Jednoliko pravocrtno gibanje Jednoliko promjenljivo pravocrtno gibanje Slobodni pad Kružno gibanje Mirovanje s obzirom na pomicanje Uvjeti mirovanja

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Jednoliko pravocrtno gibanje Jednoliko promjenljivo pravocrtno gibanje Slobodni pad Kružno gibanje Mirovanje s obzirom na pomicanje Uvjeti mirovanja"

Transcript

1 Mehanika 1

2 Jednoliko pavoctno gibanje Jednoliko pomjenljivo pavoctno gibanje Slobodni pad Kužno gibanje Miovanje s obziom na pomicanje Uvjeti miovanja s obziom na otaciju Sile na poluzi Sile na kosini Tenje Rad Snaga Enegija 2

3 Mehanika poučava ponašanja tijela, te njihovo meñudjelovanje. Podučja mehanike su: Statika poučava miovanje tijela Kinematika poučava gibanje tijela bez obzia na uzoke gibanja Dinamika poučava meñudjelovanje tijela, te uzoke gibanja. S obziom na vstu tvai koju poučava, mehanika se azvstava na: Mehaniku čvstih tijela Mehaniku fluida: tekućina (kapljevina) i plinova Mehaniku elastičnih i plastičnih tijela 3

4 Gibanje Gibanje je mijenjanje položaja tijela tijekom nekog vemenskog azdoblja s obziom na neku efeentnu (uspoednu) točku. Gibanje ili miovanje ustanovljava opažač elativno pema odabanom minom tijelu. z T Gibanje se često opisuje u koodinatnom sustavu. x y 4

5 Tijekom gibanja tijelo polazi koz nepekinuti niz točaka u postou koji nazivamo putanja. Putanja se matematički opisuje azličitim funkcijama. Često nas zanima samo duljina dijela putanje, tj. peñeni put. t =0 t = t - 0 t s = s(t) Put s(t) ili, kaće, put s je put peñen od tenutka 0 do tenutka t. Ili: to je put peñen u vemenskom intevalu t koji je po iznosu jednak zavšnom tenutku t. unkcija s(t) može se tumačiti i kao položaj u tenutku t (mjeen duž putanje), u odnosu na položaj s=0 u tenutku t=0. 5

6 Gibanja obziom na putanju pavoctna kivoctna po otvoenoj kivulji po zatvoenoj kivulji po pavilnoj kivulji po pavilnoj kivulji po nepavilnoj kivulji po nepavilnoj kivulji 6

7 Gibanja u vemenu peiodična nepeiodična Gibanja s obziom na bzinu konstantna bzina pomjenljiva bzina Konstantno ubzanje Pomjenljivo ubzanje 7

8 Iznos bzine Joj, matematika U nekom vemenskom intevalu t tijelo pijeñe put s t = t 2 t 1 s= s 2 s 1 U tome intevalu (na tome putu) posječni iznos bzine ačuna se kao peñeni put koz poteklo vijeme: v 1 2 = s t Jedinica m/s, km/h. peñeni put u jedinici vemena Tenutni (pavi) iznos bzine dobije se tako da se oko odabanog tenutka pomataju sve kaći intevali. Kaže se da je to ganična vijednost (limes) kada t teži pema nuli: v = lim t 0 s t = ds dt Iznos bzine je deivacija puta po vemenu. 8

9 Ubzanje (akceleacija) kod gibanja po pavcu U nekom vemenskom intevalu t bzina se pomijeni za v t = t 2 t 1 v= v 2 v 1 U tome intevalu posječno ubzanje ačuna se kao pomjena bzine koz poteklo vijeme: a 1 2 = v t Jedinica m/s 2 pomjena bzine u jedinici vemena Tenutno (pavo) ubzanje dobije se tako da se oko odabanog tenutka pomataju sve kaći intevali. Kaže se da je to ganična vijednost (limes) kada t teži pema nuli: a = lim t 0 v t = dv dt Ubzanje je deivacija iznosa bzine po vemenu. Ako gibanje nije pavoctno, bzina mijenja smje. Tada ubzanje moa opisati i pomjenu iznosa i pomjenu smjea bzine (koistimo vektoe). 9

10 Jednoliko i jednoliko ubzano gibanje po pavcu Ako pomatamo vemenski inteval od tenutka 0 do tenutka t, dobijemo: s s( t) s(0) v = = = t t 0 s t v t v( t) v(0) v v = t 0 t 0 a= = unkcija a(t) v(t) s(t) Jednoliko (v=konst) a=0 v=v s=vt Jednoliko ubzano (a=konst) a=a v = at+ v 0 s = a t2 vt Peñeni put kod jednoliko ubzanog gibanja dobije se tako da se za sednju bzinu uzme bzina u sedini vemenskog intevala: v = a t + 2 v 0 10

11 Slobodni pad jednoliko ubzano gibanje bez početne bzine Galileo Galilei Ubzanje slobodnog pada g=9.81 m/s 2 v=gt g s= t2 2 visina g 2 t h= 2 vijeme padanja konačna bzina v k = 2gh t = 2h g 11

12 Kužno gibanje opisuje se: lineanim ili obodnim veličinama s, v... kutnim veličinama φ, ω... Kužno gibanje Kutna bzina ačuna se iz kuta zaketa kao što se bzina ačuna iz peñenog puta, np. sednja kutna bzina je φ j s ϕ ϕ( t) ϕ(0) ϕ ω = = = t t 0 t Iz definicije kuta u adijanima slijedi veza: s ϕ = s =ϕ Ako se ta jednakost podjeli s vemenom (deivia po vemenu), dobije se slična veza izmeñu bzine i kutne bzine. Stoga za svako kužno gibanje vijedi: s = φ v = ω 12

13 Jednoliko kužno gibanje φ j s Peiodično gibanje. Peiod je tajanje jednog ophoda T. ekvencija ili učestalost f je boj ophoda u jedinici vemena; ačuna se kao ecipočna vijednost peioda f n 1 = t T = Jedinica hec (Hz=s -1 ) Kao i za jednoliko gibanje po pavcu, za iznos bzine i peñeni put vijedi: v= v s= vt Za kutne veličine vijede analogni izazi: ω= ω ϕ=ωt Bzina i kutna bzina mogu se izaziti pomoću peioda ili fekvencije: v = 2π T 2π ω= = 2π T f 13

14 v 2 φ v 1 v v 2 v φ v 1 = v 2 v 1 Centipetalno ubzanje Kod svakog kužnog gibanja bzina stalno mijenja smje. Centipetalno ubzanje opisuje kako se bzo mijenja smje bzine. Usmjeeno je pema sedištu (centu) kužnice, tj. okomito je na bzinu (inače bi joj mijenjalo iznos). Skica ilustia izvod centipetalnog ubzanja za jednoliko gibanje po kužnici (stalni iznos bzine v ). Pomjenu bzine čini pomjena smjea (zeleni vekto na skici). v v ϕ Iznos pomjene bzine pibližno je jednak duljini luka koji opisuje vh vektoa bzine; oni postaju točno jednaki za vlo mali kut (limes t pema nuli). Centipetalno ubzanje dobije se tako da se ta pomjena bzine podijeli s vemenom, tj. pomoću v ϕ = t v ω pa je njegov iznos jednak: a cp 2 = v ω = ω = v 2 14

15 Sile, skelet, stabilnost tijela 15

16 Newtonovi zakoni gibanja (aksiomi) 1. Newtonov zakon (zakon tomosti) Ako na tijelo ne djeluje sila, ono ostaje u stanju miovanja ili jednolikog gibanja po pavcu. 16

17 Svojstvo tijela: tomost ili inecija Mjea tomosti tijela masa Jedinica mase je kilogam, gam,.. Podukt bzine i mase se naziva količina gibanja (jedinica kg m/s) p = m v Koisti se i naziv veličina gibanja, nalet i impuls 17

18 2. Newtonov zakon (temeljni zakon gibanja) Sila masi daje ubzanje, popocionalno sili i u smjeu sile: = m a Sila i ubzanje a su vektoi istog smjea Jedinica za silu je njutn, N=kg m/s 2 Općenitiji oblik zakona: bzina pomjene količine gibanja tijela jednaka je sili koja na njega djeluje. 18

19 Težina Težina tijela je sila kojom Zemlja pivlači to tijelo: G = mg Gavitacijska sila koigiana za učinak centifugalne sile Mjei se kao sila kojom tijelo tlači podlogu ili napinje objesište Tijelo mase m=1 kg ima težinu G=mg=9,81 N m m a) G= m g b) G= m g 19

20 3. Newtonov zakon (zakon akcije i eakcije) Ako jedno tijelo djeluje silom na dugo ( akcija ), to dugo tijelo djeluje na ono pvo silom jednakog iznosa ali supotnog smjea ( eakcija ). = a 20

21 Zbajanje sila (vektoa) Smje sile pokazuje stelica Iznos pokazuje duljina (np. 1cm=1N) Hvatište je točka na koju sila djeluje Paalelogam sila 21

22 = =

23

24 Slobode gibanja C B A a) B C A C B A C B A b) Pomicanje ili tanslacija; točke tijela se gibaju po paalelnim pavcima Oketanje, vtnja ili otacija; točke tijela se gibaju po koncentičnim kužnicama Sva gibanja su složena od pomicanja i oketanja U todimenzionalnom postou postoji 6 osnovnih gibanja, 3 neovisne tanslacije i 3 otacije 24

25 Miovanje s obziom na pomicanje = = 1 = 2 a) b) = 0 n i= 1 i = = 0 Tijelo se ne pomiče ako su sile koje djeluju na njega u avnoteži, tj. ako je njihov vektoski zboj jednak nuli 25

26 Glavna sila koja djeluje na ljudsko tijelo je gavitacijska sila (G G ili W = težina ina) W = m g Stabilnost tijela u odnosu na gavitacijsku silu omogućava stuktua kostiju ljudskog kostua! Gavitacijska sila W djeluje na težište T tijela! T ovisi o aspodjele mase u tijelu. 26

27 Da bi se odžala avnoteža a vektoska suma svih sila moa biti nula! 27

28 Miovanje obziom na oketanje O k M O a) b) M = k k j Oketanje ovisi o sili ali i o njenoj udaljenosti od oketišta (kaku sile). izikalna veličina koja opisuje oketanje oko osi naziva se moment sile M. Iznos momenta sile je jednak umnošku iznosa sile i kaka sile k 28

29 Moment sile je vektoska veličina. Matematički se može opisati vektoskim umnoškom vektoa, koji spaja oketište s hvatištem sile, vektoa sile : M = Iznos vektoa momenta sile je umnožak iznosa sile i kaka, a vekto stoji okomito na avninu koju odeñuju sila i kak. To je avnina vtnje koju moment sile ubzava ili uspoava. Pavilo desne uke pokazuje na koju stanu te avnine je moment sile usmjeen. 29

30 Uvjeti miovanja s obziom na otaciju Sila ili ezultanta više sila polazi oketištem Momenti sila koje djeluju na tijelo meñusobno se poništavaju M = k M 1=k11 M 1 = M Ravnoteža dva momenta sila n i= 1 M i = 0 Općeniti uvjet; zboj momenata svih sila koje djeluju na tijelo jednak je nuli. 30

31 Tijelo se pokeće e silama mišića a koje nastaju stezanjem i astezanjem mišićnog tkiva Mišićne sile kontoliaju pokete tjelesnih ekstemiteta. Većina mišićnih sila koisti polugu Poluga je tijelo učvšćeno samo jednom osi u oketištu oko koje se može oketati 31

32 Sile na poluzi Uvjeti miovanja obziom na pomicanje = 0 Uvjeti miovanja obziom na oketanje M = 11 = 22 1 M 2 k = 11 k22 1 = 2 k k 2 1 Omje aktivne sile (opteećenje) A i pasivne sile B (eakcije koja uavnotežuje aktivnu silu) naziva se učinkovitost ili efikasnost poluge η. η = A = P k k P A 32

33 Ima azličitih klasifikacija poluga, ali fizika je ista: k k Oketi{te a) b) Oketi{te k k Oketi{te k k a) Dvokaka poluga jednakih kakova b) Dvokaka poluga azličitih kakova c) Jednokaka poluga c) 33

34 Ti pimjea sistema poluge, W je pimijenjena težina ina, oslonac poluge i M je sila mišića. 34

35 Podlaktica kao a) Dvokaka poluga b) Jednokaka poluga l k l k N G N a) b) 35

36 Biceps svojom kontakcijom (sila M) podiže podlakticu i savladava težinu podlaktice H (u njenom težištu) i eventualni teet u dlanu W. 36

37 37

38 Tenje se javlja izmeñu povšin ina koje se meñusobno stišću u i kližu u jedna u odnosu na dugu t = µ k N N N - sila eakcije podloge, okomita je na povšinu (opisuje koliko se povšine stišću) t G µ k koeficijent tenja: guma: µ k 0.8 zglobovi kosti: µ k Ubzanje pi ketanju može e biti uzokovano tenjem, mišićni nim silama ili vanjskim silama (np. sudaom sa zidom). 38

39 Sile na kosini:,g,n, t G: nomalna komponenta G N i tangencijalna komponenta G T N G T t α G N l h α G b t =µ k N=µ k G N Ukupna sila u smjeu gibanja na tijelo je: uk = G T t =ma 39

40 Rad, snaga, enegija Rad sile je jednak umnošku te sile i puta s koji pijeñe njezino hvatište, ako stalna sila djeluje u smjeu gibanja hvatišta: W = s Jedinica za ad je džul (J=N m) s j cos j a) b) Smje sile Smje puta Ako stalna sila zatvaa kut sa smjeom gibanja: W = s cosφ Ako sila nije stalna, ad se ačuna pomoću integala. 40

41 Snaga je bzina všenja ada. Ako se ad vši stalnom bzinom, snaga je jednaka adu izvšenom u jedinici vemena: P = W / t Jedinica snage je džul u sekundi, vat (W=J/s). Enegija je sposobnost všenja ada. Jedinica za enegiju je ista kao i za ad (džul J) Enegija je neuništiva, te može pelaziti iz jednog oblika u dugi. Enegija u piodi: Mehanička Toplinska Elektična Nukleana Svjetlosna 41

42 Mehanička enegija pojavljuje se u dva oblika: Potencijalna enegija E p (enegija položaja, oblika, obujma) Kinetička enegija E k (enegija gibanja) E p = mgh E k = mv 2 2 m m v h b) a) c) E k =0 E p =maks E p =0 E k =maks h 42

43 U zatvoenom sustavu (na koji ne djeluju vanjske sile) zboj potencijalne enegije E p i kinetičke enegije E k je stalan i jednak ukupnoj enegiji sustava E. E=E p +E k 43

Mehanika dr.sc. Robert Beuc. Fizika Studij Fizioterapije

Mehanika dr.sc. Robert Beuc. Fizika Studij Fizioterapije Mehanika dr.sc. Robert Beuc izika Studij izioterapije 1 Mehanika 2 Gibanje Jednoliko pravocrtno gibanje Jednoliko promjenljivo pravocrtno gibanje Slobodni pad Kružno gibanje Mirovanje s obzirom na pomicanje

Διαβάστε περισσότερα

Potrebne su relacije za put slobodnog pada za jedno i drugo nebesko tijelo (nepoznato (X)

Potrebne su relacije za put slobodnog pada za jedno i drugo nebesko tijelo (nepoznato (X) MEĐUISPIT_3. gupa zadaaka, -0, svaki zadaak 3 boda:. Maja je bacila kamen hoizonalno bzinom v, a Mako s ise visine pema dolje i isom bzinom v. Koja je od navedenih vdnji očna? (Zanemaimo opo zaka). A.

Διαβάστε περισσότερα

9. GRAVITACIJA Newtonov zakon gravitacije

9. GRAVITACIJA Newtonov zakon gravitacije 9. GRAVITACIJA 9.1. Newtonov zakon gavitacije Pomatanje gibanja nebeskih tijela gavitacija: pivlačna sila meñu tijelima Claudius Ptolemeus (100 170) geocentični sustav Nikola Kopenik (1473 1543) heliocentični

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

- Rad je dejstvo sile duž puta tj. kvantitativno povezuje silu i pomeraj koji je ona izazvala

- Rad je dejstvo sile duž puta tj. kvantitativno povezuje silu i pomeraj koji je ona izazvala Rad - Rad je dejstvo sile duž puta tj. kvantitativno povezuje silu i pomeaj koji je ona izazvala Posmatajmo slučaj kada je sila konstantna po intenzitetu i pavcu. Rad je: A= A = Δ cosγ γ = (, Δ) Δ Skalani

Διαβάστε περισσότερα

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

ILIŠTA U RIJECI Zavod za elektroenergetiku. Elektrostatika. Električni potencijal Električni napon. Osnove elektrotehnike I: Elektrostatika

ILIŠTA U RIJECI Zavod za elektroenergetiku. Elektrostatika. Električni potencijal Električni napon. Osnove elektrotehnike I: Elektrostatika TEHNIČKI FKULTET SVEUČILI ILIŠT U RIJECI Zavod za elektoenegetiku Studij: Peddiplomski stučni studij elektotehnike Kolegij: Osnove elektotehnike I Pedavač: v. ped. m.sc. anka Dobaš Elektostatika Elektični

Διαβάστε περισσότερα

MEHANIKA MATERIJALNE ČESTICE

MEHANIKA MATERIJALNE ČESTICE ELEKTROTEHNIČKI AKULTET SARAJEVO INŽENJERSKA IZIKA I --pedavanja za 3. sedmicu nastave MEHANIKA MATERIJALNE ČESTICE.3.3 Kužno ketanje/gibanje Kada ubzanje mateijalne tačke nema isti pavac kao bzina, već

Διαβάστε περισσότερα

Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika

Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika 1. Kinematika Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika Kinematika (grč. kinein = gibati) je dio mehanike koji

Διαβάστε περισσότερα

SLOŽENO KRETANJE TAČKE

SLOŽENO KRETANJE TAČKE SLOŽENO KRETANJE TAČKE DEFINISANJE SLOŽENOG KRETANJA TAČKE BRZINA TAČKE PRI SLOŽENOM KRETANJU a) Relativna bzina b) Penosna bzina c) Apsolutna bzina d) Odeđivanje zavisnosti apsolutne od elativne i penosne

Διαβάστε περισσότερα

Fizika 2. Auditorne vježbe - 7. Fakultet elektrotehnike, strojarstva i brodogradnje Računarstvo. Elekromagnetski valovi. 15. travnja 2009.

Fizika 2. Auditorne vježbe - 7. Fakultet elektrotehnike, strojarstva i brodogradnje Računarstvo. Elekromagnetski valovi. 15. travnja 2009. Fakule elekoehnike, sojasva i bodogadnje Računasvo Fiika Audione vježbe - 7 lekomagneski valovi 15. avnja 9. Ivica Soić (Ivica.Soic@fesb.h) Mawellove jednadžbe inegalni i difeencijalni oblik 1.. 3. 4.

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a: Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

ELEKTROMAGNETSKE POJAVE

ELEKTROMAGNETSKE POJAVE ELEKTROMAGETSKE POJAVE ELEKTROMAGETSKA IDUKCIJA IDUKCIJA SJEČEJEM MAGETSKIH SILICA Pojava da se u vodiču pobuđuje ii inducia eektomotona sia ako ga siječemo magnetskim sinicama, zove se eektomagnetska

Διαβάστε περισσότερα

Fizika 1, v 2. Sudar čestica i izmjena impulsa. R: - međudjelovanje čestica tokom sudara opisujemo III Newton-ovim aksiomom:

Fizika 1, v 2. Sudar čestica i izmjena impulsa. R: - međudjelovanje čestica tokom sudara opisujemo III Newton-ovim aksiomom: Fizika 1,1 14.03.08 1. Zakon očuvanja količine gibanja; izvedite taj zakon za slučaj elastičnog i centalnog sudaa dviju mateijalnih točaka koje se gibaju na istom pavcu i istim smjeom; masa m 1 i m 2 te

Διαβάστε περισσότερα

Kinetička energija: E

Kinetička energija: E Pime 54 Za iem pikazan na lici odedii ubzanje eea mae m koji e keće naniže kao i ilu u užeu? Na homogeni doboš a dva nivoa koji e obće oko zgloba O dejvuje, zbog neidealnoi ležaja konanni momen opoa M

Διαβάστε περισσότερα

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Školska godina 2006/2007 Fizika 1 Auditorne vježbe 5 Dinamika: Newtonovi zakoni 12. prosinca 2008. Dunja Polić (dunja.polic@fesb.hr)

Διαβάστε περισσότερα

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici. Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Rad, energija i snaga

Rad, energija i snaga Rad, energija i snaga Željan Kutleša Sandra Bodrožić Rad Rad je skalarna fizikalna veličina koja opisuje djelovanje sile F na tijelo duž pomaka x. = = cos Oznaka za rad je W, a mjerna jedinica J (džul).

Διαβάστε περισσότερα

VEKTOR MOMENTA SILE ZA TAČKU. Vektor momenta sile, koja dejstvuje na neku tačku tela, za. proizvoljno izabranu tačku.

VEKTOR MOMENTA SILE ZA TAČKU. Vektor momenta sile, koja dejstvuje na neku tačku tela, za. proizvoljno izabranu tačku. VEKTOR OENT SILE Z TČKU Vekto momenta sile, koja dejstvuje na neku tačku tela, za poizvoljno izabanu tačku pedstavlja meu obtnog dejstva sile u odnosu na tu poizvoljno izabanu tačku. Ovde je tačka momentna

Διαβάστε περισσότερα

Rotacija krutog tijela

Rotacija krutog tijela Rotacija krutog tijela 6. Rotacija krutog tijela Djelovanje sile na tijelo promjena oblika tijela (deformacija) promjena stanja gibanja tijela Kruto tijelo pod djelovanjem vanjskih sila ne mijenja svoj

Διαβάστε περισσότερα

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa Claudius Ptolemeus (100-170) - geocentrični sustav Nikola Kopernik (1473-1543) - heliocentrični sustav Tycho Brahe (1546-1601) precizno bilježio putanje nebeskih tijela 1600. Johannes Kepler (1571-1630)

Διαβάστε περισσότερα

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA 5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,

Διαβάστε περισσότερα

Dinamika krutog tijela. 14. dio

Dinamika krutog tijela. 14. dio Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Kinematika materijalne toke. 3. dio a) Zadavanje krivocrtnog gibanja b) Brzina v i ubrzanje a

Kinematika materijalne toke. 3. dio a) Zadavanje krivocrtnog gibanja b) Brzina v i ubrzanje a Kinemik meijlne oke 3. dio ) Zdnje kiocnog gibnj b) Bzin i ubznje 1 Kiocno gibnje meijlne oke Položj meijlne oke u skom enuku emen možemo definii n slijedee nine: 1. Vekoski nin defininj gibnj (). Piodni

Διαβάστε περισσότερα

KRIVOLINIJSKO KRETANJE TAČKE U RAVNI OPISANO U PRAVOUGLOM DEKARTOVOM KOORDINATNOM SISTEMU. JEDNAČINE KRETANJA. LINIJA PUTANJE. PUTANJA.

KRIVOLINIJSKO KRETANJE TAČKE U RAVNI OPISANO U PRAVOUGLOM DEKARTOVOM KOORDINATNOM SISTEMU. JEDNAČINE KRETANJA. LINIJA PUTANJE. PUTANJA. KRIVOLINIJSKO KRETANJE TAČKE U RAVNI OPISANO U PRAVOUGLOM DEKARTOVOM KOORDINATNOM SISTEMU. JEDNAČINE KRETANJA. LINIJA PUTANJE. PUTANJA. Jednačine ketanja x(t) i y(t) u potpunosti odeđuju sve pojmove vezane

Διαβάστε περισσότερα

šupanijsko natjecanje iz zike 2017/2018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova)

šupanijsko natjecanje iz zike 2017/2018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova) šupanijsko natjecanje iz zike 017/018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova) U prvom vremenskom intervalu t 1 = 7 s automobil se giba jednoliko ubrzano ubrzanjem

Διαβάστε περισσότερα

MAGNETIZAM I. Magnetsko polje Magnetska indukcija Magnetska uzbuda Sile u magnetskom polju

MAGNETIZAM I. Magnetsko polje Magnetska indukcija Magnetska uzbuda Sile u magnetskom polju MAGNETIZAM I Magnetsko polje Magnetska indukcija Magnetska uzbuda Sile u magnetskom polju Teći osnovni učinak elektične stuje stvaanje magnetskog polja u okolišu vodiča i samom vodiču koji je potjecan

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Prostorni spojeni sistemi

Prostorni spojeni sistemi Prostorni spojeni sistemi K. F. (poopćeni) pomaci i stupnjevi slobode tijela u prostoru: 1. pomak po pravcu (translacija): dva kuta kojima je odreden orijentirani pravac (os) i orijentirana duljina pomaka

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

. (2.116) v r. Prvi član s desne strane (2.119) je jednak nuli iz razloga što su vektori v = i p kolinearni: r r r. r d L0 =. (2.

. (2.116) v r. Prvi član s desne strane (2.119) je jednak nuli iz razloga što su vektori v = i p kolinearni: r r r. r d L0 =. (2. 48 DINAMIKA.9 Dinamika otacije.9. Momentna jednačina za mateijalnu tačku Posmatamo kivolinijsko ketanje mateijalne tačke, mase m, koja u datoj tački putanje ima bzinu v, vekto položaja u odnosu na efeentnu

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Zadatak 003 (Vesna, osnovna škola) Kolika je težina tijela koje savladava silu trenja 30 N, ako je koeficijent trenja 0.5?

Zadatak 003 (Vesna, osnovna škola) Kolika je težina tijela koje savladava silu trenja 30 N, ako je koeficijent trenja 0.5? Zadata 00 (Jasna, osnovna šola) Kolia je težina tijela ase 400 g? Rješenje 00 Masa tijela izražava se u ilograia pa najprije orao 400 g pretvoriti u ilograe. Budući da g = 000 g, orao 400 g podijeliti

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

Rad sile r (5.1)

Rad sile r (5.1) ELEKTROTEHNIČKI FKULTET SRJEVO INŽENJERSK FIZIK I -- Pedavanja II dio -- 5.. RD, SNG I ENERGIJ 5... Rad sile Pomjeanje mateijalne točke po nekom pavolinijskom putu s pod djelovanjem sile F u mehanici se

Διαβάστε περισσότερα

Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva

Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Studij acunastva, Fizika 1, Pedavanje 8 30. studenoga 007. Školska godina 007./008. Fakultet elektotehnike, stojastva i bodogadnje Studij ačunastva Fizika 1 Pedavanje 8 Inecijalni i neinecijalni sustavi.

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Rad, snaga i energija. Dinamika. 12. dio

Rad, snaga i energija. Dinamika. 12. dio Rad, snaga i energija Dinaika 1. dio Veliine u ehanici 1. Skalari. Vektori 3. Tenzori II. reda 4. Tenzori IV. reda 1. Skalari: 3 0 1 podatak + jerna jedinica (tenzori nultog reda). Vektori: 3 1 3 podatka

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A : PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0

Διαβάστε περισσότερα

gdje je Q naboj što ga primi kondenzator, C kapacitet kondenzatora.

gdje je Q naboj što ga primi kondenzator, C kapacitet kondenzatora. Zadatak 06 (Mimi, gimnazija) Elektična enegija pločastog kondenzatoa, kapaciteta 5 µf, iznosi J Kolika je količina naboja pohanjena na kondenzatou? Rješenje 06 = 5 µf = 5 0-5 F, W = J, =? Enegija nabijenog

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

Fizika za studente na Departmanu za matematiku i informatiku na PMF-u u Novom Sadu

Fizika za studente na Departmanu za matematiku i informatiku na PMF-u u Novom Sadu d Fedo Skuban Fizika za studente na Depatmanu za matematiku i infomatiku na PMF-u u Novom Sadu Depatman za fiziku, PMF Novi Sad Fizičke veličine. SI sistem jedinica 4 Osnovni pojmovi kinematike 0 Bzina

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ Deformaije . Duljinska (normalna) deformaija. Kutna (posmina) deformaija γ 3. Obujamska deformaija Θ 3 Tenor deformaija tenor drugog reda ij γ γ γ γ γ γ 3 9 podataka+mjerna jedinia 4 Simetrinost tenora

Διαβάστε περισσότερα

( ) p a. poklopac. Rješenje:

( ) p a. poklopac. Rješenje: 5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika

Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika 3. Dinamika Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika Kinematika (grč. kinein = gibati) je dio mehanike koji opisuje

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

- osnovni zakoni gibanja (Newtonovi aksiomi) - gibanja duž ravne podloge i kosine - sila trenja - vrste sila

- osnovni zakoni gibanja (Newtonovi aksiomi) - gibanja duž ravne podloge i kosine - sila trenja - vrste sila Dinamika - osnovni zakoni gibanja (Newtonovi aksiomi) - gibanja duž ravne podloge i kosine - sila trenja - vrste sila Osnovni zakoni gibanja: Newtonovi aksiomi Sir Isaac Newton (1642. 1727.) by Sir Godfrey

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske Algebra Vektora 1 Algebra vektora 1.1 Definicija vektora pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske veličine za opis skalarne veličine trebamo zadati samo njezin iznos (npr.

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split

Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split DINAMIKA Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split Ova knjižica prvenstveno je namijenjena učenicima Srednje tehničke prometne škole Split. U knjižici su korišteni zadaci

Διαβάστε περισσότερα

Newtonov opdi zakon gravitacije

Newtonov opdi zakon gravitacije Predavanje 3 Newtonov opdi zakon gravitacije F=Gm 1 m 2 /R 2 r Jedinični vektor G=6.67 10-11 Nm 2 kg -2 gravitacijska konstanta (Sir Henry Cavendish 1798) G nije isto što i g Gravitacijska sila djeluje

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE):

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE): Repetitorij-Dinamika Dinamika materijalne točke Sila: F p = m a = lim t 0 t = d p dt m a = i F i Zakon očuvanja impulsa (ZOI): i p i = j p j i p ix = j p jx te i p iy = j p jy u 2D sustavu Zakon očuvanja

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

Fizika. Mehanika Sadržaj. dr Fedor Skuban. I godina studija na Tehnološkom fakultetu u Novom Sadu. Departman za fiziku, PMF Novi Sad

Fizika. Mehanika Sadržaj. dr Fedor Skuban. I godina studija na Tehnološkom fakultetu u Novom Sadu. Departman za fiziku, PMF Novi Sad d Fedo Skuban Fizika I godina studija na Tehnološkom fakultetu u Novom Sadu Depatman za fiziku, PMF Novi Sad Elementi vektoskog ačuna 4 Fizičke veličine. SI sistem jedinica 8 Osnovni pojmovi kinematike

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1 Zadatak, Štap B duljine i mase m pridržan užetom u točki B, miruje u vertikalnoj ravnini kako je prikazano na skii. reba odrediti reakiju u ležaju u trenutku kad se presječe uže u točki B. B Rješenje:

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Sa slike vidi se: r h r h. r r. za slobodan pad s visine h:

Sa slike vidi se: r h r h. r r. za slobodan pad s visine h: Zadatak (Ljiljana, ednja škola) Uteg ae kg ii na niti koju o iz etikalnog položaja otklonili za kut α 3. Nađi napetot niti kad o uteg iputili te on polazi položaje anoteže. (g 9.8 / ) Rješenje kg, α 3,

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα