1.3 Baza a unui spaţiu vectorial. Dimensiune

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1.3 Baza a unui spaţiu vectorial. Dimensiune"

Transcript

1 .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este sistem de generatori pentru spaţiul V. Din definiţia de mai sus şi din Teorema.2.2 putem deduce că orice vector x V se poate scrie ca o combinaţie liniară de vectori ai familiei B şi că această scriere este unică. Într-adevăr, dacă B = {u, u 2,,u n } este o bază în spaţiul vectorial V, atunci orice vector x V se scrie în mod unic x = ξ u + ξ 2 u ξ n u n. Definiţia.3.2 Scalarii ξ, ξ 2,, ξ n din relaţia de mai sus se vor numi coordonatele vectorului x în baza B. Vom folosi notaţia x B = (ξ, ξ 2,, ξ n ) pentru coordonatele lui x în baza B. Definiţia de mai sus se extinde în mod natural şi la baze indexate după familii oarecare de indici. Astfel, scalarii ξ i, coeficienţii vectorilor u i, i I (I familie oarecare de indici) din scrierea unică a lui x ca o combinaţie liniară de vectori ai bazei B se vor numi coordonatele vectorului x în baza B. Exemplul.3. Considerăm spaţiul vectorial de la Exemplul..5. Mulţimea infinită a monoamelor de orice grad, B = {, t, t 2,,t n, } este familie liniar independentă şi sistem de generatori pentru spaţiul vectorial real P(t), deci bază. 6

2 Algebră liniară, geometrie analitică şi diferenţială Într-adevăr, fie = α t i o combinaţie liniară nulă formată cu ien i vectorii familiei B, în care numai un număr finit de coeficienţi sunt nenuli. Vom arăta că toţi coeficienţii sunt nuli. Fie r cel mai mare indice pentru care α r. Din relaţia = α + α t +.+ α r t r, adevărată pentru orice t R deducem că α i =, i =,, r, (deoarece avem de a face cu un polinom de gradul r care este identic nul. Deci B este o familie liniar independentă. Faptul că B este sistem de generatori pentru P(t) rezultă observând că orice polinom f P(t) de grad k este o combinaţie liniară a primilor k vectori ai familiei B. De exemplu, coordonatele vectorului f = t 7 + 5t 3-4t 2 + în baza B sunt (,, -4, 5,,,,,,,, ). Exemplul.3.2 Familia B = {u = (,,, ), u 2 = (,,, ), u 3 = (,,, ), u 4 = (,,, )} a spaţiului vectorial real R 4 este o bază pentru acesta. Într-adevăr, este uşor de constatat că rangul matricei A = este 4 şi, conform Teoremei.2.3, familia B este liniar independentă. Mai rămâne de arătat faptul că B este sistem de generatori pentru R 4. În baza Definiţiei.2.2, vom demonstra că pentru orice x = (x, x 2, x 3, x 4 ) R 4, există scalarii reali α i, i =,,4 astfel încât x = α u + α 2 u 2 + α 3 u 3 + α 4 u 4 sau, echivalent, (.3.) A T α T = x T, unde α = (α, α 2, α 3, α 4 ). Acum este clar că existenţa scalarilor α i, i =,,4 este echivalentă cu faptul că sistemul (.3.) este compatibil. Deoarece rang A T = rang (A T, x T ) = 4, rezultă că sistemul (.3.) este compatibil (vezi paragraful 7

3 din secţiunea.5 dedicat rezolvării sistemelor liniare) şi în consecinţă B este sistem de generatori pentru R 4. Deci B este o bază pentru R 4. Coordonatele vectorului x în baza B sunt date de soluţia sistemului (.3.). De exemplu, dacă x = (4, 3, 2, ), atunci α = α 2 = α 3 = α 4 =. Un spaţiu vectorial poate avea mai multe baze, aşa cum rezultă din exemplul următor: Exemplul.3.3 Considerăm în spaţiul R 3 următoarele familii de vectori B = {E = (,, ), E 2 = (,, ), E 3 = (,, )} şi B = { u = (,, ), u 2 = (,, ), u 3 = (,, )}. Se observă că orice vector x = (x ], x 2, x 3 ) R 3 se poate scrie x = x E + x 2 E 2 + x 3 E 3, deci B este sistem de generatori pentru R 3. B este şi sistem liniar independent deoarece matricea A =, care are pe coloane componentele vectorilor familiei B, are rangul egal cu trei, adică cu numărul vectorilor din B. În concluzie B este bază pentru R 3. Analog se arată că şi B este o bază a lui R 3. Observaţia.3. Baza B din exemplul de mai sus se numeşte bază canonică a lui R 3. După cum am văzut, coordonatele unui vector x R 3, în baza canonică, coincid cu componentele sale. Acest rezultat rămâne valabil dacă considerăm în locul spaţiului R 3, spaţiul vectorial real R n, n N, n>3, cu precizarea că baza canonică în R n este {E = (,,,), E 2 = (,,, ),., E i = (,...,,... ),, E n = (,,,)}. i Teorema.3. Fie G= (x, x 2,, x m ) un sistem de generatori din spaţiul vectorial V (). Atunci există o bază B a lui V conţinută în G. 8

4 Algebră liniară, geometrie analitică şi diferenţială Demonstraţie. Deoarece V (), putem deduce că există x i G, i =,,m astfel încât x i. Într-adevăr, dacă presupunem prin absurd că toţi x i =, atunci nici un vector x din V nu poate fi scris ca o combinaţie liniară de vectori ai familiei G (vezi Observaţia..). Putem presupune fără a restrânge generalitatea că x. Atunci familia {x } este liniar independentă. Deci există sisteme liniar independente incluse în G. Fie I(G) familia tuturor sistemelor de vectori liniar independente din G şi fie F I(G) astfel încât numărul de elemente din F să fie maxim. Vom arăta că F este o bază a lui V. Din construcţie, F este sistem de vectori liniar independent, deci este suficient să arătăm că F este sistem de generatori pentru V. Fie x G, x F. Familia F {x} este liniar dependentă, căci altfel este contrazisă maximalitatea lui F (dacă familia F {x} ar fi liniar independentă ea ar avea un element în plus faţă de F şi am obţine o contradicţie). Aplicăm Teorema.2. şi deducem că x este o combinaţie liniară a vectorilor din F. Deci orice vector din G este o combinaţie liniară de vectori ai familiei F. Deoarece G este sistem de generatori pentru V, putem deduce, conform Exerciţiului.2., că F este sistem de generatori pentru V, şi demonstraţia este încheiată. Teorema.3.2 Dacă G = {x, x 2,, x m } este un sistem de generatori în V, iar F ={v, v 2,, v n } este un sistem liniar independent atunci n m. Demonstraţie. Deoarece G este sistem de generatori pentru V, atunci orice vector din V se scrie ca o combinaţie liniară de vectori din G, în particular şi vectorii din F. Deci există scalarii α, α 2,, α m astfel încât (.3.) v = α x + α 2 x α m x m. 9

5 Deoarece v (altfel F nu ar mai fi familie liniar independentă), deducem că există i {,,n} astfel încât α i şi putem presupune că α, eventual în urma unei renumerotări. Prin adunarea în ambii membrii ai relaţiei (.3.) a vectorului - α x - v şi prin înmulţirea relaţiei rezultate cu (- α ) -, obţinem x =(- α ) - (-v ) + (- α ) - α 2 x 2 + +(- α ) - α m x m. Deci x este o combinaţie liniară de vectori ai familiei G = {v, x 2,, x m }. Folosind Exerciţiul.2. deducem că G este un sistem de generatori pentru V. Continuăm procedeul de mai sus considerând în locul lui G sistemul G şi următorul vector din familia F, dacă acesta există. La acest pas avem (.3.2) v 2 = α v + α 2 x α m x m. şi este clar că cel puţin unul din coeficienţii vectorilor x 2,, x m este nenul. În caz contrar, aplicăm Teorema.2. şi deducem că F nu este liniar independentă, ceea ce contrazice ipoteza. Raţionând ca mai sus vom înlocui în G pe x 2 cu v 2 şi vom obţine familia G 2 care va fi de asemenea sistem de generatori pentru V. Aplicăm procedeul descris mai sus în continuare şi, după un număr finit de paşi, putem întâlni următoarele situaţii: fie am folosit toţi vectorii din F pentru a înlocui vectori din G, caz în care demonstraţia este încheiată, căci rezultă că n m, fie am înlocuit toţi vectorii din G cu vectori din F şi mai avem încă vectori în F. În acest caz, fie x F care nu a fost încă înlocuit. Conform procedeului, în locul lui G avem acum o familie de vectori din F care este sistem de generatori pentru V. Deci acest x se va scrie ca o combinaţie liniară de vectori din F, ceea ce contrazice faptul că F este familie liniar 2

6 Algebră liniară, geometrie analitică şi diferenţială independentă ( a se vedea Teorema.2.). În concluzie, acest ultim caz nu este posibil şi demonstraţia a fost încheiată. Corolarul.3. Dacă o bază dintr-un spaţiu vectorial are un număr finit de vectori atunci orice altă bază din acel spaţiu va avea acelaşi număr de vectori. Demonstraţie. Fie B şi B baze în spaţiul vectorial V. Presupunem că B este formată dintr-un număr (finit) de m vectori. Vom demonstra că şi B are tot m vectori. Dacă ţinem cont de faptul că B este în particular sistem de generatori şi B este sistem liniar independent, aplicăm Teorema.3.2 şi deducem că numărul de vectori ai lui B pe care îl vom nota k satisface inegalitatea k m. Acum schimbăm rolul lui B cu cel al lui B şi aplicând aceeaşi teoremă deducem că avem şi inegalitatea m k. Din cele două inegalităţi obţinem m = k şi rezultă concluzia. Deci numărul de vectori dintr-o bază a unui spaţiu vectorial este un element caracteristic al spaţiului vectorial şi nu depinde de baza aleasă. Din corolarul de mai sus arată rezultă că, dacă spaţiul vectorial V admite o bază formată dintr-un număr infinit de vectori, atunci orice altă bază a acestuia va conţine tot un număr infinit de vectori. Astfel putem introduce definiţia următoare: Definiţia.3.3 Prin dimensiune a unui K - spaţiu vectorial V, notată dim K (V), înţelegem numărul de vectori dintr-o bază a acestuia. Dacă spaţiul vectorial V admite o bază cu un număr infinit de vectori, vom spune că acesta are dimensiunea infinită şi vom scrie dim K (V) =. Altfel, V este un spaţiu vectorial de dimensiune finită. 2

7 În cele ce urmează ne vom referi la spaţii vectoriale de dimensiune finită, dacă nu vom face alte precizări. Observaţia.3.2. O consecinţă directă a Corolarului.3. este următoarea: o familie de vectori dintr-un spaţiu vectorial de dimensiune n, formată din m vectori, m n+ este liniar dependentă. Exemplul.3.4 Spaţiul vectorial de la Exemplul..5, pentru care a fost găsită o bază cu un număr infinit de vectori (vezi Exemplul.3.) are dimensiune infinită, în timp ce spaţiul R 4 va avea dimensiunea 4 (vezi Exemplul.3.2). Teorema.3.3 Într-un spaţiu vectorial de dimensiune finită, orice familie de vectori liniar independentă poate fi extinsă la o bază. Demonstraţie. Fie B = {u, u 2,, u n } o bază în spaţiul vectorial V şi fie F = {x, x 2,, x m } o familie liniar independentă. Familia {x, x 2,, x m, u, u 2,, u n } este un sistem de generatori pentru V şi este liniar dependentă, deoarece orice vector x i se scrie ca o combinaţie liniară de vectori ai bazei B. Atunci, conform Teoremei.2. există un prim vector care este combinaţie liniară de precedenţii. Evident, acesta va fi unul din vectorii bazei B. Fie u i acest prim vector. Familia {x, x 2,,x m, u, u 2,,u i-, u i+,, u n } este tot un sistem de generatori pentru V. Procedeul continuă (dacă este posibil) cu eliminarea următorului vector u k, care este combinaţie liniară de vectorii precedenţi lui. La fiecare pas familia nou obţinută este fie liniar independentă, caz în care am obţinut baza care va conţine familia F, fie este liniar dependentă şi în această situaţie se continuă eliminarea. Într-un număr finit de paşi se obţine concluzia. 22

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Algebră liniară CAPITOLUL 1

Algebră liniară CAPITOLUL 1 Algebră liniară CAPITOLUL SPAŢII VECTORIALE FINIT DIMENSIONALE. Definiţia spaţiilor vectoriale Pentru a introduce noţiunea de spaţiu vectorial avem nevoie de noţiunea de corp comutativ de caracteristică

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

1.4 Schimbarea bazei unui spaţiu vectorial

1.4 Schimbarea bazei unui spaţiu vectorial Algebră liniară, geometrie analitică şi diferenţială. Schimbarea bazei unui spaţiu vectorial După cum s-a văzut deja, într-un spaţiu vectorial V avem mai multe baze, iar un vector x V va avea câte un sistem

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian. Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15 MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Algebră liniară CAPITOLUL 3

Algebră liniară CAPITOLUL 3 Algebră liniară CAPITOLUL 3 TRANSFORĂRI LINIARE 3.. Definiţia transformării liniare Definiţia 3... Fie V şi W două spaţii vectoriale peste un corp comutativ K. O funcţie u: V W se numeşte transformare

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b. Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,

Διαβάστε περισσότερα

Seminar Algebra. det(a λi 3 ) = 0

Seminar Algebra. det(a λi 3 ) = 0 Rezolvari ale unor probleme propuse "Matematica const în a dovedi ceea ce este evident în cel mai puµin evident mod." George Polya P/Seminar Valori si vectori proprii : Solutie: ( ) a) A = Valorile proprii:

Διαβάστε περισσότερα

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă. Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

CURS 5 Spaţii liniare. Spaţiul liniar R n

CURS 5 Spaţii liniare. Spaţiul liniar R n CURS 5 Spaţii liniare. Spaţiul liniar R n A. Arusoaie arusoaie.andreea@gmail.com andreea.arusoaie@info.uaic.ro Facultatea de Informatică, Universitatea Alexandru Ioan Cuza din Iaşi 30 Octombrie 2017 Structura

Διαβάστε περισσότερα

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice...

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice... Geometrie Afină Contents 1 Spaţii vectoriale 3 1.1 Spaţii vectoriale peste un corp K........................ 3 1.2 Exemple de spaţii vectoriale........................... 4 1.3 Dependenţă liniară de vectori..........................

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Nicolae Cotfas ELEMENTE DE ALGEBRĂ LINIARĂ EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Introducere Pe parcursul acestei cărţi ne propunem să prezentăm într-un mod cât mai accesibil noţiuni si rezultate de bază

Διαβάστε περισσότερα

O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013

O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013 O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013 Marius Tărnăuceanu 1 Aprilie 2013 Abstract În această lucrare vom prezenta un rezultat ce extinde Problema

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

Sala: 2103 Octombrie 2014 CURS 1: ALGEBRĂ. Fie K corp comutativ cu elementul neutru la înmulţire notat prin 1 iar 0 la adunare.

Sala: 2103 Octombrie 2014 CURS 1: ALGEBRĂ. Fie K corp comutativ cu elementul neutru la înmulţire notat prin 1 iar 0 la adunare. Sala: 2103 Octombrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 1: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Sala: Octombrie 2014 SEMINAR 1: ALGEBRĂ. este un Q-spaţiu vectorial, faţă de operaţiile uzuale de adunare şi înmulţire cu un număr raţional.

Sala: Octombrie 2014 SEMINAR 1: ALGEBRĂ. este un Q-spaţiu vectorial, faţă de operaţiile uzuale de adunare şi înmulţire cu un număr raţional. Sala: Octombrie 24 SEMINAR : ALGEBRĂ Conf univ dr: Dragoş-Pătru Covei Programul de studii: CE, IE, SPE Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat distribuit

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

CAPITOLUL 2 VECTORI LIBERI. 2.1 Segment orientat. Vector liber

CAPITOLUL 2 VECTORI LIBERI. 2.1 Segment orientat. Vector liber Algebră liniară CAPITOLUL VECTORI LIBERI. Segment orientat. Vector liber Acest capitol este dedicat în totalitate studierii spaţiului vectorilor liberi, spaţiu cu foarte multe aplicaţii în geometrie, fizică

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Criterii de comutativitate a grupurilor

Criterii de comutativitate a grupurilor Criterii de comutativitate a grupurilor Marius Tărnăuceanu 10.03.2017 Abstract În această lucrare vom prezenta mai multe condiţii suficiente de comutativitate a grupurilor. MSC (2010): 20A05, 20K99. Key

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

ALGEBRĂ LINIARĂ, GEOMETRIE ANALITICĂ ŞI GEOMETRIE. Teorie şi probleme

ALGEBRĂ LINIARĂ, GEOMETRIE ANALITICĂ ŞI GEOMETRIE. Teorie şi probleme ALGEBRĂ LINIARĂ, GEOMETRIE ANALITICĂ ŞI GEOMETRIE DIFERENŢIALĂ. Teorie şi probleme Florian MUNTEANU Departamentul de Matematici Aplicate, Universitatea din Craiova Al. Cuza 3, 585 Craiova, Dolj, România

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIE. Dorel Fetcu

ELEMENTE DE GEOMETRIE. Dorel Fetcu ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

2.3 Geometria analitică liniarăînspaţiu

2.3 Geometria analitică liniarăînspaţiu 2.3 Geometria analitică liniarăînspaţiu Pentru început sădefinim câteva noţiuni de bază în geometria analitică. Definitia 2.3.1 Se numeşte reper în spaţiu o mulţime formată dintr-un punct O (numit originea

Διαβάστε περισσότερα

Vladimir BALAN. Algebră Liniară, Geometrie Analitică, şi Elemente de Geometrie Diferenţială. Student Web Copy. = Bucureşti 2011 =

Vladimir BALAN. Algebră Liniară, Geometrie Analitică, şi Elemente de Geometrie Diferenţială. Student Web Copy. = Bucureşti 2011 = Vladimir BALAN Algebră Liniară, Geometrie Analitică, şi Elemente de Geometrie Diferenţială = Bucureşti 2011 = Prefaţă Acest material include noţiunile, rezultatele teoretice de bază, precum şi probleme

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα

Funcţii Ciudate. Beniamin Bogoşel

Funcţii Ciudate. Beniamin Bogoşel Funcţii Ciudate Beniamin Bogoşel Scopul acestui articol este construcţia unor funcţii neobişnuite din punct de vedere intuitiv, care au anumite proprietăţi interesante. Construcţia acestor funcţii se face

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Adriana-Ioana Lefter DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs

Adriana-Ioana Lefter DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs Adriana-Ioana Lefter MATEMATICĂ (ALGEBRĂ ŞI ECUAŢII DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs Cuprins Partea 1 ALGEBRĂ 1 Capitolul 1 Matrice şi determinanţi 3 11 Corpuri 3 12 Matrice 4 13

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

Matrici şi sisteme de ecuaţii liniare

Matrici şi sisteme de ecuaţii liniare Matrici şi sisteme de ecuaţii liniare 1. Matrici şi determinanţi Reamintim aici câteva proprietăţi ale matricilor şi determinanţilor. Definiţia 1.1. Fie K un corp (comutativ) şi m, n N. O funcţie A : {1,...,

Διαβάστε περισσότερα

Lucian Maticiuc CURS I II. 1 Matrice şi determinanţi. Sisteme de ecuaţii liniare. 1.1 Matrice şi determinanţi

Lucian Maticiuc CURS I II. 1 Matrice şi determinanţi. Sisteme de ecuaţii liniare. 1.1 Matrice şi determinanţi Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr Lucian MATICIUC http://mathettituiasiro/maticiuc/ CURS I II Matrice şi determinanţi Sisteme de ecuaţii

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

Rădăcini primitive modulo n

Rădăcini primitive modulo n Universitatea Bucureşti Facultatea de Matematică şi Informatică Rădăcini primitive modulo n Îndrumător ştiinţific: Prof. Dr. Victor Alexandru 2010 Rezumat Tema lucrarii este studiul radacinilor primitive.

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

GEOMETRIE ANALITICĂ. Mihai-Sorin Stupariu

GEOMETRIE ANALITICĂ. Mihai-Sorin Stupariu GEOMETRIE ANALITICĂ Mihai-Sorin Stupariu Sem. al II-lea, 007-008 Cuprins 1 Elemente de algebră liniară 3 1.1 Spaţii vectoriale. Definiţie. Exemple................ 3 1. Combinaţii liniare. Baze şi repere..................

Διαβάστε περισσότερα

CURS VII-IX. Capitolul IV: Funcţii derivabile. Derivate şi diferenţiale. 1 Derivata unei funcţii. Interpretarea geometrică.

CURS VII-IX. Capitolul IV: Funcţii derivabile. Derivate şi diferenţiale. 1 Derivata unei funcţii. Interpretarea geometrică. Lect dr Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr Lucian MATICIUC CURS VII-IX Capitolul IV: Funcţii derivabile Derivate şi diferenţiale 1

Διαβάστε περισσότερα

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Contract POSDRU/86/1.2/S/ POSDRU ID * Bucureşti 2012

Contract POSDRU/86/1.2/S/ POSDRU ID * Bucureşti 2012 Contract POSDRU/86/1.2/S/62485 Algebră Liniară POSDRU ID 62485 * Bucureşti 212 Prefaţă Algebra liniară şi geometria analitică stau la baza pregătirii matematice universitare, oferind modelări bazate pe

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE CAPITOLUL FUNCŢIONALE LINIAE BILINIAE ŞI PĂTATICE FUNCŢIONALE LINIAE BEIA TEOETIC Deiniţia Fie K X un spaţiu vecorial de dimensiune iniă O aplicaţie : X K se numeşe uncţională liniară dacă: ese adiivă

Διαβάστε περισσότερα

Ariadna Lucia Pletea Adrian Corduneanu Mircea Lupan LECŢII DE ALGEBRĂ LINIARĂ

Ariadna Lucia Pletea Adrian Corduneanu Mircea Lupan LECŢII DE ALGEBRĂ LINIARĂ Ariadna Lucia Pletea Adrian Corduneanu Mircea Lupan LECŢII DE ALGEBRĂ LINIARĂ IASI, 005 1 Cuprins Capitolul 1 1.1. Matrice şi determinanţi...5 1.1.1. Determinantul unei matrice pătratice...8 1.1.. Matricea

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Ion CRĂCIUN CAPITOLE DE MATEMATICI SPECIALE EDITURA PIM

Ion CRĂCIUN CAPITOLE DE MATEMATICI SPECIALE EDITURA PIM Ion CRĂCIUN CAPITOLE DE MATEMATICI SPECIALE EDITURA PIM IAŞI 2007 2 Cuprins 1 Ecuaţii diferenţiale liniare de ordin superior 7 1.1 Ecuaţii diferenţiale liniare de ordinul n cu coeficienţi variabili 7 1.2

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ GEOMETRIE

Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ GEOMETRIE Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ ŞI GEOMETRIE IAŞI, 005 CUPRINS 1 MATRICE ŞI SISTEME ALGEBRICE LINIARE 5 1.1 Matrice şi determinanţi.......................... 5 1. Sisteme de ecuaţii algebrice

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

Geometrie afină. Conf. Univ. Dr. Cornel Pintea

Geometrie afină. Conf. Univ. Dr. Cornel Pintea Geometrie afină Conf Univ Dr Cornel Pintea E-mail: cpintea mathubbclujro Cuprins 1 Săptămâna 13 1 2 Endomorfismele unui spaţiu afin 1 21 Translaţia 1 22 Subspaţii invariante 2 23 Omotetii 2 24 Proiecţii

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

1 Preliminarii. M 3, (a b) c = a (b c) (notăm a b c, obţinând astfel şi x 1 x 2... x n

1 Preliminarii. M 3, (a b) c = a (b c) (notăm a b c, obţinând astfel şi x 1 x 2... x n 1 Preliminarii Fie M, A mulţimi nevide şi n N. Se muneşte operaţie n ară (sau lege de compoziţie n-ară) definită pe M orice aplicaţie τ : M n M (M n = } M {{... M } ). In cazul n = 2, obţinem operaţiile

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar

Διαβάστε περισσότερα

OANA CONSTANTINESCU. ( a carei ecuatie matriceala este data in raport cu un reper cartezian R = {O; ē 1,, ē n }.

OANA CONSTANTINESCU. ( a carei ecuatie matriceala este data in raport cu un reper cartezian R = {O; ē 1,, ē n }. ELEMENTE DE SIMETRIE ALE UNEI HIPERCUADRICE IN SPATII AFINE EUCLIDIENE OANA CONSTANTINESCU 1. Centru de simetrie pentru o hipercuadrica afina Pentru inceput cadrul de lucru este un spatiu an real de dimensiune

Διαβάστε περισσότερα

Teorema lui Peano de existenţă

Teorema lui Peano de existenţă Universitatea Alexandru Ioan Cuza Lucrare de licenţă Teorema lui Peano de existenţă locală Student: Cosmin Burtea Coordonator ştiinţific: Prof. Ioan I.Vrabie 2 Prefaţă Lucrarea de faţă tratează problema

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A =

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A = Matrice, determinanti Un punct de vedere liniar independent "A judeca matematic nu înseamn a gândi losoc, a judeca losoc nu înseamn a liber, a gândi liber nu înseamn a losof " Blaise Pascal Liniar independenta:

Διαβάστε περισσότερα

, m ecuańii, n necunoscute;

, m ecuańii, n necunoscute; Sisteme liniare NotaŃii: a ij coeficienńi, i necunoscute, b i termeni liberi, i0{1,,..., n}, j0{1,,..., m}; a11 1 + a1 +... + a1 nn = b1 a11 + a +... + an n = b (S), m ecuańii, n necunoscute;... am11 +

Διαβάστε περισσότερα

Capitolul 2. Integrala stochastică

Capitolul 2. Integrala stochastică Capitolul 2 Integrala stochastică 5 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 51 2.1 Introducere În acest capitol vom prezenta construcţia integralei stochastice Itô H sdm s, unde M s este o martingală locală

Διαβάστε περισσότερα

Lectia IV Produsul vectorial a doi vectori liberi

Lectia IV Produsul vectorial a doi vectori liberi Orientarea spatiului E 3 Denitia produsului vectorial. Proprietati Rezolvari de ecuatii vectoriale Schimbari de baze ortonormate in spatiu Aplicatii Lectia IV Produsul vectorial a doi vectori liberi Oana

Διαβάστε περισσότερα

NOŢIUNI INTRODUCTIVE

NOŢIUNI INTRODUCTIVE 1 NOŢIUNI INTRODUCTIVE 1.1. Spaţiul vectorial R n Mulţimea R n reprezintă mulţimea tuturor n-uplelor (x 1,..., x n ) cu x 1,..., x n numere reale, adică R n = {(x 1,..., x n ) : x 1,..., x n R}. Un n-uplu

Διαβάστε περισσότερα

Pseudoinversă şi inversă generalizată ale unei aplicaţii liniare

Pseudoinversă şi inversă generalizată ale unei aplicaţii liniare Pseudoinversă şi inversă generalizată ale unei aplicaţii liniare Adrian REISNER 1 1. Pseudoinversă a unui endomorfism într-un spaţiu vectorial de dimensiune finită. Fie S un R-spaţiu vectorial de dimensiune

Διαβάστε περισσότερα