cercului circumscris triunghiului ABE.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "cercului circumscris triunghiului ABE."

Transcript

1 Concursul Gazeta Matematică și ViitoriOlimpici.ro Ediția a IV-a Problema 1. Rezolvaţi în mulţimea numerelor reale ecuaţia (x 2 + y 2 ) 3 = (x 3 y 3 ) 2. Soluţie. Ecuaţia se scrie echivalent x 6 + 3x 4 y 2 + 3x 2 y 4 + y 6 = x 6 2x 3 y 3 + y 6, adică 3x 4 y 2 + 3x 2 y 4 + 2x 3 y 3 = 0, sau încă x 2 y 2 (3x 2 + 2xy + 3y 2 ) = 0. Rezultă că fie x = 0, fie y = 0, fie 3x 2 + 2xy + 3y 2 = 0. Ultima ecuaţie se poate scrie sub forma 2x 2 + (x + y) 2 + 2y 2 = 0 şi are unica soluţie x = y = 0. Prin urmare soluţiile ecuaţiei sunt: x = 0, y R şi y = 0, x R. Problema 2. Se consideră un cerc C şi un punct A exterior acestuia. Din A se duc tangentele AB şi AC la cercul C. Paralela prin B la AC intersectează C în D, iar dreapta AD intersectează C în punctul E. Demonstraţi că dreapta BE conţine mijlocul segmentului (AC). din Culegere de probleme de geometrie, autori I.C. Drăghicescu, V. Masgras 1 Soluţia 1: Notăm BE AC = {F }. Folosind puterea punctului F faţă de cerc avem ρ(f ) = CF 2 = F E F B. Problema revine astfel la a arăta că F A 2 = F E F B, sau F A F B = F E. Cum F AE ADB (alterne interne) şi ADB ABE, iar F A AF E BF A, deducem că AF E BF A, de unde F A F B = F E F A. Observaţie: Faptul că trebuie să arătăm că BE trece prin mijlocul tangentei (AC) ne poate sugera să folosim proprietatea, prezentată în materialul teoretic de la această etapă, că axa radicală a două cercuri trece prin mijlocul tangentei comune la cele două cercuri. Cum axa radicală a două cercuri secante este dreapta determinată de punctele lor de intersecţie, este suficient să arătăm că CA este tangentă cercului circumscris triunghiului ABE. Acest lucru este imediat: din CAE BDA (alterne interne) şi BDA ABE (ambele subîntind arcul BE al cercului C) rezultă că CAE ABE ceea ce arată că AC este tangentă 1 Editura Tehnică, Concursul Gazeta Matematică și ViitoriOlimpici.ro Ediția a IV-a

2 cercului circumscris triunghiului ABE. Soluţia 2: (dată de Ştefan Tudose) Fie {M} = AD BC şi {F } = BE AC. Deoarece AB şi AC sunt tangente la cercul C, BC este polara lui A în raport cu cercul C, de unde rezultă că (A, M, E, D) este diviziune armonică, adică EA EM = DA DM (1). Pe de altă parte, triunghiurile CMA şi BMD sunt asemenea, de unde MC MB = MA MD, deci BC BM = DA MD Din (1) şi (2) rezultă EA EM = BC (3). BM Aplicând teorema lui Menelaus în triunghiul AMC tăiat de transversala F E B se obţine BC BM EM EA F A F C = 1, de unde, folosind (3), F A = F C şi concluzia. Problema 3. Fie triunghiul ABC şi H un punct în interiorul său astfel încât (2). HAB HCB şi HBC HAC. 2

3 Arătaţi că H este ortocentrul triunghiului ABC. Manuela Prajea, lista scurtă ONM Soluţie: Fie B punctul de intersecţie a dreptelor BH şi AC, iar C punctul de intersecţie a dreptelor CH şi AB. Deoarece m( B HC ) = m( CHB) = 180 m( HBC) m( HCB) = 180 m( HAC) m( HAB) = 180 m( B AC ), rezultă că patrulaterul AC HB este inscriptibil. Deducem că HB C HAB HCB, de unde rezultă că şi patrulaterul BCB C este inscriptibil. Atunci unghiurile BB C şi BC C sunt congruente. Însă din inscriptibilitatea patrulaterului AC HB rezultă că ele sunt şi suplementare. Fiind congruente şi suplementare, unghiurile BB C şi BC C sunt drepte, deci BB şi CC sunt înălţimi în triunghiul ABC, deci H este ortocentrul acestui triunghi. Observaţie: Cum ortocentrul este în interiorul triunghiului, rezultă că triunghiul ABC trebuie să fie ascuţitunghic, adică un punct H cu proprietăţile din enunţ există numai dacă triunghiul ABC este ascuţitunghic. Problema 4. În fiecare vârf al unui poligon regulat cu 2n vârfuri este scris un număr întreg astfel încât numerele scrise în două vârfuri vecine să difere mereu prin 1. Numerele care sunt mai mari decât ambii lor vecini se numesc munţi, iar cele care sunt mai mici decât ambii lor vecini se numesc văi. Arătaţi că suma munţilor minus suma văilor este egală cu n. Hraskó András, Concusul KöMaL, Ungaria, 2000 Soluţia 1: Vom fixa un vârf care conţine un munte şi vom parcurge vârfurile poligonului în 3

4 sensul acelor de ceasornic. După 2n paşi ne vom întoarce la vârful de la care am pornit. Despre un pas vom spune că,,am urcat dacă pasul a fost făcut dintr-un vârf cu un număr mai mic într-un vârf cu un număr cu 1 mai mare şi vom spune că,,am coborât dacă pasul a fost făcut dintr-un vârf cu un număr mai mare într-un vârf cu un număr cu 1 mai mic. Deoarece după 2n paşi (de înălţime egală cu 1 fiecare), ne-am întors la,,înălţimea iniţială, rezultă că la n dintre paşi am urcat şi la ceilalţi n am coborât. Cum munţii alternează cu văile (abstracţie făcând de vârfurile care nu sunt nici munţi, nici văi), avem un număr egal de munţi şi văi. Diferenţa dintre fiecare munte şi valea următoare este cât se coboară. Suma acestor diferenţe este aşadar n. Soluţia 2: (dată de Ştefania Ligia Jianu) Notând numerele din vârfurile poligonului, în ordine, cu a 1, a 2,..., a 2n şi cu S suma S = a 1 a 2 + a 2 a a 2n 1 a 2n + a 2n a 1, avem că S = }{{} 2n termeni = 2n. Pe de altă parte, putem scrie S = α 1 (a 1 a 2 ) + α 2 (a 2 a 3 ) + + α 2n 1 (a 2n 1 a 2n )+α 2n (a 2n a 1 ), unde α k = 1 dacă a k a k+1 = 1 şi α k = 1 dacă a k a k+1 = 1 (dacă notăm a 2n+1 = a 1 ). Desfăcând parantezele şi regrupând, obţinem S = (α 1 α 2n )a 1 + (α 2 α 1 )a (α 2n α 2n 1 )a 2n. Astfel obţinem o sumă în care fiecare a k este înmulţit cu un coeficient care poate fi 2, 0 sau 2. Mai precis, coeficientul lui a k va fi: 2, dacă a k este munte, 2, dacă a k este vale, 0, dacă a k are un vecin mai mic şi unul mai mare (adică nu este nici munte, nici vale). Astfel, obţinem că S = 2(suma munţilor) 2(suma văilor), de unde (suma munţilor) (suma văilor) = n. Soluţia 3: (bazată pe ideea lui Mihai Marcian şi pe soluţia oficială din concursul KöMaL) Considerăm un vârf în care este scris cel mai mic număr. Numerotăm vârfurile de la 0 la 2n, vârful ales având atˆt numărul 0 cât şi numărul 2n. Reprezentăm într-un sistem de axe xoy punctele de coordonate A k (k, x k x 0 ) unde x k este numărul scris în vârful cu numărul k. Astfel A 0 (0, 0), A 1 (1, 1), apoi A 2 (2, 1 ± 1), ş.a.m.d. A 2n 1 (2n 1, 1) şi A 2n (2n, 0). Unind punctele consecutive obţinem o linie poligonală pe care o putem asemui cu o panoramă în care munţii din problemă au aspect de munţi, iar văile aspect de văi. Vom lua la rând munţii şi vom scădea 2 din ei. Astfel, in loc să fie cu 1 mai mari decât vecinii lor, ei vor fi cu 1 mai mici, devenind astfel văi. Vom arăta că aceste scăderi nu modifică diferenţa dintre suma munţilor şi suma văilor (deci că această diferenţă rămâne INVARIANTĂ 4

5 la aceste operaţi de transformare a munţilor în văi). Pe parcursul acestor scăderi (de nivel) se vor forma alţi munţi; vom efectua aceste scăderi şi asupra munţilor formaţi ulterior, dar nu şi a capetelor, A 0 şi A 2n. Deoarece x k x 0 k, acest proces de scăderi nu poate continua la nesfârşit. Prin urmare, atunci când el va lua sfârşit, nu vom mai avea niciun munte (cu excepţia capetelor). Am ajuns astfel la un,,peisaj în formă de,,v, cu o singură vale, x n = x 0 n. Pentru această configuraţie, diferenţa dintre suma munţilor, x 0 şi sumă văilor, x n, este n. Dacă arătăm că diferenţa dintra suma munţilor şi cea a văilor este invariantă la aceste scăderi, cum la sfârşit ea este n, rezultă că pentru orice configuraţie iniţială ea este tot n. Când efectuăm operaţia de scădere a muntelui k cu x k = a, acesta devine vale cu x k = a 2. Să ne uităm la cei doi vecini ai lui k: k 1 şi k + 1. Pentru fiecare din ei se întâmplă următorul lucru: dacă a fost vale, atunci acum nu mai este vale; dacă nu a fost vale atunci acum este munte. (Alt caz nu există, x k±1 neputând fi munţi înaintea efectuării operaţiei.) Distingem trei cazuri, în functie de câţi dintre vecinii lui k devin munţi după efectuarea operaţiei asupra lui x k : 0, 1 sau 2. Cazul 1. x k 1 şi x k+1 nu devin munţi. Atunci ei au fost văi şi acum nu mai sunt. Suma munţilor a scăzut cu a (x k nu mai este munte), suma văilor a crescut cu a 2 (x k = a 2 este acum vale) dar scade cu 2(a 1) (x k±1 = a 1 nu mai sunt văi), deci per total suma văilor scade cu 2(a 1) (a 2) = a, la fel ca şi suma munţilor, deci diferenţa dintre suma munţilor şi cea a văilor nu se schimbă. Cazul 2. Exact unul dintre x k 1 şi x k+1, să zicem x k 1, devine munte. Atunci x k+1 a fost vale şi acum nu mai este. Suma munţilor a scăzut cu a (x k nu mai este munte) şi a crescut cu a 1 (x k 1 = a 1 a devenit munte). Suma văilor a crescut cu a 2 (x k = a 2 este acum vale) dar scade cu a 1 (x k+1 = a 1 nu mai este vale). Suma munţilor şi suma văilor scad cu 1, deci diferenţa lor nu se schimbă. Cazul 3. x k 1 şi x k+1 devin munţi. Suma munţilor a scăzut cu a (x k nu mai este munte) şi a crescut cu 2(a 1) (x k±1 = a 1 au devenit munţi), deci per total suma munţilor creşte cu 2(a 1) a = a 2. Suma văilor creşte şi ea cu a 2 (căci x k = a 2 a devenit vale) la fel ca şi suma munţilor, deci diferenţa dintre suma munţilor şi cea a văilor nu se schimbă. Soluţia 4: (prin inducţie, bazată pe ideea lui Alexandru Bumbu) Vom demonstra afirmaţia din enunţ prin inducţie după n 2. Pentru n = 2 poligonul regulat este un pătrat. Numerele din vârfurile acestuia pot fi, în ordine: a, a + 1, a, a + 1 sau a, a + 1, a + 2, a + 1 sau a, a + 1, a, a 1 sau a, a 1, a, a + 1 sau a, a 1, a 2, a 1 sau a, a 1, a, a 1. În primul caz avem doi munţi (ambii a + 1) şi două văi (ambele a), deci diferenţa dintre suma munţilor şi suma văilor este 2(a + 1) 2a = 2. La fel se întâmplă şi în ultimul caz. În celelalte cazuri avem un singur munte şi o singură vale, iar diferenţa dintre acestea este 2. Presupunem afirmaţia adevărată pentru orice poligon regulat cu 2n laturi şi orice 5

6 aşezare a numerelor în vârfurile acestuia care respectă condiţiile din enunţ. Considerăm un poligon regulat cu 2n + 2 laturi şi o configuraţie arbitrară de numere în vârfurile acestuia care respectă condiţiile din enunţ. Ne uităm la cel mai mare număr aflat într-un vârf şi la un vârf în care este scris acest număr. Evident acest număr este un munte. Eliminăm acest vârf, precum şi unul dintre cei doi vecini ai săi, dintre vârfurile poligonului. Obţinem un poligon cu 2n laturi. Mutăm puţin vârfurile acestuia (fără a le afecta ordinea) astfel încât poligonul să devină regulat. Numerele înscrise în vârfurile acestuia respectă condiţia din enunţ. (Dintr-o secvenţa de forma a ± 1, a, a + 1, a, a ± 1 am scos a + 1 din mijloc şi unul din cei doi de a, lăsând a±1, a, a±1.) Din ipoteza de inducţie, ştim că, pentru poligonul cu 2n vârfuri, suma vârfurilor minus suma văilor este n. Comparând munţii şi văile poligonului cu 2n + 2 vârfuri cu cele ale poligonului cu 2n vârfuri constatăm că avem situaţiile de mai jos (munţii sunt marcaţi cu (M), iar văile cu V ) ): 1. Dacă am eliminat numerele a + 1 şi a din secvenţa a 1, a, a + 1 (M), a, a 1 obţinând a 1, a (M), a 1, atunci suma munţilor poligonului cu 2n + 2 este cu 1 mai mare decât suma munţilor poligonului cu 2n vârfuri, iar suma văilor este aceeaşi (în locul muntelui a + 1 avem un munte a). Deoarece suma munţilor minus suma văilor este n pentru poligonul cu 2n vârfuri, această diferenţă va fi n + 1 pentru poligonul cu 2n + 2 vârfuri. 2. Dacă am eliminat numerele a + 1 şi a din secvenţa a 1, a, a + 1 (M), a (V ), a + 1 obţinând a 1, a, a + 1, atunci suma munţilor poligonului cu 2n + 2 este cu a + 1 mai mare decât suma munţilor poligonului cu 2n vârfuri, iar suma văilor este cu a mai mare (în locul muntelui a + 1 şi văii a nu avem nimic). Deoarece suma munţilor minus suma văilor este n pentru poligonul cu 2n vârfuri, această diferenţă va fi n + 1 pentru poligonul cu 2n + 2 vârfuri. 3. Dacă am eliminat numerele a + 1 şi a din secvenţa a + 1, a, a + 1 (M), a (V ), a 1 obţinând a + 1, a, a 1, atunci suma munţilor poligonului cu 2n + 2 este cu a + 1 mai mare decât suma munţilor poligonului cu 2n vârfuri, iar suma văilor este cu a mai mare (în locul muntelui a + 1 şi văii a nu avem nimic). Deoarece suma munţilor minus suma văilor este n pentru poligonul cu 2n vârfuri, această diferenţă va fi n + 1 pentru poligonul cu 2n + 2 vârfuri. 4. Dacă am eliminat numerele a+1 şi a din secvenţa a+1, a (V ), a+1 (M), a (V ), a + 1 obţinând a + 1, a (V ), a + 1, atunci suma munţilor poligonului cu 2n + 2 este cu a + 1 mai mare decât suma munţilor poligonului cu 2n vârfuri, iar suma văilor este cu a mai mare (în locul muntelui a + 1 şi văii a nu avem nimic). Deoarece suma munţilor minus suma văilor este n pentru poligonul cu 2n vârfuri, această diferenţă va fi n + 1 pentru poligonul cu 2n + 2 vârfuri. Pentru alte probleme similare, a se vedea materialul Despre munţi şi văi. 6

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma

Διαβάστε περισσότερα

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB = Elemente de geometrie analiticã. Segmente. DistanŃa dintre douã puncte A(, ), B(, ): AB = ) + ( ) (. Panta dreptei AB: m AB = +. Coordonatele (,) ale mijlocului segmentului AB: =, =. Coordonatele punctului

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 998 Clasa a V-a. La gara Timișoara se eliberează trei bilete de tren: unul pentru Arad, altul pentru Deva și al treilea pentru Reșița. Cel pentru Deva

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Dreapta in plan. = y y 0

Dreapta in plan. = y y 0 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

3. Locuri geometrice Locuri geometrice uzuale

3. Locuri geometrice Locuri geometrice uzuale 3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

P A + P C + P E = P B + P D + P F.

P A + P C + P E = P B + P D + P F. Fie P un punct situat în interiorul cercului C. Prin punctul P se duc trei coarde care determină în jurul punctului P şase unghiuri de 60. Notăm A, B, C, D, E, F (în ordine) capetele acestor coarde. Arătaţi

Διαβάστε περισσότερα

Concursul Gazeta Matematică şi ViitoriOlimpici.Ro Etapa finală Câmpulung Muscel, august 2015 Soluţii şi baremuri Clasa a IV-a

Concursul Gazeta Matematică şi ViitoriOlimpici.Ro Etapa finală Câmpulung Muscel, august 2015 Soluţii şi baremuri Clasa a IV-a Concursul Gazeta Matematică şi ViitoriOlimpici.Ro Etapa finală Câmpulung Muscel, 17-22 august 2015 Soluţii şi baremuri Clasa a IV-a Problema 1. Câte numere naturale de cinci cifre trebuie să scriem pentru

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Subiecte Clasa a VI-a

Subiecte Clasa a VI-a Clasa a VI Lumina Math Intrebari (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

Soluţiile problemelor pentru pregătirea concursurilor propuse în nr. 2/2015

Soluţiile problemelor pentru pregătirea concursurilor propuse în nr. 2/2015 kp p Am folosit kp faptul că lim n p (q) q kp p + +... + π n P p [ k ] q q 6 ; ca urmare, kp p π k 6 π 6 π. Soluţiile problemelor pentru pregătirea concursurilor propuse în nr. /05 ( ) p p A. Nivel gimnazial

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

Vectori liberi-seminar 1

Vectori liberi-seminar 1 Vectori liberi-seminar ) Determinati α R astfel incat vectorii ā = m+ n si b = m+α n sa fie coliniari, unde m, n sunt necoliniari. ) Demonstrati ca urmatorii trei vectori liberi sunt coplanari: ā = ī j

Διαβάστε περισσότερα

29 Iunie Aplicaţii ale numerelor complexe în Geometrie. Absolvent: Haliţă Diana-Florina. Coordonator ştiinţific: Prof. Dr.

29 Iunie Aplicaţii ale numerelor complexe în Geometrie. Absolvent: Haliţă Diana-Florina. Coordonator ştiinţific: Prof. Dr. I UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Specializarea Matematică-Informatică, linia de studiu română 29 Iunie I 1 2 3 I 4 5 MATEM 6 MATEM 7 Bibliografie I Motivaţia:

Διαβάστε περισσότερα

Soluţiile problemelor propuse în nr. 2/2011

Soluţiile problemelor propuse în nr. 2/2011 Soluţiile problemelor propuse în nr. /11 Clasele primare P.6. Fie numerele a = 1 + şi b = 9. Înlocuiţi cercul şi pătratul cu cifre corespunzătoare astfel încât a + b = 15. (Clasa I) Amalia Munteanu, elevă,

Διαβάστε περισσότερα

Subiecte Clasa a V-a

Subiecte Clasa a V-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

GEOMETRIE PENTRU GIMNAZIU Partea I (cls. a V a, a VI a, a VII a) Geometrie pentru pregătirea Evaluării Naționale la Matematică

GEOMETRIE PENTRU GIMNAZIU Partea I (cls. a V a, a VI a, a VII a) Geometrie pentru pregătirea Evaluării Naționale la Matematică Geometrie pentru pregătirea Evaluării Naționale la Matematică (Cls. a V a, a VI a, a VII a) UNITĂȚI DE MĂSURĂ Lungime rie Volum Capacitate DE REȚINUT! Masă 1hm 1ha 1dam 1ar 1dm 1l 1q 1kg 1t 1kg 1v 1kg

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =.

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =. Copyright c ONG TCV Scoala Virtuala a Tanarului Matematician Ministerul Educatiei al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 4 iunie Profilul real Timp

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a X-a, MAI 2010 CLASA A IV-A

CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a X-a, MAI 2010 CLASA A IV-A Ediţia a X-a, 4 5 MAI 00 CLASA A IV-A I. Suma a două numere naturale este 75. Dacă adunăm de patru ori primul număr cu de trei ori al doilea număr obţinem 40. Aflaţi numărul cel mai mare. Eugenia Miron

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

Numere Fibonacci. f n+1 = f n + f n 1. (1) In plus, f 0 = 0 si f 1 = 1. (2)

Numere Fibonacci. f n+1 = f n + f n 1. (1) In plus, f 0 = 0 si f 1 = 1. (2) Numere Fibonacci Problema iepurilor Fie data o pereche de iepuri. Se stie ca fiecare pereche de iepuri produce in fiecare luna o noua pereche de iepuri, care la randul sau devine productiva la varsta de

Διαβάστε περισσότερα

Ακαδημαϊκός Λόγος Κύριο Μέρος

Ακαδημαϊκός Λόγος Κύριο Μέρος - Επίδειξη Συμφωνίας În linii mari sunt de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου Cineva este de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου D'une façon générale,

Διαβάστε περισσότερα

Lectia VII Dreapta si planul

Lectia VII Dreapta si planul Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

BISECTOAREI GLISANTE

BISECTOAREI GLISANTE ÎN LEGĂTURĂ CU TEOREMA BISECTOAREI GLISANTE de ANDREI ECKSTEIN, TIMIŞOARA În aceast articol ne propunem să reunim diverse proprietăţi cunoscute, legate de teorema bisectoarei glisante şi de bogatul ei

Διαβάστε περισσότερα

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri Generarea şi ordonarea permutărilor. Principiul porumbeilor. Principiul incluziunii si excluziunii Recapitulare din cursul trecut Presupunem că A este o mulţime cu n elemente. Recapitulare din cursul trecut

Διαβάστε περισσότερα

Puncte de extrem pentru funcţii reale de mai multe variabile reale.

Puncte de extrem pentru funcţii reale de mai multe variabile reale. Puncte de extrem pentru funcţii reale de mai multe variabile reale. Definiţie. Fie f : A R n R. i) Un punct a A se numeşte punct de extrem local pentru f dacă diferenţa f(x) f păstrează semn constant pe

Διαβάστε περισσότερα

Probleme de la Olimpiadele Internationale de Matematica

Probleme de la Olimpiadele Internationale de Matematica Probleme de la Olimpiadele Internationale de Matematica Student Budescu Angela Grupa 13 1 Cuprins 1. Introducere...3. Scopul si durata...4 3. Obiective cadru (Competente generale)...5 4. Obiective specifice

Διαβάστε περισσότερα

CAPITOLUL 2 VECTORI LIBERI. 2.1 Segment orientat. Vector liber

CAPITOLUL 2 VECTORI LIBERI. 2.1 Segment orientat. Vector liber Algebră liniară CAPITOLUL VECTORI LIBERI. Segment orientat. Vector liber Acest capitol este dedicat în totalitate studierii spaţiului vectorilor liberi, spaţiu cu foarte multe aplicaţii în geometrie, fizică

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

2.3 Geometria analitică liniarăînspaţiu

2.3 Geometria analitică liniarăînspaţiu 2.3 Geometria analitică liniarăînspaţiu Pentru început sădefinim câteva noţiuni de bază în geometria analitică. Definitia 2.3.1 Se numeşte reper în spaţiu o mulţime formată dintr-un punct O (numit originea

Διαβάστε περισσότερα

a carei ecuatie matriceala este data in raport cu R.

a carei ecuatie matriceala este data in raport cu R. POZITIA RELATIVA A UNEI DREPTE FATA DE O HIPERCUADRICA AFINA REALA. TANGENTE SI ASIMPTOTE. OANA CONSTANTINESCU Pentru studiul pozitiei relative a unei drepte fata de o hipercuadrica, remarcam ca nu mai

Διαβάστε περισσότερα

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate.

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate. Copyright c 009 ONG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 15 iunie

Διαβάστε περισσότερα

GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE. Gabriel POPA, Paul GEORGESCU c August 20, 2009, Iaşi

GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE. Gabriel POPA, Paul GEORGESCU c August 20, 2009, Iaşi GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE Gabriel POPA, Paul GEORGESCU c August 0, 009, Iaşi Cuprins 1 SPAŢIUL VECTORILOR LIBERI. STRUCTURA AFINĂ 4 SPAŢIUL VECTORILOR LIBERI.

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

2 Probleme propuse Clasele V-VI Clasele VII-VIIII Clasele IX-X... 18

2 Probleme propuse Clasele V-VI Clasele VII-VIIII Clasele IX-X... 18 Cuprins 1 O privire de ansamblu asupra metodei 1 1.1 Un joc cu jetoane colorate...................... 2 1.2 O problemă amuzantă........................ 3 1.3 Şcoala lui Pitagora şi numerele iraţionale.............

Διαβάστε περισσότερα

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare

Διαβάστε περισσότερα

Probleme pentru clasa a XI-a

Probleme pentru clasa a XI-a Probleme pentru clasa a XI-a 1 ( ) 01. Fie A si B doua matrici de ordin n cu elemente numere reale, care satisfac relatia AB = A + B. a) Sa se arate ca det(a 2 + B 2 ) 0. b) Sa se arate ca rang A + B =

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU Curbe în plan

CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU Curbe în plan CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU 81 Curbe în plan I Definiţia analitică a curbelor plane În capitolul 7 am studiat deja câteva eemple de curbe plane, amintim aici conicele nedegenerate: elipsa, hiperbola

Διαβάστε περισσότερα

Numere complexe. a numerelor complexe z b b arg z.

Numere complexe. a numerelor complexe z b b arg z. Numere complexe Numere complexe Forma algebrcă a numărulu complex este a b unde a ş b sunt numere reale Numărul a se numeşte partea reală a numărulu complex ş se scre a Re ar numărul b se numeşte partea

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

4. Ecuatia asimptotei orizontale la + a graficului functiei f : R R, 7 9x + 8x2 f(x) = 3x 2 + 2x + 5 este.

4. Ecuatia asimptotei orizontale la + a graficului functiei f : R R, 7 9x + 8x2 f(x) = 3x 2 + 2x + 5 este. Copyright c 007 ONG TCV Scoala Virtuala a Tanarului atematician 1 inisterul Educatiei si Tineretului Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 14 iunie 007 Profilul real Timp

Διαβάστε περισσότερα

Grupuri de simetrii. Oana Constantinescu

Grupuri de simetrii. Oana Constantinescu Rolul grupurilor de transformari in denirea unei geometrii Felix Klein (1849-1925) a dorit sa aplice conceptul de grup pentru a caracteriza diferitele geometrii ale timpului. In discursul inaugural de

Διαβάστε περισσότερα

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete

Διαβάστε περισσότερα

Lectia III Produsul scalar a doi vectori liberi

Lectia III Produsul scalar a doi vectori liberi Produsul scalar: denitie, proprietati Schimbari de repere ortonormate in plan Aplicatii Lectia III Produsul scalar a doi vectori liberi Oana Constantinescu Oana Constantinescu Lectia III Produsul scalar:

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIE. Dorel Fetcu

ELEMENTE DE GEOMETRIE. Dorel Fetcu ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

OANA CONSTANTINESCU. ( a carei ecuatie matriceala este data in raport cu un reper cartezian R = {O; ē 1,, ē n }.

OANA CONSTANTINESCU. ( a carei ecuatie matriceala este data in raport cu un reper cartezian R = {O; ē 1,, ē n }. ELEMENTE DE SIMETRIE ALE UNEI HIPERCUADRICE IN SPATII AFINE EUCLIDIENE OANA CONSTANTINESCU 1. Centru de simetrie pentru o hipercuadrica afina Pentru inceput cadrul de lucru este un spatiu an real de dimensiune

Διαβάστε περισσότερα

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.

Διαβάστε περισσότερα

Capitole speciale de geometrie pentru profesori. Camelia Frigioiu

Capitole speciale de geometrie pentru profesori. Camelia Frigioiu apitole speciale de geometrie pentru profesori amelia Frigioiu Galaţi, 2010 2 uprins 1 Geometrie sintetică plană 1 1.1 oncurenţa liniilor importante într-un triunghi............ 1 1.1.1 oncurenţa medianelor,

Διαβάστε περισσότερα

cateta alaturata, cos B= ipotenuza BC cateta alaturata AB cateta opusa AC

cateta alaturata, cos B= ipotenuza BC cateta alaturata AB cateta opusa AC .Masurarea unghiurilor intr-un triunghi dreptunghic sin B= cateta opusa ipotenuza = AC BC cateta alaturata, cos B= AB ipotenuza BC cateta opusa AC cateta alaturata AB tg B=, ctg B= cateta alaturata AB

Διαβάστε περισσότερα

1Reziduuri şi aplicaţii

1Reziduuri şi aplicaţii Reziduuri şi aplicaţii În acest curs vom prezenta noţiunea de reziduu, modul de calcul al reziduurilor, teorema reziduurilor şi câteva aplicaţii ale teoremei reziduurilor, în special la calculul unor tipuri

Διαβάστε περισσότερα

Soluţiile problemelor propuse în nr. 2 / 2006

Soluţiile problemelor propuse în nr. 2 / 2006 Soluţiile problemelor propuse în nr. / 6 Clasele primare P.. În piramida alăturată unelenumeres-auşters de-a lungul timpului. Putem să le punem la loc? (Clasa I ) Ionela Bărăgan, elevă, Iaşi Soluţie. =

Διαβάστε περισσότερα

Concursul de matematica Arhimede Editia a IV-a. Etapa I-a 25 noiembrie Subiecte clasa a III-a

Concursul de matematica Arhimede Editia a IV-a. Etapa I-a 25 noiembrie Subiecte clasa a III-a Editia a IV-a. Etapa I-a 5 noiembrie 006. Subiecte clasa a III-a I. Aflati cea mai mica suma de forma în care s-au folosit doar cifrele 0,,, 4, 5, 6 o singura data. Aratati variantele posibile. II. a)

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL 7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

Capitolul 2. Integrala stochastică

Capitolul 2. Integrala stochastică Capitolul 2 Integrala stochastică 5 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 51 2.1 Introducere În acest capitol vom prezenta construcţia integralei stochastice Itô H sdm s, unde M s este o martingală locală

Διαβάστε περισσότερα

2. Circuite logice 2.2. Diagrame Karnaugh. Copyright Paul GASNER 1

2. Circuite logice 2.2. Diagrame Karnaugh. Copyright Paul GASNER 1 2. Circuite logice 2.2. Diagrame Karnaugh Copyright Paul GASNER Diagrame Karnaugh Tehnică de simplificare a unei expresii în sumă minimă de produse (minimal sum of products MSP): Există un număr minim

Διαβάστε περισσότερα

CAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU Sisteme de coordonate în plan şi în spaţiu. I. Coordonate carteziene

CAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU Sisteme de coordonate în plan şi în spaţiu. I. Coordonate carteziene Geometrie liniară în spaţiu CAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU 6.. Sisteme de coordonate în plan şi în spaţiu I. Coordonate carteziene În cele ce urmează, notăm cu E 3 spaţiul punctual tridimensional

Διαβάστε περισσότερα