PROJEKTOVANJE NOSAČA KRANSKIH STAZA PREMA EVROKODU

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PROJEKTOVANJE NOSAČA KRANSKIH STAZA PREMA EVROKODU"

Transcript

1 Prof. dr Zlatko Marković PROJEKTOVANJE NOSAČA KRANSKIH STAZA PREMA EVROKODU Novi Sad

2 Nosači kranskih staza u Evrokodu 2 Problematika nosača kranskih staza je u okviru Evrokoda obrađena u dva dela: EN : Dejstva na konstrukcije Deo 3: Dejstva usled kranova i mašina EN : Proračun čeličnih konstrukcija Deo 6: Nosači kranskih staza Oba standarda su usvojena kao SRPS EN na engleskom jeziku. Za standard SRPS EN je usvojen i nacionalni prilog (SRPS EN /NA), dok je za standard SRPS EN u fazi završne izrade (finalni draft).

3 Dejstva usled kranova EN : Usled kretanja krana javlja se niz međusobno zavisnih pokretnih sila koje deluju u: vertikalnom gravitacionom pravcu (usled sopstvene težine krana i težine tereta); podužnom horizontalnom pravcu (usled ubrzanja ili kočenja krana, ekscentričnog dizanja tereta, zakošenja krana i udara krana u odbojnik), poprečnom horizontalnom pravcu (usled ubrzanja ili kočenja, ekscentričnog dizanja tereta, zakošenja krana i udara mačke u odbojnik).

4 Vrste kranova koji su obuhvaćeni Evrokodom 4 1. Monorejl dizalice; 2. Obešeni kran (underslang crane with hoist block); 3. Odozgo postavljeni kran (topmounted crane with hoist block); 4. Mostna dizalica (overhead traveling crane).

5 Mostne dizalice (kranovi) - sopstvena težina krana i težina tereta 5 Q c sopstvena težina mostne dizalice (krana); Q h težina tereta koji se diže.

6 Klasifikacija dejstava usled kranova 6 Promenljiva dejstva (Q): vertikalna opterećenja usled sopstvene težine krana i težine tereta koji se diže, horizontalna (podužna i poprečna) dejstva usled ubrzanja, kočenja ili zakošenja krana pri njegovom kretanju. Incidentna dejstva (A): Dejstva usled udara krana ili mačke u odbojnik (buffer force) ili udaranja sklopa za podizanje u prepreke (tilting force).

7 Dinamička priroda dejstava kranova 7

8 8 Dinamički koeficijenti Uticaji koji se razmatraju Pobuda konstrukcije krana usled vertikalnog podizanja tereta Dinamički efekti usled vertikalnog podizanja tereta do krana Dinamički efekti usled iznenadnog ispuštanja tereta Dinamički efekti usled kretanja krana po šinama ili kranskoj stazi Dinamički efekti usled pogonske sile Dinamički efekti usled probnog opterećenja Dinamički efekti usled udara u odbojnik Primena Sopstvena težina krana Teret koji se diže Sopstvena težina krana i težina tereta koji se diže Pogonska sila Probno opterećenje Sila udara

9 Grupe opterećenja i dinamički koeficijenti 9 Simbol Grupe opterećenja Probno Incidentno Granična stanja nosivosti opt. opterećenje Sopstvena težina krana Q c φ 1 φ 1 1 φ 4 φ 4 φ 4 1 φ Težina tereta koji se diže Q h φ 2 φ 3 - φ 4 φ 4 φ 4 η 1) Ubrzanje i kočenje krana H L, H T φ 5 φ 5 φ 5 φ φ Zakošenje krana H s Ubrzanje ili kočenje mačke ili uređaja za podizanje tereta H T Vetar F w * Probno opterećenje Q T φ Sila usled udara u odbojnik H B φ 7 - Sila udara sklopa za podizanje H TA ) η deo tereta koji se diže i koji ostaje nakon uklanjanja korisnog tereta, a koji nije uračunat u sopstvenu težinu krana.

10 Vertikalna opterećenja 10 Definišu se u vidu parova koncentrisanih sila koje deluju na mestima točkova dizalice. Obavezno se uzima u obzir dinamički koeficijent. Razmatraju se pojedinačna, karakteristična dejstva usled sopstvene težine krana i najnepovoljnijih položaja tereta koji se diže.

11 Šema opterećenja za dobijanje maksimalnih uticaja 11 Maksimalni pritisak točka Q r,max - maksimalni teret Q h,nom u najbližem mogućem položaju posmatranoj kranskoj stazi e min. Na suprotnoj kranskoj stazi određuje se odgovarajući pritisak točka Q r,(max).

12 Šema opterećenja za dobijanje minimalnih uticaja 12 Minimalan pritisak točka Q r,min bez tereta, sa mačkom u najbližem mogućem položaju uz suprotnu kransku stazu. Na suprotnoj kranskoj stazi određuje se odgovarajući pritisak točka Q r,(min).

13 Vertikalna opterećenja (sile) - označavanje 13 Q h,nom težina tereta koji se diže, Q r,max maksimalna sila u točku (opterećenog krana), Q r,(max) odgovarajuća sila (na drugom kraju), ΣQ r,max - suma maksimalnih sila, ΣQ r,(max) - suma odgovarajućih sila (na drugom kraju), Q r,min minimalna sila u točku (neopterećenog krana), Q r,(min) odgovarajuća minimalna sila, ΣQ r,min suma minimalnih sila, ΣQ r,(min) - suma odgovarajućih sila.

14 Ekscentričan položaj točka dizalice 14 Ekscentričan položaj točka dizalice Q r na šini treba da bude uzet kao deo širine glave šine b r. Nacionalni prilog preporučuje vrednost: e=0,25b r.

15 15 Dinamički koeficijenti ϕ 1 0,9 ϕ 1 1,1 0,9 i 1,1 su gornja i donja vrednost ϕ 2 ϕ 3 ϕ 2 = ϕ 2,min +β 2 v h v h stabilna brzina podizanja (m/s) ϕ 2,min i β 2 zavise od klase uređaja za podizanje (HC1-HC4) ϕ 3 = 1- m(1+β 3 )/m m deo mase tereta koji je ispušten, ili ispao, m ukupna masa koja se podiže (teret + uređaj za podizanje), β 3 = 0,5 u slučaju postepenog ispuštanja tereta, β 3 = 1,0 u slučaju naglog ispuštanja tereta (magnetni uređaji). ϕ 4 ϕ 4 = 1,0 Pod uslovom da su tolerancije šina u skladu sa navodima iz EN U suprotnom treba da se odredi prema EN

16 Horizontalna opterećenja 16 Horizontalne sile usled ubrzanja ili kočenja krana, Horizontalne sile usled ubrzanja ili kočenja mačke, Horizontalne sile usled zakošenja krana, Horizontalne sile usled udara krana u odbojnik, Horizontalne sile usled udara mačke u odbojnik.

17 Podužne horizontalne sile usled ubrzanja i kočenja krana 17 K n r φ 5 pogonska sila, broj nosača kranskih staza (broj šina), dinamički koeficijent.

18 Poprečne horizontalne sile usled ubrzanja i kočenja krana 18 Pogonska sila K treba da bude data od strane proizvođača krana. U suprotnom treba je odrediti prema preporukama iz EN

19 19 Vrednost dinamičkog koeficijenta uglavnom definiše proizvođač krana; U suprotnom može se odrediti na osnovi preporuka iz tabele. Vrednost dinamičkog koeficijenta Primena 1,0 ϕ 5 1,5 U slučajevima glatke promene sile 1,5 ϕ 5 2,0 U slučajevima kada se javljaju iznenadne promene sile ϕ 5 = 3,0 U slučajevima sa značajnim zazorom

20 Podužne i poprečne horizontalne sile usled zakošenja krana 20 i oznaka za redni broj šine, j oznaka za par točkova, f faktor koji zavisi od ugla zakošenja α, λ S,i,j,K faktor sile.

21 Sila usled udara u odbojnik 21 Dinamički koeficijent Karakteristike odbojnika ϕ 7 =1,25 0,0 ξ b 0,5 ϕ 7 =1,25+0,7 (ξ b -0,5) 0,5 ξ b 1,0

22 Kombinacije dejstava za ULS za stalne i prolazne proračunske situacije: za incidentne proračunske situacije: 22 > , 0,,,1,1,, j i i k i i Q k Q P j k j G Q Q P G ψ γ γ γ γ > , 2,,1 2,1 1,1 1, ) ili ( i i k i k d j j k Q Q A P G ψ ψ ψ

23 Vrednosti parcijalnih koeficijenata prema EN : Dejstva Oznaka Proračunske situacije Stalne i prolazne Incidentne Stalna dejstva usled krana: - nepovoljna γ G sup 1,35 1,00 - povoljnja γ G inf 1,00 1,00 Promenljiva dejstva usled krana: - nepovoljnja γ Q sup 1,35 1,00 - povoljna γ Q inf kada je kran prisutan 1,00 1,00 kran kran nije prisutan 0,00 0,00 Ostala promenjljiva dejstva γ Q - nepovoljnja 1,50 1,00 - povoljna 0,00 0,00 Incidentna dejstva γ A 1,00

24 24 Vrednosti koeficijenata ψ i prema EN :2006 Dejstva Oznaka ψ 0 ψ 1 ψ 2 Jedan kran ili grupa opterećenja usled kranova Q r 1,0 0,9 Odnos stalnog i ukupnog opterećenja usled krana

25 Kontrole graničnih stanja nosivosti - ULS 25 Nosivost poprečnih preseka, Lokalna naprezanja usled pritiska točka, Interakcija lokalnih i globalnih naprezanja, Nosivost nosača na bočno-torziono izvijanje, Nosivost na izbočavanje rebra (normalni naponi, smičući naponi, lokalni pritisak i interakcija), Zamor.

26 Naponi usled lokalnog pritiska točka 26 σ τ oz, Ed = F z, Ed eff t w, = 0, 2 σ oxz Ed oz, Ed

27 27 Efektivna dužina

28 Interakcija globalnog i lokalnog naprezanja 28 σ x, Ed + σ oz, Ed σ x, Edσ oz, Ed + 3( τ xz, Ed + τ oxz, Ed ) fy / γ M0 σ x,ed τ xz,ed σ oz,ed τ oz,ed proračunska vrednost normalnog napona usled globalnih uticaja u nosaču (M y,ed i eventualno N Ed ); proračunska vrednost smičućeg napona usled globalnih uticaja u nosaču (V z,ed ); proračunska vrednost normalnog napona usled lokalnog pritiska (točak krana ili drugo poprečno opterećenje - patch load); proračunska vrednost smičućeg napona usled lokalnog pritiska; σ N Ed x, Ed = + A M y, Ed I y z τ xz, Ed = V I Ed y t S w y

29 Izbočavanje rebra kranskog nosača 29 Usled normalnog napona pritiska kod preseka klase 4 (h w /t w > 124ε za čisto savijanje); Usled smičućih napona: h w /t w > 72ε/η za neukrućena rebra h w /t w > 31k 0,5 τ ε/η za ukrućena rebra; Usled lokalnog pritiska točka krana; Usled interakcije različitih naprezanja: - normalni naponi i smičući naponi, - normalni naponi i lokalni pritisak točka.

30 30 Izbočavanje usled lokalnog pritiska točka

31 Interakcija izbočavanja usled normalnih napona i pritiska točka 31 Ako je nosač izložen dejstvu koncentrisane poprečne sile F Ed koja deluje na pritisnutoj nožici, pored pojedinačnih kontrola nosivosti na izbočavanje treba da se proveri i interakcija: η +, 8η , η = 1 N f A y γ Ed eff M0 + M y, Ed Ed y, N Mz, Ed + f y + N W γ y, eff M0 e + f y N W γ z, eff M0 Ed e z, N η 2 = F F Ed Rd Ako koncentrisana sila F Ed deluje na zategnutoj nožici, vrši se samo kontrola nosivosti na izbočavanje usled lokalne sile i kontrola uporednog napona u rebru nosača;

32 Zamor 32 Zamor opterećenje za kranske nosače je definisano u SRPS EN : ϕ fat dinamički koeficijent, Q max,i maksimalan pritisak točka. λ i faktor ekvivalentnog dinamičkog oštećenja (zavisi od klase krana) Klasifikacija kranova (S 0 -S 9 ) prema EN

33 Kontrole zamora 33 Metode prihvatljivog oštećenja (damage tolerant) i bezbednog životnog veka (safe-life); Uobičajena forma kontrole opseg napona (za normalni, smičući i uporedni napon); Čvrstoća na zamor zavisi od kategorije detalja i broja ciklusa opterećenja!

34 34 Čvrstoća na zamor

35 Kontrole graničnih stanja upotrebjlivosti - SLS 35 Kontrola vertikalnih pomeranja (ugib kranskog nosača, denivelacija susednih kranskih nosača), Kontrola horizontalnih pomeranja (horizontalan ugib kranskog nosača, hor. pomeranje stuba rama u nivou GIŠ, hor. razmicanja šina, razlika horizontalnih pomeranja susednih stubova - ramova); Kontrola napona (povratno elastično ponašanje pri SLS); Kontrola treperenja rebra (web breathing); Kontrola vibracija donje nožice;

36 Kombinacije dejstava za SLS 36 Sve kontrole se sprovode za uticaje dobijene na osnovu kombinacija dejstava za SLS; Izostavljaju se svi parcijalni koeficijenti! Analiziraju se sledeće kombinacije dejstava: Kombinacija Stalna dejstva Promenljiva dejstva nepovoljna povoljna dominantno ostala Karakteristična G kj,sup G kj,inf Q k,1 ψ 0,i Q k,i Česta G kj,sup G kj,inf ψ 1,1 Q k,1 ψ 2,i Q k,i Kvazi-stalna G kj,sup G kj,inf ψ 2,1 Q k,1 ψ 2,i Q k,i

37 Dopuštena vertikalna pomeranja prema EN : /5/2016

38 38 Dopuštena horizontalna pomeranja prema EN :2007

39 39 Dopuštena horizontalna pomeranja (nastavak)

40 Kontrola napona 40 Potrebno je da se obezbedi povratno elastično ponašanje pri servisnom opterećenju; Vrši se kontrola normalnih, smičućih i uporednih napona; f σ x, Ed, ser γ y M, ser τ Ed, ser f y γ / 3 M, ser σ 2 x, Ed, ser + σ 2 z, Ed, ser σ x, Ed, ser σ z, Ed, ser + 3τ 2 Ed, ser γ f y M, ser

41 Treperenje rebra i vibracije donje nožice 41 Karakteristično za rebra velike visine (i vitkosti); Kada je h w /t w > 120 neophodna je numerička verifikacija treperenja rebra, to jest ispunjenje uslova: σ k x, Ed, ser σ σ E , τ Ed, kτσ E ser 2 11, Da bi se izbegao problem vibracija, vitkost donje nožice (L/i z ) ne sme da bude veća od 250!

42 42 Hvala na pažnji 8/5/2016

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

Proračun nosivosti elemenata

Proračun nosivosti elemenata Proračun nosivosti elemenata EC9 obrađuje sve fenomene vezane za stabilnost elemenata aluminijumskih konstrukcija: Izvijanje pritisnutih štapova; Bočno-torziono izvijanje nosača Izvijanje ekscentrično

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21, Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f

Διαβάστε περισσότερα

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca . Za zadati nosač odrediti: a) Statičke uticaje (, i T) a=.50 m b) Dimenzionisati nosač u kritičnom preseku i proveriti normalne, smičuće i uporedne napone F=00 k F=50 k q=30 k/m a a a a Kvalitet čelika:

Διαβάστε περισσότερα

Bočno-torziono izvijanje. Metalne konstrukcije 1 P7-1

Bočno-torziono izvijanje. Metalne konstrukcije 1 P7-1 Bočno-torziono izvijanje etalne konstrukcije 1 P7-1 etalne konstrukcije 1 P7- etalne konstrukcije 1 P7-3 Teorijske osnove Problem je prvi analizirao Timošenko. Linearno elastična teorija bočno-torzionog

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Zgradarstvo : Mostogradnja: Specijalne (inženjerske) konstrukcije: Prednosti čeličnih konstrukcija Nedostaci čeličnih konstrukcija

Zgradarstvo : Mostogradnja: Specijalne (inženjerske) konstrukcije: Prednosti čeličnih konstrukcija Nedostaci čeličnih konstrukcija 1. Primena celicnih konstrukcija u gradjevinarstvu Zgradarstvo : sportske dvorane izložbene hale, višespratne zgrade, industrijske hale, krovovi stadiona, hangari... Mostogradnja: drumski mostovi, železnički

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

METALNE KONSTRUKCIJE II

METALNE KONSTRUKCIJE II METALNE KONSTRUKCIJE II 1 Predmet br. teme Dodatne napomene objašnjenja uputstva NASLOV PODNASLOV PODNASLOV Osnovni sadržaj. Važniji pojmovi i sadržaji su štampani kao bold. Legenda dodatnih grafičkih

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa

1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa a. zadatak Sračuna i konstruisa montažni nastavak nosača izrađenog od vruce valjanog profila prema zadam presečnim silama:ved = 300 kn MEd = 1000 knm. Za nosač usvoji odgovarajući HEB valjani profil. Nastavak

Διαβάστε περισσότερα

Određivanje statičke šeme glavnog nosača

Određivanje statičke šeme glavnog nosača 1 PRORAČUN GLAVNIH NOSAČA Određivanje statičke šeme glavnog nosača Konstrukcijska i statička šema za jednobrodnu halu Konstrukcijska i statička šema za dvobrodnu halu 3 Metode globalne analize materijalna

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A Odsek za konstrukcije 25.01.2012. grupa A 1. 1.1 Za nosač prikazan na skici 1 odrediti dijagrame presečnih sila. Sopstvena težina je uključena u stalno opterećenje (g), a povremeno opterećenje (P1 i P2)

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICA 1: PARCIJALNI KOEFICIJENTI SIGURNOSTI ZA DJELOVANJA Parcijalni koeficijenti sigurnosti γf Vrsta djelovanja Djelovanje Stalno Promjenjivo

Διαβάστε περισσότερα

METALNE I DRVENE KONSTRUKCIJE VEŽBE BR.1-1. Označavanje čelika je visoko standardizovano. Usvojen je Evropski sistem označavanja.

METALNE I DRVENE KONSTRUKCIJE VEŽBE BR.1-1. Označavanje čelika je visoko standardizovano. Usvojen je Evropski sistem označavanja. 3/7/013 Označavanjeavanje čelika i osnove proračuna METLNE I DRVENE KONSTRUKCIJE VEŽBE BR.1-1 1 Označavanje čelika Označavanje čelika je visoko standardizovano. Usvojen je Evropski sistem označavanja.

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE

BETONSKE KONSTRUKCIJE 1 BETONSKE KONSTRUKCIJE RAMOVSKE KONSTRUKCIJE Prof. dr Snežana Marinković Doc. dr Ivan Ignjatović Semestar: V ESPB: Ramovske konstrukcije 1.1. Podela 1.2. Statički sistemi i statički proračun 1.3. Proračun

Διαβάστε περισσότερα

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

CENTRIČNO PRITISNUTI ELEMENTI

CENTRIČNO PRITISNUTI ELEMENTI 3/7/013 CETRIČO PRITISUTI ELEMETI 1 Primeri primene 1 3/7/013 Oblici poprečnih presea 3 Specifičnosti pritisnutih elemenata ivijanje Konrola napona u poprečnom preseu nije dovoljan uslov a dimenionisanje;

Διαβάστε περισσότερα

Srednjenaponski izolatori

Srednjenaponski izolatori Srednjenaponski izolatori Linijski potporni izolatori tip R-ET Komercijalni naziv LPI 24 N ET 1) LPI 24 L ET/5 1)2) LPI 24 L ET/6 1)2) LPI 38 L ET 1) Oznaka prema IEC 720 R 12,5 ET 125 N R 12,5 ET 125

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU pismeni ispit ODSEK ZA KONSTRUKCIJE TEORIJA BETONSKIH KONSTRUKCIJA. grupa A. p=60 kn/m. 7.

GRAĐEVINSKI FAKULTET U BEOGRADU pismeni ispit ODSEK ZA KONSTRUKCIJE TEORIJA BETONSKIH KONSTRUKCIJA. grupa A. p=60 kn/m. 7. ODSEK ZA KONSTRUKCIJE 28.01.2015. grupa A g=50 kn/m p=60 kn/m 60 45 15 75 MB 35, RA 400/500 7.5 m 5 m 25 1.1 Odrediti potrebnu površinu armature u karakterističnim presecima (preseci na mestima maksimalnih

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU TEORIJA BETONSKIH KONSTRUKCIJA grupa A

GRAĐEVINSKI FAKULTET U BEOGRADU TEORIJA BETONSKIH KONSTRUKCIJA grupa A TEORIJA BETONSKIH KONSTRUKCIJA 25.12.2012. grupa A 1. 1.1 Dimenzionisati prema momentima savijanja (Mu) karakteristične preseke nosača prikazanog na skici 1. Prilikom dimenzionisanja obezbediti graničnu

Διαβάστε περισσότερα

Proračunski model - pravougaoni presek

Proračunski model - pravougaoni presek Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

Aksijalno pritisnuti štapovi konstantnog višedelnog preseka

Aksijalno pritisnuti štapovi konstantnog višedelnog preseka Aksijalno pritisnuti štapovi konstantnog višedelnog preseka Metalne konstrukcije 1 P6-1 Osobenosti višedelnih štapova Poprečni presek se sastoji od više samostalnih elemenata koji su mestimično povezani;

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Konvencija o znacima za opterećenja grede

Konvencija o znacima za opterećenja grede Konvencija o znacima za opterećenja grede Levo od preseka Desno od preseka Savijanje Čisto savijanje (spregovima) Osnovne jednačine savijanja Savijanje silama Dimenzionisanje nosača izloženih savijanju

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Predavanje br 3 TRANSPORT I LOGISTIKA 2006/2007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA

Predavanje br 3 TRANSPORT I LOGISTIKA 2006/2007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA ANALIZA NOSEĆIH STRUKTURA 11 Predavanje br TRANSPORT I LOGISTIKA 006/007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA Dimenzionisanje čeličnih konstrukcija se izvodi na bazi poznavanja rasporeda spoljašnjih

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

PROJEKTOVANJEI GRA ENJEBETONSKIH KONSTRUKCIJA

PROJEKTOVANJEI GRA ENJEBETONSKIH KONSTRUKCIJA GRA EVINSKI FAKULTET UBEOGRADU PROJEKTOVANJEI GRA ENJEBETONSKIH KONSTRUKCIJA 1 12.06.2013. p=10 kn/m 2 p=8kn/m 2 p=10 kn/m 2 25 W=±60 kn 16 POS 1 80 60 25 25 POS 1 60 POS 3 60 POS 4 POS 2 POS 3 POS 4 POS

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

ISPIT GRUPA A - RJEŠENJA

ISPIT GRUPA A - RJEŠENJA Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga AB oslonjena je na dva čelična štapa u A i B i opterećena trouglastim opterećenjem, kao na slici desno. Ako su oba štapa iste dužine L,

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I

5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I 5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I ČISTO KOSO SAVIJANJE Pod pravim savijanjem podrazumeva se slučaj kada se ravan savijanja poklapa sa jednom od glavnih ravni

Διαβάστε περισσότερα

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 2

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 2 PRIMER 2 Da bi se ilustrovali problemi i postupak analize složenijih okvirnih konstrukcija prema YU81, izabran je primer simetrične sedmoetažne okvirne konstrukcije, sa nejednakim rasponima greda. U uvodnom

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJA BETONSKIH KONSTRUKCIJA PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET ODREĐIVANJE MOMENTA LOMA - PRAVOUGAONI PRESEK Moment loma za pravougaoni presek prikazan na skici odrediti za slučajeve:. kada

Διαβάστε περισσότερα

Uvod u neparametarske testove

Uvod u neparametarske testove Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa:

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

4. STATIČKI PRORAČUN STUBIŠTA

4. STATIČKI PRORAČUN STUBIŠTA JBAG 4. STATIČKI PRORAČUN STUBIŠTA PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 9 5 SVEUČILIŠTE U ZAGREBU JBAG 4. Statiči proračun stubišta 4.. Stubišni ra 4... Analiza opterećenja 5 5 4 6 8 5 6 0

Διαβάστε περισσότερα

SPREGNUTE KONSTRUKCIJE

SPREGNUTE KONSTRUKCIJE SPREGNUTE KONSTRUKCIJE Prof. dr. sc. Ivica Džeba Građevinski fakultet Sveučilišta u Zagrebu SPREGNUTI NOSAČI 1B. DIO PRIJENJIVO NA SVE KLASE POPREČNIH PRESJEKA OBAVEZNA PRIJENA ZA KLASE PRESJEKA 3 i 4

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET SVEUČILIŠTE U MOSTRU GRĐEVINSKI FKULTET Kolegij: Osnove betonskih konstrukcija k. 013/014 god. 8. pismeni (dodatni) ispit - 10.10.014. god. Zadatak 1 Dimenzionirati i prikazati raspored usvojene armature

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 1

V.Alendar-Projektovanje seizmički otpornih AB konstrukcija kroz primere PRIMER 1 PRIMER 1 Simetrična okvirna konstrukcija temelja teške opreme sastoji se od armiranobetonske platforme - roštilja greda, zglobno oslonjene na četri ugaona konzolna stuba. Za uticaje gravitacionih opterećenja,

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1)

BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1) UNIVERZITET U NOVOM SADU 2012 03 FAKULTET TEHNIČKIH NAUKA datum: 07. April 2012 DEPARTMAN ZA GRAĐEVINARSTVO I GEODEZIJU BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1) Zadatak 1 (100%) - eliminatorni

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

2. deo ZADACI. Hidrostatika

2. deo ZADACI. Hidrostatika 2. deo ZADACI 1 Hidrostatika Zadatak 1.1. Plovak, koji se sastoji od valjka (prečnika d V = 0.10 m i visine h V = 0.10 m) i cevčice (prečnika d C = 0.02 m i visine h C =1.00 m), nalazi se u vodi gustine

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL

PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Materijal: Beton: C25/30 C f ck /f ck,cube valjak/kocka f ck 25 N/mm 2 karakteristična tlačna čvrstoća fcd proračunska tlačna

Διαβάστε περισσότερα

Betonske konstrukcije 1

Betonske konstrukcije 1 Betonske konstrukcije 1 Prof.dr Snežana Marinković Doc.dr Ivan Ignjatović GF Beograd Betonske konstrukcije 1 1 Sadržaj Uvod Osnove proračuna Osobine materijala ULS-Savijanje ULS-Smicanje ULS-Stabilnost

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

SILE U PRESEKU GREDNOG NOSAČA

SILE U PRESEKU GREDNOG NOSAČA SIE U PRESEKU GREDNOG NOSAČA DEFINICIJE SIA U PRESECIMA Projektovanje bilo kog konstruktivnog elemenata podrazumeva određivanje unutrašnjih sila u tom elementu da bi se obezbedilo da materijal od koga

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJ ETONSKIH KONSTRUKCIJ 1 PRESECI S PRSLINO - VELIKI EKSCENTRICITET ČISTO SVIJNJE - VEZNO DIENZIONISNJE Poznato: - statički ticaji za pojedina opterećenja ( i ) - kalitet materijala (f, σ ) - dimenzije

Διαβάστε περισσότερα

ROŽNJAČE. Rožnjače

ROŽNJAČE. Rožnjače 1 ROŽNJAČE 2 Rožnjače Opšte 3 Rožnjače primaju i prenose opterećenje sa krovne površine na glavne nosače. Leže u krovnoj ravni i pružaju se paralelno sa podužnom osom hale. Raspon l: od 4,0 do 18,0 m (uobičajeno

Διαβάστε περισσότερα

Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će

Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će se bez obzira na masu kretati istim ubrzanjem Zanimljivo

Διαβάστε περισσότερα

AKSIJALNO NAPREZANJE LINEARNO STANJE NAPREZANJA HUKOV ZAKON

AKSIJALNO NAPREZANJE LINEARNO STANJE NAPREZANJA HUKOV ZAKON AKSIJALNO NAPREZANJE LINEARNO STANJE NAPREZANJA HUKOV ZAKON Gredni nosač može biti spoljnim silama napregnut na razne načine, pa tako postoji aksijalno naprezanje, čisto savijanje, savijanje silama, torzija,

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Matrična analiza linijskih

Διαβάστε περισσότερα