Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ""

Transcript

1 1 The problem of the representation of an integer n as the sum of a given number k of integral squares is one of the most celebrated in the theory of numbers... Almost every arithmetician of note since Fermat has contributed to the solution of the problem, and it has its puzzles for us still. G. H. Hardy S 3, S 4 tetsushi@math.kyoto-u.ac.jp

2 2 p 2 p = x 2 + y 2 (x, y Z) , 3,, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 3, 9, 61, 67, 71, 73, 79, 83, 89, 97,... 7 a, b n a b n a b (mod n) a b n 2.1 ( ). p p p = x 2 + y 2 x, y Z 2 p 1 (mod 4) p 1. p = x 2 + y 2 ( x, y Z) 2. p 1 (mod 4) 2 (1) (2) 2.2 (2) (1) 2.1 p x 2 + y = , 13 = , 17 = , 29 = , 37 = , 41 = , 3 = , 61 = , 73 = , 89 = , 97 = p = x 2 + y 2 x, y p 4 3 p =3, 7, 11, 19, 23,... p = x 2 + y 2

3 x, y x 2 + y 2 3 (mod 4). x 0 (mod 4) x 2 0 (mod 4) x 1 (mod 4) x (mod 4) x 2 (mod 4) x (mod 4) x 3 (mod 4) x (mod 4) x y x 2 + y x 2 + y 2 3 (mod 4) = , 1171, = x 2 + y = x 2 + y = [Za] S = {(x, y, z) Z 3 x, y, z > 0, x 2 +4yz = p} f (x +2z, z, y x z) x<y z f :(x, y, z) (2y x, y, x y + z) y z<x<2y (x 2y, x y + z, y) x>2y #S g :(x, y, z) (x, z, y) 2 #S S S f f(f(x, y, z)) = (x, y, z) f f(x, y, z) =(x, y, z) (x, y, z) S p 4k +1 f (1, 1,k) 2.3 (). p r 2 1 (mod p) r p 1 (mod 4). r 2 1 (mod p) r F p F p p 1 p 1 4 p 1 (mod 4) 2.1 p p 1 (mod 4) 2.3 r 2 1 (mod p) r Z 0 a, b < p (a, b) ( p + 1) 2 α α p +1 > p ( p + 1) 2 > p ( p + 1) 2 p +10 a, b < p (a, b) p +1

4 4 a rb p p a 1 rb 1 a 2 rb 2 (mod p) (a 1,b 1 ) (a 2,b 2 ) 0 a 1,a 2,b 1,b 2 < px = a 1 a 2, y = b 1 b 2 (x, y) (0, 0) x 2 (a 1 a 2 ) 2 r 2 (b 1 b 2 ) 2 y 2 (mod p) x 2 + y 2 0 (mod p) x, y < p 0 <x 2 + y 2 < 2p x 2 + y 2 0 2p p x 2 + y 2 = p p p 1 (mod 4) p = x 2 + y 2 m mp = x 2 + y 2 (0 <m<p) (x, y, m) : 2.3 a (mod p) a (1 a<p) p a a 1 a< p 2 a2 +1< p2 4 +1<p2 a 2 +1=mp (0 <m<p) mp = x 2 + y 2 (0 <m<p) m m 0 m 0 > 1 m 0 p = x 2 + y 2 (x, y) r, s x = x rm 0, y = y sm 0, x m0 2, y m0 2 (x ) 2 +(y ) 2 x 2 + y 2 0 (mod m 0 ) (x ) 2 +(y ) 2 m 0 m 1 = (x ) 2 +(y ) 2 m 0 (x ) 2 +(y ) 2 m m2 0 4 = m2 0 2 m 1 m0 2 x, y m 0 : x, y m 0 m 0 p m <m 0 <p (x ) 2 +(y ) 2 0 m 1 0 (xx + yy ) 2 +(xy x y) 2 =(x 2 + y 2 ) ( (x ) 2 +(y ) 2) = m 2 0m 1 p x x (mod m 0 ),y y (mod m 0 ) xx + yy x 2 + y 2 0 (mod m 0 ), xy x y xy xy 0 (mod m 0 ) xx + yy = m 0 α, xy x y = m 0 β α 2 + β 2 = m 1 p m 1 m0 2 m 0 m 0 = Z 1 1 Z[ 1] Z[ 1] A 2 B 2 =(A + B)(A B) A = x, B = y 1 x 2 + y 2 =(x + y 1)(x y 1) p p =(x + y 1)(x y 1) p Z[ 1] p Q( 1) [Ta1], [HW], [Co] p

5 Q Gal(Q/Q) p Q Q p Gal(Q p /Q p ) Gal(Q/Q) Gal(Q p /Q p ) Gal(Q/Q) Gal(Q p /Q p ) Gal(F p /F p ) I p p Gal(F p /F p ) Frob p : F p x x 1/p F p Frob p Gal(Q/Q) Frob p Gal(Q/Q) p Frob p Gal(Q/Q) Frob p well-defined K/Q K/Q p I p Gal(K/Q) p K/Q Frob p Gal(K/Q) well-defined p Frob p Q Q p Frob p ρ: Gal(Q/Q) GL n (C) Q n p ρ(i p ) ρ p 2 Q( 1)/Q 1 ρ Q( 1)/Q : Gal(Q/Q) Gal(Q( 1)/Q) = {±1} C = GL 1 (C) ρ Q( 1)/Q 2 p ρ Q( 1)/Q (Frob p ) GL 1 (C) well-defined GL 1 (C) 1 p Q( 1)/Q ρ Q( 1)/Q (Frob p )=1 p ρ Q( 1)/Q (Frob p ) GL 1 (C) ρ Q( 1)/Q ρ Q( 1)/Q (Frob p ) p = x 2 + y 2 Q 3.1 (Q ()). 1. n ρ: Gal(Q/Q) GL n (C) N N p ρ p ρ(frob p ) p (mod N) 2. ρ (1) N 3. N (1) ρ Gal(Q(ζ N )/Q) ζ N = exp(2π 1/N ) 1 N (3) Q(ζ N ) N Q

6 6 exp(2π 1z) ρ: Gal(Q/Q) GL n (C) ρ(frob p ) n =1 ρ(frob p ) p (mod N) (N ) ρ ρ(frob p ) 2.1 Q( 1) = Q(ζ 4 ) 3.1 ρ Q( 1)/Q (Frob p ) p (mod 4) p x, y Z, p= x 2 +2y 2 p 1, 3 (mod 8) 2. 3 p x, y Z, p= x 2 +3y 2 p 1 (mod 3) 3. p x, y Z, p= x 2 +y 2 p 1, 9 (mod 20) 3.1 (1) (3) p Q 2 Q [Ta1], [HW], [Co] 4 p = x 2 + y 2 p p =6x 2 + xy + y 2 (x, y Z) x, y Z, p=6x 2 + xy + y 2 p a 1,...,a r (mod N) a 1,...,a r,n 1000 p =6x 2 + xy + y 2 23, 9, 101, 167, 173, 211, 223, 271, 307, 317, 347, 449, 463, 93, 99, 607, 691, 719, 809, 821, 829, 83, 877, 883, 991, = ( 1) + ( 1) 2 9 = ( 7) + ( 7) 2 = = ( ) + ( ) 2 = p =6x 2 + xy + y 2

7 f = (1 q n )(1 q 23n )= a n q n n=1 n=1 a n p 23 x, y Z, p=6n 2 + nm + m 2 a p =2 f p p =6x 2 + xy + y 2 f Y X f(q) =q (1 q n )(1 q 23n )= a n q n = q q 2 q 3 +q 6 +q 8 q 13 q 16 +q 23 q 24 +q 2 +q 26 +q 27 q 29 q 31 +q 39 n=1 n=1 q 41 q 46 q 47 +q 48 +q 49 q 0 q 4 +q 8 +2q 9 +q 62 +q 64 q 69 q 71 q 73 q 7 q 78 q 81 +q 82 +q 87 +q 93 +q 94 q q 101 q q 118 +q 121 +q 123 q 127 q 128 q 131 +q 138 q 139 +q 141 +q 142 +q 146 q 147 +q 10 q 11 +q 162 q q q 173 q q 177 q 179 +q 184 q 186 q 192 q 193 q 197 +q q 202 +q q 211 +q 213 +q 216 +q q 223 q 232 q 233 q 239 q 242 q 246 q 248 +q 24 q 27 +q 262 q q 271 q 277 +q 278 q 282 +q 289 +q 294 q 299 +q q q 307 q 311 +q q 317 q 32 +q 326 q 328 q q q q 347 q 349 q 31 q 33 +2q 34 +q 38 + q 361 q 363 q 368 q 376 +q 377 +q 381 +q 384 +q 386 +q 392 +q 393 +q 394 q 397 q 400 +q 403 q 409 +q q 422 q 426 q 432 q 438 q 439 q q q 449 +q 43 q q 463 +q 464 +q q 472 +q 478 q 487 +q 489 q 491 +q 496 q q 01 q 09 +q 12 +q 14 2 q 19 +q 29 +q 33 +q 37 +q 38 q 41 2 q 42 q 47 q 2 +q 4 q 68 +q 7 q 77 q 78 +q 79 q 84 q 87 +q 91 +2q 93 +q 98 +2q 99 q 600 q q q 607 +q q 614 +q 621 +q 622 q 624 +q 62 2 q q 634 q 637 q 647 q 648 +q 60 q 63 +q 66 +q 662 q q 669 q 673 +q 67 q q q 694 +q 696 +q 698 +q 699 +q q 706 q 713 +q q 719 q 722 q 72 +q 726 +q 729 q 739 +q 744 +q 72 q 74 q 761 q q 767 +q 771 q 77 q 783 q 784 q 786 +q 794 q 806 +q q q 809 q q 813 +q q 821 q q 829 +q 831 q 832 q 834 q q 83 q 87 q 89 q 863 q q 877 +q q 883 +q 886 q 887 +q q 898 +q 899 q q 921 +q 922 +q q 926 q q 933 q q 944 q 947 +q q 91 q 967 +q 968 +q 974 +q 97 q 978 +q 982 +q q 991 +q q 997 +q p =6x 2 + xy + y 2 6x 2 + xy + y 2 α = x y (x, y Z) α α = ( x y )( x y ) =6x 2 + xy + y 2 α α K = Q( 23) O K = Z [ 1+ ] 23 2 p p =6x 2 + xy + y 2 O K p = α α K/Q Q K/Q 1 ρ K/Q : Gal(Q/Q) Gal(K/Q) = {±1} C = GL 1 (C) p 23 p K/Q ρ K/Q (Frob p )=1

8 8 23 K/Q p K/Q (p) O K (p) =Q 1 Q 2 O K K Q(ζ 23 ) p K/Q p (mod 23) p K/Q (p) =Q 1 Q 2 O K K 3 Q 1,Q 2 Q 1,Q 2 K H K H K Gal(H/K) = Cl(K) Q O K Q H Cl(K) K H/K K = Q( 23) H H p 23 x, y Z, p=6x 2 + xy + y 2 (p) =Q 1 Q 2, Q 1,Q 2 p K/Q Q 1,Q 2 H/K p H/Q Gal(H/Q) Frob p =1 K = Q( 23) H X 3 X 1 Gal(H/Q) = S 3 3 p 23 Frob p Gal(H/Q) S 3 2 τ ρ H/Q : Gal(Q/Q) Gal(H/Q) = S 3 τ GL2 (C) Q 2 S 3 x S 3 Tr(τ(x)) = 2 x x, y Z, p=6x 2 + xy + y 2 Tr ρ H/Q (Frob p )=2 2 2 ρ H/Q Tr ρ H/Q (Frob p )=2 p ρ H/Q p (mod N) 4.1 f f 2 ρ f : Gal(Q/Q) GL 2 (C) Tr ρ f (Frob p )=a p ρ f ρ H/Q 4.1 p = x 2 + y 2 p Q( 1) 1 Q( 1) Q( 1) Q( 1)/Q

9 9 Q p = x 2 +2y 2, p = x 2 +3y 2, p = x 2 +y 2 Q Q p =6x 2 + xy + y 2 Q( 23) H Q Gal(H/Q) = S 3 Q p f Q( 23) H Q p =6x 2 + xy + y 2 f f f = 1 { q 6n2 +nm+m 2 } q 6n2 +nm+2m 2 2 n,m Z n,m Z 23 2 S f Q( 23) GL(1)/Q( 23) GL(2)/Q f 1 [Se] GL(n) GL n (C).1 ( ). K ρ: Gal(K/K) GL n (C) n GL n (A K ) π L(s + n 1 2,ρ)=L(s, π) l K ρ: Gal(Q/Q) GL n (Q l )

10 10 K l GL n (Q l ) l ι: Q l = C l.2 ( (GL(n) )). K l ι: Q l = C n l ρ: Gal(K/K) GLn (Q l ) GL n (A K ) π L(s + n 1 2,ρ)=L(s, π) ρ π l l p l l π π = vπ v v π v π (isobaric) [Cl], p.84 GL(1) A n =1 n 2 l l 2 4 n R red = T K = Q, n=2 ρ l [Sa] K = Q, n =2 mod l n 2 ρ L/K ρ Gal(K/L) ([T], [It2], [It4], [It]) 6 k (k =2, 4, 6, 8) n k r k (n) := # { (x 1,...,x k ) Z k n = x x 2 } k 2.1 p r 2 (p) 0 p 1 (mod 4)

11 11 p r k (p) n r k (n) p r k (p) p r k (n) r k (p) p L Fundamenta Nova Theoriae Functionum Ellipticarum 1829 r 2 (n) r 4 (n) r 6 (n) r 8 (n) ϑ(q) = n= 1 2 ( ϑ(q) ) k q n2 ( ) k ϑ(q) =1+ r k (n)q n r k (n) k 2 ( ϑ(q) ) k r k (n) [Gl], [Na], [We] [Na] r 2 (p) 2.1 p 1 (mod 4) p = x 2 + y 2 (x, y Z, x, y 1) x, y x, y 8 (±x, ±y), (±y, ±x) p = x 2 + y 2 r 2 (p) =8 { χ(p) =( 1) (p 1)/2 1 p 1 (mod 4) = 1 p 3 (mod 4) n=1 r 2 (p) =4 ( 1+χ(p) ) = { 8 p 1 (mod 4) 0 p 3 (mod 4) r 4,r 6,r 8 p r 4 (p) = 8(1 + p) r 6 (p) = 16 ( χ(p)+p 2) 4 ( 1+χ(p)p 2) r 8 (p) = 16(1 + p 3 ) r 2 (p), r 4 (p), r 6 (p), r 8 (p) p (mod 4) p 7 r 10 (p) k =2, 4, 6, 8 p (mod??) r 10 (p) p r 10 (p)

12 12 r 10 (p) 1866 [Na] r 10 (p) = 4 ( 1+χ(p)p 4 ) + 64 ( χ(p)+p 4 ) + 8 (x + y 1) 4 p=x 2 +y 2 p = x 2 + y 2 (x, y) (x, y) (x, y) p=x 2 +y 2(x + y 1) 4 p Q( 1) r 10 (p) p = (±1) C = (±2) 2 1 (±1) = 360 r 10 () = 8424 χ() = 1 Re (x + y 1) 4 = x 4 + y 4 6x 2 y 2 4( 1+χ() 4 ) + 64 ( χ() + 4 ) + 8 (x + y 1) 4 =x 2 +y 2 = 4 ( 1+ 4 ) + 64 ( 1+ 4 ) + 32 (x 4 + y 4 6x 2 y 2 ) =x 2 +y 2, x,y 0 = ( ) = = 8424 r 10 (p) Q( 1) p r 10 (p) r 10 (p) 8 r 12 (p) p (mod??) p K/Q K r 12 (p) r 12 (p) r 10 (p) r 12 (p) r k (p) k 2 ( ϑ(q) ) k k 2 f 1,...,f r α 1,...,α r C f i 2 l ( ) k r ϑ(q) = α i f i i=1 ρ fi : Gal(Q/Q) GL 2 (Q l ) 2 l ρ fi p r k (p) = r α i Tr ρ fi (Frob p ) i=1

13 13 r k (p) r k (p) α i 2 l ρ fi Tr ρ fi (Frob p ) 2 k k =2, 4, 6, 8 ( ϑ(q) ) k f f 2 l ρ f Tr ρ f (Frob p ) p (mod??) p χ(p) =( 1) (p 1)/2 Q( 1)/Q 1 p n Q l ( n) r 10 (p) ( ϑ(q) ) 10 Q( 1) r 10 (p) (x + y 1) 4 p=x 2 +y 2 f l ρ f Q ρ f 2 Gal(Q/Q( 1)) Gal(Q/Q) Q( 1) ρ f Gal ( Q/Q( 1) ) 1 f 4.1 r 12 (p) ( ϑ(q) ) 12 6 Γ 0 (4) 6 b n g = q (1 q 2n ) 12 = b n q n n=1 n=1 r 12 (p) = 8(1 + p ) + 32 b p g b p g 2 l ρ g : Gal(Q/Q) GL 2 (Q l ) r 12 (p) r 12 (p) = 8(1 + p ) + 32 Tr ρ g (Frob p ) [BLGHT] Tr ρ g (Frob p ) [BGG] 8.1 ( g ). 0 α<β π N p C(N,α,β) lim N cos β Tr ρ g(frob p ) 2p /2 cos α C(N,α,β) (N p ) = 2 π β α sin 2 θ dθ

14 14, Tr ρ g(frob p ) 2p /2 1 p Tr ρ g(frob p ) [ 1, 1] 2p / sin 2 θ p (mod??) K/Q r 12 (p) r 12 (p) : k r k (n) k k r k (n) k ( ϑ(q) ) k rk (n) k SL 2 (A) k =3 n n >4 24h( n) n 3 (mod 8) r 3 (n) = 12h( 4n) n 1, 2,, 6 (mod 8) 0 n 7 (mod 8) h( d) d L [Ko] [O] x 2 + y z 2 [OS] x 2 + y z 2 3, 7, 21, 31, 33, 43, 67, 79, 87, 133, 217, 219, 223, 23, 307, 391, 679, 2719 [BLGHT] Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R., A family of Calabi-Yau varieties and potential automorphy II, preprint, to appear P.R.I.M.S. rtaylor/ [BGG] Barnet-Lamb, T., Gee, T., Geraghty, D., The Sato-Tate conjecture for Hilbert modular forms, preprint ( [Cl] Clozel, L., Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), [Co] Cox, D. A., Primes of the form x 2 + ny 2. Fermat, class field theory and complex multiplication, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, [Gl] Glaisher, J. W. L., On the numbers of representations of a number as a sum of 2r squares, where 2r does not exceed eighteen, Proc. London Math. Soc. (2) (1907),

15 1 [HW] Hardy, G. H., Wright, E. M., An Introduction to the Theory of Numbers, th ed., Oxford University Press, Oxford, 1979G. H., E. M., I,II,,, 2001 [Ko] Koblitz, N., Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, 97. Springer-Verlag, New York, ( : N. (, ),,, 2006 ) [Na] Nathanson, M. B., Elementary Methods in Number Theory, Graduate Texts in Mathematics, 19. Springer-Verlag, New York, [Neu] Neukirch, J., Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, 322. Springer-Verlag, Berlin, : J. ( (), ()),,, 2003 ) [O] Ono, K., Ramanujan, taxicabs, birthdates, ZIP codes, and twists, Amer. Math. Monthly 104 (1997), no. 10, [OS] Ono, K., Soundararajan, K., Ramanujan s ternary quadratic form. Invent. math. 130 (1997), no. 3, [Sa],,, [Se] Serre, J-P., Modular forms of weight one and Galois representations, Algebraic number fields: L- functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 197), pp Academic Press, London, [We] Weisstein, E. W., Sum of Squares Function, From MathWorld A Wolfram Web Resource. [Za] Zagier, D, A one-sentence proof that every prime p equiv (mod 4) is a sum of two squares, Amer Math Monthly 97 (1990). [It2] [] ,. [It3] ,. [It4] , :, , 40 4,. [It] , ,. [Ta1] 2,, [T] : 2008.

11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M)) Drinfeld Drinfeld 29 8 8 11 Drinfeld [Hat3] 1 p q > 1 p A = F q [t] A \ F q d > 0 K A ( ) k( ) = A/( ) A K Laurent F q ((1/t)) 1/t C Drinfeld Drinfeld p p p [Hat1, Hat2] 1.1 p 1.1.1 k M > 0 { Γ 1 (M) =

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

: 1. 10:20 12:40. 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 7:00 9:00

: 1. 10:20 12:40. 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 7:00 9:00 : 2010 9 6 ( ) 9 10 : 1. 9/6( ) 10:20 12:40 GL(2) Hecke ( ) 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 16:45 18:15 GL(2) I ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 9/7( ) 7:00 9:00 9:15 10:30 GL(2)

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Κεφάλαιο 8. Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα. 8.1 Το γενικό πολυώνυµο

Κεφάλαιο 8. Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα. 8.1 Το γενικό πολυώνυµο Κεφάλαιο 8 Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα Σε αυτό το κεφάλαιο αρχικά αποδεικνύουµε ότι υπάρχει επέκταση σωµάτων µε οµάδα Galois την S n. Για το σκοπό αυτό εξετάζουµε τα συµµετρικά πολυώνυµα.

Διαβάστε περισσότερα

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259- 5,..,. [8]..,,.,.., Bao-Feng Feng UTP-TX,, UTP-TX,,. [0], [6], [4].. ps ps, t. t ps, 0 = ps. s 970 [0] []. [3], [7] p t = κ T + κ s N -59- , κs, t κ t + 3 κ κ s + κ sss = 0. T s, t, Ns, t., - mkdv. mkdv.

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Discriminantal arrangement

Discriminantal arrangement Discriminantal arrangement YAMAGATA So C k n arrangement C n discriminantal arrangement 1989 Manin-Schectman Braid arrangement Discriminantal arrangement Gr(3, n) S.Sawada S.Settepanella 1 A arrangement

Διαβάστε περισσότερα

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Feasible Regions Defined by Stability Constraints Based on the Argument Principle Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation 3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.

( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K. ( ),.,,, 1, [17]. 1. 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K. 1.2. Σ g g. M g, Σ g. g 1 Σ g,, Σ g Σ g. Σ g, M g,, Σ g.. g = 1, M 1 M 1, SL(2, Z). Q. g = 2, 2000 M 2 (Korkmaz [20], Bigelow Budney [5])., Bigelow

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

On the k-bessel Functions

On the k-bessel Functions International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ). Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Palestine Journal of Mathematics Vol. 2(1) (2013), Palestine Polytechnic University-PPU 2013

Palestine Journal of Mathematics Vol. 2(1) (2013), Palestine Polytechnic University-PPU 2013 Palestine Journal of Matheatics Vol. ( (03, 86 99 Palestine Polytechnic University-PPU 03 On Subclasses of Multivalent Functions Defined by a Multiplier Operator Involving the Koatu Integral Operator Ajad

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Κβαντικη Θεωρια και Υπολογιστες

Κβαντικη Θεωρια και Υπολογιστες Κβαντικη Θεωρια και Υπολογιστες 1 Εισαγωγη Χειμερινο Εξαμηνο Iωαννης E. Aντωνιου Τμημα Μαθηματικων Aριστοτελειο Πανεπιστημιο Θεσσαλονικη 54124 iantonio@math.auth.gr http://users.auth.gr/iantonio Κβαντική

Διαβάστε περισσότερα

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements 5 5 2012 10 Chinese Optics Vol. 5 No. 5 Oct. 2012 1674-2915 2012 05-0525-06 - * 100190-14 - - 14. 51 μm 81. 4 μm - 1. 64 μm / O436. 1 TH703 A doi 10. 3788 /CO. 20120505. 0525 Correction of chromatic aberration

Διαβάστε περισσότερα

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

Πυθαγόρειες Τριάδες: από την ανακάλυψη μιας κανονικότητας στη διατύπωση και την απόδειξη μιας πρότασης

Πυθαγόρειες Τριάδες: από την ανακάλυψη μιας κανονικότητας στη διατύπωση και την απόδειξη μιας πρότασης Πυθαγόρειες Τριάδες: από την ανακάλυψη μιας κανονικότητας στη διατύπωση και την απόδειξη μιας πρότασης Δημήτριος Ντρίζος Σχολικός Σύμβουλος Μαθηματικών Τρικάλων και Καρδίτσας drizosdim@yahoo.gr Σεραφείμ

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

page: 2 (2.1) n + 1 n {n} N 0, 1, 2

page: 2 (2.1) n + 1 n {n} N 0, 1, 2 page: 1 1 1 ( ) ( ) ( ) ( 1 ) 1) 2 1 page: 2 2 [ 4 ] [11] ( [11] ) Chapter I 0 n ( n ) (2.1) n + 1 n {n} 0, 1, 2, 3, 4,..., { }, {, { }}, {, { }, {, { }}}, {, { }, {, { }}, {, { }, {, { }}}},... n n =

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.

Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3. 338-8570 255 e-mail: tkishimo@rimath.saitama-u.ac.jp 1 C T κ(t ) 1 [Projective] κ = κ =0 κ =1 κ =2 κ =3 dim = 1 P 1 elliptic others dim = 2 P 2 or ruled elliptic surface general type dim = 3 uniruled bir.

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

The k-bessel Function of the First Kind

The k-bessel Function of the First Kind International Mathematical Forum, Vol. 7, 01, no. 38, 1859-186 The k-bessel Function of the First Kin Luis Guillermo Romero, Gustavo Abel Dorrego an Ruben Alejanro Cerutti Faculty of Exact Sciences National

Διαβάστε περισσότερα

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x. Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

COMPLEX NUMBERS. 1. A number of the form.

COMPLEX NUMBERS. 1. A number of the form. COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called

Διαβάστε περισσότερα

IUTeich. [Pano] (2) IUTeich

IUTeich. [Pano] (2) IUTeich 2014 12 2012 8 IUTeich 2013 12 1 (1) 2014 IUTeich 2 2014 02 20 2 2 2014 05 24 2 2 IUTeich [Pano] 2 10 20 5 40 50 2005 7 2011 3 2 3 1 3 4 2 IUTeich IUTeich (2) 2012 10 IUTeich 2014 3 1 4 5 IUTeich IUTeich

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Wishart α-determinant, α-hafnian

Wishart α-determinant, α-hafnian Wishart α-determinant, α-hafnian (, JST CREST) (, JST CREST), Wishart,. ( )Wishart,. determinant Hafnian analogue., ( )Wishart,. 1 Introduction, Wishart. p ν M = (µ 1,..., µ ν ) = (µ ij ) i=1,...,p p p

Διαβάστε περισσότερα

Οµάδες Κοτσίδων και δράσεις της απόλυτης οµάδας Galois

Οµάδες Κοτσίδων και δράσεις της απόλυτης οµάδας Galois Οµάδες Κοτσίδων και δράσεις της απόλυτης οµάδας Galois Αριστείδης Κοντογεώργης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. Συνέδριο Αλγεβρας Θεσσαλονίκη 2-3 Μαΐου 2014 Η παρούσα έρευνα έχει συγχρηµατοδοτηθεί

Διαβάστε περισσότερα

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1] 1 ( ) 2007 02 16 (2006 5 19 ) 1 1 11 1 12 2 13 Ore 8 14 9 2 (2007 2 16 ) 10 1 11 ( ) ( [T] 131),, s 1 a as 1 [T] 15 (, D ), Lie, (derived category), ( ) [T] Gelfand Manin [GM1] Chapter III, [GM2] Chapter

Διαβάστε περισσότερα

ECE 468: Digital Image Processing. Lecture 8

ECE 468: Digital Image Processing. Lecture 8 ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions

Διαβάστε περισσότερα