Aproximarea funcţiilor prin metoda celor mai mici pătrate

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Aproximarea funcţiilor prin metoda celor mai mici pătrate"

Transcript

1 Aproximarea funcţiilor prin metoda celor mai mici pătrate Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică Suport didactic pentru disciplina i Numerici, /60

2 Cuprins Introducere 1 Introducere Formularea problemei Ideea metodei CMMP 2 3 Ideea QR 4 Ideea SVD Concluzii 2/60

3 Interpolare vs. aproximare Formularea problemei Ideea metodei CMMP Date 0.1 Interpolare 0.1 Date Aproximare Interpolare Aproximare Se dă un set de date (x k, y k ), k = 0,...,m, unde y k = f(x k ). Se caută o aproximare notată g(x), unde g(x k ) y k. 3/60

4 Ideea metodei Introducere Formularea problemei Ideea metodei CMMP Funcţia de aproximare se caută a.î: g(x) f(x) minimă Deoarece f este cunoscută într-un număr discret de puncte norma discretă (de exemplu norma Euclidiană discretă). Metoda celor mai mici pătrate (CMMP) caută g a.î: E = m (f(x k ) g(x k )) 2 minimă (1) k=0 4/60

5 Regresia liniară Introducere Formularea problemei Ideea metodei CMMP g(x) = c 0 + c 1 x c 0 =?, c 1 =?. 5 Exemplu: m = 3: (1,3), (2,1), (4,4). 4.5 Regresie liniara prin cmmp E(c 0, c 1 ) = (y 0 c 0 c 1 x 0 ) (y 1 c 0 c 1 x 1 ) (y 2 c 0 c 1 x 2 ) 2 = = (3 c 0 c 1 ) (1 c 0 2c 1 ) (4 c 0 4c 1 ) 2. y x 5/60

6 Regresia liniară Introducere Formularea problemei Ideea metodei CMMP E(c 0, c 1 ) = (y 0 c 0 c 1 x 0 ) 2 + (y 1 c 0 c 1 x 1 ) 2 + (y 2 c 0 c 1 x 2 ) 2 = E c 0 = 0, E c 1 = 0. = (3 c 0 c 1 ) 2 + (1 c 0 2c 1 ) 2 + (4 c 0 4c 1 ) 2. (2) { 3c0 + 7c 1 = 8, 7c c 1 = 21 c 0 = 1.5, c 1 = 0.5. (3) 5 Regresie liniara prin cmmp y g(1) = 2, g(2) = 2.5, g(3) = 3.5; min E = (3 2) 2 +(1 2.5) 2 +(4 3.5) x 6/60

7 Regresia liniară Introducere Formularea problemei Ideea metodei CMMP E(c 0, c 1 ) = (y 0 c 0 c 1 x 0 ) 2 + (y 1 c 0 c 1 x 1 ) 2 + (y 2 c 0 c 1 x 2 ) 2 = E c 0 = 0, E c 1 = 0. = (3 c 0 c 1 ) 2 + (1 c 0 2c 1 ) 2 + (4 c 0 4c 1 ) 2. (2) { 3c0 + 7c 1 = 8, 7c c 1 = 21 c 0 = 1.5, c 1 = 0.5. (3) 5 Regresie liniara prin cmmp y g(1) = 2, g(2) = 2.5, g(3) = 3.5; min E = (3 2) 2 +(1 2.5) 2 +(4 3.5) x 6/60

8 Regresia liniară Introducere Formularea problemei Ideea metodei CMMP Set oarecare de date: m E(c 0, c 1 ) = (y k c 0 c 1 x k ) 2, (4) k=0 { E c 0 = 0, E c 1 = 0. { m k=0 2(y k c 0 c 1 x k ) = 0, m k=0 2x k(y k c 0 c 1 x k ) = 0. (5) { c0 (m+1)+c m 1 k=0 x k = m k=0 y k, c m 0 k=0 x k + c m 1 k=0 x k 2 = m k=0 x ky k. Sistem normal (6) 7/60

9 Regresia liniară Introducere Formularea problemei Ideea metodei CMMP Soluţia se poate calcula explicit: unde c 0 = d 0 d, c 1 = d 1 d, (7) ( m m ) 2 d = (m+1) xk 2 x k, (8) d 0 = d 1 ( m xk 2 k=0 = (m+1) k=0 k=0 )( m ( m )( m ) y k ) x k x k y k, (9) k=0 k=0 k=0 ( m m )( m ) x k y k x k y k. (10) k=0 k=0 k=0 8/60

10 Formularea problemei Ideea metodei CMMP Regresia liniară - alt raţionament Condiţiile de interpolare pentru datele din tabel şi g(x) = c 0 + c 1 x: c 0 + c 1 x k = y k, k = 1,...,m, (11) sistem supradeterminat de ecuaţii. Dacă notăm 1 x 0 y 0 1 x 1 A =.., y = y 1.., (12) 1 x m y m atunci (11) se scriu compact unde c = [c 0 c 1 ] T, iar sistemul normal este Ac = y, (13) A T Ac = A T y. (14) 9/60

11 Formularea problemei Ideea metodei CMMP Regresia liniară - alt raţionament Reluăm exemplul simplu: m = 3: (1,3), (2,1), (4,4) A = 1 2, y = A T A = [ ], A T y = [ 8 21, (15) ]. (16) { 3c0 + 7c 1 = 8, 7c c 1 = 21 c 0 = 1.5, c 1 = 0.5. (17) 10/60

12 Cazul general Introducere Metoda celor mai mici pătrate nu este limitată la polinoame de gradul întâi. Exemplu: g(x) = c 0 ln(x)+c 1 sin(x)+c 2 x. 1 Se minimizează funcţia definită de E = m k=0 (f(x k) g(x k )) 2 ; 2 Se impun condiţiile de minimizare; 3 Se rezolvă un sistem algebric liniar de dimensiune 3. 11/60

13 Cazul general Introducere În general, se caută o aproximare de forma unui polinom generalizat n g(x) = c j ϕ j (x), (18) j=0 unde ϕ i (x) se numesc funcţii de bază. OBS: n+1 < m+1 E(c 0, c 1,...,c n ) = m (g(x k ) f(x k )) 2 = k=0 m n c j ϕ j (x k ) y k k=0 j=0 (19) 2. 12/60

14 Cazul general Introducere E(c 0, c 1,...,c n ) = m (g(x k ) f(x k )) 2 = k=0 m n c j ϕ j (x k ) y k k=0 j=0 Punctul de minim al acestei funcţii este un punct critic: (20) E c i = 0, i = 0,...,n. (21) Înlocuind expresia (20) în (21) rezultă ( n m ) m ϕ i (x k )ϕ j (x k ) c j = y k ϕ i (x k ), i = 0,...,n. (22) j=0 k=0 k=0 Sistem normal dificil de rezolvat dacă ϕ k nu sunt alese potrivit /60

15 Cazul general - alt raţionament Condiţiile de interpolare pentru datele din tabel şi g(x) g(x k ) = y k, k = 1,...,m, (23) sistem supradeterminat de ecuaţii. Notăm ϕ 0 (x 0 ) ϕ 1 (x 0 ) ϕ n (x 0 ) ϕ 0 (x 1 ) ϕ 1 (x 1 ) ϕ n (x 1 ) A =..., y = ϕ 0 (x m ) ϕ 1 (x m ) ϕ n (x m ) atunci (23) se scriu compact y 0 y 1. y m, (24) Ac = y, (25) unde c = [c 0, c 1... c n+1 ] T. Sistemul normal: A T Ac = A T y. (26) 14/60

16 clasice Sistemul normal de rezolvat are, în cazul regresiei liniare forma N = [ m+1 m k=0 x k m k=0 x k m k=0 x 2 k Nc = t (27) ] [ m, t = k=0 y ] k m k=0 x. (28) ky k 15/60

17 clasice Sistemul normal de rezolvat Nc = t (29) are, în cazul regresiei parabolice g(x) = c 0 + c 1 x + c 2 x 2, forma: m+1 m k=0 x m k k=0 x 2 m k N = m k=0 x m k k=0 x k 2 m k=0 x k 3 k=0 y k, t = m m k=0 x k 2 m k=0 x k 3 m k=0 x k 4 k=0 x m ky k k=0 x k 2y k. (30) OBS: Generalizarea este uşoara pentru n > 2, dar sistemul este slab condiţionat. :( 16/60

18 clasice Sistemul normal de rezolvat Nc = t (29) are, în cazul regresiei parabolice g(x) = c 0 + c 1 x + c 2 x 2, forma: m+1 m k=0 x m k k=0 x 2 m k N = m k=0 x m k k=0 x k 2 m k=0 x k 3 k=0 y k, t = m m k=0 x k 2 m k=0 x k 3 m k=0 x k 4 k=0 x m ky k k=0 x k 2y k. (30) OBS: Generalizarea este uşoara pentru n > 2, dar sistemul este slab condiţionat. :( Remedii? 16/60

19 clasice Remedii: 1 Folosirea unor alte funcţii de bază; 2 O altă strategie pentru CMMP, care nu rezolvă sistemul normal. 17/60

20 - polinoame Chebyshev În cazul în care se caută polinoamelor algebrice, atunci folosirea polinoamelor Chebyshev, definite recursiv ca: T 0 (x) = 1, (31) T 1 (x) = x, (32) T j (x) = 2xT j 1 (x) T j 2 (x), (33) generează un sistem de ecuaţii mult mai bine condiţionat. OBS: Există un algoritm mai eficient de evaluare a aproximării g(x) cu polinoame Chebyshev, decât rezolvarea sistemului normal [Cheney07]. 18/60

21 ortonormale Ideal (din p.d.v. al condiţionării) - varianta în care matricea coeficienţilor este matricea unitate, adică dacă m ϕ i (x k )ϕ j (x k ) = δ ij, unde δ ij = k=0 { 1 dacă i = j 0 dacă i j, (34) ceea ce înseamnă că funcţiile de bază sunt ortonormale. m c j = y k ϕ j (x k ), j = 0,...,n. (35) k=0 19/60

22 ortonormale Dacă notăm cu G spaţiul vectorial al funcţiilor generat de funcţii de bază ϕ j (x) G = g : c 0, c 1,...c n, astfel încât g(x) = n c j ϕ j (x), (36) j=0 atunci o bază ortonormală se poate construi de exemplu printr-o procedură Gram-Schmidt. 20/60

23 - paşi principali Date: tabelul de valori; valorile în care se doreşte evaluarea polinomului de aproximare. Se aleg: funcţiile de bază (în consecinţă şi gradul polinomului de aproximare). Se calculează: valorile polinomului de aproximare în punctele dorite. 21/60

24 - paşi principali CMMP_SistemNormal 1. Asamblează A şi y 2. Calculează N = A T A şi t = A T y 3. Rezolvă sistemul pătrat Nc = t c 4. Evaluează polinomul de aproximare g(x) în punctul dorit 22/60

25 - paşi principali Obs: În cazuri particulare, se poate evita calculul explicit al coeficienţilor c. Se poate ca tabelul de valori să includă numere complexe. În acest caz: N = A H A, t = A H y unde A H (notată uneori şi cu A ) este transpusa hermitiană adica (a H ) ij = a ji. Sistemul normal A H Ac = A H y este nesingular dcaă şi numai dacă A este de rang complet [Trefethen97]. 23/60

26 1. Netezirea datelor Q: În cazul unor date experimentale, ce grad să aibă polinomul de aproximare? A: Am putea creşte gradul polinomului până când avem o aproximare suficient de netedă a datelor. Q: Cum să stabilim cantitativ gradul de netezire? A: Folosind criterii din statistică. 24/60

27 1. Netezirea datelor Q: În cazul unor date experimentale, ce grad să aibă polinomul de aproximare? A: Am putea creşte gradul polinomului până când avem o aproximare suficient de netedă a datelor. Q: Cum să stabilim cantitativ gradul de netezire? A: Folosind criterii din statistică. 24/60

28 1. Netezirea datelor Q: În cazul unor date experimentale, ce grad să aibă polinomul de aproximare? A: Am putea creşte gradul polinomului până când avem o aproximare suficient de netedă a datelor. Q: Cum să stabilim cantitativ gradul de netezire? A: Folosind criterii din statistică. 24/60

29 1. Netezirea datelor Q: În cazul unor date experimentale, ce grad să aibă polinomul de aproximare? A: Am putea creşte gradul polinomului până când avem o aproximare suficient de netedă a datelor. Q: Cum să stabilim cantitativ gradul de netezire? A: Folosind criterii din statistică. 24/60

30 1. Netezirea datelor Forsythe [1957]: Se construiesc funcţii de bază ortogonale adaptate setului de date; Se pp. că valorile din tabel sunt afectate de erori y i = p N (x i )+ε i, i = 0,...,m unde ε i sunt presupune variabile aleatoare independente distribuite normal. Pentru fiecare aproximare de grad n determinată se calculează varianţa. σ 2 n = 1 m n m [y i p n (x i )] 2 i=0 25/60

31 1. Netezirea datelor Teoria statistică: Dacă tendinţa datelor din tabel e într-adevăr polinom de gradul N atunci are loc σ 2 0 > σ2 1 > σ2 N = σ2 N+1 = σ2 m. ul va calcula aproximări de ordin crescător până când varianţa nu se mai modifică. Pentru detalii ale acestui algoritm, consultaţi [Cheney07, subcapitolul 12.2]. 26/60

32 2. Cazul unei funcţii date prin cod Dacă f : [a, b] IR e dată prin cod, atunci mărimea de minimizat foloseşte o normă continuă E(c 0, c 1,...,c n ) = b a [g(x) f(x)] 2 dx. (37) În anumite aplicaţii e de dorit că aproximarea să se potrivească mai bine pe anumite intervale, caz în care se folosesc funcţii pondere w(x): E(c 0, c 1,...,c n ) = b a [g(x) f(x)] 2 w(x) dx. (38) 27/60

33 2. Cazul unei funcţii date prin cod Sistemul normal de ecuaţii devine n [ ϕi (x)ϕ j (x)w(x) dx ] c j = j=0 b a f(x)ϕ i (x)w(x) dx, i = 0,...,n. Au fost propuse mai multe seturi de astfel de funcţii ortogonale şi ponderi potrivite. (39) 28/60

34 3. Probleme de CMMP neliniare Până acum polinoamele de interpolare = combinaţii liniare de coeficienţi necunoscuţi. Dar dacă: Pentru setul de date (x k, y k ), k = 0, m se caută g(x) = e cx? Metoda CMMP minimizează funcţia E(c) = m (e cx k y k ) 2 (40) k=0 Minimul are loc pentru E (c) = 0, deci 2 m (e cx k y k ) e cx k x k = 0, (41) k=0 29/60

35 3. Probleme de CMMP neliniare Pentru setul de date (x k, y k ), k = 0, m se caută g(x) = e cx. CMMP duce la m (e cx k y k ) e cx k x k = 0, (42) k=0 ecuaţie neliniară în c rezolvare de ecuaţii neliniare; metode de minimizare. 30/60

36 3. Probleme de CMMP neliniare Pentru setul de date (x k, y k ), k = 0, m se caută g(x) = e cx. Acestea sunt probleme de CMMP neliniare. OBS: Reformulare ca o problemă de CMMP liniară: Pentru setul de date (x k, ln(y k )), k = 0, m se caută h(x) = cx. Valoarea c din problema reformulată nu este soluţia ecuaţiei neliniare (42), dar aproximarea e h(x) s-ar putea să fie satisfăcătoare. 31/60

37 Recapitularea ideilor de până acum Se caută aproximarea unor date dintr-un tabel de valori; CMMP găseşte o funcţie a.î. distanţa dintre ea şi tabelul de date să fie minimă (în normă Euclidiană); Aceasta problemă este echivalentă cu rezolvarea unui sistem de ecuaţii supradimensionat Ac = y; Acesta se poate aduce la un sistem de ecuaţii normal, cu matricea coeficienţilor pătrată; Condiţionarea sistemului normal depinde de alegerea funcţiilor de bază; 32/60

38 Recapitularea ideilor de până acum Polinoamele algebrice clasice se pot folosi pentru regresii liniare sau parabolice; Pentru ordine mai mari e mai bine să se folosească polinoame Chebyshev; O procedură eficientă poate folosi polinoame ortogonale adaptate setului de date; Găsirea ordinului optim se poate facând o analiză statistică. 33/60

39 Recapitularea ideilor de până acum CMMP poate fi privită ca o metodă de rezolvare a unui sistem supradeterminat, care a fost notat Ac = y. Minimizarea normei Euclidiene discrete este echivalentă cu minimizarea normei reziduului r = Ac y. În cele ce urmează, vom prezenta alţi algoritmi CMMP, care nu asamblează sistemul normal. 34/60

40 Recapitularea ideilor de până acum Problema formulată va fi aceea a rezolvării unui sistem supradeterminat de ecuaţii, pe care îl vom formula cu notaţia standard: Ax = b, A - matrice dreptunghiulară de dimensiuni (m+1) (n+1) b - vector coloană de dimensiune (n+1) x - soluţia care se caută în sensul CMMP. 35/60

41 Recapitularea ideilor de până acum Ax = b x reprezintă punctul pentru care se atinge minimul expresiei m n ( ) 2 E(x 0, x 1,...,x n ) = akj x j b k k=0 j=0 Dacă notăm reziduul (care depinde de x) r = b Ax atunci r 2 2 = E(x 0, x 1,...,x n ) 36/60

42 Un altă interpretare algebrică Ax = b r = b Ax Rezolvarea unui sistem supradeterminat în sensul CMMP este echivalentă cu minimizarea normei Euclidiene a reziduului. Rezolvarea unui sistem supradeterminat în sensul CMMP este echivalentă cu găsirea unei soluţii pentru care reziduul este ortogonal pe imaginea transformării liniare Ax r range(a) 37/60

43 Un altă interpretare algebrică Cazul m = 1, n = 0 (2 ec., 1 nec., pp. numere reale): a 1 x = b 1 { a 2 x = b 2 } (43) range(a) = y IR 2 : x IR, y 1 = a 1 x, y 2 = a 2 x 38/60

44 Factorizarea QR Ideea QR Factorizare QR redusă A = ˆQˆR A - matrice dreptunghiulară (m+1) (n+1) ˆQ - matrice dreptunghiulară (m+1) (n+1), cu coloane ortonormale ˆR - matrice pătrată (n+1) (n+1), superior triunghiulară ˆQ HˆQ = I n+1 r ii > 0, r ij = 0 pentru j < i. 39/60

45 Factorizarea QR Ideea QR Factorizare QR completă A = QR A - matrice dreptunghiulară (m+1) (n+1) ˆQ - matrice pătrată (m+1) (m+1), unitară ˆR - matrice dreptunghiulară (m+1) (n+1), superior triunghiulară ˆQ HˆQ = I m+1 r ii > 0, r ij = 0 pentru j < i. 40/60

46 Factorizarea QR Ideea QR 41/60

47 Ideea QR Introducere Ideea QR A = ˆQˆR Ax = b ˆQˆRx = b ˆQ HˆQˆRx = ˆQH b Deoarce rezulta ˆQ HˆQ = I ˆRx = ˆQ H b 42/60

48 - paşi principali Ideea QR Ax = b Date: matrice dreptunghiulară, cu coeficienţi complecşi A; vectorul termenilor liberi b Se calculează: soluţia sistemului supradeterminat x în sensul CMMP. 43/60

49 - paşi principali Ideea QR CMMP_QR 1. Calculează factorizarea QR redusă a matricei A: A = ˆQˆR 2. Calculează vectorul t = ˆQ H b 3. Rezolvă sistemul pătrat, superior triunghiular ˆRx = t x 44/60

50 - calculul factorizării Ideea QR Procedură de ortogonalizare Gram-Schmidt aplicată coloanelor matricei A A = R 1 R 2 R n+1 = ˆQ apoi Sau, mai eficient ˆR = R 1 n+1 R 1 n R /60

51 - calculul factorizării Ideea QR Procedură Householder apoi Obs Q n+1 Q n Q 1 A = R Q = Q H 1 QH 2 QH n+1 Q k - matrice elementare unitare, urmăresc eliminarea elementelor ca la Gauss; Se obţine factorizarea QR completă; 46/60

52 - calculul factorizării Ideea QR Trecerea la factorizarea QR redusă se obţine prin ultimelor coloane din Q şi a ultimelor linii din R. 47/60

53 Factorizarea SVD Ideea SVD Concluzii SVD = singular value decomposition (desc. în valori singulare) Factorizare SVD redusă A = ÛŜVH A - matrice dreptunghiulară (m+1) (n+1) (presupusă de rang complet) Û - matrice dreptunghiulară (m+1) (n+1), cu coloane ortonormale Ŝ - matrice pătrată (n+1) (n+1), diagonală V - matrice pătrată (n+1) (n+1), unitară ˆV HˆV = In+1 s ii > 0, s ij = 0 pentru i j. 48/60

54 Factorizarea SVD Ideea SVD Concluzii SVD = singular value decomposition (desc. în valori singulare) Factorizare SVD completă A = USV H A - matrice dreptunghiulară (m+1) (n+1) (presupusă de rang complet) U - matrice pătrată (m+1) (m+1), unitară S - matrice dreptunghiulară (m+1) (n+1), diagonală V - matrice pătrată (n+1) (n+1), unitară ˆV HˆV = In+1 ; ÛH Û = I m+1 s ii > 0, s ij = 0 pentru i j. 49/60

55 Factorizarea SVD Ideea SVD Concluzii 50/60

56 Ideea SVD Introducere Ideea SVD Concluzii A = ÛŜVH Ax = b ÛŜVH x = b ÛŜVH x = ÛÛH b ŜV H x = ÛH b Ŝ(V H x) = ÛH b Ŝw = ÛH b unde am notat V H x = w V H x = V H Vw x = Vw 51/60

57 - paşi principali Ideea SVD Concluzii Ax = b Date: matrice dreptunghiulară, cu coeficienţi complecşi A; vectorul termenilor liberi b Se calculează: soluţia sistemului supradeterminat x în sensul CMMP. 52/60

58 - paşi principali Ideea SVD Concluzii CMMP_SVD 1. Calculează descompunerea redusă în valori singulare a matricei A: A = ÛŜVH 2. Calculează vectorul t = U H b 3. Rezolvă sistemul diagonal Ŝw = t w 4. Calculează x = Vw. Pentru detalii, consultaţi [Trefethen97],[Dumitrescu98]. 53/60

59 Ideea SVD Concluzii Pseudoinversa unei matrice dreptunghiulare Ax = b x = A + b Pseudoinversa unei matrice diagonale este tot o matrice diagonală având pe diagonală inversele: D = [ d d 2 0 ] D + = 1/d /d (44) 54/60

60 Ideea SVD Concluzii Pseudoinversa unei matrice dreptunghiulare Ax = b x = A + b ÛŜVH x = b ŜV H x = ÛH b V H x = Ŝ+ Û H b x = VŜ+ Û H b Rezultă că A + = VŜ+ Û H 55/60

61 Ideea SVD Concluzii Pseudoinversa unei matrice dreptunghiulare Important: Pseudoinversa este unică dacă descompunerea în valori singulare se face astfel încat acestea să fie ordonate în S: σ 1 σ 2... [Cheney] În rezolvarea în sens CMMP a problemei Ax = b prin descompunere SVD, este util să se analizeze valorile singulare ale matricei. Este bine ca valorile singulare mai mici decât o anumită toleranţă să fie anulate. O astfel de abordare face ca metoda să fie cea mai stabilă din toate variantele. 56/60

62 Ideea SVD Concluzii Pseudoinversa unei matrice dreptunghiulare Proprietăţi ale pseudoinversei (proprietăţi Penrose): 1 A = AA + A 2 A + = A + AA + 3 AA + = (AA + ) T 4 A + A = (A + A) T 57/60

63 Comparaţii între algoritmi Ideea SVD Concluzii 1 Din punct de vedere al timpului de calcul: : O(mn 2 + n 3 /3); CMMP prin QR: O(2mn 2 + 2n 3 /3); CMMP prin SVD: O(2mn n 3 ); 2 Din punct de vedere al stabilităţii: - de folosit doar pentru regresii liniare sau parabolice; CMMP prin QR - stabil dacă rang(a) = n+1; CMMP prin SVD - trebuie folosit dacă A are deficienţa de rang. Matlab: qr, svd, pinv. 58/60

64 Referinţe Introducere Ideea SVD Concluzii Minimal: [AN], i numerici pentru calcule ştiintifice în ingineria electrică Editura MatrixROM, 2013, pag [Ioan98] D. Ioan et al., Metode numerice in ingineria electrica, Ed. Matrix Rom, Bucuresti, (Capitolul 13) Alte recomandări: [Cheney] Ward Cheney and David Kincaid, Numerical Mathematics and Computing, Brooks/Cole publishing Company,2000. [Trefethen97] Lloyd N. Trefethen, David Bau III, Numerical Linear Algebra, SIAM [Dumitrescu98] Bogdan Dumitrescu, Corneliu Popeea, Boris Jora, Metode de calcul numeric matriceal. i fundamentali, Editura All, /60

65 Ideea SVD Concluzii Tema 8 (din categoria "examen") 1 Pregătiţi date sintetice asfel: alegeţi un polinom de grad 10 şi perturbaţi-l cu valori aleatoare distribuite normal. Generaţi un tabel de date cu 50 de puncte; 2 Implementaţi şi testaţi procedura de aproximare cu determinarea optimă a gradului polinomului de aproximare. Notă: puteţi folosi orice fel de funcţii matlab doriţi. Scrieţi un scurt raport care să reflecte rezolvarea temei. Este obligatoriu ca raportul să aibă: o pagină de titlu, un cuprins generat automat, o lista de referinţe. Daţi o structură coerentă raportului. 60/60

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Sisteme liniare - metode directe

Sisteme liniare - metode directe Sisteme liniare - metode directe Radu T. Trîmbiţaş 27 martie 2016 1 Eliminare gaussiană Să considerăm sistemul liniar cu n ecuaţii şi n necunoscute Ax = b, (1) unde A K n n, b K n 1 sunt date, iar x K

Διαβάστε περισσότερα

Interpolarea funcţiilor.

Interpolarea funcţiilor. Interpolarea funcţiilor.. Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică Suport didactic pentru disciplina Metode numerice, 2017-2018 1/52 Cuprins Introducere 1 Introducere

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare

METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare Titulari curs: Florin Pop, George-Pantelimon Popescu Responsabil Laborator: Mădălina-Andreea

Διαβάστε περισσότερα

Rezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare. Cuprins. Prof.dr.ing. Gabriela Ciuprina

Rezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare. Cuprins. Prof.dr.ing. Gabriela Ciuprina Rezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică Suport didactic pentru disciplina Metode numerice,

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice Teme de implementare in Matlab pentru Laboratorul de Metode Numerice As. Ruxandra Barbulescu Septembrie 2017 Orice nelamurire asupra enunturilor/implementarilor se rezolva in cadrul laboratorului de MN,

Διαβάστε περισσότερα

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1) Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Cap.2. Sisteme de ecuaţii algebrice liniare - metode directe (II)

Cap.2. Sisteme de ecuaţii algebrice liniare - metode directe (II) Cap.2. Sisteme de ecuaţii algebrice liniare - metode directe (II) Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul de Electrotehnică Suport didactic

Διαβάστε περισσότερα

Integrarea numerică. Prof.dr.ing. Gabriela Ciuprina. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică

Integrarea numerică. Prof.dr.ing. Gabriela Ciuprina. Universitatea Politehnica Bucureşti, Facultatea de Inginerie Electrică Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică Suport didactic pentru disciplina Metode numerice, 017-018 1/35 Cuprins Introducere 1 Introducere Importanţa evaluării

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Ecuatii trigonometrice

Ecuatii trigonometrice Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă. Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15 MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIA COMPUTAŢIONALĂ A CURBELOR Interpolare cu ajutorul funcţiilor polinomiale

ELEMENTE DE GEOMETRIA COMPUTAŢIONALĂ A CURBELOR Interpolare cu ajutorul funcţiilor polinomiale 3 ELEMENTE DE GEOMETRIA COMPUTAŢIONALĂ A CURBELOR 31 Interpolare cu ajutorul funcţiilor polinomiale Prin interpolare se înţelege următoarea problemă: se dau n + 1 puncte P 0, P 1,, P n în plan sau în spaţiu

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

Integrarea numerică. Prof.dr.ing. Gabriela Ciuprina. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică

Integrarea numerică. Prof.dr.ing. Gabriela Ciuprina. Universitatea Politehnica Bucureşti, Facultatea de Inginerie Electrică Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică Suport didactic pentru disciplina Algoritmi Numerici, 016-017 1/40 Cuprins Introducere 1 Introducere Importanţa evaluării

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

Laborator 6. Integrarea ecuaţiilor diferenţiale

Laborator 6. Integrarea ecuaţiilor diferenţiale Laborator 6 Integrarea ecuaţiilor diferenţiale Responsabili: 1. Surdu Cristina(anacristinasurdu@gmail.com) 2. Ştirbăţ Bogdan(bogdanstirbat@yahoo.com) Obiective În urma parcurgerii acestui laborator elevul

Διαβάστε περισσότερα

Sisteme de ecuaţii algebrice liniare - metode iterative nestaţionare (semiiterative)

Sisteme de ecuaţii algebrice liniare - metode iterative nestaţionare (semiiterative) Sisteme de ecuaţii algebrice liniare - metode iterative nestaţionare (semiiterative) Conf.dr.ing. Gabriela Ciuprina Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul

Διαβάστε περισσότερα

Problema celor mai mici pătrate

Problema celor mai mici pătrate Seminar 3 Problema celor mai mici pătrate Acest seminar este dedicat metodelor numerice pentru rezolvarea unei probleme numerice foarte importante întâlnită în multe aplicaţii, aşa numita problemă a celor

Διαβάστε περισσότερα

Lucian Maticiuc CURS I II. 1 Matrice şi determinanţi. Sisteme de ecuaţii liniare. 1.1 Matrice şi determinanţi

Lucian Maticiuc CURS I II. 1 Matrice şi determinanţi. Sisteme de ecuaţii liniare. 1.1 Matrice şi determinanţi Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr Lucian MATICIUC http://mathettituiasiro/maticiuc/ CURS I II Matrice şi determinanţi Sisteme de ecuaţii

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Seminar Algebra. det(a λi 3 ) = 0

Seminar Algebra. det(a λi 3 ) = 0 Rezolvari ale unor probleme propuse "Matematica const în a dovedi ceea ce este evident în cel mai puµin evident mod." George Polya P/Seminar Valori si vectori proprii : Solutie: ( ) a) A = Valorile proprii:

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

Universitatea Transilvania din Braşov Facultatea de Matematică Informatică Catedra de Informatică ERNEST SCHEIBER

Universitatea Transilvania din Braşov Facultatea de Matematică Informatică Catedra de Informatică ERNEST SCHEIBER Universitatea Transilvania din Braşov Facultatea de Matematică Informatică Catedra de Informatică ERNEST SCHEIBER ANALIZĂ NUMERICĂ Braşov Cuprins I INTERPOLARE ŞI APLICAŢII 9 1 Diferenţe finite 11 11

Διαβάστε περισσότερα

Metode directe pentru sisteme de ecuaţii liniare

Metode directe pentru sisteme de ecuaţii liniare Metode directe pentru sisteme de ecuaţii liniare Eliminare gaussiană, descompunere LU, Cholesky Radu T. Trîmbiţaş Universitatea Babeş-Bolyai March 26, 2008 Radu T. Trîmbiţaş (Universitatea Babeş-Bolyai

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

METODE NUMERICE: Laborator #7 Calculul valorilor proprii si vectorilor proprii prin metodele puterii. Metoda Householder

METODE NUMERICE: Laborator #7 Calculul valorilor proprii si vectorilor proprii prin metodele puterii. Metoda Householder METODE NUMERICE: Laborator #7 Calculul valorilor proprii si vectorilor proprii prin metodele puterii. Metoda Householder Titulari curs: Florin Pop, George-Pantelimon Popescu Responsabil Laborator: Alexandru

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

VII.2. PROBLEME REZOLVATE

VII.2. PROBLEME REZOLVATE Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea

Διαβάστε περισσότερα

INTERPOLARE. y i L i (x). L(x) = i=0

INTERPOLARE. y i L i (x). L(x) = i=0 INTERPOLARE Se dau punctele P 0, P 1,..., P n in plan sau in spatiu, numite noduri si avand vectorii de pozitie r 0, r 1,..., r n. Problemă. Să se găsească o curbă (dintr-o anumită familie) care să treacă

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele

Διαβάστε περισσότερα

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar

Διαβάστε περισσότερα

Metode iterative pentru rezolvarea sistemelor de ecuatii liniare

Metode iterative pentru rezolvarea sistemelor de ecuatii liniare Metode iterative pentru rezolvarea sistemelor de ecuatii liniare 1 Metode iterative clasice Metodele iterative sunt intens folosite, in special pentru rezolvarea de probleme mari, cum sunt cele de discretizare

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

Cap2. Sisteme de ecuaţii algebrice liniare - metode iterative

Cap2. Sisteme de ecuaţii algebrice liniare - metode iterative Cap2. Sisteme de ecuaţii algebrice liniare - metode iterative Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul de Electrotehnică Suport didactic pentru

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER 2. Circuite logice 2.4. Decodoare. Multiplexoare Copyright Paul GASNER Definiţii Un decodor pe n bits are n intrări şi 2 n ieşiri; cele n intrări reprezintă un număr binar care determină în mod unic care

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu INTRODUCERE Laborator 1: ÎN ALGORITMI Întocmit de: Claudia Pârloagă Îndrumător: Asist. Drd. Gabriel Danciu I. NOŢIUNI TEORETICE A. Sortarea prin selecţie Date de intrare: un şir A, de date Date de ieşire:

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Nicolae Cotfas ELEMENTE DE ALGEBRĂ LINIARĂ EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Introducere Pe parcursul acestei cărţi ne propunem să prezentăm într-un mod cât mai accesibil noţiuni si rezultate de bază

Διαβάστε περισσότερα

CURS 5 Spaţii liniare. Spaţiul liniar R n

CURS 5 Spaţii liniare. Spaţiul liniar R n CURS 5 Spaţii liniare. Spaţiul liniar R n A. Arusoaie arusoaie.andreea@gmail.com andreea.arusoaie@info.uaic.ro Facultatea de Informatică, Universitatea Alexandru Ioan Cuza din Iaşi 30 Octombrie 2017 Structura

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Capitolul 3. Serii Fourier. a unei funcţii periodice de perioadă Dezvoltarea în serie Fourier

Capitolul 3. Serii Fourier. a unei funcţii periodice de perioadă Dezvoltarea în serie Fourier Capitolul Serii Fourier 7-8. Dezvoltarea în serie Fourier a unei funcţii periodice de perioadă Pornind de la discuţia asupra coardei vibrante începută în anii 75 între Euler şi d Alembert, se ajunge la

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα