija profita

Maksimalizacija profita Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva Inženjerska ekonomika (41251) Zagreb, 3. travnja 2013. Maksimalizacija profita Bilješke s predavanja Dubravko Sabolić Inzeko 2013; LN-5b 1. Uvod

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici. Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

VOLUMEN ILI OBUJAM TIJELA

VOLUMEN ILI OBUJAM TIJELA VOLUMEN ILI OBUJAM TIJELA Veličina prostora kojeg tijelo zauzima Izvedena fizikalna veličina Oznaka: V Osnovna mjerna jedinica: kubni metar m 3 Obujam kocke s bridom duljine 1 m jest V = a a a = a 3, V

Διαβάστε περισσότερα

RAZLIKA U CIJENI RAZLIKE U CIJENI U TRGOVINI UKUPNA RAZLIKA U CIJENI UKUPNA RAZLIKA U CIJENI

RAZLIKA U CIJENI RAZLIKE U CIJENI U TRGOVINI UKUPNA RAZLIKA U CIJENI UKUPNA RAZLIKA U CIJENI RAZLIKA U CIJENI RAZLIKE U CIJENI U TRGOVINI Služi za pokriće troškova poslovanja i ostvarenje dobiti; Troškovi poslovanja: materijalni troškovi; amortizacija; troškovi rada; ostali troškovi; Razlikujemo

Διαβάστε περισσότερα

ZADACI ZA VEZBE1 MENADZERSKO RACUNOVODSTVO BEOGRADSKA POSLOVNA SKOLA VISOKA SKOLA STRUKOVNIH STUDIJA

ZADACI ZA VEZBE1 MENADZERSKO RACUNOVODSTVO BEOGRADSKA POSLOVNA SKOLA VISOKA SKOLA STRUKOVNIH STUDIJA ZADACI ZA VEZBE1 MENADZERSKO RACUNOVODSTVO BEOGRADSKA POSLOVNA SKOLA VISOKA SKOLA STRUKOVNIH STUDIJA ZADATAK BR. 1 Na osnovu podataka preduzeca Valsacor u 2010.godinisastaviti bilans stanja i bilans uspeha

Διαβάστε περισσότερα

FINANCIJSKA MATEMATIKA Zadaci za vježbu. Napomena: Zadaci u ovoj prvoj skupini se mogu smatrati početnima i služe za uvježbavanje pojedinih pojmova.

FINANCIJSKA MATEMATIKA Zadaci za vježbu. Napomena: Zadaci u ovoj prvoj skupini se mogu smatrati početnima i služe za uvježbavanje pojedinih pojmova. Zagreb, 24. veljače 2003. FINANCIJSKA MATEMATIKA Zadaci za vježbu Napomena: Zadaci u ovoj prvoj skupini se mogu smatrati početnima i služe za uvježbavanje pojedinih pojmova. 1. Efektivna godišnja kamatna

Διαβάστε περισσότερα

2.2. Analiza vremena Pert metodom

2.2. Analiza vremena Pert metodom 2.2. Analiza vremena Pert metodom Dok je kod CPM metode poznato samo jedno vreme trajanja aktivnosti t, kod Pert metode dane su tri procjene: a - optimistično vreme (najkraće moguće vreme u kojemu se može

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

PITANJA IZ MIKROEKONOMIJE, školska 2014/2015

PITANJA IZ MIKROEKONOMIJE, školska 2014/2015 PITANJA IZ MIKROEKONOMIJE, školska 2014/2015 1. Šta se označava izrazima oskudno dobro (rijetko dobro, scarce good), slobodno dobro i ekonomsko dobro? 2. U čemu se ogledaju prednosti slobodne tržišne alokacije

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable Sadržaj 1 DIFERENCIJALNI RAČUN 3 1.1 Granična vrijednost i neprekidnost funkcije........... 3 1.2 Derivacija realne funkcije jedne varijable............ 4 1.2.1 Pravila deriviranja....................

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

POTPUNA KONKURENCIJA I MAKSIMIRANJE PROFITA

POTPUNA KONKURENCIJA I MAKSIMIRANJE PROFITA POTPUNA KONKURENCIJA I MAKSIMIRANJE PROFITA PREDAVANJE 9 Prof. dr Jovo Jednak Prof.dr Jovo Jednak 1 Ekonomski, računovodstveni i normalni ili nulti ekonomski profit i maksimiranje profita Profit ekonomski,

Διαβάστε περισσότερα

EKONOMSKA ULOGA DRŽAVE

EKONOMSKA ULOGA DRŽAVE 9.2.211 TRŽIŠTE veliki automatski regulator celokupne društvene proizvodnje Z. janić (1979) oblik razmene proizvoda i usluga posredstvom novca, mesto sučeljavanja ponude i potražnje i formiranja cena,

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

KURS ZA ENERGETSKI AUDIT 7

KURS ZA ENERGETSKI AUDIT 7 KURS ZA ENERGETSKI AUDIT 7 EKONOMIJA ENERGETSKE EFIKASNOSTI Dr Dečan Ivanović Ekonomija energetske efikasnosti Inženjeri posmatraju energetiku gotovo uvijek sa aspekta tehnologije energetskih transformacija,

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Primijenjena mikroekonomija

Primijenjena mikroekonomija SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU EKONOMSKI FAKULTET U OSIJEKU Primijenjena mikroekonomija Prezentacijski materijali U Osijeku, 28. S A D R Ž A J Proizvodna funkcija 1 Analiza prihoda i učinkovitosti

Διαβάστε περισσότερα

Dužina luka i oskulatorna ravan

Dužina luka i oskulatorna ravan Dužina luka i oskulatorna ravan Diferencijalna geometrija Vježbe Rješenja predati na predavanjima, u srijedu 9. ožujka 16. god. Zadatak 1. Pokazati da je dužina luka invarijantna pod reparametrizacijom

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju.

zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. zastori zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. (mm) (mm) za PROZOR im (mm) tv25 40360 360 400 330x330 tv25 50450 450 500 410x410

Διαβάστε περισσότερα

RIJEŠENI ZADACI IZ MATEMATIKE

RIJEŠENI ZADACI IZ MATEMATIKE RIJEŠENI ZADACI IZ MATEMATIKE Ovi zadaci namijenjeni su studentima prve godine za pripremu ispitnog gradiva za kolokvije i ispite iz matematike. Pripremljeni su u suradnji i po uputama predmetnog nastavnika

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

MAKROEKONOMIJA. 13. siječnja 2007.

MAKROEKONOMIJA. 13. siječnja 2007. MAKROEKONOMIJA 13. siječnja 2007. 1 UVOD I OSNOVNI POJMOVI 1 1 UVOD I OSNOVNI POJMOVI Bruto domaći proizvod (BDP) - Mjera ukupnog proizvoda u računima nacionalnog dohotka tijekom danog razdoblja 1. BDP

Διαβάστε περισσότερα

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školsk 0./04. godin TEST MATEMATIKA UPUTE ZA RAD Test koji trebš riješiti im 0 zdtk. Z rd je predviđeno 0 minut. Zdtke ne morš rditi prem redoslijedu

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

Ivan Pavić, Đuro Benić, Iraj Hashi MIKROEKONOMIJA

Ivan Pavić, Đuro Benić, Iraj Hashi MIKROEKONOMIJA Ivan Pavić, Đuro Benić, Iraj Hashi MIKROEKONOMIJA Split, 26. Uvod u mikroekonomiju 1 1.1. Temeljna mikroekonomska pitanja 1.1.a. Oskudica kao središnji ekonomski problem 1.1.b. Izbor između alternativa

Διαβάστε περισσότερα

UPRAVLJANJE RIZICIMA. Sveučilište u Zagrebu EKONOMSKI FAKULTET ZAGREB Katedra za Ekonomiku poduzeća Prof. dr. sc. Danijela Miloš Sprčić

UPRAVLJANJE RIZICIMA. Sveučilište u Zagrebu EKONOMSKI FAKULTET ZAGREB Katedra za Ekonomiku poduzeća Prof. dr. sc. Danijela Miloš Sprčić UPRAVLJANJE RIZICIMA Sveučilište u Zagrebu EKONOMSKI FAKULTET ZAGREB Katedra za Ekonomiku poduzeća Prof. dr. sc. Danijela Miloš Sprčić PODACI O NASTAVNIKU Nositelj i izvođač kolegija Prof. dr. sc. Danijela

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

D. Čičin-Šain, viši pred. 1

D. Čičin-Šain, viši pred. 1 16. Monopolistička konkurencija i Predavanje iz Mikroekonomije Monopolistička konkurencija u mnogim industrijskim granama proizvodi su diferencirani iz nekog razloga, potrošači svaku marku proizvoda doživljavaju

Διαβάστε περισσότερα

Dinamika krutog tijela. 14. dio

Dinamika krutog tijela. 14. dio Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (

Διαβάστε περισσότερα