Supersymmetric Fifth Order Equations

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Supersymmetric Fifth Order Equations"

Transcript

1 Supersymmetric Fifth Order Equations Q. P. Liu Department of Mathematics China University of Mining and Technology (Beijing) Beijing July 20, 2009 a joint work with Kai TIAN

2 Outline SUSY: basics 5th order SUSY integrable systems A SUSY Sawada-Kotera equation A Novel SUSY 5th KdV

3 SUSY Super: anti-commutitive or fermionic variables theoretical physics: bosons & fermions

4 SUSY Super: SUSY: anti-commutitive or fermionic variables theoretical physics: bosons & fermions supersymmetry

5 SUSY Super: SUSY: Super or SUSY Integrable system: anti-commutitive or fermionic variables theoretical physics: bosons & fermions supersymmetry a coupled system

6 SUSY Super: SUSY: Super or SUSY Integrable system: anti-commutitive or fermionic variables theoretical physics: bosons & fermions supersymmetry a coupled system Two types of super extensions exist in literatures: fermionic or supersymmetric Martin (1959), Casalbuoni (1976), Kupershmidt (1984), Gurses,... Mainin & Radul, Mathieu, Popowicz, Aratyn,...

7 SUSY Super: SUSY: Super or SUSY Integrable system: anti-commutitive or fermionic variables theoretical physics: bosons & fermions supersymmetry a coupled system Two types of super extensions exist in literatures: fermionic or supersymmetric Martin (1959), Casalbuoni (1976), Kupershmidt (1984), Gurses,... Mainin & Radul, Mathieu, Popowicz, Aratyn,... Direct way to SUSY systems: Independent variables: Dependent variables x (x, θ) fermionic or bosonic functions

8 Example ( Kupershmidt: Phys. Letts. A (1984)) u t = 6uu x u xxx + 3ξξ xx, ξ t = 4ξ xxx + 3u x ξ + 6uξ x

9 Example ( Kupershmidt: Phys. Letts. A (1984)) u t = 6uu x u xxx + 3ξξ xx, ξ t = 4ξ xxx + 3u x ξ + 6uξ x L kuper = 2 + u ξ 1 ξ

10 Example ( Kupershmidt: Phys. Letts. A (1984)) u t = 6uu x u xxx + 3ξξ xx, ξ t = 4ξ xxx + 3u x ξ + 6uξ x L kuper = 2 + u ξ 1 ξ Example ( Manin and Radul: Commun. Math. Phys. (1985)) u t = 6uu x u xxx 3ξξ xx ξ t = ξ xxx + 3(uξ) x

11 Example ( Kupershmidt: Phys. Letts. A (1984)) u t = 6uu x u xxx + 3ξξ xx, ξ t = 4ξ xxx + 3u x ξ + 6uξ x L kuper = 2 + u ξ 1 ξ Example ( Manin and Radul: Commun. Math. Phys. (1985)) u t = 6uu x u xxx 3ξξ xx ξ t = ξ xxx + 3(uξ) x L MR = 2 ΦD D = θ + θ x, Φ = ξ + θu

12 MR-KdV has a compact Q. P. form: Liu SUSY Sawada-Kotera Example ( Kupershmidt: Phys. Letts. A (1984)) u t = 6uu x u xxx + 3ξξ xx, ξ t = 4ξ xxx + 3u x ξ + 6uξ x L kuper = 2 + u ξ 1 ξ Example ( Manin and Radul: Commun. Math. Phys. (1985)) u t = 6uu x u xxx 3ξξ xx ξ t = ξ xxx + 3(uξ) x L MR = 2 ΦD D = θ + θ x, Φ = ξ + θu

13 MR-KdV has a compact Q. P. form: Liu SUSY Sawada-Kotera Example ( Kupershmidt: Phys. Letts. A (1984)) u t = 6uu x u xxx + 3ξξ xx, ξ t = 4ξ xxx + 3u x ξ + 6uξ x L kuper = 2 + u ξ 1 ξ Example ( Manin and Radul: Commun. Math. Phys. (1985)) u t = 6uu x u xxx 3ξξ xx ξ t = ξ xxx + 3(uξ) x L MR = 2 ΦD D = θ + θ x, Φ = ξ + θu

14 Soliton Equations and their SUSY Counterparts Equation Authors Journals (Years) sine-gordon Chaichian & Kulish PLB (1978) Ferrara PLB (1977/8)

15 Soliton Equations and their SUSY Counterparts Equation Authors Journals (Years) sine-gordon Chaichian & Kulish PLB (1978) Ferrara PLB (1977/8) KP Manin & Radul CMP(1985) Mulase, Rabin, Ueno,... Invent. Math.(1988)

16 Soliton Equations and their SUSY Counterparts Equation Authors Journals (Years) sine-gordon Chaichian & Kulish PLB (1978) Ferrara PLB (1977/8) KP Manin & Radul CMP(1985) Mulase, Rabin, Ueno,... Invent. Math.(1988) Toda Olshanetsky; CMP (1983); Ikeda LMP (1987) MKdV Mathieu JMP(1988) Sasaki & Yamanaka PTP(1988)

17 Soliton Equations and their SUSY Counterparts Equation Authors Journals (Years) sine-gordon Chaichian & Kulish PLB (1978) Ferrara PLB (1977/8) KP Manin & Radul CMP(1985) Mulase, Rabin, Ueno,... Invent. Math.(1988) Toda Olshanetsky; CMP (1983); Ikeda LMP (1987) MKdV Mathieu JMP(1988) Sasaki & Yamanaka PTP(1988) NLS Roelofs & Kersten JMP (1992)

18 Soliton Equations and their SUSY Counterparts Equation Authors Journals (Years) sine-gordon Chaichian & Kulish PLB (1978) Ferrara PLB (1977/8) KP Manin & Radul CMP(1985) Mulase, Rabin, Ueno,... Invent. Math.(1988) Toda Olshanetsky; CMP (1983); Ikeda LMP (1987) MKdV Mathieu JMP(1988) Sasaki & Yamanaka PTP(1988) NLS Roelofs & Kersten JMP (1992) HD Liu JPhys A 28 (1995) Brunelli, Das & Popowicz JMP (2003)

19 Soliton Equations and their SUSY Counterparts Equation Authors Journals (Years) sine-gordon Chaichian & Kulish PLB (1978) Ferrara PLB (1977/8) KP Manin & Radul CMP(1985) Mulase, Rabin, Ueno,... Invent. Math.(1988) Toda Olshanetsky; CMP (1983); Ikeda LMP (1987) MKdV Mathieu JMP(1988) Sasaki & Yamanaka PTP(1988) NLS Roelofs & Kersten JMP (1992) HD Liu JPhys A 28 (1995) Brunelli, Das & Popowicz JMP (2003) cbq Brunelli & Das PLB (1994)

20 Soliton Equations and their SUSY Counterparts Equation Authors Journals (Years) sine-gordon Chaichian & Kulish PLB (1978) Ferrara PLB (1977/8) KP Manin & Radul CMP(1985) Mulase, Rabin, Ueno,... Invent. Math.(1988) Toda Olshanetsky; CMP (1983); Ikeda LMP (1987) MKdV Mathieu JMP(1988) Sasaki & Yamanaka PTP(1988) NLS Roelofs & Kersten JMP (1992) HD Liu JPhys A 28 (1995) Brunelli, Das & Popowicz JMP (2003) cbq Brunelli & Das PLB (1994) SK Tian & Liu 2008

21 Soliton Equations and their SUSY Counterparts Equation Authors Journals (Years) sine-gordon Chaichian & Kulish PLB (1978) Ferrara PLB (1977/8) KP Manin & Radul CMP(1985) Mulase, Rabin, Ueno,... Invent. Math.(1988) Toda Olshanetsky; CMP (1983); Ikeda LMP (1987) MKdV Mathieu JMP(1988) Sasaki & Yamanaka PTP(1988) NLS Roelofs & Kersten JMP (1992) HD Liu JPhys A 28 (1995) Brunelli, Das & Popowicz JMP (2003) cbq Brunelli & Das PLB (1994) SK Tian & Liu 2008

22 Fifth order evolution equations We consider u t + u xxxxx + auu xx + bu x u xx + cu 2 u x = 0 the general homogenous equation of degree 7.

23 Fifth order evolution equations We consider u t + u xxxxx + auu xx + bu x u xx + cu 2 u x = 0 the general homogenous equation of degree 7. Question: Is it integrable?

24 Fifth order evolution equations We consider u t + u xxxxx + auu xx + bu x u xx + cu 2 u x = 0 the general homogenous equation of degree 7. Question: Is it integrable? Yes, but only for three cases 5th KdV: u t + u xxxxx + 10uu xxx + 25u x u xx + 20u 2 u x = 0 Sawada-Kotera or Caudrey-Dodd-Gibbon u t + u xxxxx + 5uu xxx + 5u x u xx + 5u 2 u x = 0 Kaup-Kupershimdt: u t + u xxxxx + 10u x u xx + 30u 2 u x = 0 Fujimoto & Watanabe: Math. Japonica 28 (1983) Harada & Oishi: J Phys. Soc. Japan 54 (1985)

25 Question: susy 5th order equations? susy SK? susy KK?

26 Question: susy 5th order equations? susy SK? susy KK? susy 5th KdV: next flow of susy KdV φ t +φ xxxxx + [αφ xx (Dφ) + αφ x Dφ x + αφ(dφ) xx + 25 ] α2 φ(dφ) 2 = 0 Oevel & Popowicz CMP (1993) x

27 Question: susy 5th order equations? susy SK? susy KK? susy 5th KdV: next flow of susy KdV φ t +φ xxxxx + [αφ xx (Dφ) + αφ x Dφ x + αφ(dφ) xx + 25 ] α2 φ(dφ) 2 = 0 Oevel & Popowicz CMP (1993) susy SK? x

28 Question: susy 5th order equations? susy SK? susy KK? susy 5th KdV: next flow of susy KdV φ t +φ xxxxx + [αφ xx (Dφ) + αφ x Dφ x + αφ(dφ) xx + 25 ] α2 φ(dφ) 2 = 0 Oevel & Popowicz CMP (1993) susy SK? x φ t + φ xxxxx + [ 10(Dφ)φ xx + 5(Dφ) xx φ + 15(Dφ) 2 φ ] x = 0 φ = φ(x, t, θ), a fermioic variable, D = θ + θ x Castera: Nonlinearity 13 (2000)

29 Question: susy 5th order equations? susy SK? susy KK? susy 5th KdV: next flow of susy KdV φ t +φ xxxxx + [αφ xx (Dφ) + αφ x Dφ x + αφ(dφ) xx + 25 ] α2 φ(dφ) 2 = 0 Oevel & Popowicz CMP (1993) susy SK? x φ t + φ xxxxx + [ 10(Dφ)φ xx + 5(Dφ) xx φ + 15(Dφ) 2 φ ] x = 0 φ = φ(x, t, θ), a fermioic variable, D = θ + θ x Castera: Nonlinearity 13 (2000) with S x (D t + D 5 x )τ τ = 0 φ = 2D(ln τ) x where S x is the super Hirota derivative McArthur & Yung (1993) S x f g = (Df )g ( 1) f f (Dg)

30 Question: susy 5th order equations? susy SK? susy KK? susy 5th KdV: next flow of susy KdV φ t +φ xxxxx + [αφ xx (Dφ) + αφ x Dφ x + αφ(dφ) xx + 25 ] α2 φ(dφ) 2 = 0 Oevel & Popowicz CMP (1993) susy SK? x φ t + φ xxxxx + [ 10(Dφ)φ xx + 5(Dφ) xx φ + 15(Dφ) 2 φ ] x = 0 φ = φ(x, t, θ), a fermioic variable, D = θ + θ x Castera: Nonlinearity 13 (2000) with S x (D t + D 5 x )τ τ = 0 φ = 2D(ln τ) x where S x is the super Hirota derivative McArthur & Yung (1993) S x f g = (Df )g ( 1) f f (Dg)

31 Symmetry Approach We form the following equation Φ t = Φ xxxxx + α 1 Φ xxx (DΦ) + α 2 Φ xx (DΦ x ) + α 3 Φ x (DΦ xx ) +α 4 Φ x (DΦ) 2 + α 5 Φ(DΦ xxx ) + α 6 Φ(DΦ x )(DΦ) which is the most general equation with the degree where is fermionic field deg = 13 2 Φ(x, t, θ) = ξ(x, t) + θu(x, t)

32 Symmetry Approach We form the following equation Φ t = Φ xxxxx + α 1 Φ xxx (DΦ) + α 2 Φ xx (DΦ x ) + α 3 Φ x (DΦ xx ) +α 4 Φ x (DΦ) 2 + α 5 Φ(DΦ xxx ) + α 6 Φ(DΦ x )(DΦ) which is the most general equation with the degree where is fermionic field Question: integrability? deg = 13 2 Φ(x, t, θ) = ξ(x, t) + θu(x, t)

33 1 2 Φ t = Φ xxxxx + αφ xxx (DΦ) + 2αΦ xx (DΦ x ) + 2αΦ x (DΦ xx ) α2 Φ x (DΦ) 2 + αφ(dφ xxx ) α2 Φ(DΦ x )(DΦ) Φ t = Φ xxxxx + αφ xxx (DΦ) + αφ xx (DΦ x ) + αφ x (DΦ xx ) α2 Φ x (DΦ) 2 3 Φ t = Φ xxxxx + αφ xxx (DΦ) + αφ x (DΦ xx ) α2 Φ x (DΦ) 2 4 Φ t = Φ xxxxx + αφ xxx (DΦ) αφ xx(dφ x ) + αφ x (DΦ xx ) α2 Φ x (DΦ) 2 5 Φ t = Φ xxxxx + αφ xxx (DΦ) + αφ xx (DΦ x ) α2 Φ x (DΦ) 2 6 Φ t = Φ xxxxx + 2αΦ xxx (DΦ) + 3αΦ xx (DΦ x ) + αφ x (DΦ xx ) α2 Φ x (DΦ) α2 Φ(DΦ x )(DΦ)

34 equations in components 2nd equation: { u t = u xxxxx + αu xxx + 2αu x u xx + 3α2 10 u2 u x ξ t = ξ xxxxx + αuξ xxx + αu x ξ xx + αu xx ξ x + 3α2 10 u2 ξ x 3rd one: u t = u xxxxx + αuu xxx + αu x u xx + α2 5 u2 u x ξ t = ξ xxxxx + αuξ xxx + αu xx ξ x + α2 5 u2 ξ x 4th one: { u t = u xxxxx + αuu xxx + 5α 2 u xu xx + α2 5 u2 u x ξ t = ξ xxxxx + αuξ xxx + 3α 2 u xξ xx + αu xx ξ x + α2 5 u2 ξ x

35 For last two, we have u t = u xxxxx + αuu xxx + αu x u xx + α2 5 u2 u x αξ xxx ξ x ξ t = ξ xxxxx + αuξ xxx + αu x ξ xx + α2 5 u2 ξ x susy SK u t = u xxxxx + 2αuu xxx + 4αu x u xx + 6α2 5 u2 u x αξ xxx ξ x + 3α2 5 uξ xxξ + 3α2 5 u xξ x ξ ξ t = ξ xxxxx + 2αuξ xxx + 3αu x ξ xx + αu xx ξ x + 3α2 5 u2 ξ x + 3α2 5 uu xξ a susy 5th KdV

36 SUSY SK L = 3 x + Ψ x D + U x + ΦD + V.

37 SUSY SK L = 3 x + Ψ x D + U x + ΦD + V. Following Gel fand and Dickey, we have L t n = [(L n 3 )+, L] where [A, B] = AB ( 1) A B BA. Not surprising: a special case of Manin & Radul (Commun. Math. Phys. (1985)). We consider: n = 5 and t 5 = t. L + L = 0

38 Then we find Ψ = 0, V = 1 2 (U x (DΦ)) that is L = 3 x + U x + ΦD (U x (DΦ)) In this case, we take B = 9(L 5 3 ) +, namely B = 9 5 x + 15U 3 x + 15ΦD 2 x + 15(U x + V ) 2 x for convenience. +15Φ x D x + (10U xx + 15V x + 5U 2 ) x +10(Φ xx + ΦU)D + 10V xx + 10UV + 5Φ(DU)

39 Then, the flow of equations, resulted from reads as L t = [B, L] U t + U xxxxx + 5 (UU xx + 34 U2x + 13 U3 + Φ x (DU) + 12 Φ(DUx ) + 12 ΦΦx 34 ) (DΦ)2 = 0 x Φ t + Φ xxxxx + 5 (UΦ xx + 12 Uxx Φ + 12 Ux Φx + U2 Φ + 12 Φ(DΦx ) 12 ) (DΦ)Φx = 0 x

40 Then, the flow of equations, resulted from reads as L t = [B, L] U t + U xxxxx + 5 (UU xx + 34 U2x + 13 U3 + Φ x (DU) + 12 Φ(DUx ) + 12 ΦΦx 34 ) (DΦ)2 = 0 x Φ t + Φ xxxxx + 5 (UΦ xx + 12 Uxx Φ + 12 Ux Φx + U2 Φ + 12 Φ(DΦx ) 12 ) (DΦ)Φx = 0 x setting Φ = 0, we will have the standard Kaup-Kupershimdt Hamiltonian system: where the Hamiltonian is given by ( ) ( Ut 0 x = Φ t x 0 ) δh H = [ 5 4 Φ(Dφ)2 (DU x )(DΦ xx ) 5 3 ΦU3 5 (DUx )(DU)Φ (DU)Ux (DΦ) + 5(DU)U(DΦx ) (DU)Φx Φ ] dxdθ.

41 L = x 3 + U x + ΦD (U x (DΦ)) = (D 3 + W D + Υ)(D 3 DW + Υ), gives us a Miura-type transformation U = 2W x W 2 + (DΥ), Φ = Υ x 2ΥW,

42 L = 3 x + U x + ΦD (U x (DΦ)) = (D 3 + W D + Υ)(D 3 DW + Υ), gives us a Miura-type transformation U = 2W x W 2 + (DΥ), Φ = Υ x 2ΥW, and the modified system is given by W t + W xxxxx + 5W xxx (DΥ) 5W xxx W x 5W xxx W 2 5W 2 xx + 10Wxx (DΥx ) 20W xx W x W 5W xx W (DΥ) 5W 3 x 5W 2 x (DΥ) + 5Wx (DΥxx ) + 5Wx (DΥ)2 + 5W x W 4 5W x W (DΥ x ) + 10W (DΥ x )(DΥ) 10Υ x ΥW x + 5(DW xx )Υ x + 5(DW x )Υ xx + 5(DW x )ΥW x + 10(DW x )ΥW 2 5(DW )Υ x W x + 10(DW )Υ x W (DW )Υ(DΥ x ) 5(DW )ΥW xx + 30(DW )ΥW x W = 0, Υ t + Υ xxxxx + 5Υ xxx (DΥ) 5Υ xxx W 2 + 5Υ xx (DΥ x ) + 5Υ xx W xx 25Υ xx W x W + 5Υ xx W (DΥ) + 5Υ x (DΥ) 2 + 5Υ x W xxx 25Υ x W xx W 25Υ x W 2 x + 5Υx Wx (DΥ) + 10Υ x W x W 2 + 5Υ x W 4 10Υ x W 2 (DΥ) + 5Υ x W (DΥ x ) 10ΥW xxx W 20ΥW xx W x + 10ΥW xx W ΥW 2 x W + 20ΥWx W 3 30ΥW x W (DΥ) 10ΥW 2 (DΥ x ) 5(DW x )Υ x Υ 5(DW )Υ xx Υ 10(DW )Υ x ΥW = 0.

43 W = 0, Υ = φ. we have φ t + φ xxxxx + 5φ xxx (Dφ) + 5φ xx (Dφ x ) + 5φ x (Dφ) 2 = 0 Let φ = ξ(x, t) + θu(x, t), we have u t + u xxxxx + 5uu xxx + 5u x u xx + 5u 2 u x 5ξ xxx ξ x = 0 ξ t + ξ xxxxx + 5uξ xxx + 5u x ξ xx + 5u 2 ξ x = 0

44 W = 0, Υ = φ. we have φ t + φ xxxxx + 5φ xxx (Dφ) + 5φ xx (Dφ x ) + 5φ x (Dφ) 2 = 0 Let φ = ξ(x, t) + θu(x, t), we have u t + u xxxxx + 5uu xxx + 5u x u xx + 5u 2 u x 5ξ xxx ξ x = 0 ξ t + ξ xxxxx + 5uξ xxx + 5u x ξ xx + 5u 2 ξ x = 0 Lax operator: L = (D 3 + φ)(d 3 + φ)

45 Proposition sresl n 3 ImD. where sres means taking the super residue of a super pseudodifferential operator.

46 Proposition sresl n 3 ImD. where sres means taking the super residue of a super pseudodifferential operator. Proof: Consider Thus, Then D 3 + φ = Λ 3 L = Λ 6 sres(l n 3 ) = sresλ 2n = 1 2 sres[λ2n 1, Λ]

47 Proposition sresl n 3 ImD. where sres means taking the super residue of a super pseudodifferential operator. Proof: Consider Thus, Then D 3 + φ = Λ 3 L = Λ 6 sres(l n 3 ) = sresλ 2n = 1 2 sres[λ2n 1, Λ] nontrivial conserved quantities?

48 Proposition sresl n 3 ImD. where sres means taking the super residue of a super pseudodifferential operator. Proof: Consider Thus, Then D 3 + φ = Λ 3 L = Λ 6 sres(l n 3 ) = sresλ 2n = 1 2 sres[λ2n 1, Λ] nontrivial conserved quantities? We now turn to L n 6

49 It can be proved that So, the super residue of L n 6 t L n 6 = [9(L 5 3 )+, L n 6 ]. is conserved.

50 It can be proved that t L n 6 = [9(L 5 3 )+, L n 6 ]. So, the super residue of L n 6 is conserved. The first two nontrivial conserved quantities sresl dxdθ = [2(Dφ xx ) + (Dφ) 2 6φ x φ]dxdθ 9 sresl dxdθ = [6(Dφ xxxx ) + 18(Dφ xx )(Dφ) + 9(Dφ x ) (Dφ) 3 18φ xxx φ + 6φ xx φ x 36φ x φ(dφ)]dxdθ Remarks: 1 What is remarkable is that the conserved densities found in this way, unlike the supersymmetric KdV case, are local. 2 All those conserved quantities are fermioic. To our knowledge, this is the first supersymmetric integrable system whose only conserved quantities are fermioic.

51 Finally, we have the recursion operator R = 6 x + 6(Dφ) 4 x + 9(Dφx ) 3 x + 6φxx 2 x D + {5(Dφxx ) + 9(Dφ)2 } 2 x + {9φ xxx + 12φ x (Dφ)} x D + {(Dφ xxx ) + 9(Dφ x )(DΦ)} x + {5φ xxxx + 12φ xx (Dφ) + 6φ x (Dφ x )}D + {4(Dφ xx )(Dφ) + 4(Dφ) 3 3φ xx φ x } + {φ xxxxx + 5φ xxx (Dφ) + 5φ xx (Dφ x ) + 2φ x (Dφ xx ) + 6φ x (Dφ) 2 }D 1 {2(Dφ xx ) + 2(Dφ) 2 }D 1 φ x 4φ x (Dφ) 1 x φ x 2(Dφ)D 1 [φ xxx + 2φ x (Dφ)] 2φ x D 1 {(φ xxx + φ x (Dφ))D 1 3(Dφ)D 1 φ x 2φ x 1 x φ x + 2D 1 [φ xxx + 2φ x (Dφ)]}

52 Popowicz: Odd Hamiltonian structure for supersymmetric Sawada-Kotera equation. arxiv: v1 Probably it is the first nontrivial supersymmetric model with odd bi-hamiltonian structure with the modified bosonic sector. So this model realizes in fully the idea of equal footing of fermions and bosons fields.

53 novel SUSY 5th KdV φ t = φ xxxxx + 2αφ xxx (Dφ) + 3αφ xx (Dφ x ) + αφ x (Dφ xx ) α2 φ x (Dφ) α2 φ(dφ x )(Dφ)

54 novel SUSY 5th KdV φ t = φ xxxxx + 2αφ xxx (Dφ) + 3αφ xx (Dφ x ) + αφ x (Dφ xx ) α2 φ x (Dφ) α2 φ(dφ x )(Dφ) Hamiltonian structure φ t = D δh 1 δφ where H 1 = 1 [ 2 φxxxx (φ) + 5φ xx (Dφ) 2 + 5φ(φ) 3] dxdθ

55 novel SUSY 5th KdV φ t = φ xxxxx + 2αφ xxx (Dφ) + 3αφ xx (Dφ x ) + αφ x (Dφ xx ) α2 φ x (Dφ) α2 φ(dφ x )(Dφ) Hamiltonian structure φ t = D δh 1 δφ where H 1 = 1 [ 2 φxxxx (φ) + 5φ xx (Dφ) 2 + 5φ(φ) 3] dxdθ Recursion operator R = x (DΦ) 4 x + 6Φx 3 x D + 24(DΦx ) 3 x + {21Φxx + 18Φ(DΦ)} 2 x D +{19(DΦ xx ) + 30(DΦ) 2 } x 2 + {23Φxxx + 57Φx (DΦ) + 27Φ(DΦx )} x D +{7(DΦ x xx) + 60(DΦ x )(DΦ)} x +{11Φ xxxx + 54Φ xx (DΦ) + 48Φ x (DΦ x ) + 15Φ(DΦ xx ) + 36Φ(DΦ) 2 }D +{(DΦ xxxx ) + 27(DΦxx)(DΦ) + 20(DΦ x ) (DΦ) 3 5Φ xx Φ x + 18Φ x Φ(DΦ)} +{2Φ xxxxx + 20Φ xxx (DΦ) + 30Φ xx (DΦ x ) + 14Φ x (DΦ xx ) + 21Φ x (DΦ) 2 +3Φ(DΦ xxx ) + 51Φ(DΦ x )(DΦ)}D 1 +{ 2Φ xxx + 30Φ x (DΦ) 6Φ(DΦ x )}D 1 (DΦ) + 3(DΦ xxx ) x 1 {(DΦ) Φ x D 1 } 3(DΦ)D 1 {Φ xxx + ( 7Φ xx 3Φ(DΦ)) x 1 [(DΦ) Φ x D 1 ]} 2Φ x x 1 {Φ xxx + 3Φ(DΦ) + [2(DΦ xxx ) + 12(DΦ x )(DΦ) 3Φ xx Φ]D 1 +[ 6Φ xx 9Φ(DΦ)] x 1 [(DΦ) Φ x D 1 ]}

56 A possible second structure (bi-hamiltonian?) φ t = RD δh 0 δφ where H 0 = 1 2 φdxdθ

57 A possible second structure (bi-hamiltonian?) φ t = RD δh 0 δφ where H 0 = 1 2 φdxdθ A multi-linear form f 2 D x { f 2 S(D t D 5 x )f f } +5 { (D x (D 2 x f f ) f 2 )(SD 3 x f f ) (Dx (D4 x f f ) f 2 } )(SD x f f ) = 0

58 Thank you!

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

A Super Extension of Kaup Newell Hierarchy

A Super Extension of Kaup Newell Hierarchy Commun. Theor. Phys. Beijing China 54 00 pp. 594 598 c Chinese Physical Society and IOP Publishing Ltd Vol. 54 No. 4 October 5 00 A Super Extension of Kaup Newell Hierarchy GENG Xian-Guo ÞÁ and WU Li-Hua

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Envelope Periodic Solutions to Coupled Nonlinear Equations

Envelope Periodic Solutions to Coupled Nonlinear Equations Commun. Theor. Phys. (Beijing, China) 39 (2003) pp. 167 172 c International Academic Publishers Vol. 39, No. 2, February 15, 2003 Envelope Periodic Solutions to Coupled Nonlinear Equations LIU Shi-Da,

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

arxiv: v1 [math-ph] 1 Feb 2016

arxiv: v1 [math-ph] 1 Feb 2016 Fusing defect for the N = super sinh-gordon model arxiv:160.0058v1 math-ph 1 Feb 016 N I Spano, A R Aguirre, J F Gomes and A H Zimerman Rua Dr. Bento Teobaldo Ferraz 71, Block, 01140-070, São Paulo, Brazil

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Fusing defect for the N = 2 super sinh-gordon model

Fusing defect for the N = 2 super sinh-gordon model Journal of Physics: Conference Series PAPER OPEN ACCESS Fusing defect for the N = super sinh-gordon model To cite this article: N I Spano et al 016 J. Phys.: Conf. Ser. 670 01049 View the article online

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

"ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ ΕΤΑΙΡΕΙΩΝ ΣΥΓΚΡΙΤΙΚΑ ΓΙΑ ΤΑ ΟΙΚΟΝΟΜΙΚΑ ΕΤΗ 2011-2013"

ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ ΕΤΑΙΡΕΙΩΝ ΣΥΓΚΡΙΤΙΚΑ ΓΙΑ ΤΑ ΟΙΚΟΝΟΜΙΚΑ ΕΤΗ 2011-2013 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Επιμέλεια Κρανιωτάκη Δήμητρα Α.Μ. 8252 Κωστορρίζου Δήμητρα Α.Μ. 8206 Μελετίου Χαράλαμπος Α.Μ.

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

ECON 381 SC ASSIGNMENT 2

ECON 381 SC ASSIGNMENT 2 ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

First-order Second-degree Equations Related with Painlevé Equations

First-order Second-degree Equations Related with Painlevé Equations ( Will be set by the publisher ) ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol. xx (2008) No. xx, pp. xxx-xxx First-order Second-degree Equations Related with

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο την απόκτηση του διπλώματος «Οργάνωση και Διοίκηση Βιομηχανικών Συστημάτων με εξειδίκευση στα Συστήματα Εφοδιασμού

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα