nepoznati parametar θ jednak broju θ 0, u oznaci H 0 (θ =θ 0 ), je primer proste hipoteze. Ako hipoteza nije prosta, onda je složena.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "nepoznati parametar θ jednak broju θ 0, u oznaci H 0 (θ =θ 0 ), je primer proste hipoteze. Ako hipoteza nije prosta, onda je složena."

Transcript

1 Testiraje parametarskih hipoteza Pretpostavka (hipoteza) o parametru raspodele se zove parametarska hipoteza. Postupak jeog potvrđivaja ili odbacivaja a osovu podataka iz uzorka je parametarski test. t Ako hipoteza u potpuosti određuje raspodelu obeležja kaže se da je to prosta hipoteza. Hipoteza da je epozati parametar θ jedak broju θ 0, u ozaci H 0 (θ =θ 0 ), je primer proste hipoteze. Ako hipoteza ije prosta, oda je složea. 1

2 Prag začajosti ili ivo začajosti Običo imamo dve hipoteze: hipoteza koju testiramo H 0 - ulta hipoteza ihi hipoteza H 1 alterativa ti hipoteza. Ako se odbacuje ulta hipoteza kada je tača, pravi se greška geš aprvog ogtpa tipa. Ako se prihvata ulta hipoteza kada je tača alterativa hipoteza, pravi se greška drugog tipa. Verovatoća α odbacivaja hipoteze H 0, ako je tača, je verovatoća greške prvog tipa i aziva se prag začajosti ili ivo začajosti. Običo se uzima da je 0,01; 0,05 ili 0,1.

3 Opšte apomee Neka je X 1 1,..., X prost slučaja uzorak obima za obeležje X u čijoj raspodeli figuriše epozati parametar θ. Testiramo hipotezu H 0 (θ = θ 0 ) protiv alterative H 1 (θ θ 0 ). Formira se statistika kojom se ocejuje parametar θ. Izračua se realizovaa vredost statistike θ * Pomoću odgovarajućih tablica se alazi ε iz uslova P θ ˆ H [ θ0 ε] = α 0 statistika H 0 se odbacuje a osovu datog uzorka i za dato α ako je * θ θ 0 ε realizovaa vredost statistike 3

4 Opšte apomee, astavak Druga mogućost je da se pri pretpostavci p H 0 izračua [ θˆ θ θ θ = α * P H ] H 0 se odbacuje ako je α α. Skup K=(-, (, θ 0 - ε] ] (θ 0 + ε,, ] ]je kritiča oblast za H 0 pri H 1. P [ˆ θ ] = α H 1 (θ θ 0 ). H K 0 Kritiča oblast je jedostraa K=(θ 0 + ε, ] ]akojeh H 1 (θ > θ 0 ). Kritiča oblast je jedostraa K=(-, θ 0 - ε,] ako je H 1 (θ < θ 0 ). * 4

5 Verovatoće odluka Postupak doošeja odluke i verovatoće pojediih odluka pri testiraju hipoteze H 0 protiv alterative H 1 Hipoteza koja je prihvaćea H 0 H 1 Hipoteza koja je tača H 0 H 1 Pravila odluka (1-α) Greška. vrste (β) Greška 1. vrste (α) Pravila odluka (1-β) Veličia (1-β) predstavlja verovatoću da se e učii greška druge vrste moć testa. 5

6 Hipoteze o matematičkom očekivaju Testiraje hipoteze H 0 0( (m=m 0 0) ) o matematičkom očekivaju obeležja X koje ima ormalu raspodelu N(m, σ ), ako je σ pozato. Neka je alterativa ti hipoteza H 1 (m m 0 ). Ako je H 0 tača, uzoračka sredia ima N(m,σ /) raspod. ε alazimo iz uslova P H0 [ ] 0 X m ε = P = α 0 H0 X m σ Za dato α pomoću tablica se alazi z β i izračua ε z β = ε σ ε σ 6

7 Hipoteze o matematičkom očekivaju Nultu hipotezu odbacujemo ako je x m 0 ε Oblast K=(-, m 0 - ε] (m 0 + ε, ] je kritiča oblast za hipotezu H 0 (m = m 0 ) pri alterativi H 1 (m m 0 ). Ako realizovaa vredost statistike ik x K, oda hipotezu H 0 odbacujemo. iterval povereja kritiča oblast β α verovatoća ć da parametar bude u itervalu 1 verovatoća da parametar bude u krit. oblasti 0 7

8 Hipoteze o matematičkom očekivaju Testiraje hipoteze H 0 (m=m 0 ) o matematičkom očekivaju obeležja X koje ima ormalu raspodelu N(m, σ ), ako disperzija σ ije pozata. Neka je alterativa hipoteza H 1 1( (m m 0 0) ). X m0 Ako je H 0 tača, oda statistika: 1 S ima Studetovu raspodelu sa -1 stepei slobode. Iz tablica za Studetovu raspodelu alazi se ε iz [ ] X m ε 0 PH X 0 ε = 1 1 = 0 m PH 0 S S [ ] α H 0 se odbacuje ako je ε maje ili jedako od realizovae vredosti x m 0 iz uzorka. 8

9 Hipoteze o disperziji Testiraje hipoteze H 0 (σ = σ 0) ako obeležje ima ormalu raspodelu N(m, (, σ ) i ako je m pozato. Neka je alterativa hipoteza H 1 (σ > σ ~ 0). S Pri tačoj hipotezi H 0 statistika ima χ σ 0 Kritiču oblast alazimo iz ~ S P H0 > ε = α σ 0 Iz tablica za χ raspodelu se alazi vredost ε. Ako je ~ s > ε σ 0 H 0 se odbacuje a osovu datog uzorka za dato α. 9

10 Hipoteze o disperziji, astavak Testiraje hipoteze H 0 (σ = σ 0) ako obeležje ima ormalu raspodelu N(m, (, σ ) i ako m ije pozato. Neka je alterativa hipoteza H 1 (σ > σ 0). S Pri tačoj hipotezi H 0 statistika ima χ 1 Kritiču oblast alazimo iz S P H > ε = α 0 σ 0 Za dato α iz tablica za χ raspodelu sa -1 stepei slobode se alazi vredost ε. Ako je s > ε H 0 se odbacuje a osovu datog uzorka i za dato α. σ 0 σ 0 10

11 Testiraje hipoteze o jedakosti disperzija Testiraje hipoteze H 0 (σ 1 = σ ) za ezavisa obeležja sa ormalim raspodelama i pozatim očekivajima. Neka ezavisa obeležja imaju ormale raspodele X : N ( m 1, σ 1 ) Y : N ( m, σ ) Neka je alterativa hipoteza H 1 (σ 1 σ ). Ako je H 0 tača, tada statistika ~ S ~ σ S Z = ~ = ~ S S ima Fišerovu raspodelu F 1,. σ

12 Hipoteza o jedakosti disperzija Iz uslova P [ Z 1 (0,1 ε ) (1 + ε, )] = α e mogu se jedozačo odrediti ε 1 i ε. Postavljaju j se dodati uslovi α P ( Z < 1 ε 1 ) = P ( Z > 1 + ε ) = ε 1 i ε se određuju iz tablica za F 1, raspodelu. α 1

13 Testiraje hipoteze o jedakosti disperzija Testiraje hipoteze H 0 (σ 1 = σ ) za ezavisa obeležja sa ormalim raspodelama i epozatim očekivajima. Neka ezavisa obeležja imaju ormale raspodele X : N ( m 1, σ 1 ) Y : N ( m, σ ) Neka je alterativa hipoteza H 1 (σ 1 σ ). Ako je H 0 tača, tada statistika Z = ˆ S Sˆ 1 S ima Fišerovu raspodelu F 1-1,

14 Hipoteza o jedakosti disperzija Iz uslova P [ Z 1 (0,1 ε ) (1 + ε, )] = α e mogu se jedozačo odrediti ε 1 i ε. Postavljaju j se dodati uslovi α P ( Z < 1 ε 1 ) = P ( Z > 1 + ε ) = ε 1 i ε se određuju iz tablica za F 1-1, -1 raspodelu. Ako je realizovaa vredost statistike Z u kritičoj oblasti (0, 1- ε 1 ) (1+ε, ) hipotezu H 0 odbacujemo za date uzorke i dati prag začajosti. α 14

15 Neparametarski testovi Hipoteze o raspodeli obeležja (koje se odose a samu raspodelu obeležja) se azivaju eparametarske hipoteze, a odgovarajući testovi eparametarski testovi (testovi saglasosti). Pirsoov χ - test Testira se hipoteza H 0 da obeležje X za koje imamo prost slučaja uzorak X 1,..., X ima datu fukciju raspodele F 0 (x). Pišemo: H 0 (X : F 0 (x)) Neka je u raspodeli obeležja X epozato s parametara. Skup mogućih vredosti obeležja se razbija a r disjuktih delova S 1,..., S r, tako da je broj m j elemeata iz uzorka u skupu S j ajmaje j 5. 15

16 Pirsoov χ - test Pirsoov χ test Brojevi m j su realizovae vredosti slučajih veličia M j, j j j j, čije su raspodele B(, p j ), j=1,...,r. Nalaze se verovatoće ] [ H 0 j j S X P p = Statistika kojom se testira postavljea hipoteza je r r M p M ) ( = = = = χ r j j r j j j j p M p p M j U 1 1 ) ( Ako je H 0 tača, test-statistika ima raspodelu 1 χ s r s 16

17 χ - test Za dati ivo začajosti, iz uslova P( χ se određuje χ. r s 1; α r 1 r s χ α) s 1; = α Ako je vredost test-statistike veća od tabliče, hipoteza se odbacuje. U suprotom, hipoteza se prihvata. Ovaj test se aziva hi-kvadrat ili Pirsoov test. 17

18 Test Kolmogorova Neparametarski test (ezavisa od raspodele obeležja). Primejuje se za obeležja koja imaju eprekide raspodele. Nulta hipoteza H 0 je da je raspodela F(x) jedaka raspodeli F 0 (x), a alterativa hipoteza je da je F(x) različita od F 0 (x). Test-statistika, tj. statistika Kolmogorova je uzoračka fukcija D = * sup F ( x) F0 ( x) < x< Kolmogorov je pokazao da za eprekide fukcije raspodela važi k = raspodele k k λ lim P[ D < λ] = K ( λ ) = ( 1) e, λ > 0 K( λ) = 0, 0 λ 18

19 Test Kolmogorova, astavak Neka je realizovaa vredost statistike Kolmogorova Kitič Kritiča oblast je d = * sup F ( x) F0 ( x) < x< C = d α [,, ) određuje se iz tablica Hipotezu H 0 odbacujemo (za dati prag začajosti i za dati uzorak), ako je d d >, α 19

20 Poređeje eparametarskih testova χ test se odosi a sve raspodele. Test Kolmogorova samo za eprekide raspodele. U χ testu mogu figurisati i raspodele sa epozatim parametrima. ti Kod χ testa se upoređuju empirijske i teorijske frekvecije, a kod testa Kolmogorova empirijska i teorijska fukcija raspodele. U χ testu se vrši grupisaje podataka i samo je važo koliko ih ima po pojediim i itervalima, a e i koji su. Time se gubi deo iformacije o uzorku. 0

Testiranje statistiqkih hipoteza

Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza je vid statistiqkog zakljuqivanja koji se primenjuje u situacijama: kada se unapred pretpostavlja postojanje određene

Διαβάστε περισσότερα

Tačkaste ocene parametara raspodele

Tačkaste ocene parametara raspodele Tačkaste ocee parametara raspodele Na osovu uzorka treba da se odredi kakva je raspodela obeležja a populaciji Ako je tip raspodele pozat, treba da se odrede parametri raspodele Pošto je realizovaa vredost

Διαβάστε περισσότερα

TESTIRANJE ZNAČAJNOSTI RAZLIKE

TESTIRANJE ZNAČAJNOSTI RAZLIKE //0 TESTIRANJE ZNAČAJNOSTI RAZLIKE Z-TEST I T-TEST Beograd, 0 Ass. dr Zora Bukumirić Z-TEST I T-TEST z-testom i Studetovim t-testom testiramo razliku: jede aritmetičke sredie i pretpostavljee vredosti

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

Neparametarski testovi za dva nezavisna uzorka. Boris Glišić 208/2010 Bojana Ružičić 21/2010

Neparametarski testovi za dva nezavisna uzorka. Boris Glišić 208/2010 Bojana Ružičić 21/2010 Neparametarski testovi za dva nezavisna uzorka Boris Glišić 208/2010 Bojana Ružičić 21/2010 Neparametarski testovi Hipoteze o raspodeli obeležja se nazivaju neparametarske hipoteze, a odgovarajući testovi

Διαβάστε περισσότερα

STATISTIKA. 1. Osnovni pojmovi

STATISTIKA. 1. Osnovni pojmovi STATISTIKA. Osovi pojmovi Matematička statistika se bavi proučavajem skupova sa velikim brojem elemeata, koji su jedorodi u odosu a jedo ili više zajedičkih kvalitatitvih ili kvatitativih svojstava. Kako

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Granične vrednosti realnih nizova

Granične vrednosti realnih nizova Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

Verovatnoća i Statistika. II deo. Osnovi Statistike. Beleške Prof. Aleksandra Ivića

Verovatnoća i Statistika. II deo. Osnovi Statistike. Beleške Prof. Aleksandra Ivića Verovatoća i Statistika II deo. Osovi Statistike Beleške Prof. Aleksadra Ivića 0.1 Osove statističke veličie Osovi zadatak matematičke statistike sastoji se u tome da se iz jedog dela eke geerale kolekcije

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Osnove teorije uzoraka

Osnove teorije uzoraka Oove teorije uzoraka Oove teorije uzoraka UZORAK: lučaji, reprezetativi dio oovog kupa populacije Uzorci: 1.uzorak:,, 1 1.uzorak:,, i.uzorak:,, i i Razdioba aritmetičke redie uzorka f ( ) f ( ) razdioba

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Uvod u neparametarske testove

Uvod u neparametarske testove Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa:

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1

(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1 χ 2 test (Hi-kvadrat test) Jedan od prvih statističkih testova je χ 2 -test. Predložio ga je K. Pearson 900. godine, pa je poznat i pod nazivom Pearsonov test. χ 2 test je neparametarski test. Pomoću χ

Διαβάστε περισσότερα

Postoji nekoliko statidtičkih testova koji koriste t raspodelu, koji se jednim imenom zovu t-testovi.

Postoji nekoliko statidtičkih testova koji koriste t raspodelu, koji se jednim imenom zovu t-testovi. Postoji nekoliko statidtičkih testova koji koriste t raspodelu, koji se jednim imenom zovu t-testovi. U SPSS-u su obradjeni: t test razlike između aritmetičke sredine osnovnog skupa i uzorka t test razlike

Διαβάστε περισσότερα

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( ) Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće naučnim ili iskustvenim).

Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće naučnim ili iskustvenim). Str. 53;76; Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@eccf.su.ac.yu www.eccf.su.ac.yu Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Uvod u neparametarske testove

Uvod u neparametarske testove Str. 644;1;148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@eccf.su.ac.yu www.eccf.su.ac.yu Hi-kvadrat testovi χ Str. 646;1;149 Koristi se za upoređivanje dve serije frekvencija. Vrste

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

METODA SEČICE I REGULA FALSI

METODA SEČICE I REGULA FALSI METODA SEČICE I REGULA FALSI Zadatak: Naći ulu fukcije f a itervalu (a,b), odoso aći za koje je f()=0. Rešeje: Prvo, tražimo iterval (a,b) a kome je fukcija eprekida, mootoa i važi: f(a)f(b)

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Str

Str Str. Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće

Διαβάστε περισσότερα

VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013.

VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013. VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013. 1. Novqi se baca tri puta. (a) Zapisati skup svih mogu ih ishoda. (b) Oznaqimo sa A k događaj da je u k-tom bacanju palo pismo, k {1, 2, 3}. Koriste

Διαβάστε περισσότερα

RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA

RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA PRIBLIŽNI BROJ I GREŠKA tača vredost ekog broja X prblža vredost ekog broja X apsoluta greška Δ = X X graca apsolute greške (gorja graca) relatva greška X X

Διαβάστε περισσότερα

Procjena parametara. Zadatak 4.1 Neka je X 1, X 2,..., X n slučajni uzorak iz populacije s konačnim očekivanjem µ i varijancom σ 2.

Procjena parametara. Zadatak 4.1 Neka je X 1, X 2,..., X n slučajni uzorak iz populacije s konačnim očekivanjem µ i varijancom σ 2. 4 Procjea parametara Neka je X slučaja varijabla čiju distribuciju proučavamo. Defiicija: Slučaji uzorak duljie za X je iz od ezavisih i jedako distribuiraih slučajih varijabli X 1, X,..., X koje imaju

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Testiranje statističkih hipoteza Materijali za nastavu iz Statistike

Testiranje statističkih hipoteza Materijali za nastavu iz Statistike Testiranje statističkih hipoteza Materijali za nastavu iz Statistike Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 39 Uvod Osnovna zadaća Statistike je na temelju uzorka ocijeniti kakvu razdiobu

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

Sadrˇzaj Sadrˇzaj 12 TEORIJA PROCJENA

Sadrˇzaj Sadrˇzaj 12 TEORIJA PROCJENA Sadrˇzaj Sadrˇzaj 2 TEORIJA PROCJENA 3 2. TOČKASTE PROCJENE......................... 5 2.2 REGRESIJSKA ANALIZA........................ 2.3 ML-PROCJENITELJI tko želi zati više................. 5 2.4 Poovimo.................................

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

9.1 Testovi hipoteza u statistici

9.1 Testovi hipoteza u statistici 196 9 Testiranje parametarskih hipoteza 9.1 Testovi hipoteza u statistici Popularan metod dokazivanja teorema u matematici je deductio ad absurdum, dovod enje do protivrečnosti ako se pretpostavi suprotno

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

TAČNE I ASIMPTOTSKE RASPODJELE NEKIH UZORAČKIH STATISTIKA

TAČNE I ASIMPTOTSKE RASPODJELE NEKIH UZORAČKIH STATISTIKA Matematički kolokvijum (Baja Luka) MAT-KOL (Baja Luka) XIV()(2008), 59-83 TAČNE I ASIMPTOTSKE RASPODJELE NEKIH UZORAČKIH STATISTIKA Uvod Aleksadra Vasilić Prirodo-matematički fakultet Baja Luka, Mladea

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

3 Populacija i uzorak

3 Populacija i uzorak 3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

4 Testiranje statističkih hipoteza

4 Testiranje statističkih hipoteza 4 Testiranje statističkih hipoteza 1 4.1. Statistička hipoteza Promatramo statističko obilježje X. Statistička hipoteza je (bilo koja) pretpostavka o (populacijskoj) razdiobi od X. Kažemo da je statistička

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Teorija verovatnoće. Definicija: Skup svih mogućih ishoda nekog eksperimenta nazivamo skup elementarnih dogaďaja i označavamo sa.

Teorija verovatnoće. Definicija: Skup svih mogućih ishoda nekog eksperimenta nazivamo skup elementarnih dogaďaja i označavamo sa. Teorija verovatoće 1 Teorija verovatoće Slučaji događaji Defiicija: Skup svih mogućih ishoda ekog eksperimeta azivamo skup elemetarih dogaďaja i ozačavamo sa Primer Odrediti skup elemetarih dogaďaja u

Διαβάστε περισσότερα

Verovatnoća i statistika idealni model i pojavni oblici

Verovatnoća i statistika idealni model i pojavni oblici Verovatoća i statistika ideali model i pojavi oblici Dr Biljaa Popović, redovi profesor Prirodo matematički fakultet u Nišu 3. april 2004. godie Matematička statistika je primejea matematička disciplia

Διαβάστε περισσότερα

Aritmetički i geometrijski niz

Aritmetički i geometrijski niz Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Testovi simetrije zasnovani na empirijskoj funkciji raspodele

Testovi simetrije zasnovani na empirijskoj funkciji raspodele UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Nada Boi Testovi simetrije zasnovani na empirijskoj funkciji raspodele master{rad Beograd, 2016. Mentor: dr Marko Obradovi, docent Matematiqkog fakulteta, Univerziteta

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku

Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku Elektrotehički fakultet uiverziteta u Beogradu 6. ju 008. Katedra za Račuarku tehiku i iformatiku Performae račuarkih itema Rešeja zadataka..videti predavaja.. Kretaje Verovatoća Opi 4 4 Kretaje u itom

Διαβάστε περισσότερα

Greške merenja i statistička obrada podataka

Greške merenja i statistička obrada podataka Vežbe iz Električih mereja http://www.kelm.ft.us.ac.rs Greške mereja i statistička obrada podataka. Greške mereja Osovi zadatak mere tehike je da odredi pravu vredost meree veličie, imajući u vidu okolosti

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Društvo matematičara Srbije. Pripreme za Juniorske olimpijade školske 2007/2008. Matematička indukcija

Društvo matematičara Srbije. Pripreme za Juniorske olimpijade školske 2007/2008. Matematička indukcija Društvo matematičara Srbije Pripreme za Juiorske olimpijade školske 007/008 -Dord e Baralić Tel:063/706-706-6 e-mail:djolebar@ptt.yu Matematička idukcija Primer 1. Dokazati da je > za sve N. Ituitivo zamo

Διαβάστε περισσότερα

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a: Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

UVOD U STATISTIČKO ZAKLJUČIVANJE

UVOD U STATISTIČKO ZAKLJUČIVANJE STROJNO UČENJE Uvod u statističko zaključivaje 1/22 STROJNO UČENJE Uvod u statističko zaključivaje 2/22 UVOD U STATISTIČKO ZAKLJUČIVANJE riječ STATISTIKA (lat. status = staje) Statistika deskriptiva iferecijala

Διαβάστε περισσότερα

3. OSNOVNI POKAZATELJI TLA

3. OSNOVNI POKAZATELJI TLA MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Statističko zaključivanje - testiranje hipoteza. Katedra za medicinsku statistiku i informatiku

Statističko zaključivanje - testiranje hipoteza. Katedra za medicinsku statistiku i informatiku Statističko zaključivanje - testiranje hipoteza Statističko zaključivanje Ideja moderne statistike je da na osnovu uzorka (dobijenog uzorkovanjem iz osnovnog skupa) donosimo zaključke o populaciji (statističko

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

X. Testiranje hipoteza. Osnovni koncepti testiranja hipoteza TESTIRANJE HIPOTEZA OSNOVNI KONCEPTI I TESTOVI POVEZANOSTI 19/11/15

X. Testiranje hipoteza. Osnovni koncepti testiranja hipoteza TESTIRANJE HIPOTEZA OSNOVNI KONCEPTI I TESTOVI POVEZANOSTI 19/11/15 TESTIRANJE HIPOTEZA OSNOVNI KONCEPTI I TESTOVI POVEZANOSTI X. Testiranje hipoteza Osnovni koncepti testiranja hipoteza Unakrsno tabeliranje i hi-kvadrat Testiranje hipoteza o srednjoj vrednosti i proporcijama

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Str. 454;139;91.

Str. 454;139;91. Str. 454;39;9 Metod uzorka Predavač: Dr Mirko Savić avicmirko@eccf.u.ac.yu www.eccf.u.ac.yu Statitička maa može da e pomatra a jeda od ledeća dva ačia: potpuo pomatraje, delimičo pomatraje (metod uzorka).

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1 Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +

Διαβάστε περισσότερα

Prosta linearna regresija (primer)

Prosta linearna regresija (primer) STATISTIKA Prosta linearna regresija (primer) Doc. Dr Slađana Spasić E-mail: sladjana.spasic@singidunim.ac.rs Ass. Ana Simićević E-mail: asimicevic@singidunim.ac.rs 7. 6. 010. Beograd Predavanje 15 Regresiona

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα