ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 3. Αρχή του Pascal 91. Εξίσωση συνέχειας 93. Εξίσωση. Bernoulli 94. Τριβή στα ρευστά 98. Σύνοψη. Ασκήσεις 101

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 3. Αρχή του Pascal 91. Εξίσωση συνέχειας 93. Εξίσωση. Bernoulli 94. Τριβή στα ρευστά 98. Σύνοψη. Ασκήσεις 101"

Transcript

1 ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 3 Αρχή του Pascal 91 Εξίσωση συνέχειας 93 Εξίσωση Bernoulli 94 Τριβή στα ρευστά 98 Σύνοψη Ασκήσεις 101

2 3-1 ΕΙΣΑΓΩΓΗ Οι φυσικοί και οι μηχανικοί αποδίδουν το χαρακτηρισμό «ρευστά» στα υγρά και τα αέρια σώματα, τα οποία - αντίθετα με τα στερεά - δεν έχουν δικό τους σχήμα αλλά παίρνουν το σχήμα του δοχείου που τα περιέχει. Η διάκριση των ρευστών σε υγρά και αέρια βασίζεται στη σταθερότητα του όγκου τους (για ορισμένη θερμοκρασία). Τα υγρά είναι πρακτικά ασυμπίεστα, έχουν δηλαδή σταθερό όγκο, ανεξάρτητο από την πίεση. Αντίθετα τα αέρια είναι συμπιεστά. Αυτό σημαίνει ότι ο όγκος τους εξαρτάται από την πίεσή τους. Κινούμαστε μέσα σε ρευστά (στον ατμοσφαιρικό αέρα ή στο νερό της θάλασσας) μεταφέρουμε τεράστιες ποσότητες ρευστών με σωλήνες, εκμεταλλευόμαστε την ενέργεια των ρευστών για να λύσουμε πρακτικά μας προβλήματα... Η ανάπτυξη της τεχνολογίας στους τομείς αυτούς βασίστηκε στη μελέτη των νόμων που διέπουν την κίνηση των ρευστών. 3-2 ΥΓΡΑ ΣΕ ΙΣΟΡΡΟΠΙΑ Σχ. 3.1 Η πίεση στα διάφορα σημεία ενός υγρού οφείλεται στο βάρος του και σε εξωτερικά αίτια. Η πίεση 1 στα διάφορα σημεία του χώρου που καταλαμβάνει κάποιο υγρό και στα τοιχώματα του δοχείου μέσα στο οποίο περιέχεται οφείλεται ή στο βάρος του υγρού ή σε εξωτερικό αίτιο. Ως εξωτερικό αίτιο μπορούμε να θεωρήσουμε την πίεση που κάποιο έμβολο ασκεί σε μια περιοχή του υγρού. Η πίεση που μετράει το μανόμετρο στο δοχείο του σχήματος 3.1 οφείλεται και στο βάρος του υγρού που περιέχεται στο δοχείο αλλά και στη δράση του εμβόλου. Υδροστατική πίεση Η πίεση που οφείλεται στο βάρος του υγρού ονομάζεται υδροστατική πίεση. Η υδροστατική πίεση έχει νόημα μόνο εφόσον το υγρό βρίσκεται μέσα σε πεδίο βαρύτητας. Η σχέση που δίνει την υδροστατική πίεση σε κάποιο σημείο Γ του χώρου που καταλαμβάνει ένα υγρό σε ισορροπία είναι Σχ. 3.2 Η υδροστατική πίεση σε βάθος h είναι pgh. (Θεμελιώδης νόμος της υδροστατικής) όπου h: το βάθος του σημείου Γ (η απόσταση από την ανώτερη επιφάνεια του υγρού) και ρ: η πυκνότητα του υγρού. Υπενθυμίζεται ότι η πίεση ορίζεται ως το πηλίκο του μέτρου της δύναμης που ασκείται κάθετα σε μία επιφάνεια προς το εμβαδόν της επιφάνειας αυτής : Στο S.I. η πίεση μετριέται σε

3 Αρχή του Pascal (Πασκάλ) Όταν ένα υγρό βρίσκεται εκτός πεδίου βαρύτητας, σε όλη του την έκταση επικρατεί η ίδια πίεση. Αυτό πρακτικά σημαίνει ότι η πίεση που δημιουργεί ένα εξωτερικό αίτιο σε κάποιο σημείο του υγρού μεταφέρεται αναλλοίωτη σε όλα τα σημεία του. (αρχή του Pascal) Για παράδειγμα, στο δοχείο του σχήματος 3.3, τα μανόμετρα δείχνουν όλα την ίδια πίεση όταν το δοχείο βρίσκεται εκτός πεδίου βαρύτητας. Αν αυξηθεί η δύναμη που ασκείται στο έμβολο κατά A.F θα αυξηθεί και η πίεση σε όλα τα μανόμετρα κατά ( Α εμβαδόν του εμβόλου). Εάν τώρα το δοχείο βρίσκεται εντός του πεδίου βαρύτητας, η πίεση που δείχνουν τα μανόμετρα είναι διαφορετική στο κάθε ένα από αυτά ανάλογα με το βάθος στο οποίο βρίσκεται. Αν πάλι αυξηθεί η δύναμη που ασκείται στο έμβολο κατά Δf θα αυξηθεί και η πίεση σε όλα τα μανόμετρα κατά Σημείωση : Αν κάποιο υγρό ισορροπεί σε ανοιxτό δοχείο, στην ελεύθερη επιφάνειά του ασκείται η ατμοσφαιρική πίεση. Έτσι η πίεση σε βάθος h θα είναι ακριβώς επειδή, όπως προβλέπει η αρχή του Pascal, η ατμοσφαιρική πίεση μεταφέρεται σε όλα τα σημεία του υγρού. Εικ. 3.1 Blaise Pascal ( ). Γάλλος επιστήμονας και φιλόσοφος. Ανήσυχο πνεύμα, παλινδρομούσε συνεχώς ανάμεσα στο θρησκευτικό του συναίσθημα και τις επιστημονικές του ανησυχίες, προσπαθώντας να τα συμβιβάσει. Σχ. 3.3 (α) Το δοχείο βρίσκεται εκτός πεδίου βαρύτητας. Η πίεση που δημιουργεί η δύναμη μεταφέρεται σε όλα τα σημεία του υγρού (β) Αν αυξηθεί η δύναμη, η πίεση στο υγρό αυξάνεται ομοιόμορφα σε όλα τα σημεία του. (α) (β) ΠΑΡΑΔΕΙΓΜΑ 3-1 Υδραυλικός ανυψωτήρας χρησιμοποιείται για την ανύψωση αυτοκινήτου βάρους w = Ν. Πόση δύναμη πρέπει να ασκήσουμε στο μικρής διατομής έμβολο του σχήματος 3.4 ώστε να πετύχουμε την ανύψωση με το μεγάλης διατομής έμβολο; Τα έμβολα είναι κυλινδρικά και έχουν ακτίνες αντίστοιχα. Απάντηση : Σύμφωνα με την αρχή του Pascal η επιπλέον πίεση που οφείλεται στη δύναμη που ασκήσαμε στο μικρό έμβολο θα μεταφερθεί και στο μεγάλο. Άρα Όμως και Σχ.3.4 (3.1) (3.2) (3.3)

4 Αντικαθιστώντας τις (3.3) και (3.2) στην (3.1) προκύπτει οπότε Λαμβάνοντας υπόψη ότι το μέτρο της F, πρέπει να είναι τουλάχιστον ίσο με το μέτρο του βάρους w του αυτοκινήτου, καταλήγουμε 3-3 ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ Εικ 3.2 Ρίχνοντας χρώματα μέσα σε ένα ρευστό που κάνει τυρβώδη ροή έχουμε μια εικόνα των δινών που σχηματίζει. Κατά την κίνηση των ρευστών αναπτύσσονται δυνάμεις τριβής μεταξύ των μορίων τους (εσωτερική τριβή) αλλά και μεταξύ των μορίων τους και των τοιχωμάτων του σωλήνα μέσα στον οποίο πραγματοποιείται η κίνηση (δυνάμεις συναφείας). Αν οι δυνάμεις που προαναφέραμε υπερβούν κάποιο όριο το ρευστό δημιουργεί κατά τη ροή του δίνες και η ροή λέγεται τυρβώδης ή στροβιλώδης. Η μελέτη μιας τέτοιας κίνησης είναι πολύπλοκη. Εμείς θα περιοριστούμε στη μελέτη της ροής ενός ρευστού που δεν παρουσιάζει εσωτερικές τριβές και τριβές με τα τοιχώματά του σωλήνα μέσα στον οποίο ρέει και επιπλέον είναι ασυμπίεστο. Ένα τέτοιο ρευστό χαρακτηρίζεται ως ιδανικό. Στην πραγματικότητα η συμπεριφορά των κινούμενων ρευστών διαφέρει πολύ ή λίγο από τη συμπεριφορά των ιδανικών ρευστών. Για να διακρίνουμε τα υπαρκτά ρευστά από τα ιδανικά θα τα ονομάζουμε πραγματικά ρευστά. Η ροή ενός ιδανικού ρευστού είναι στρωτή, δηλαδή δεν παρουσιάζει στροβίλους. Ρευματικές γραμμές - Φλέβα - Παροχή Σχ. 3.5 Ρευματική γραμμή είναι η τροχιά ενός μορίου του υγρού. Σχ. 3.6 Σε κάθε σημείο στο περίγραμμα της επιφάνειας Α αντιστοιχεί μια ρευματική γραμμή. Όλες αυτές οι ρευματικές γραμμές ορίζουν μία φλέβα Το σύνολο των θέσεων από τις οποίες περνά κάθε μόριο του ρευστού στη διάρκεια της κίνησής του ορίζει μια γραμμή που την ονομάζουμε ρευματική γραμμή. Εφόσον η ρευματική γραμμή είναι στην πραγματικότητα η τροχιά του μορίου, η ταχύτητά του σε κάθε θέση θα είναι εφαπτομένη της ρευματικής γραμμής πράγμα που σημαίνει ότι δύο ρευματικές γραμμές δεν είναι δυνατόν να τέμνονται (σχ. 3.5). Αν θεωρήσουμε μια επιφάνεια Α κάθετη στη διεύθυνση του σωλήνα 1, μέσα στον οποίο κινείται ένα ρευστό και από κάθε σημείο του περιγράμματος της Α σχεδιάσουμε την αντίστοιχη ρευματική γραμμή μέσα στο ρευστό σχηματίζεται ένας νοητός σωλήνας που ονομάζεται φλέβα (σχ. 3.6). Όπως φαίνεται από τον ορισμό της το ρευστό που κυλάει σε κάποια φλέβα δεν αναμιγνύεται με το περιεχόμενο άλλης φλέβας του σωλήνα. Ως σωλήνες θεωρούμε κάθε μορφής τοιχώματα που περιορίζουν το κινούμενο ρευστό. Για παράδειγμα σωλήνες μπορούν να θεωρηθούν η κοίτη και τα πλευρικά τοιχώματα στη ροή των ποταμών ή οι κοιλάδες στην κίνηση των ανέμων.

5 Από μια διατομή του σωλήνα ή της φλέβας σε χρόνο At περνάει ένας όγκος υγρού ΔV. Το πηλίκο (3.4) ονομάζεται παροχή του σωλήνα ή της φλέβας και μετριέται σε Αν η διατομή του σωλήνα είναι Α και το υγρό στο χρονικό διάστημα At έχει μετατοπιστεί κατά Αχ, μπορούμε να γράψουμε Αντικαθιστώντας την (3.5) στην (3.4) προκύπτει (3.5) και επειδή το πηλίκο ισούται με την ταχύτητα του υγρού στη θέση αυτή Η παροχή σωλήνα ή φλέβας σε κάποια θέση είναι ίση με το γινόμενο του εμβαδού της διατομής επί την ταχύτητα του ρευστού στη θέση αυτή. Σχ. 3.7 Στο χρονικό διάστημα Δt, από μια διατομή Α του σωλήνα περνάει υγρό όγκου Α Αχ 3-4 ΔΙΑΤΗΡΗΣΗ ΥΛΗΣ ΚΑΙ Η ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ Θεωρούμε ένα ασυμπίεστο ρευστό που ρέει μέσα σ' ένα σωλήνα μεταβλητής διατομής (σχ. 3.8). Υποθέτουμε ότι η ροή είναι στρωτή. Επειδή το ρευστό θεωρείται ασυμπίεστο θα πρέπει η μάζα Δmi που περνάει από μία διατομή Α, του σωλήνα σε χρόνο At να είναι ίση με τη μάζα Am 2 που περνάει στο ίδιο χρονικό διάστημα από μία άλλη διατομή του σωλήνα Α 2. Είναι δηλαδή (3.6) ή όπου AV, και AV 2 οι στοιχειώδεις όγκοι που καταλαμβάνουν μέσα στο σωλήνα οι μάζες Δm, και Δm 2 αντίστοιχα. Αλλά όπου υ, και υ 2 οι ταχύτητες του ρευστού στις διατομές Α1 και Α 2 αντίστοιχα. ' Η εξίσωσή (3.6) γίνεται (3.7) Σχ. 3.8 Αν το ρευστό που ρέει στο σωλήνα είναι ασυμπίεστο, το γινόμενο Α υ είναι σταθερό. και τελικά (3.8) Η εξίσωση αυτή ονομάζεται εξίσωση της συνέχειας και είναι άμεση συνέπεια της αρχής διατήρησης της ύλης. Υπενθυμίζεται ότι το ρευστό θεωρείται ασυμπίεστο. Αυτό σημαίνει ότι η πυκνότητα του είναι ίδια σε όλη την έκταση του.

6 Επειδή Π = Αυ η (3.8) γράφεται και ή Π = σταθερό (3.9) Η σχέση (3.9) ισχύει για σωλήνα αλλά και για φλέβα και διατυπώνεται ως εξής : Κατά μήκος ενός σωλήνα ή μιας φλέβας η παροχή διατηρείται σταθερή. Σχ. 3.9 Η ταχύτητα ροής είναι μεγαλύτερη εκεί που πυκνώνουν οι ρευματικές γραμμές. Από τη σχέση (3.8) φαίνεται ότι κατά μήκος ενός σωλήνα που δεν έχει σταθερή διατομή, η ταχύτητα του υγρού δεν είναι παντού ίδια. Σε σημεία όπου ο σωλήνας στενεύει η ταχύτητα ροής είναι πιο μεγάλη. Κατά μήκος ενός ποταμού με σταθερό πλάτος πολλές φορές το βάθος ποικίλει. Όπου το ποτάμι έχει μικρό βάθος έχει και μικρή εγκάρσια διατομή. Επειδή η παροχή είναι σταθερή, στις περιοχές όπου το ποτάμι είναι ρηχό το νερό κυλάει γρηγορότερα. Παραστατικά μπορούμε να πούμε ότι εκεί που οι ρευματικές γραμμές πυκνώνουν η ταχύτητα ροής είναι πιο μεγάλη (σχ. 3.9). ΠΑΡΑΔΕΙΓΜΑ 3-2 Ένας κυλινδρικός σωλήνας συνδέεται με βρύση παροχής α) Εάν ο σωλήνας έχει διάμετρο 3 cm ποια η ταχύτητα ροής του νερού μέσα στο σωλήνα; β) Με τι ταχύτητα εκτοξεύεται το νερό αν μειώσουμε με το δάχτυλο μας, στο μισό, τη διατομή του σωλήνα; Απάντηση : α) β) 3-5 Η ΔΙΑΤΗΡΗΣΗ ΕΝΕΡΓΕΙΑΣ ΚΑΙ Η ΕΞΙΣΩΣΗ TOY BERNOULLI (ΜΠΕΡΝΟΥΛΙ) Από την καθημερινή μας εμπειρία γνωρίζουμε ότι η πίεση ενός ρευστού που ρέει μέσα σε ένα σωλήνα είναι, εν γένει, διαφορετική ανάμεσα σε δύο σημεία που έχουν υψομετρική διαφορά. Το νερό στις βρύσες του πέμπτου ορόφου έχει μικρότερη πίεση από το νερό στις βρύσες του ισογείου. Σε ένα σωλήνα που η διατομή του δεν είναι παντού ίδια, η ταχύτητα του υγρού μεταβάλλεται (εξίσωση της συνέχειας). Δηλαδή μια μικρή μάζα Am του υγρού σε άλλες περιοχές του σωλήνα επιταχύνεται και σε άλλες επιβραδύνεται. Στις περιπτώσεις αυτές η συνολική δύναμη που δέχεται αυτή η μάζα από το περιβάλλον υγρό δεν είναι μηδενική και κατά συνέπεια η πίεση δε μπορεί να είναι ίδια σε όλες τις περιοχές του σωλήνα. Το 1738 ο Ελβετός Daniel Bernoulli βρήκε μια σχέση που συνδέει την πίεση με την ταχύτητα και με το ύψος.

7 Έστω ότι έχουμε ένα σωλήνα μεταβλητής διατομής μέσα στον οποίο ρέει ένα ασυμπίεστο ρευστό (σχ. 3.10). Θα εξετάσουμε την πίεση σε δύο σημεία Β, Γ, του σωλήνα. Το σημείο Β βρίσκεται σε ύψος y1 από το έδαφος και ο σωλήνας έχει στην περιοχή του Β διατομή Α,. Η πίεση του ρευστού στο Β είναι ρ1. Το σημείο Γ βρίσκεται σε ύψος y 2 από το έδαφος, η διατομή του σωλήνα εκεί είναι Α 2 και η πίεση ρ 2. Αν θεωρήσουμε σαν σύστημα το ρευστό από το Β μέχρι το Γ, βλέπουμε ότι δέχεται από το υπόλοιπο ρευστό μια δύναμη ρ1α 1 στην περιοχή του Β και μια δύναμη, την στην περιοχή του Γ, με φορά αντίθετη με τη φορά της Σ' ένα πολύ μικρό χρονικό διάστημα At ένα στοιχειώδες τμήμα του ρευστού στην περιοχή του Β μετατοπίζεται κατά Δs1 ενώ ένα αντίστοιχο τμήμα του ρευστού ίσης μάζας, άρα και όγκου, στην περιοχή του Γ μετατοπίζεται κατά Εικ. 3.3 Daniel Bernoulli ( ). Ελβετός φυσικός και μαθηματικός, από οικογένεια διάσημων μαθηματικών. Η πιο φημισμένη του εργασία ήταν πάνω στην υδροδυναμική. Οι μελέτες του Bernoulli πάνω στα ρευστά αποτέλεσαν την απαρχή της κινητικής θεωρίας των αερίων. Ο Bernoulli τιμήθηκε πολύ στη διάρκεια της ζωής του με σειρά από αξιώματα και θέσεις στα πανεπιστήμια της εποχής του. Σχ Ασυμπίεστο ρευστό ρέει με στρωτή ροή μέσα σε ένα σωλήνα. Το ρευστό που βρίσκεται στο μέρος του σωλήνα με μήκος Δs1 μετακινείται στο μέρος του σωλήνα που έχει μήκος ΔAs 2. Οι όγκοι του ρευστού στα δύο μέρη είναι ίσοι. Θα εφαρμόσουμε το θεώρημα έργου - ενέργειας στο μικρό χρονικό διάστημα At. Σύμφωνα με αυτό (3.10) όπου W το έργο που προσφέρεται στο τμήμα του ρευστού από το Β στο Γ από το περιβάλλον ρευστό. Το έργο αυτό θα είναι το έργο της δύναμης ρ1α ] (θετικό) συν το έργο της ρ Ί Α 2 Όμως Οπότε (αρνητικό) Το έργο του βάρους στο ίδιο χρονικό διάστημα είναι (3.11) (3.12) καθώς, στην ουσία, ένα τμήμα του ρευστού Am έφυγε από το ύψος y l και βρέθηκε στο ύψος y 2. Η μεταβολή της κινητικής ενέργειας θα είναι (3.13)

8 όπου υ, η ταχύτητα του ρευστού στο Β και υ 2 η ταχύτητα του ρευστού στο Γ. Αντικαθιστώντας τις (3.11), (3.12) και (3.13) στη σχέση (3.10) έχουμε Απλοποιούμε τα ΔV και αναδιατάσσοντας την εξίσωση έχουμε Η σχέση αυτή ισχύει για οποιοδήποτε ζεύγος σημείων άρα μπορεί να γραφτεί και με τη μορφή Η παραπάνω σχέση είναι η εξίσωση του Bernoulli για ιδανικό ρευστό. Από την εξίσωση του Bernoulli προκύπτει ότι το άθροισμα της πίεσης (ρ), της κινητικής ενέργειας ανά μονάδα όγκου και της δυναμικής ενέργειας ανά μονάδα όγκου (pgy) έχει την ίδια σταθερή τιμή σε οποιοδήποτε σημείο της ρευματικής γραμμής. Η εξίσωση του Bernoulli αποτελεί έκφραση της αρχής διατήρησης της ενέργειας στη ροή των ρευστών. Αν ο σωλήνας είναι οριζόντιος η εξίσωση του Bernoulli παίρνει τη μορφή από όπου φαίνεται ότι σε περιοχές όπου πυκνώνουν οι ρευματικές γραμμές (μικρή διατομή του σωλήνα) και η ταχύτητα ροής αυξάνεται, η πίεση ελαττώνεται. Σχ Στο στενό μέρος του σωλήνα η ταχύτητα του υγρού είναι μεγαλύτερη. Το ύψος της στάθμης του υγρού πάνω από την περιοχή αυτή δείχνει ότι η πίεση στο σωλήνα είναι μικρότερη. Σχ ΕΦΑΡΜΟΓΗ 3-1 Γιατί ο δυνατός άνεμος παρασέρνει τις στέγες των σπιτιών; 0 δυνατός άνεμος όταν συναντά το σπίτι (σχ. 3.12) περνά πάνω από αυτό, με αποτέλεσμα η φλέβα του αέρα να στενεύει στη θέση Σ 2 πάνω από τη στέγη, άρα η ταχύτητά του υ 2 να είναι μεγαλύτερη από τις ταχύτητες υ, και υ 3 που έχει στις θέσεις Σ1 και Σ 3, αντίστοιχα, πριν και μετά απ' αυτήν (εξίσωση συνέχειας). Επειδή στη θέση Σ 2 η ταχύτητα του ανέμου είναι μεγαλύτερη από την ταχύτητα στις θέσεις Σ1 και Σ 3, σύμφωνα με το νόμο του Bernoulli η πίεση Σχ.3.12

9 στο Σ 2 θα είναι μικρότερη από αυτήν στις θέσεις Σ, και Σ 3. Η πίεση πάνω από τη στέγη θα είναι ακόμη μικρότερη από αυτήν που επικρατεί στο εσωτερικό του σπιτιού όπου ο αέρας είναι ακίνητος. Η ισορροπία δυνάμεων που διατηρεί τη στέγη στη θέση της διαταράσσεται, με αποτέλεσμα η στέγη να τείνει να ανυψωθεί. ΕΦΑΡΜΟΓΗ 3-2 Θεώρημα Torricelli (Υπολογισμός ταχύτητας εκροής υγρού από ανοικτό δοχείο) Έστω ότι έχουμε το δοχείο του σχήματος 3.13 στη βάση του οποίου υπάρχει στόμιο εκροής. Εφαρμόζουμε το νόμο του Bernoulli για τις θέσεις Ε (ελεύθερη επιφάνεια) και Κ (στόμιο εκροής): (3.14) Η πίεση τόσο στην ελεύθερη επιφάνεια όσο και στο σημείο εξόδου είναι η ατμοσφαιρική, δηλαδή : Σχ (3.15) Η ταχύτητα με την οποία κατεβαίνει η στάθμη του υγρού μπορεί να θεωρηθεί αμελητέα συγκριτικά με την ταχύτητα με την οποία ρέει το νερό στο Κ (3.16) Λαμβάνοντας υπόψη τις (3.15) και (3.16) και επιλύοντας την (3.14) ως προς υ κ βρίσκουμε που αποτελεί τη μαθηματική έκφραση του θεωρήματος του Torricelli (Τορικέλι). Η ταχύτητα εκροής υγρού από στόμιο που βρίσκεται σε βάθος h από την ελεύθερη επιφάνειά του είναι ίση με την ταχύτητα που θα είχε το υγρό αν έπεφτε ελεύθερα από ύψος Λ. ΕΦΑΡΜΟΓΗ 3-3 Ποια δύναμη ανυψώνει τα αεροπλάνα; Οι πτέρυγες των αεροπλάνων είναι έτσι σχεδιασμένες ώστε, όταν κινούνται, οι ρευματικές γραμμές του αέρα να παρουσιάζουν πύκνωση στο επάνω μέρος τους και αραίωση στο κάτω (σχ. 3.14). Η πίεση στο άνω μέρος των πτερύγων είναι μικρότερη από αυτήν στο κάτω μέρος. Η δύναμη που δέχονται οι πτέρυγες λόγω αυτής της διαφοράς πίεσης λέγεται αεροδύναμη ενώ η κατακόρυφη συνιστώσα της λέγεται δυναμική άνωση. Οι πιέσεις που αναπτύσσονται είναι συνάρτηση της ταχύτητας του ρευ- στού, στην περίπτωσή μας του αέρα, ή, αν το δούμε αντίστροφα, της ταχύτητας του αεροπλάνου ως προς τον αέρα. Σχ Αν η ταχύτητα του αεροπλάνου είναι τέτοια ώστε η δυναμική άνωση που προκύπτει να είναι μεγαλύτερη από το βάρος του αεροπλάνου, το αεροπλάνο ανυψώνεται. Στην πραγματικότητα το φαινόμενο είναι πολυπλοκότερο. Η ροή του αέρα πάνω και κάτω από τις πτέρυγες είναι τυρβώδης και για να υπολογισθεί ακριβέστερα η δυναμική άνωση απαιτούνται πολύπλοκοι υπολογισμοί.

10 ΠΑΡΑΔΕΙΓΜΑ 3-3 Το ροόμετρο του Ventouri. Το σχήμα 3.15 δείχνει μία διάταξη που χρησιμεύει για τη μέτρηση της ταχύτητας ροής σε ένα σωλήνα. Αν είναι γνωστές οι διατομές Α1 και Α 2, του σωλήνα και η υψομετρική διαφορά h στη στάθμη των δύο κατακόρυφων ανοιχτών σωλήνων Β και Γ, να βρεθεί η ταχύτητα ροής στην περιοχή του σωλήνα που έχει διατομή Α1. Απάντηση : Σχ Εφαρμόζοντας την εξίσωση του Bernoulli στα σημεία 1 και 2 που βρίσκονται στο ίδιο ύψος έχουμε (3.17) Από την εξίσωση της συνέχειας έχουμε ότι (3.18) Αντικαθιστώντας την (3.18) στην (3.17) έχουμε (3.19) Όμως (3.20) όπου h1 το ύψος της στήλης του νερού πάνω από το σωλήνα μετρημένο από το σημείο 1 και h 2 το ύψος της στήλης του νερού μετρημένο από το σημείο 2. Αφαιρώντας κατά μέλη τις (3.20) παίρνουμε Αντικαθιστώντας στην (3.19) την (3.21) (3.21) βρίσκουμε και τελικά 3-6 Η ΤΡΙΒΗ ΣΤΑ ΡΕΥΣΤΑ Μέχρι τώρα θεωρήσαμε ότι τα ρευστά ρέουν χωρίς να αναπτύσσονται δυνάμεις τριβής στο εσωτερικό τους, δηλαδή δυνάμεις που να αντιτίθενται στην κίνηση ενός τμήματος του ρευστού ως προς ένα άλλο τμήμα του. Στα πραγματικά ρευστά οι δυνάμεις αυτές υπάρχουν κι έχουν πολύ σημαντικές πρακτικές εφαρμογές, όπως για παράδειγμα στη λίπανση των τμημάτων μιας μηχανής που θα ήταν αδύνατη αν το λιπαντικό δεν παρουσίαζε κατά τη ροή του τέτοιες δυνάμεις.

11 Η εσωτερική τριβή μέσα σ' ένα ρευστό ονομάζεται ιξώδες. Ας θεωρήσουμε δύο γυάλινες οριζόντιες πλάκες εμβαδού Α όπως στο σχήμα Σταθεροποιούμε την κάτω πλάκα και απλώνουμε πάνω της ένα στρώμα από μέλι πάχους l. Στη συνέχεια τοποθετούμε τη δεύτερη πλάκα πάνω στο μέλι και τη μετακινούμε με σταθερή ταχύτητα υ σε σχέση με την κάτω ακίνητη πλάκα. Διαπιστώνουμε ότι για να συνεχιστεί η κίνηση απαιτείται να ασκηθεί κάποια δύναμη F. Η δύναμη αυτή απαιτείται για να αντισταθμίσει τις τριβές (ιξώδες), που αναπτύσσονται μεταξύ των στρωμάτων του μελιού που κινούνται το ένα σε σχέση με το άλλο. Βλέπουμε ότι το ανώτερο στρώμα έχει προσκολληθεί στην πάνω πλάκα και κινείται με ταχύτητα υ ενώ το κατώτερο έχει προσκολληθεί στην κάτω πλάκα και παραμένει ακίνητο. Όλα τα ενδιάμεσα στρώματα έχουν ταχύτητες διαφορετικές μεταξύ τους, που αυξάνουν σταδιακά από 0 έως υ καθώς πηγαίνουμε από την κάτω πλάκα προς την πάνω. Εάν αντικαταστήσουμε το μέλι με ένα άλλο ρευστό που ρέει ευκολότερα, για παράδειγμα το λάδι, διαπιστώνουμε ότι η δύναμη που πρέπει να ασκούμε στην πάνω πλάκα για να διατηρείται η ταχύτητά της σταθερή είναι μικρότερη. Επίσης η δύναμη είναι μικρότερη εάν, για το ίδιο ρευστό, μεταξύ των πλακών αυξήσουμε το πάχος του /. Αντίθετα η δύναμη γίνεται μεγαλύτερη αν οι επιφάνειες των πλακών είναι μεγαλύτερες ή αν επιχειρήσουμε να μετακινήσουμε την πάνω πλάκα με μεγαλύτερη ταχύτητα. Αποδεικνύεται ότι το μέτρο της δύναμης F δίνεται από τη σχέση Σχ Στρώμα υγρού που περιέχεται μεταξύ δύο γυάλινων οριζόντιων πλακών, από τις οποίες η κάτω είναι ακίνητη ενώ η επάνω κινείται με ταχύτητα υ. Σχ Διάγραμμα ταχυτήτων για ένα ρευστό σε κυλινδρικό σωλήνα ακτίνας R. (3.22) 0 συντελεστής η είναι χαρακτηριστικός κάθε ρευστού ονομάζεται συντελεστής ιξώδους και όπως φαίνεται και από την (3.22), στο S.I., μετριέται σε Στην πράξη ο συντελεστής ιξώδους μετριέται σε poise (πουάζ) Παρακάτω παραθέτουμε έναν πίνακα με το συντελεστή ιξώδους διαφόρων ρευστών. Ρευστό θ ( C) Νερό 20 Νερό 100 Αίμα 37 Γλυκερίνη 20 Μηχανέλαιο (δεκάρι) 30 Συντελεστής Ιξώδους η (Ns/m 2 ) Πρέπει να πούμε ότι δεν υπακούουν όλα τα ρευστά στην εξίσωση (3.22). Δεν υπάρχει σε όλα τα ρευστά γραμμική αναλογία ανάμεσα στην εσωτερική τριβή που παρουσιάζουν κατά τη ροή τους και την ταχύτητα ροής. Τα ρευστά που υπακούουν στην (3.22) τα ονομάζουμε νευτώνεια ρευστά. Το αίμα παρουσιάζει κάποια ενδιαφέρουσα ιδιαιτερότητα. Το αίμα είναι ένα αιώρημα στερεών σωματιδίων μέσα σε υγρό. Καθώς αυξάνει η ταχύτητα ροής, για να μην αυξηθούν υπέρμετρα οι εσωτερικές τριβές, τα σωματίδια παραμορφώνονται και προσανατολίζονται με τέτοιο τρόπο ώστε να διευκολύνουν τη ροή.

12 ΣΥΝΟΨΗ Τα υγρά και τα αέρια τα ονομάζουμε με έναν όρο ρευστά. Συμπιεστά λέγονται τα ρευστά των οποίων η πυκνότητα μεταβάλλεται αν μεταβληθεί η πίεση τους για δεδομένη θερμοκρασία. Ασυμπίεστα λέγονται τα ρευστά των οποίων η πυκνότητα δε μεταβάλλεται αν μεταβληθεί η πίεσή τους πάλι για μια δεδομένη θερμοκρασία. Η πίεση που δημιουργεί ένα εξωτερικό αίτιο σε κάποιο σημείο του υγρού μεταφέρεται αναλλοίωτη σε όλα τα σημεία του. (Νόμος του Pascal). Η πίεση στο εσωτερικό ενός ακίνητου ρευστού σε σχέση με το βάθος από την ελεύθερη επιφάνεια του δίνεται από την εξίσωση Ένα ρευστό θα θεωρείται ιδανικό 1. Αν κινείται χωρίς εσωτερικές τριβές και τριβές με τα τοιχώματα του σωλήνα που το περιορίζει. 2. Αν το ρευστό είναι ασυμπίεστο. Για όλα τα σημεία μιας φλέβας ρευστού η παροχή είναι σταθερή, (εξίσωση συνέχειας) Η εξίσωση συνέχειας εκφράζει την αρχή διατήρησης της ύλης στο ρευστό. Το άθροισμα της πίεσης, της κινητικής ενέργειας ανά μονάδα όγκου και της δυναμικής ενέργειας ανά μονάδα όγκου έχει την ίδια σταθερή τιμή σε οποιοδήποτε σημείο της ρευματικής γραμμής. (εξίσωση του Bernoulli) Η εξίσωση του Bernoulli αποτελεί έκφραση της αρχής διατήρησης της ενέργειας στη ροή των ρευστών. Η εσωτερική τριβή ενός ρευστού ονομάζεται ιξώδες. Το μέτρο της συνισταμένης των εσωτερικών τριβών που αναπτύσσονται στο ρευστό κατά τη ροή του δίνεται από τη σχέση όπου η συντελεστής ιξώδους.

13 1. Κρατήστε στα χέρια σας δύο φύλλα χαρτιού ώστε να κρέμονται κατακόρυφα, με τις επιφάνειές τους παράλληλες. Φυσήξτε ανάμεσά τους. Θα τα δείτε να πλησιάζουν. Πώς εξηγείται το φαινόμενο; 2. Τοποθετήστε την άκρη μίας χάρτινης λουρίδας ανάμεσα στις σελίδες ενός βιβλίου. Κρατήστε το βιβλίο όπως στο σχήμα 3.18 και φυσήξτε με δύναμη πάνω από τη χάρτινη λουρίδα. Η λουρίδα ανυψώνεται και μάλιστα περισσότερο όταν φυσάμε πιο δυνατά. Τι εξήγηση δίνετε; 3. Στην άκρη ενός νήματος στερεώστε ένα μπαλάκι του πινγκ-πονγκ. Σχ Κρατώντας την άλλη άκρη του σχοινιού πλησιάστε το μπαλάκι κοντά στο νερό μιας βρύσης. Το μπαλάκι κινείται προς τη μεριά της φλέβας του νερού; Πώς εξηγείται αυτό; 4. Τοποθετήστε ένα καλαμάκι μέσα σε ένα ποτήρι με νερό (σχ. 3.19). Με ένα άλλο καλαμάκι φυσήξτε στη πάνω άκρη του πρώτου. Θα προκληθεί ψεκασμός. Πώς εξηγείται το φαινόμενο; Είναι το ίδιο εύκολος ο ψεκασμός όποια και αν είναι η απόσταση h; Ελέγξτε το πειραματικά. Πώς το αιτιολογείτε; ΕΡΩΤΗΣΕΙΣ Σχ Υδροστατική πίεση - αρχή του Pascal 3.1 Συμπληρώστε τα κενά : Ασυμπίεστο χαρακτηρίζεται ένα ρευστό στο οποίο η του δε μεταβάλλεται όταν μεταβάλλεται η του. Στην πράξη ασυμπίεστα ρευστά θεωρούμε τα 3.2 Για ποιο λόγο τα φράγματα στις τεχνητές λίμνες κατασκευάζονται σχετικά λεπτά στην κορυφή τους και πολύ φαρδιά στη βάση τους; 3.3 Στο σχήμα 3.20 φαίνονται τέσσερα δοχεία διαφορετικού σχήματος που οι βάσεις τους έχουν το ίδιο εμβαδόν. α) Ποιο δοχείο περιέχει περισσότερο υγρό; β) Συγκρίνατε τις πιέσεις στον πυθμένα των δοχείων. Σχ. 3.20

14 Σχ Στο σχήμα 3.21 φαίνεται ένα υδραυλικό πιεστήριο (αρχή). Ασκούμε στο μικρό έμβολο δύναμη μέτρου F1. 1) Η πίεση στα σημεία Α και Β του υγρού θα αυξηθεί α) κατά το ίδιο ποσό β) περισσότερο στο Α γ) περισσότερο στο Β. 2) Το μέτρο της δύναμης F 2 που θα ασκήσει το υγρό στο μεγάλο έμβολο θα είναι α) ίσο με F1 β) μεγαλύτερο από F 1 γ) μικρότερο από F1. 3) Το έργο της F 2 θα είναι α) ίσο με το έργο της F1 β) μεγαλύτερο από το έργο της F1 γ) μικρότερο από το έργο της F1. Επιλέξτε τις σωστές προτάσεις. Η εξίσωση της συνέχειας 3.5 Συμπληρώστε τις λέξεις που λείπουν : Ένα ρευστό χαρακτηρίζεται ιδανικό αν δεν εμφανίζει τριβές και με τα τοιχώματα του σωλήνα που το περιέχει. Επίσης πρέπει να είναι 3.6 Η φλέβα του νερού της βρύσης γίνεται στενότερη καθώς πέφτει. Εξηγήστε γιατί συμβαίνει αυτό. 3.7 Στο σχήμα 3.22 δίνονται οι παροχές (σε m 3 /s) και οι κατευθύνσεις στις οποίες κινείται το υγρό σε ορισμένες περιοχές του σωλήνα. Ποια είναι η παροχή του σωλήνα και η κατεύθυνση στην οποία κινείται το υγρό στην περιοχή του σημείου Α; Σχ Ένα ποτάμι έχει σταθερό πλάτος. Εξηγήστε γατί όπου το ποτάμι είναι ρηχό το νερό κινείται πιο γρήγορα. Η παροχή του ποταμού σε μια τέτοια περιοχή είναι μεγαλύτερη από την παροχή του σε περιοχές που το βάθος είναι μεγαλύτερο; Σχ Η διατομή του σωλήνα στην περιοχή Α είναι τετραπλάσια της διατομής του στην περιοχή Β. 1) Σε ένα δευτερόλεπτο από τη διατομή Α διέρχονται 8 cm 3. Στον ίδιο χρόνο από τη διατομή Β διέρχονται α) 8 cm 3 β) 16cm 3 γ) 32 cm 3 δ) 4 cm 3 ε) 2 cm 3 2) Η ταχύτητα υ1 του υγρού στην περιοχή Α είναι 10 cm/s. Η ταχύτητα στην περιοχή Β είναι α) 2,5 cm/s β) 5 cm/s γ) 10 cm/s δ) 20 cm/s ε) 40 cm/s. Επιλέξτε τη σωστή απάντηση σε κάθε περίπτωση.

15 3.10 Όταν θέλουμε να φτάσει μακριά το νερό που βγαίνει από το λάστιχο του ποτίσματος κλείνουμε με το δάχτυλο μας ένα μέρος της διατομής του ή πιέζουμε την άκρη του. Πώς εξηγείται αυτό; Η εξίσωση του Bernoulli 3.11 Τα πλοία δεν επιτρέπεται να κινούνται παράλληλα, σε μικρή μεταξύ τους απόσταση, γιατί «το ρεύμα τα σπρώχνει να πλησιάσουν πιο πολύ και υπάρχει κίνδυνος να συγκρουστούν». Πώς δικαιολογείται αυτή η πρόταση; 3.12 Εξηγήστε γιατί η στάθμη του νερού στο σωλήνα Β είναι πιο χαμηλά από ό,τι στους σωλήνες Α και Γ. Σχ Γιατί οι πιλότοι προτιμούν να απογειώνουν τα αεροπλάνα αντίθετα στον άνεμο; 3.14 Ένα αεροπλάνο που πετάει με σταθερή οριζόντια ταχύτητα σε ύψος h δέχεται δυναμική άνωση A1. Το ίδιο αεροπλάνο όταν πετάει με την ίδια ταχύτητα σε ύψος 2h δέχεται δυναμική άνωση Α 2 για την οποία ισχύει: Επιλέξτε τη σωστή απάντηση Το σχήμα παριστάνει ένα σωλήνα μέσα στον οποίο ρέει νερό. Ταξινομήστε τα σημεία Α,Β, Γ και Δ κατά τη σειρά με την οποία α) αυξάνεται η ταχύτητα ροής του νερού. β) αυξάνεται η πίεση Συμπληρώστε τις προτάσεις : Σύμφωνα με το νόμο του Bernoulli το άθροισμα της πίεσης, της ενέργειας και ενέργειας ανά μονάδα όγκου έχει την ίδια τιμή σε κάθε σημείο κατά μήκος μιας ρευματικής γραμμής. 0 νόμος του Bernoulli είναι έκφραση της αρχής στα ρευστά Μέχρι ποιο ύψος θα φτάσει ο πίδακας του νερού; Θεωρήστε ότι η επιφάνεια του νερού στο δοχείο είναι πολύ μεγάλη και ότι η αντίσταση του αέρα είναι αμελητέα.. Αιτιολογήστε την απάντηση σας. Σχ Σχ. 3.26

16 Νόμος του Pascal - Υδροστατική πίεση 3.18 Το μικρό έμβολο υδραυλικού ανυψωτήρα που χρησιμοποιείται για την ανύψωση αυτοκινήτων έχει διατομή εμβαδού 3 cm 2 ενώ το μεγάλο έχει διατομή εμβαδού 200 cm 2. Πόση δύναμη πρέπει να ασκηθεί στο μικρό έμβολο ώστε το μεγάλο να ανυψώσει ένα αυτοκίνητο βάρους Ν; [Απ: 150 Ν] Εξίσωση συνέχειας 3.19 Η ταχύτητα με την οποία ρέουν τα νερά ενός ποταμού σταθερού πλάτους σε ένα σημείο όπου το μέσο βάθος είναι νερά τρέχουν με ταχύτητα [ Απ : 6,5 m ] είναι. Πόσο είναι το μέσο βάθος σ' ένα άλλο σημείο όπου τα 3.20 Η παροχή ενός πυροσβεστικού κρουνού είναι Το λάστίχο της πυροσβεστικής καταλήγει στο ελεύθερο του άκρο σ' ένα στένωμα εσωτερικής διαμέτρου 2,2 cm. Με τι ταχύτητα εκτοξεύεται το νερό από το στένωμα; [ Απ : 31,6 m/s ] Εξίσωση του Bernoulli 3.21 Από το πλευρικό άνοιγμα μιας ανοιχτής δεξαμενής βγαίνει νερό με ταχύτητα 8,86 m/s. Με πόση ταχύτητα θα βγαίνει αν η πίεση στην ελεύθερη επιφάνεια γίνει 2 atm; Δίνεται η πυκνότητα του νερού [Απ : 16,76 m/s ] και ότι 3.22 Κατά τη διάρκεια καταιγίδας ο αέρας κινείται πάνω από τη στέγη ενός σπιτιού με ταχύτητα 108 km/h. Ποια η διαφορά στην πίεση κάτω και πάνω από τη στέγη; Υπολογίστε την ανυψωτική δύναμη που δέχεται η στέγη. Η στέγη είναι επίπεδη και έχει εμβαδόν Α=100 m 2. Θεωρήστε την πυκνότητα του αέρα σταθερή και ίση με 1,2 kg/m 3.

17 ΠΡΟΒΛΗΜΑΤΑ 3.23 Η φλέβα του νερού της βρύσης γίνεται στενότερη καθώς το νερό πέφτει. Η διατομή της φλέβας είναι κοντά στο στόμιο της βρύσης και σε απόσταση h=a cm από αυτό. Υπολογίστε την παροχή της βρύσης. Δίνεται 3.24 Ανοικτή δεξαμενή που περιέχει νερό έχει στο πλευρικό τοίχωμά της, σε βάθος h = 1,8 m κάτω από την ελεύθερη επιφάνεια του υγρού, βρύση διατομής Πόση ώρα χρειάζεται για να γεμίσουμε ένα δοχείο όγκου 1 L από τη βρύση; Δίνεται [ Απ : 3,33 s ] 3.25 Νερό ρέει σε οριζόντιο σωλήνα (σχ. 3.27). Η διατομή του σωλήνα στη θέση Α είναι και στη θέση Β γίνεται Η παροχή του σωλήνα είναι Να βρείτε τη διαφορά της πίεσης του νερού ανάμεσα στα σημεία Α και Β. Δίνεται η πυκνότητα του νερού [Απ: 6000 Pa] 3.26 Νερό που κινείται μέσα σε οριζόντιο σωλήνα (σχ. 3.28) βγαίνει από το άκρο Α με ταχύτητα Το εμβαδόν διατομής του σωλήνα στα σημεία Α και Β είναι 16 cm 2 και 20 cm 2, αντίστοιχα. α) Πόσα m 3 νερού δίνει ο σωλήνας σε μία ώρα; β) Ποια η πίεση στο σημείο Β; Η πυκνότητα του νερού είναι Θεωρήστε ότι η ατμοσφαιρική πίεση είναι [Απ: 57,6 m 3, 118 kpa ] Σχ Σχ Μια αντλία χρησιμοποιείται για την άντληση νερού από πηγάδι βάθους 5m. Το νερό βγαίνει από την αντλία με σωλήνα διατομής 10 cm 2 και με ταχύτητα u=20 m/s. Υπολογίστε την ισχύ της αντλίας. Δίνεται η πυκνότητα του νερού [Απ: 5kW ] 3.28 Μια ανοιχτή δεξαμενή νερού, μεγάλου όγκου, βρίσκεται ψηλά πάνω από το έδαφος(σχ. 3.29). Όταν χρησιμοποιούμε το νερό της δεξαμενής η ταχύτητα του νερού, σε κάποιο σημείο Α, στο σωλήνα που βρίσκεται στο έδαφος είναι υ=12 m/s. Υπολογίστε την πίεση στο σημείο Α. Δίνεται ότι η στάθμη του νερού βρίσκεται σε ύψος h= 10 m πάνω από το έδαφος. Η πυκνότητα του νερού είναι η επιτάχυνση της βαρύτητας και η ατμοσφαιρική πίεση Σχ. 3.29

18 3.29 Στο δοχείο Δ πέφτει συνέχεια νερό από τη βρύση Β (σχ. 3.30). Το δοχείο δε μπορεί να γεμίσει επειδή χύνεται νερό από το πλευρικό άνοιγμα Α. Αν η παροχή της βρύσης είναι και το εμβαδόν του ανοίγματος 1 cm 2, να βρείτε σε ποιο ύψος h πάνω από το σημείο Α θα σταθεροποιηθεί η ελεύθερη επιφάνεια. Δίνεται [Απ: 24,2 cm ] Σχ Ένα δοχείο με κατακόρυφα τοιχώματα (σχ. 3.31) περιέχει νερό μέχρι ύψος h. Σε ποιο ύψος (χ) από τον πυθμένα πρέπει να τρυπήσουμε το δοχείο, ώστε η φλέβα που θα δημιουργηθεί να συναντά το έδαφος στη μεγαλύτερη δυνατή απόσταση από τη βάση του δοχείου; [Απ: x=h/2 ] Σχ Ποσότητα νερού είναι αποθηκευμένη σε ανοικτό κυλινδρικό δοχείο. Το ύψος του νερού στο δοχείο είναι h = 1 m.το δοχείο έχει μικρή τρύπα στο πλευρικό του τοίχωμα και σε απόσταση 20 cm κάτω από την ελεύθερη επιφάνεια του νερού. Να υπολογίσετε: α) Την ταχύτητα με την οποία βγαίνει το νερό από την τρύπα. β) Πόσο απέχει από το δοχείο το σημείο του δαπέδου στο οποίο φτάνει η φλέβα του νερού. γ) Σε ποιο ύψος από τη βάση του δοχείου πρέπει να ανοιχτεί δεύτερη τρύπα στο πλευρικό τοίχωμα ώστε η φλέβα του νερού που θα βγαίνει από αυτή να πέφτει στο ίδιο σημείο με την προηγούμενη. δ) Σε ποιο ύψος από τη βάση του κυλίνδρου πρέπει να ανοίξουμε τρύπα ώστε η φλέβα του νερού να φτάνει στο δάπεδο στη μεγαλύτερη δυνατή απόσταση από το δοχείο. Δίνεται [ Απ: 2 m/s, 0,8 m, 0,2 m, 0,5 m ]

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Ρευστά Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscourses.wordpress.com Βασικές έννοιες Πρώτη φορά συναντήσαμε τη φυσική των ρευστών στη Β Γυμνασίου. Εκεί

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διάρκεια: 3 ώρες Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν

Διαβάστε περισσότερα

θα πρέπει να ανοιχθεί μια δεύτερη οπή ώστε το υγρό να εξέρχεται από αυτήν με ταχύτητα διπλάσιου μέτρου.

θα πρέπει να ανοιχθεί μια δεύτερη οπή ώστε το υγρό να εξέρχεται από αυτήν με ταχύτητα διπλάσιου μέτρου. Δίνονται g=10m/s 2, ρ ν =1000 kg/m 3 [u 2 =3u 1, 10 3 Pa, 0,5m/s] ΚΕΦΑΛΑΙΟ 3 ο : ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ ΕΝΟΤΗΤΑ 3: Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ Η ΕΞΙΣΩΣΗ BERNOULLI 16 Το ανοικτό δοχείο του σχήματος περιέχει

Διαβάστε περισσότερα

3-1ΕΙΣΑΓΩΓΗ Οι φυσικοί και οι μηχανικοί αποδίδουν το χαρακτηρισμό «ρευστά» στα υγρά

3-1ΕΙΣΑΓΩΓΗ Οι φυσικοί και οι μηχανικοί αποδίδουν το χαρακτηρισμό «ρευστά» στα υγρά Αρχή του Pascal Εξίσωση συνέχειας Εξίσωση Bernoulli Τριβή στα ρευστα Ερωτήσεις-Ασκήσεις 3-1ΕΙΣΑΓΩΓΗ Οι φυσικοί και οι μηχανικοί αποδίδουν το χαρακτηρισμό «ρευστά» στα υγρά και τα αέρια σώματα, τα οποία

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά του δοχείου δείχνει πίεση Ρ1 = 1,2 10 5 N / m 2 (ή Ρα).

Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά του δοχείου δείχνει πίεση Ρ1 = 1,2 10 5 N / m 2 (ή Ρα). 1. Το κυβικό δοχείο του σχήματος ακμής h = 2 m είναι γεμάτο με υγρό πυκνότητας ρ = 1,1 10³ kg / m³. Το έμβολο που κλείνει το δοχείο έχει διατομή Α = 100 cm². Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά

Διαβάστε περισσότερα

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής 501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης

Διαβάστε περισσότερα

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του 301 Κινηματική ρευστών Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του Είδη ροής α) Σταθερή ή μόνιμη = όταν σε κάθε σημείο του χώρου οι συνθήκες ροής, ταχύτητα, θερμοκρασία, πίεση και πυκνότητα,

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 10 Μηχανική των ρευστών

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 10 Μηχανική των ρευστών Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 10 Μηχανική των ρευστών ΦΥΣ102 1 Πυκνότητα Πυκνότητα είναι η μάζα ανά μονάδα όγκου,

Διαβάστε περισσότερα

Μεθοδολογίες στην Μηχανική των Ρευστών

Μεθοδολογίες στην Μηχανική των Ρευστών Μεθοδολογίες στην Μηχανική των Ρευστών η Μεθοδολογία: «Ανυψωτήρας» Το υγρό του δοχείου κλείνεται με δύο έμβολα που βρίσκονται στην ίδια οριζόντιο. Στο έμβολο με επιφάνεια Α ασκείται δύναμη F. ον Η F ασκεί

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:

Διαβάστε περισσότερα

κάθετη δύναμη εμβαδόν επιφάνειας Σύμβολο μεγέθους Ορισμός μεγέθους Μονάδα στο S.I.

κάθετη δύναμη εμβαδόν επιφάνειας Σύμβολο μεγέθους Ορισμός μεγέθους Μονάδα στο S.I. 4.1 Η πίεση ονομάζουμε το μονόμετρο φυσικό μέγεθος που ορίζεται ως το πηλίκο του μέτρου της συνολικής δύναμης που ασκείται κάθετα σε μια επιφάνεια προς το εμβαδόν της επιφάνειας αυτής. πίεση = κάθετη δύναμη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Π Ι Ε Σ Η. Ρευστά χαρακτηρίζονται τα σώματα που δεν έχουν δικό τους σχήμα (υγρά - αέρια) P 1 < P 2 P 3 < P 2 YΔΡΟΣΤΑΤΙΚΗ ΠΙΕΣΗ

ΚΕΦΑΛΑΙΟ 4 Π Ι Ε Σ Η. Ρευστά χαρακτηρίζονται τα σώματα που δεν έχουν δικό τους σχήμα (υγρά - αέρια) P 1 < P 2 P 3 < P 2 YΔΡΟΣΤΑΤΙΚΗ ΠΙΕΣΗ Π ί ε σ η ( Ρ ) ΚΕΦΑΛΑΙΟ 4 Π Ι Ε Σ Η : ονομάζουμε το πηλίκο της δύναμης που ασκείται κάθετα σε μια επιφάνεια προς το εμβαδόν της επιφάνειας αυτής. Ρ = F κ / Α Δηλαδή η πίεση που δέχεται μια επιφάνεια είναι

Διαβάστε περισσότερα

Γρηγόρης Δρακόπουλος. Φυσικός Ελληνογαλλική Σχολή Καλαμαρί. Επιλεγμένες ασκήσεις στη. Μηχανική Ρευστών. νω ν Φυσικών.

Γρηγόρης Δρακόπουλος. Φυσικός Ελληνογαλλική Σχολή Καλαμαρί. Επιλεγμένες ασκήσεις στη. Μηχανική Ρευστών. νω ν Φυσικών. Γρηγόρης Δρακόπουλος Φυσικός Ελληνογαλλική Σχολή Καλαμαρί Επιλεγμένες ασκήσεις στη Μηχανική Ρευστών Έ ν ω σ η Ε λ λ ή νω ν Φυσικών Θεσσαλονίκη 06 Ισορροπία υγρού Α. Στο διπλανό σχήμα, φαίνεται δοχείο που

Διαβάστε περισσότερα

Τι δεν είναι η πίεση!!!

Τι δεν είναι η πίεση!!! Τι δεν είναι η πίεση!!! Η πρώτη «θερινή» ανάρτησή μου στα ρευστά ήταν η Μερικές εισαγωγικές ερωτήσεις στα ρευστά. Μια προσπάθεια, μέσω κάποιων ερωτημάτων, να τεθεί ένα πλαίσιο αρχικών βασικών γνώσεων όσον

Διαβάστε περισσότερα

5 Μετρητές παροχής. 5.1Εισαγωγή

5 Μετρητές παροχής. 5.1Εισαγωγή 5 Μετρητές παροχής 5.Εισαγωγή Τρεις βασικές συσκευές, με τις οποίες μπορεί να γίνει η μέτρηση της ογκομετρικής παροχής των ρευστών, είναι ο μετρητής Venturi (ή βεντουρίμετρο), ο μετρητής διαφράγματος (ή

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΜΗΧΑΝΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΜΗΧΑΝΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Ρευστό: Ως ρευστό θα ορίζουμε κάθε ουσία με την ικανότητα να ρέει.από τις καταστάσεις της ύλης, στην κατηγορία αυτή θα ανήκουν τα αέρια και τα υγρά.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ Γ. α. υ 1 =0,2m/s, β. h 2 =12cm, γ. Δp=300Pa

ΘΕΜΑΤΑ Γ. α. υ 1 =0,2m/s, β. h 2 =12cm, γ. Δp=300Pa ΘΕΜΑΤΑ Γ Γ2.1 Νερό ρέει στο σωλήνα του σχήματος. Η διατομή του σωλήνα στο σημείο Α είναι Α 1 =10 2 m 2 και στο σημείο Β η ταχύτητα της φλέβας είναι υ 2 =8m/s. Η παροχή του σωλήνα είναι Π=4 10 2 m 3 /s.

Διαβάστε περισσότερα

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2 Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα σύστημα ελατηρίου - μάζας εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Αν τετραπλασιάσουμε την ολική ενέργεια της ταλάντωσης αυτού του συστήματος

Διαβάστε περισσότερα

Πίεση ΚΕΦΑΛΑΙΟ 4 Β ΓΥΜΝΑΣΙΟΥ

Πίεση ΚΕΦΑΛΑΙΟ 4 Β ΓΥΜΝΑΣΙΟΥ Πίεση ΚΕΦΑΛΑΙΟ 4 Β ΓΥΜΝΑΣΙΟΥ 4.1 Πίεση Είναι γνωστό ότι οι χιονοδρόμοι φορούν ειδικά φαρδιά χιονοπέδιλα ώστε να μπορούν να βαδίζουν στο χιόνι χωρίς να βουλιάζουν. Θα έχετε επίσης παρατηρήσει ότι τα μεγάλα

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Βασικές Έννοιες Φυσικής. Ενότητα: Αέρια. Διδάσκων: Καθηγητής Κ. Κώτσης. Τμήμα: Παιδαγωγικό, Δημοτικής Εκπαίδευσης

Τίτλος Μαθήματος: Βασικές Έννοιες Φυσικής. Ενότητα: Αέρια. Διδάσκων: Καθηγητής Κ. Κώτσης. Τμήμα: Παιδαγωγικό, Δημοτικής Εκπαίδευσης Τίτλος Μαθήματος: Βασικές Έννοιες Φυσικής Ενότητα: Αέρια Διδάσκων: Καθηγητής Κ. Κώτσης Τμήμα: Παιδαγωγικό, Δημοτικής Εκπαίδευσης 9. Αέρια Τα αέρια, όπως και τα υγρά, έχουν την ιδιότητα να ρέουν, για αυτό

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Β Γυμνασίου >> Αρχική σελίδα ΠΙΙΕΣΗ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμ εε ααππααννττήή σσεει ιςς (σελ. 1) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. 5) ΙΑΒΑΣΕ

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ 27 Φεβρουαρίου 2006 Διάρκεια εξέτασης : 2.5 ώρες Ονοματεπώνυμο: ΑΕΜ Εξάμηνο: (α) Επιτρέπονται: Τα βιβλία

Διαβάστε περισσότερα

Πίεση ονομάζουμε το πηλικό της δύναμης που ασκείται κάθετα σε μία επιφάνεια προς το εμβαδόν της επιφάνειας αυτής.

Πίεση ονομάζουμε το πηλικό της δύναμης που ασκείται κάθετα σε μία επιφάνεια προς το εμβαδόν της επιφάνειας αυτής. ΚΕΦΑΛΑΙΟ 4 ο ΠΙΕΣΗ 4.1 Πίεση Είναι γνωστό ότι οι χιονοδρόμοι φορούν ειδικά φαρδιά χιονοπέδιλα ώστε να μπορούν να βαδίζουν στο χιόνι χωρίς να βουλιάζουν. Θα έχετε επίσης παρατηρήσει ότι τα μεγάλα και βαριά

Διαβάστε περισσότερα

2. Μια μοτοσυκλέτα τρέχει με ταχύτητα 108 km/h. α) Σε πόσο χρόνο διανύει τα 120 m; β) Πόσα μέτρα διανύει σε 5 s;

2. Μια μοτοσυκλέτα τρέχει με ταχύτητα 108 km/h. α) Σε πόσο χρόνο διανύει τα 120 m; β) Πόσα μέτρα διανύει σε 5 s; 1. Αυτοκίνητο κινείται σε ευθύγραμμο δρόμο με σταθερή φορά και το ταχύμετρο του (κοντέρ) δείχνει συνεχώς 36 km/h. α) Τι είδους κίνηση κάνει το αυτοκίνητο; β) Να μετατρέψετε την ταχύτητα του αυτοκινήτου

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ Θέμα Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ - NEO ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 3 ΙΟΥΝΙΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου - Κεφάλαιο 4: Πίεση ΚΕΦΑΛΑΙΟ 4: ΠΙΕΣΗ. Φυσική Β Γυμνασίου

Φυσική Β Γυμνασίου - Κεφάλαιο 4: Πίεση ΚΕΦΑΛΑΙΟ 4: ΠΙΕΣΗ. Φυσική Β Γυμνασίου ΚΕΦΑΛΑΙΟ 4: ΠΙΕΣΗ Φυσική Β Γυμνασίου Δύναμη και Πίεση Κρατάς μία πινέζα μεταξύ του δείκτη και του αντίχειρα σου, με δύναμη 10 Ν. Η μύτη της πινέζας έχει διάμετρο 0,1mm ενώ η κεφαλή της έχει διάμετρο 10mm.

Διαβάστε περισσότερα

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6 ΘΕΜΑ Δ 1. Δύο αμαξοστοιχίες κινούνται κατά την ίδια φορά πάνω στην ίδια γραμμή. Η προπορευόμενη έχει ταχύτητα 54km/h και η επόμενη 72km/h. Όταν βρίσκονται σε απόσταση d, οι μηχανοδηγοί αντιλαμβάνονται

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α (Στο θέμα Α να χαρακτηρίσετε τις προτάσεις ως σωστές με το γράμμα Σ ή ως λανθασμένες με το γράμμα Λ, χωρίς αιτιολόγηση.) A1. Δύο σώματα Κ και Λ εκτοξεύονται οριζόντια

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Επώνυμο: Όνομα: Τμήμα: Αγρίνιο 10-11-013 ΘΕΜΑ 1 ο Α) Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις επόμενες

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

6 Εξαναγκασμένη ροή αέρα

6 Εξαναγκασμένη ροή αέρα 6 Εξαναγκασμένη ροή αέρα 6.1 Εισαγωγή Όταν θέτουμε σε κίνηση κάποια μόρια ενός ρευστού μέσω μιας αντλίας ή ενός φυσητήρα, η κίνηση μεταδίδεται και στα υπόλοιπα μόρια του ρευστού μέσω των αλληλεπιδράσεων

Διαβάστε περισσότερα

ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ

ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ Γιάννης Λ. Τσιρογιάννης Γεωργικός Μηχανικός M.Sc., PhD Επίκουρος Καθηγητής ΤΕΙ Ηπείρου Τμ. Τεχνολόγων Γεωπόνων Κατ. Ανθοκομίας Αρχιτεκτονικής Τοπίου ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ Υδραυλική Έκδοση

Διαβάστε περισσότερα

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: ρέουν Υγρά Αέρια

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: ρέουν Υγρά Αέρια ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: Υλικά που δεν έχουν καθορισμένο σχήμα (ρέουν), αλλά παίρνουν εκείνο του δοχείου μέσα στο οποίο βρίσκονται. Υγρά (έχουν καθορισμένο όγκο) Αέρια (καταλαμβάνουν ολόκληρο τον όγκο που

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Ι. Στις ερωτήσεις Α1 έως Α4 να επιλέξετε την σωστή απάντηση.

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Ι. Στις ερωτήσεις Α1 έως Α4 να επιλέξετε την σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑ Α Ι. Στις ερωτήσεις Α1 έως Α4 να επιλέξετε την σωστή απάντηση. A1. Σε έναν υδραυλικό ανυψωτήρα το πρωτεύον έμβολο έχει 40 φορές πιο μικρό εμβαδόν

Διαβάστε περισσότερα

ΕΝΩΣΗ ΦΥΣΙΚΩΝ ΚΥΠΡΟΥ

ΕΝΩΣΗ ΦΥΣΙΚΩΝ ΚΥΠΡΟΥ ΕΝΩΣΗ ΦΥΣΙΚΩΝ ΚΥΠΡΟΥ 9 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 28 Απριλίου, 2013 Ώρα: 10:00 12:30 Οδηγίες: 1) Το δοκίμιο (πέντε σελίδες) αποτελείται από δέκα (10) θέματα. 2) Να απαντήσετε σε

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ 16111 Ένα παιδί κρατάει στο χέρι του ένα μπαλόνι γεμάτο ήλιο που καταλαμβάνει όγκο 4 L (σε πίεση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΘΕΜΑ Α Ι. Α1.Β Α2.Γ Α3. Α Α4. Α ΙΙ. 1.Σ 2.Σ 3.Λ 4.Σ 5. Λ

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΘΕΜΑ Α Ι. Α1.Β Α2.Γ Α3. Α Α4. Α ΙΙ. 1.Σ 2.Σ 3.Λ 4.Σ 5. Λ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Ι. Α1.Β Α2.Γ Α3. Α Α4. Α ΙΙ. 1.Σ 2.Σ 3.Λ 4.Σ 5. Λ ΘΕΜΑ Β Β1. Σωστή η β) Έστω Σ το υλικό σημείο που απέχει d από το άκρο Α. Στο σχήμα

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε τον συντελεστή εσωτερικής τριβής ή ιξώδες ρευστού προσδιορίζοντας την οριακή ταχύτητα πτώσης μικρών σφαιρών σε αυτό

Διαβάστε περισσότερα

5.1 Μηχανική των ρευστών Γ.

5.1 Μηχανική των ρευστών Γ. 5.1 Μηχανική των ρευστών. 21. ύο έµβολα και οι πιέσεις. Στο διπλανό σχήµα, βλέπετε µια κατακόρυφη τοµή ενός κυλινδρικού δοχείου ύψους =3α=3m το οποίο είναι γεµάτο νερό, στο οποίο υπάρχουν δύο αβαρή έµβολα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Κανάρη 36, Δάφνη Τηλ. 10 9713934 & 10 9769376 ΘΕΜΑ Α ΘΕΜΑ Α ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΟΜΑΔΑ Α. ΠΡΟΣΟΧΗ!! Τα αποτελέσματα να γραφούν με 3 σημαντικά ψηφία. ΤΥΠΟΛΟΓΙΟ. Τριβή κύλισης σε οριζόντιο δρόμο: f

ΟΜΑΔΑ Α. ΠΡΟΣΟΧΗ!! Τα αποτελέσματα να γραφούν με 3 σημαντικά ψηφία. ΤΥΠΟΛΟΓΙΟ. Τριβή κύλισης σε οριζόντιο δρόμο: f ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 03 Μαρούσι 04-0-03 ΟΜΑΔΑ Α ΘΕΜΑ ο (βαθμοί 3,5) Η μέγιστη δύναμη με την οποία ένα κινητήρας ωθεί σε κίνηση ένα sport αυτοκίνητο

Διαβάστε περισσότερα

Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής

Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής 1.Σκοπός Άσκηση 9 Προσδιορισμός του συντελεστή εσωτερικής τριβής υγρών Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός του συντελεστή εσωτερικής τριβής (ιξώδες) ενός υγρού. Βασικές θεωρητικές γνώσεις.1

Διαβάστε περισσότερα

α. µόνο µεταφορική. β. µόνο στροφική. γ. σύνθετη. δ. ακινησία.

α. µόνο µεταφορική. β. µόνο στροφική. γ. σύνθετη. δ. ακινησία. ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 24 ΑΠΡΙΛΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΟΜΑ Α ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΘΕΜΑ Α (Μονάδες 25) A1. Σε

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). 1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.

Διαβάστε περισσότερα

Τα τρία βασικά προβλήματα της Υδραυλικής

Τα τρία βασικά προβλήματα της Υδραυλικής Τα τρία βασικά προβλήματα της Υδραυλικής Α βασικό πρόβλημα,, παροχή γνωστή απλός υπολογισμός απωλειών όχι δοκιμές (1): L1 = 300, d1 = 0.6 m, (): L = 300, d = 0.4 m Q = 0.5m 3 /s, H=?, k=0.6 mm Διατήρηση

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ

ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ ΕΙΔΗ ΔΥΝΑΜΕΩΝ 1 Οι δυνάμεις μπορούν να χωριστούν σε δυο κατηγορίες: Σε δυνάμεις επαφής, που ασκούνται μόνο ανάμεσα σε σώματα που βρίσκονται σε επαφή, και σε δυνάμεις

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΕΚΦΩΝΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 06 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Απριλίου 06 ιάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από -4 να γράψετε

Διαβάστε περισσότερα

Εύρεση της πυκνότητας στερεών και υγρών.

Εύρεση της πυκνότητας στερεών και υγρών. Μ4 Εύρεση της πυκνότητας στερεών και υγρών. 1 Σκοπός Στην άσκηση αυτή προσδιορίζεται πειραματικά η πυκνότητα του υλικού ενός στερεού σώματος. Το στερεό αυτό σώμα βυθίζεται ή επιπλέει σε υγρό γνωστής πυκνότητας

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται

Διαβάστε περισσότερα

Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ

Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ ΕΝΩΗ ΚΥΠΡΙΩΝ ΦΥΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΙΚΗ Γ ΓΥΜΝΑΙΟΥ Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ 1. α) Ζεύγος δυνάμεων Δράσης Αντίδρασης είναι η δύναμη που ασκεί ο μαθητής στο έδαφος

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ Εισαγωγικές έννοιες ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ - Pοή ονομάζεται η κίνηση ρευστού σε περιοχή του χώρου - Η περιοχή αυτή ονομάζεται πεδίο ροής - H τροχιά την οποία διαγράφει στοιχειώδης όγκος του ρευστού («σωματίδιο»

Διαβάστε περισσότερα

Καλή Επιτυχία! ΘΕΜΑ A

Καλή Επιτυχία! ΘΕΜΑ A ΤΕΛΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (ΟΜΑΔΑ Α) 016 Καλή Επιτυχία! ΘΕΜΑ Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός της

Διαβάστε περισσότερα

Μακροσκοπική ανάλυση ροής

Μακροσκοπική ανάλυση ροής Μακροσκοπική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Μακροσκοπική ανάλυση Όγκος ελέγχου και νόμοι της ρευστομηχανικής Θεώρημα μεταφοράς Εξίσωση συνέχειας Εξίσωση ορμής

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 01: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το

Διαβάστε περισσότερα

Μερικές εισαγωγικές ερωτήσεις στα ρευστά.

Μερικές εισαγωγικές ερωτήσεις στα ρευστά. Μερικές εισαγωγικές ερωτήσεις στα ρευστά. Αρχίζοντας τη μελέτη των ρευστών, ας δούμε εισαγωγικά μερικές έννοιες. Ερώτηση 1 η : Όταν σε δοχείο περιέχεται ένα αέριο, τότε σε κάθε σημείο υπάρχει πίεση. Αν

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2013 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2013 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 013 Θεωρητικό Μέρος Β Λυκείου 9 Μαρτίου 013 Θέμα 1 ο A. Ένα σωματίδιο με μάζα m και ηλεκτρικό φορτίο q επιταχύνεται από διαφορά δυναμικού V, κινούμενο

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ

Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ Όποτε χρησιμοποιείτε το σταυρό ή το κλειδί της εργαλειοθήκης σας για να ξεσφίξετε τα μπουλόνια ενώ αντικαθιστάτε ένα σκασμένο λάστιχο αυτοκινήτου, ολόκληρος ο τροχός αρχίζει να στρέφεται και θα πρέπει

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Γραπτές προαγωγικές εξετάσεις Ιουνίου 2012

Γραπτές προαγωγικές εξετάσεις Ιουνίου 2012 Λύκειο Αγίου Νικολάου Σχολική χρονιά 011 01 Γραπτές προαγωγικές εξετάσεις Ιουνίου 01 Μάθημα: Φυσική Τάξη: Α Ενιαίου Λυκείου Ημερομηνία: 5/5/01 Διάρκεια: ώρες Ονοματεπώνυμο:... Τμήμα :... 1. Το εξεταστικό

Διαβάστε περισσότερα

Β Γυμνασίου 22/6/2015. Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής

Β Γυμνασίου 22/6/2015. Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής Β Γυμνασίου /6/05 Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής Β Γυμνασίου /6/05 Δείκτες Επιτυχίας (Γνώσεις και υπό έμφαση ικανότητες) Παρεμφερείς Ικανότητες (προϋπάρχουσες

Διαβάστε περισσότερα

Άνοιξε τη μικροεφαρμογή (applet) PhET "Πίεση και ροή υγρού". Κάνε κλικ στην οθόνη "Πίεση" και βρες:

Άνοιξε τη μικροεφαρμογή (applet) PhET Πίεση και ροή υγρού. Κάνε κλικ στην οθόνη Πίεση και βρες: 1. ΜΕΛΕΤΗ ΤΗΣ ΥΔΡΟΣΤΑΤΙΚΗΣ ΠΙΕΣΗΣ Το 1ο μέρος του φύλλου εργασίας του Applet PhET "Πίεση και Ροή ρευστού" προτείνεται σε μαθητές που έχουν διδαχθεί από το Γυμνάσιο το νόμο της υδροστατικής πίεσης και θέλουν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου]

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου] ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Νόμοι των Δυνάμεων 1ος & 3ος Νόμος Νεύτωνα

Νόμοι των Δυνάμεων 1ος & 3ος Νόμος Νεύτωνα Νόμοι των Δυνάμεων 1ος & 3ος Νόμος Νεύτωνα 1. Το κιβώτιο του σχήματος ισορροπεί πάνω σε οριζόντιο επίπεδο. Η μάζα του είναι m =5kg. Α. Σχεδίασε τις δυνάμεις που δέχεται το κιβώτιο, από την γη και από το

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέμα Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό της

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)

Διαβάστε περισσότερα

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Το έργο μίας από τις δυνάμεις που ασκούνται σε ένα σώμα. α. είναι μηδέν όταν το σώμα είναι ακίνητο β. έχει πρόσημο το οποίο εξαρτάται από τη γωνία

Διαβάστε περισσότερα

F Στεφάνου Μ. 1 Φυσικός

F Στεφάνου Μ. 1 Φυσικός F 1 ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του. Αν ασκούνται σε αρχικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Σχολικό Έτος 016-017 67 ΚΕΦΑΛΑΙΟ Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Α. ΕΙΣΑΓΩΓΗ ΣΤΑ ΑΕΡΙΑ 1. Σχετικές Ατομικές και Μοριακές Μάζες Σχετική Ατομική Μάζα (Α r) του ατόμου ενός στοιχείου, ονομάζεται ο αριθμός

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΓΥΜΝΑΣΙΟΥ ΘΕΜΑ Α 1. Η συνισταμένη δύο δυνάμεων με μέτρα Fı = 1N και F 2 = 2N μπορεί να έχει μέτρο 3 Ν. 2. Τα βαρύτερα σώματα πέφτουν πιο γρήγορα στο έδαφος. 3. Για να κινείται ένα

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

φυσική κεφ.4 ΠΙΕΣΗ ΠΑΡΑΔΕΙΓΜΑΤΑ =15 10 Προφανώς όταν είναι όρθιο αφού τότε μειώνεται το εμβαδό Α ενώ η δύναμη (το βάρος) παραμένει το ίδιο.

φυσική κεφ.4 ΠΙΕΣΗ ΠΑΡΑΔΕΙΓΜΑΤΑ =15 10 Προφανώς όταν είναι όρθιο αφού τότε μειώνεται το εμβαδό Α ενώ η δύναμη (το βάρος) παραμένει το ίδιο. φυσική κεφ.4 ΠΙΕΣΗ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΑΡΑΔΕΙΓΜΑ 1 Πόση είναι η πίεση από τα ψηλά τακούνια στο πάτωμα; Πρέπει να θέσουμε εύλογες τιμές για τα μεγέθη F κ και A: ω Α = εμβαδό επιφάνειας τακουνιού = 1cm2=0,0001μ2=10-4

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Στο κεφάλαιο των κινήσεων ασχοληθήκαμε με τη μελέτη της κίνησης χωρίς να μας απασχολούν τα αίτια που προκαλούν την κίνηση

Διαβάστε περισσότερα

5.1 Μηχανική των ρευστών Γ.

5.1 Μηχανική των ρευστών Γ. 5.1 Μηχανική των ρευστών. 21. ύο έµβολα και οι πιέσεις. Στο διπλανό σχήµα, βλέπετε µια κατακόρυφη τοµή ενός κυλινδρικού δοχείου ύψους =3α=3m το οποίο είναι γεµάτο νερό, στο οποίο υπάρχουν δύο αβαρή έµβολα

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό.

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Εργαστήριο Μηχανικής Ρευστών Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημ/νία παράδοσης Εργασίας: Τετάρτη 24 Μαΐου 2 1 Θεωρητική Εισαγωγή:

Διαβάστε περισσότερα

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης

Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης 2013 ΘΕΜΑ Α Για τις ερωτήσεις 1 έως 4 γράψτε τον αριθμό τις ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Για ένα

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

ONOMA/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ:

ONOMA/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΦΥΣΙΚΗ KATΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΡΚΕΙΑ: 180min ONOMA/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ:. ΘΕΜΑ 1 ο ΘΕΜΑ 2 ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ ΘΕΜΑ Α: 1. Δύο σύγχρονες πηγές δημιουργούν στην επιφάνεια υγρού εγκάρσια

Διαβάστε περισσότερα

Όπου m είναι η μάζα του σώματος και υ η ταχύτητά του.

Όπου m είναι η μάζα του σώματος και υ η ταχύτητά του. 1 ΕΡΓΟ ΕΝΕΡΓΕΙΑ ΙΣΧΥΣ Η ενέργεια είναι από εκείνες τις έννοιες που δύσκολα ορίζονται στη Φυσική. Ένα σώμα μπορεί να έχει, να παίρνει ή να δίνει ενέργεια. Η ίδια η ενέργεια μπορεί να μετατρέπεται από μια

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ- Η ΠΑΓΚΥΠΡΙΑΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ- ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 0 Μαΐου 05 Ώρα : 0:0 - :00 ΘΕΜΑ 0 (µονάδες

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Ι. κ. ΣΟΦΙΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Ι. κ. ΣΟΦΙΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Ι κ. ΣΟΦΙΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Θεώρημα μεταβολής της Κινητικής ενέργειας

Θεώρημα μεταβολής της Κινητικής ενέργειας Θεώρημα μεταβολής της Κινητικής ενέργειας Λυμένες ασκήσεις Σώμα με μάζα = 2 Kg κινείται σε οριζόντιο επίπεδο με αρχική ταχύτητα υ 0 = 10 /s. Ασκείται σε αυτό οριζόντια δύναμη F = 10 N για χρόνο t = 2 s.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25) ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ ΘΕΜΑ Α (μοναδες 25) Α1. Σε στερεό που περιστρέφεται γύρω από σταθερό κατακόρυφο άξονα ενεργεί σταθερή ροπή. Τότε αυξάνεται με σταθερό ρυθμό: α. η ροπή αδράνειας του β. η

Διαβάστε περισσότερα