PAU XUÑO 2011 FÍSICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PAU XUÑO 2011 FÍSICA"

Transcript

1 PAU XUÑO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución ás cuestiones; deben ser razoadas. Pódese usar calculadora sempre que non sexa programable nin memorice texto. O alumno elixirá unha das dúas opcións. C.1.- Nun sistema illado, dúas masas idénticas M están separadas unha distancia a. Nun punto C da recta CE perpendicular a a por a/2 colócase outra nova masa m en repouso. Que lle ocorre a m?: a) desprázase ata O e para; b) afástase das masas M; c) realiza un movemento oscilatorio entre C e E. C.2.- Unha onda de luz é polarizada por un polarizador A e atravesa un segundo polarizador B colocado despois de A. Cal das seguintes afirmacións é correcta con respecto á luz despois de B?: a) non hai luz se A e B son paralelos entre si; b) non hai luz se A e B son perpendiculares entre si; c) hai luz independentemente da orientación relativa de A e B. C.3.- Con un raio de luz de lonxitude de onda non se produce efecto fotoeléctrico nun metal. Para conseguilo débese aumentar: a) a lonxitude de onda b) a frecuencia ν; c) o potencial de freado. C.4.- Emprégase un resorte para medir a súa constante elástica polo método estático e polo dinámico, aplicando a lei de Hooke e o período en función da masa, respectivamente. Obsérvase certa diferenza entre os resultados obtidos por un e outro método; a que pode ser debido? P.1.- Unha carga q de 2mC está fixa nun punto A(0,0), que é o centro dun triángulo equilátero de lado 3 3 m. Tres cargas iguales Q están nos vértices e a distancia de cada Q a A é 3 m. O conxunto está en equilibrio electrostático; a) calcula o valor de Q; b) a enerxía potencial de cada Q; c) calcula a enerxía posta en xogo para que o triángulo rote 45 º arredor dun eixe que pasa por A e é perpendicular ó plano do papel. (Dato K = NC -2 m 2 ). P.2.- Un péndulo simple de lonxitude l = 2,5 m, desvíase do equilibrio ata un punto a 0,03 m de altura e sóltase. Calcula: a) a velocidade máxima; b) o período; c) a amplitude do movemento harmónico simple descrito polo péndulo. (Dato g = 9,8 m s -2 ). C.1.- Unha partícula cargada atravesa un campo magnético B con velocidade v. A continuación, fai o mesmo outra partícula coa mesma v, dobre masa e tripla carga, e en ambos os casos a traxectoria é idéntica. Xustifica cal é a resposta correcta: a) non é posible; b) só é posible se a partícula inicial é un electrón; c) é posible nunha orientación determinada. 232 Th C.2.- O elemento radioactivo 90 desintégrase emitindo unha partícula alfa, dúas partículas beta e unha radiación gamma. O elemento resultante é: a) 88 X ; b) 89 Y ; c) 90 Z. C.3.- Unha espira móvese no plano XY onde tamén hai unha zona cun campo magnético B constante en dirección +Z. Aparece na espira unha corrente en sentido antihorario: a) se a espira entra na zona de B; b) cando sae desa zona; c) cando se despraza por esa zona. C.4.- Na práctica para medir a constante elástica k polo método dinámico, obtense a seguinte táboa. Calcula a constante do resorte. M(g) T(s) 0,20 0,28 0,34 0,40 0,44 P.1.- Un raio de luz produce efecto fotoeléctrico nun metal. Calcula: a) a velocidade dos electróns se o potencial de freado é de 0,5 V; b) a lonxitude de onda necesaria se a frecuencia limiar é υ 0 = Hz e o potencial de freado é 1 V; c) aumenta a velocidade dos electróns incrementando a intensidade da luz incidente? (Datos: 1nm = 10-9 m; c = ms -1 ; e = -1, C; m e = 9, kg; h = 6, Js -1 ). P.2.- Quérese formar unha imaxe real e de dobre tamaño dun obxecto de 1,5 cm de altura. Determina: a) a posición do obxecto se se usa un espello cóncavo de R = 15 cm; b) a posición do obxecto se se usa unha lente converxente coa mesma focal que o espello; c) debuxa a marcha dos raios para os dous apartados anteriores.

2 PAU SETEMBRO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valora a simple anotación dun ítem como solución ás cuestións; han ser razoadas. Pódese usar calculadora sempre que non sexa programable nin memorice texto. O alumno elixirá unha das dúas opcións C.1.-Plutón describe unha órbita elíptica arredor do Sol. Indica cál das seguintes magnitudes é maior no afelio (punto máis afastado do Sol) que no perihelio (punto máis próximo ao Sol): a) momento angular respecto á posición do Sol; b) momento lineal; c) enerxía potencial. C.2. -Para obter unha imaxe na mesma posición en que está colocado o obxecto, que tipo de espello e en que lugar ten que colocarse o obxecto?: a) cóncavo e obxecto situado no centro de curvatura; b) convexo e obxecto situado no centro de curvatura; c) cóncavo e obxecto situado no foco. C.3. -As partículas beta ( ) están formadas por: a) electróns que proceden da codia dos átomos; b) electróns que proceden do núcleo dos átomos; c) neutróns que proceden do núcleo dos átomos. C.4. -Na medida da constante elástica dun resorte polo método dinámico, que influencia ten no período: a) a amplitude; b) o número de oscilacións; c) a masa do resorte? Que tipo de gráfica se constrúe a partir das magnitudes medidas? P.1. -Unha carga puntual Q ocupa a posición (0,0) do plano XY no baleiro. Nun punto A do eixe X o potencial é V = -100 V e o campo eléctrico é E 10iN / C (coordenadas en metros): a) calcula a posición do punto A e o valor de Q; b) determina o traballo necesario para levar un protón dende o punto B (2,2) ata o punto A; c) fai unha representación gráfica aproximada da enerxía potencial do sistema en función da distancia entre ambas as dúas cargas. Xustifica a resposta. (Datos: carga do protón: 1, C; K = N m 2 C -2 ). P.2. -Unha onda harmónica transversal propágase no sentido positivo do eixe x con velocidade v =20 ms -1. A amplitude da onda é A = 0,10m e a súa frecuencia ι ν =50 Hz: a) escribe a ecuación da onda; b) calcula a elongación e a aceleración do punto situado en x = 2 m no instante t = 0,1s; c) cal é a distancia mínima entre dous puntos situados en oposición de fase?. C.1. -Analiza cál das seguintes afirmacións referentes a unha partícula cargada é verdadeira e xustifica por qué: a) se se move nun campo magnético uniforme, aumenta a súa velocidade cando se despraza na dirección das liñas do campo; b) pode moverse nunha rexión na que existe un campo magnético e un campo eléctrico sen experimentar ningunha forza; c) o traballo que realiza o campo eléctrico para desprazar esa partícula depende do camiño seguido. C.2. -Razoa cál das seguintes afirmacións referidas á enerxía dun movemento ondulatorio é correcta: a) é proporcional á distancia ao foco emisor de ondas; b) é inversamente proporcional á frecuencia da onda; c) é proporcional ao cadrado da amplitude da onda. C.3. -Unha rocha contén o mesmo número de núcleos de dous isótopos radiactivos A e B, de períodos de semidesintegración de 1600 anos e 1000 anos respectivamente; para estes isótopos cúmprese que: a) o A ten maior actividade radiactiva que B; b) B ten maior actividade que A; c) ambos os dous teñen a mesma actividade. C.4. -Na práctica da medida de g cun péndulo: como conseguirías (sen variar o valor de g) que o péndulo duplique o número de oscilacións por segundo? Inflúe o valor da masa do péndulo no valor do período?. P.1. -Un satélite artificial de 200 kg describe unha órbita circular a unha altura de 650 km sobre a Terra. Calcula: a) o período e a velocidade do satélite na órbita; b) a enerxía mecánica do satélite; c) o cociente entre os valores da intensidade de campo gravitatorio terrestre no satélite e na superficie da Terra. (Datos: M T = 5, kg; R T =6, m; G = 6, Nm 2 kg -2 ). P.2. -Sobre un prisma equilátero de ángulo 60 (ver figura), incide un raio luminoso monocromático que forma un ángulo de 50 coa normal á cara AB. Sabendo que no interior do prisma o raio é paralelo á base AC: a) calcula o índice de refracción do prisma; b) determina o ángulo de desviación do raio ao saír do prisma, debuxando a traxectoria que segue o raio; c) explica se a frecuencia e a lonxitude de onda correspondentes ao raio luminoso son distintas, ou non dentro e fóra do prisma. (n aire =1).

3 CONVOCATORIA DE XUÑO Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas... 0,25 (por problema) Os erros de cálculo,... 0,25 (por problema) Nas cuestións teóricas consideraranse tamén válidas as xustificacións por exclusión das cuestións incorrectas. C.1 Nun sistema illado, dúas masas idénticas M están separadas unha distancia a. Nun punto C da recta CE perpendicular a a por a/2 colócase outra nova masa m en repouso. Que lle ocorre a m?: a) desprázase ata O e para; b) afástase das masas M; c) realiza un movemento oscilatorio entre C e E. SOL. c C.2.- Unha onda de luz é polarizada por un polarizador A e atravesa un segundo polarizador B colocado despois de A. Cal das seguintes afirmacións é correcta con respecto á luz despois de B?: a) non hai luz se A e B son paralelos entre si; b) non hai luz se A e B son perpendiculares entre si; c) hai luz independentemente da orientación relativa de A e B. C.3.- Cun raio de luz de lonxitude de onda non se produce efecto fotoeléctrico nun metal. Para conseguilo débese aumentar: a) a lonxitude de onda b) a frecuencia ν; c) o potencial de freado. C.4.-Emprégase un resorte para medir a súa constante elástica polo método estático e polo dinámico, aplicando a lei de Hooke e o período en función da masa, respectivamente. Obsérvase unha certa diferenza entre os resultados obtidos por un e outro método; a qué pode ser debido? P.1.- Unha carga q de 2mC está fixa no punto A(0,0), que é o centro dun triángulo equilátero de lado 3 3 m. Tres cargas iguais Q están nos vértices e a distancia de cada Q a A é 3 m. O conxunto está en equilibrio electrostático: a) calcula o valor de Q; b) a enerxía potencial de cada Q; c) a enerxía posta en xogo para que o triángulo rote 45º arredor dun eixe que pasa por A e é perpendicular ó plano do papel. (Dato K = NC -2 m 2 ). P.2.- Un péndulo simple de lonxitude l = 2,5m, desvíase do equilibrio ata un punto a 0,03m de altura e sóltase. Calcula: a) a velocidade máxima; b) o período; c) a amplitude do movemento harmónico simple descrito polo péndulo.(dato g = 9,8m s -2 ) C.1- Unha partícula cargada atravesa un campo magnético B con velocidade v. A continuación, fai o mesmo outra partícula coa mesma v, dobre masa e triple carga, e en ambos os casos a traxectoria é idéntica. Xustifica cal é a resposta correcta: a) non é posible; b) só é posible se a partícula inicial é un electrón; c) é posible nunha orientación determinada. 232 C.2.- O elemento radioactivo 90 Th desintégrase emitindo unha partícula alfa, dúas partículas beta e unha radiación gamma. O elemento resultante é: a) X ; b) 89 Y ; c) 90 Z. C.3.- Unha espira móvese no plano XY, onde tamén hai unha zona cun campo magnético B constante en dirección +Z. Aparece na espira unha corrente en sentido antihorario: a) se a espira entra na zona de B; b) cando sae desa zona; c) cando se despraza por esa zona. C.4- Na práctica para medir a constante elástica k polo método dinámico, obtense a seguinte táboa. Calcula a constante do resorte. M(g) T(s) 0,20 0,28 0,34 0,40 0,44 a) Carga= - 3, C.... b) Enerxía potencial... E P =+2, J... c) Enerxía posta en xogo= 0... a) Velocidade máx. = 0,77 m/s... b) Período= 3,2 s... c) Amplitude: 0,39 m..... SOL: c SOL: c SOL: b k= 5,03 Nm 1 p

4 P.1.- Un raio de luz produce efecto fotoeléctrico nun metal. Calcula: a) a velocidade dos electróns se o potencial de freado é de 0,5V; b) a lonxitude de onda necesaria se a frecuencia umbral é υ 0 = Hz e o potencial de freado é 1V; c) aumenta a velocidade dos electróns incrementando a intensidade da luz incidente? (Datos 1nm = 10-9 m; c = ms -1 e = -1, C m e = 9, kg h = 6, Js). P.2.- Quérese formar unha imaxe real e de dobre tamaño dun obxecto de 1,5 cm de altura. Determina: a) a posición do obxecto se se usa un espello cóncavo de R = 15cm; b) a posición do obxecto se se usa unha lente converxente coa mesma focal que o espello; c) debuxa a marcha dos raios para os dous apartados anteriores. a) Velocidade v= 4, m/s... 0 b) Lonx. de onda = 2, m..0 c) Xustificación correcta 0 a) Cálculo da posición no espello s = -11,25 cm... 0 b) Cálculo da posición na lente s = -11,25 cm... 0 c) Marcha dos raios (0,5 para cada apartado) CONVOCATORIA DE SETEMBRO Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas... 0,25 (por problema) Os erros de cálculo,... 0,25 (por problema) Nas cuestións teóricas consideraranse tamén válidas as xustificacións por exclusión das cuestións incorrectas. C.1 Plutón describe unha órbita elíptica arredor do Sol. Indica cal das seguintes magnitudes é maior no afelio (punto máis afastado do Sol) que no perihelio (punto máis próximo ao Sol): a) momento angular respecto á posición do Sol; b) momento lineal; c) enerxía potencial. C.2. Para obter unha imaxe na mesma posición en que está colocado o obxecto, que tipo de espello e en que lugar ten que colocarse o obxecto?: a) cóncavo e obxecto situado no centro de curvatura; b) convexo e obxecto situado no centro de curvatura; c) cóncavo e obxecto situado no foco. C.3.- As partículas beta ( ) están formadas por: a) electróns que proceden da codia dos átomos; b) electróns que proceden do núcleo de los átomos; c) neutróns que proceden do núcleo dos átomos. C.4.- Na medida da constante elástica dun resorte polo método dinámico, Que influencia ten no período?: a) a amplitude; b)o número de oscilacións; c) a masa do resorte. Que tipo de gráfica se constrúe a partir das magnitudes medidas? P.1. Unha carga puntual Q ocupa a posición (0,0) do plano XY no baleiro. Nun punto A do eixe X o potencial é V = -100V e o campo eléctrico é E 10iN / C (coordenadas en metros): a) calcula a posición del punto A e o valor de Q; b) determina o traballo necesario para levar un protón dende o punto B (2,2) ata o punto A; c) fai unha representación gráfica aproximada da enerxía potencial dosistema en función da distancia entre ambas as cargas. Xustifica a respuesta. (Datos: carga do protón: 1, C; K = N m 2 C -2 ). P.2. Unha onda harmónica transversal propágase no sentido positivo doeixe X con velocidad v = 20ms -1. A amplitude da onda é A = 0,10m e a súa frecuencia é ν = 50Hz: a) escribe a ecuación da onda; b) calcula a elongación e a aceleración do punto situado en x = 2m no instante t = 0,1s; c) cal é la distancia mínima entre dous puntos situados en oposición de fase?. C.1 Analiza cal de las siguientes afirmacións referentes a unha partícula cargada é verdadeira e xustifica por qué: a) se se mueve nun campo magnético uniforme aumenta a súa velocidad cando se SOL. c SOL. a Cada apartado 0,25 p; máx 1 p a) Posición: (10,0) (m).... 0,50 Carga= - 1, C.... 0,50 b) Traballo realizado: -4, J... 0 c) Representación gráfica a) Ecuación da onda: x= 0,1 sen(100 t-5 x) (m) b) Elongación: 0 m... 0,50 Aceleración: 0 ms ,50 c) Distancia mínima: 0,2 m... 0 SOL:b

5 despraza na dirección das líñas do campo; b) pode moverse nunha rexión na que existe un campo magnético e un campo eléctrico sen experimentar ningunha forza; c) o traballo que realiza o campo eléctrico para desprazar esa partícula depende do camiño seguido. C.2. Razoa cal das seguintes afirmacións referida á enerxía dun movemento ondulatorio é correcta: a) é proporcional á distancia ao foco emisor de ondas; b) é inversamente proporcional á frecuencia de onda; c) é proporcional ao cadrado da amplitude da onda. C.3. Unha rocha contén o mesmo número de núcleos de dous isótopos radiactivos A e B de períodos de semidesintegración de 1600 anos e 1000 anos respectivamente; para estes isótopos cúmprese que: a)o A ten maior actividade radiactiva que B; b) B ten maior actividade que A; c) ambos teñen a mesma actividade. C.4 Na práctica da medida de g cun péndulo: cómo conseguirías (sen variar o valor de g) que o péndulo duplique o número de oscilacións por segundo? Inflúe o valor da masa do péndulo no valor do período? P.1. Un satélite artificial de 200kg describe unha órbita circular a unha altura de 650 km sobre a Terra. Calcula: a) o periodo e a velocidade do satélite na órbita; b) a enerxía mecánica do satélite; c) o cociente entre os valores da intensidade de campo gravitatorio terrestre no satélite e na superficie da Terra. (Datos: M T = 5, kg; R T = 6, m; G = 6, Nm 2 kg -2 ). P.2. Sobre un prisma equilátero de ángulo 60 (ver figura), incide un raio luminoso monocromático que forma un ángulo de 50 coa normal á cara AB. Sabendo que no interior do prisma o raio é paralelo á base AC: a) calcula o índice de refracción do prisma; b) determina o ángulo de desviación do raio ó saír do prisma, debuxando a traxectoria que segue o raio; c) explica se a frecuencia e a lonxitude de onda correspondentes ao raio luminoso son distintas, ou non, dentro e fóra do prisma.( n aire =1) SOL: c SOL: b Máx 1 p a) Velocidade v= 7, m/s 0,50 Período: T= 5, s. 0,50 b) Enerxía mecánica: - 5, J 0 c) Relación entre intensidades: 0, a) Índice de refracción do prisma: n= 1, b) Ángulo de saída: 50º.. 0 c) Xustificación da variación da lonxitude de onda... 0

PAU XUÑO 2012 FÍSICA

PAU XUÑO 2012 FÍSICA PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FÍSICA. = 9, kg) = -1, C; m e

FÍSICA. = 9, kg) = -1, C; m e 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1

Διαβάστε περισσότερα

FÍSICA. = 4π 10-7 (S.I.)).

FÍSICA. = 4π 10-7 (S.I.)). 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 9 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 16-17 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2016. A nave espacial Discovery,

Διαβάστε περισσότερα

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ). 22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

PAU XUÑO 2014 FÍSICA

PAU XUÑO 2014 FÍSICA PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B ÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada

Διαβάστε περισσότερα

PAU XUÑO 2016 FÍSICA

PAU XUÑO 2016 FÍSICA PAU XUÑO 2016 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FISICA 2º BAC 27/01/2007

FISICA 2º BAC 27/01/2007 POBLEMAS 1.- Un corpo de 10 g de masa desprázase cun movemento harmónico simple de 80 Hz de frecuencia e de 1 m de amplitude. Acha: a) A enerxía potencial cando a elongación é igual a 70 cm. b) O módulo

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12

Διαβάστε περισσότερα

PAU XUÑO 2015 FÍSICA

PAU XUÑO 2015 FÍSICA PAU XUÑO 2015 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2009

PAAU (LOXSE) Setembro 2009 PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU SETEMBRO 2013 FÍSICA

PAU SETEMBRO 2013 FÍSICA PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Problemas y cuestiones de electromagnetismo

Problemas y cuestiones de electromagnetismo Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema) Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:

Διαβάστε περισσότερα

PAU XUÑO 2010 FÍSICA

PAU XUÑO 2010 FÍSICA PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;

Διαβάστε περισσότερα

PAU SETEMBRO 2014 FÍSICA

PAU SETEMBRO 2014 FÍSICA PAU SETEMBRO 014 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU Setembro 2010 FÍSICA

PAU Setembro 2010 FÍSICA PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 2013 C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b)unha lente converxente; c) un espello cóncavo.

Διαβάστε περισσότερα

Exercicios de Física 03a. Vibracións

Exercicios de Física 03a. Vibracións Exercicios de Física 03a. Vibracións Problemas 1. No sistema da figura, un corpo de 2 kg móvese a 3 m/s sobre un plano horizontal. a) Determina a velocidade do corpo ó comprimirse 10 cm o resorte. b) Cal

Διαβάστε περισσότερα

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA INTEACCIÓNS GAVITATOIA E ELECTOSTÁTICA AS LEIS DE KEPLE O astrónomo e matemático Johannes Kepler (1571 1630) enunciou tres leis que describen o movemento planetario a partir do estudo dunha gran cantidade

Διαβάστε περισσότερα

Exercicios de Física 02b. Magnetismo

Exercicios de Física 02b. Magnetismo Exercicios de Física 02b. Magnetismo Problemas 1. Determinar el radio de la órbita descrita por un protón que penetra perpendicularmente a un campo magnético uniforme de 10-2 T, después de haber sido acelerado

Διαβάστε περισσότερα

Exercicios de Física 01. Gravitación

Exercicios de Física 01. Gravitación Exercicios de Física 01. Gravitación Problemas 1. A lúa ten unha masa aproximada de 6,7 10 22 kg e o seu raio é de 1,6 10 6 m. Achar: a) A distancia que recorrerá en 5 s un corpo que cae libremente na

Διαβάστε περισσότερα

Exercicios de Física 03b. Ondas

Exercicios de Física 03b. Ondas Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A

Διαβάστε περισσότερα

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación:

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación: VIBRACIÓNS E ONDAS PROBLEMAS 1. Un sistema cun resorte estirado 0,03 m sóltase en t=0 deixándoo oscilar libremente, co resultado dunha oscilación cada 0, s. Calcula: a) A velocidade do extremo libre ó

Διαβάστε περισσότερα

Materiais e instrumentos que se poden empregar durante a proba

Materiais e instrumentos que se poden empregar durante a proba 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións. Problema 2: tres cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema

Διαβάστε περισσότερα

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5

Διαβάστε περισσότερα

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración.

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración. FÍSICA MODERNA FÍSICA NUCLEAR. PROBLEMAS 1. Un detector de radioactividade mide unha velocidade de desintegración de 15 núcleos min -1. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a)

Διαβάστε περισσότερα

RADIACTIVIDADE. PROBLEMAS

RADIACTIVIDADE. PROBLEMAS RADIACTIVIDADE. PROBLEMAS 1. Un detector de radiactividade mide unha velocidade de desintegración de 15 núcleos/minuto. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a) A constante de

Διαβάστε περισσότερα

Física e química 4º ESO. As forzas 01/12/09 Nome:

Física e química 4º ESO. As forzas 01/12/09 Nome: DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa.

Διαβάστε περισσότερα

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted Tema 4 Magnetismo 4-1 Magnetismo. Experiencia de Oersted 4-2 Lei de Lorentz. Definición de B. Movemento dunha carga nun campo magnético. 4-3 Forza exercida sobre unha corrente rectilínea 4-4 Lei de Biot

Διαβάστε περισσότερα

PAU XUÑO 2012 MATEMÁTICAS II

PAU XUÑO 2012 MATEMÁTICAS II PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio

Διαβάστε περισσότερα

A circunferencia e o círculo

A circunferencia e o círculo 10 A circunferencia e o círculo Obxectivos Nesta quincena aprenderás a: Identificar os diferentes elementos presentes na circunferencia e o círculo. Coñecer as posicións relativas de puntos, rectas e circunferencias.

Διαβάστε περισσότερα

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio.

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio. Tema 6 Ondas 6-1 Movemento ondulatorio. Clases de ondas 6- Ondas harmónicas. Ecuación de ondas unidimensional 6-3 Enerxía e intensidade das ondas harmónicas 6-4 Principio de Huygens: reflexión e refracción

Διαβάστε περισσότερα

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::... Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)

Διαβάστε περισσότερα

LUGARES XEOMÉTRICOS. CÓNICAS

LUGARES XEOMÉTRICOS. CÓNICAS LUGARES XEOMÉTRICOS. CÓNICAS Páxina REFLEXIONA E RESOLVE Cónicas abertas: parábolas e hipérboles Completa a seguinte táboa, na que a é o ángulo que forman as xeratrices co eixe, e, da cónica e b o ángulo

Διαβάστε περισσότερα

TRIGONOMETRIA. hipotenusa L 2. hipotenusa

TRIGONOMETRIA. hipotenusa L 2. hipotenusa TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto

Διαβάστε περισσότερα

CALCULO DA CONSTANTE ELASTICA DUN RESORTE

CALCULO DA CONSTANTE ELASTICA DUN RESORTE 11 IES A CAÑIZA Traballo de Física CALCULO DA CONSTANTE ELASTICA DUN RESORTE Alumno: Carlos Fidalgo Giráldez Profesor: Enric Ripoll Mira Febrero 2015 1. Obxectivos O obxectivo da seguinte practica é comprobar,

Διαβάστε περισσότερα

Física cuántica. Relatividade especial

Física cuántica. Relatividade especial Tema 8 Física cuántica. Relatividade especial Evolución das ideas acerca da natureza da luz Experimento de Young (da dobre fenda Dualidade onda-corpúsculo Principio de indeterminación de Heisemberg Efecto

Διαβάστε περισσότερα

ELECTROTECNIA. BLOQUE 1: ANÁLISE DE CIRCUÍTOS (Elixir A ou B) A.- No circuíto da figura determinar o valor da intensidade na resistencia R 2

ELECTROTECNIA. BLOQUE 1: ANÁLISE DE CIRCUÍTOS (Elixir A ou B) A.- No circuíto da figura determinar o valor da intensidade na resistencia R 2 36 ELECTROTECNIA O exame consta de dez problemas, debendo o alumno elixir catro, un de cada bloque. Non é necesario elixir a mesma opción (A ou B ) de cada bloque. Todos os problemas puntúan igual, é dicir,

Διαβάστε περισσότερα

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación As Mareas INDICE 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación Introducción A marea é a variación do nivel da superficie libre

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

ONDAS. segundo a dirección de vibración. lonxitudinais. transversais

ONDAS. segundo a dirección de vibración. lonxitudinais. transversais PROGRAMACIÓN DE AULA MAPA DE CONTIDOS propagan enerxía, pero non materia clasifícanse ONDAS exemplos PROGRAMACIÓN DE AULA E magnitudes características segundo o medio de propagación segundo a dirección

Διαβάστε περισσότερα

PAU XUÑO 2013 FÍSICA

PAU XUÑO 2013 FÍSICA PAU XUÑO 2013 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Áreas de corpos xeométricos

Áreas de corpos xeométricos 9 Áreas de corpos xeométricos Obxectivos Nesta quincena aprenderás a: Antes de empezar 1.Área dos prismas....... páx.164 Área dos prismas Calcular a área de prismas rectos de calquera número de caras.

Διαβάστε περισσότερα

TEORÍA DE XEOMETRÍA. 1º ESO

TEORÍA DE XEOMETRÍA. 1º ESO TEORÍA DE XEOMETRÍA. 1º ESO 1. CORPOS XEOMÉTRICOS No noso entorno observamos continuamente obxectos de diversas formas: pelotas, botes, caixas, pirámides, etc. Todos estes obxectos son corpos xeométricos.

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro 9 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 138 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 138 Definición Elementos dun poliedro 8 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

Trigonometría. Obxectivos. Antes de empezar.

Trigonometría. Obxectivos. Antes de empezar. 7 Trigonometría Obxectivos Nesta quincena aprenderás a: Calcular as razóns trigonométricas dun ángulo. Calcular todas as razóns trigonométricas dun ángulo a partir dunha delas. Resolver triángulos rectángulos

Διαβάστε περισσότερα

ELECTROTECNIA. BLOQUE 3: MEDIDAS NOS CIRCUÍTOS ELÉCTRICOS (Elixir A ou B)

ELECTROTECNIA. BLOQUE 3: MEDIDAS NOS CIRCUÍTOS ELÉCTRICOS (Elixir A ou B) 36 ELECTROTECNIA O exame consta de dez problemas, debendo o alumno elixir catro, un de cada bloque. Non é necesario elixir a mesma opción (A o B ) de cada bloque. Todos os problemas puntúan do mesmo xeito,

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Puntuación máima dos eercicios de cada opción: eercicio 1= 3 puntos, eercicio = 3 puntos, eercicio

Διαβάστε περισσότερα

PAU XUÑO 2016 FÍSICA OPCIÓN A

PAU XUÑO 2016 FÍSICA OPCIÓN A PAU Código: 25 XUÑO 2016 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución ás

Διαβάστε περισσότερα

A LUZ. ÓPTICA XEOMÉTRICA

A LUZ. ÓPTICA XEOMÉTRICA A LUZ. ÓPTICA XEOMÉTRICA PROBLEMAS. Un espello esférico ten 0,80 m de radio. a) Se o espello é cóncavo, calcular a qué distancia hai que colocar un obxecto para obter unha imaxe real dúas veces maior que

Διαβάστε περισσότερα

a) Calcula m de modo que o produto escalar de a( 3, 2 ) e b( m, 5 ) sexa igual a 5. ( )

a) Calcula m de modo que o produto escalar de a( 3, 2 ) e b( m, 5 ) sexa igual a 5. ( ) .. MATEMÁTICAS I PENDENTES (º PARTE) a) Calcula m de modo que o produto escalar de a(, ) e b( m, 5 ) sea igual a 5. b) Calcula a proección de a sobre c, sendo c,. ( ) 5 Se (, ) e y,. Calcula: a) Un vector

Διαβάστε περισσότερα

Obxectivos. Resumo. titor. corpos xeométricos. Calcular as. súas áreas volumes. Terra. deles.

Obxectivos. Resumo. titor. corpos xeométricos. Calcular as. súas áreas volumes. Terra. deles. 8 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Distinguir as clases de corpos xeométricos. Construíloss a partir do seu desenvolvemento plano. Calcular as súas áreas e volumes. Localizar

Διαβάστε περισσότερα

Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2

Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2 Tema 8. CIRCUÍTOS ELÉCTRICOS DE CORRENTE CONTINUA Índice 1. O CIRCUÍTO ELÉCTRICO...2 1.1 Concepto de corrente eléctrica...2 1.1 Concepto de corrente eléctrica...2 1.2 Características dun circuíto de corrente

Διαβάστε περισσότερα

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos VIII. ESPZO EULÍDEO TRIDIMENSIONL: Áglos perpediclaridade de rectas e plaos.- Áglo qe forma dúas rectas O áglo de dúas rectas qe se corta se defie como o meor dos áglos qe forma o plao qe determia. O áglo

Διαβάστε περισσότερα

Indución electromagnética

Indución electromagnética Indución electromagnética 1 Indución electromagnética 1. EXPERIECIA DE FARADAY E HERY. A experiencia de Oersted (1820) demostrou que unha corrente eléctrica crea ao seu redor un campo magnético. Como consecuencia

Διαβάστε περισσότερα

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS 61 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS O alumno debe resolver só un exercicio de cada un dos tres bloques temáticos Puntuación máxima de cada un dos exercicios: Álxebra 3 puntos; Análise 3,5 puntos;

Διαβάστε περισσότερα

Ámbito científico tecnolóxico. Xeometría. Unidade didáctica 2. Módulo 3. Educación a distancia semipresencial

Ámbito científico tecnolóxico. Xeometría. Unidade didáctica 2. Módulo 3. Educación a distancia semipresencial Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo 3 Unidade didáctica 2 Xeometría Índice 1. Introdución... 3 1.1 Descrición da unidade

Διαβάστε περισσότερα

O SOL E A ENERXÍA SOLAR

O SOL E A ENERXÍA SOLAR O SOL E A ENERXÍA SOLAR Resumo: Cos exercicios que se propoñen nesta unidade preténdese que os alumnos coñezan o Sol un pouco mellor. Danse as ferramentas necesarias para calcular a enerxía solar que se

Διαβάστε περισσότερα

1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson

1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson 1 La teoría de Jeans El caso ás siple de evolución de fluctuaciones es el de un fluído no relativista. las ecuaciones básicas son: a conservación del núero de partículas n t + (n v = 0 (1 b Navier-Stokes

Διαβάστε περισσότερα

CADERNO Nº 11 NOME: DATA: / / Estatística. Representar e interpretar gráficos estatísticos, e saber cando é conveniente utilizar cada tipo.

CADERNO Nº 11 NOME: DATA: / / Estatística. Representar e interpretar gráficos estatísticos, e saber cando é conveniente utilizar cada tipo. Estatística Contidos 1. Facer estatística Necesidade Poboación e mostra Variables 2. Reconto e gráficos Reconto de datos Gráficos Agrupación de datos en intervalos 3. Medidas de centralización e posición

Διαβάστε περισσότερα

Uso e transformación da enerxía

Uso e transformación da enerxía Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo 4 Unidade didáctica 5 Uso e transformación da enerxía Páxina 1 de 50 Índice 1. Introdución...3

Διαβάστε περισσότερα

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO 1. Punto e recta 2. Lugares xeométricos 3. Ángulos 4. Trazado de paralelas e perpendiculares con escuadro e cartabón 5. Operacións elementais 6. Trazado de ángulos

Διαβάστε περισσότερα

PAU XUÑO 2013 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II

PAU XUÑO 2013 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II PAU XUÑO 2013 Código: 36 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II (O alumno/a debe responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1 = 3 puntos,

Διαβάστε περισσότερα

1.- Carga eléctrica. Cuantización Lei de Coulomb Traballo Campo Electrostático Potencial Electrostático 6

1.- Carga eléctrica. Cuantización Lei de Coulomb Traballo Campo Electrostático Potencial Electrostático 6 CMPO ELECTROSTÁTICO 1.- Carga eléctrica. Cuantización 1.1. Tipo de carga:.- Lei de Coulomb 3 3.- Traballo 4 3.1.-Enerxía Potencial Electrotática 5 4.- Campo Electrotático 5 5.- Potencial Electrotático

Διαβάστε περισσότερα

CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA

CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA PAAU (LOXSE) XUÑO 2001 Código: 22 ÍSICA Elixir e desenrolar unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións

Διαβάστε περισσότερα

1 Experimento aleatorio. Espazo de mostra. Sucesos

1 Experimento aleatorio. Espazo de mostra. Sucesos V. PROBABILIDADE E ESTATÍSTICA 1 Experimento aleatorio. Espazo de mostra. Sucesos 1 Experimento aleatorio. Concepto e exemplos Experimentos aleatorios son aqueles que ao repetilos nas mesmas condicións

Διαβάστε περισσότερα

Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA

Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA PROBLEMAS TERMOQUÍMICA 1. Para o proceso Fe 2O 3 (s) + 2 Al (s) Al 2O 3 (s) + 2 Fe (s), calcule: a) A entalpía da reacción en condicións estándar e a calor desprendida

Διαβάστε περισσότερα

Problemas resueltos del teorema de Bolzano

Problemas resueltos del teorema de Bolzano Problemas resueltos del teorema de Bolzano 1 S e a la fun ción: S e puede af irm a r que f (x) está acotada en el interva lo [1, 4 ]? P or no se r c ont i nua f (x ) e n x = 1, la f unció n no e s c ont

Διαβάστε περισσότερα

a) Para determinar a velocidade orbital temos en conta os datos do problema: T= 12 h 2 min= s R= 1, m

a) Para determinar a velocidade orbital temos en conta os datos do problema: T= 12 h 2 min= s R= 1, m GAVIACIÓN. OBAS. O SSNG é unha misión espaial non tripulada da NASA, lanzada rumbo a erurio en Aosto de 004 e que entrou en órbita arredor dese planeta en arzo de 0. No seu perorrido enviou datos que permiten

Διαβάστε περισσότερα

RADIACIÓNS ÓPTICAS ARTIFICIAIS INCOHERENTES

RADIACIÓNS ÓPTICAS ARTIFICIAIS INCOHERENTES Nº 33 - www.issga.es FRANCISCO JAVIER COPA RODRÍGUEZ Técnico superior en Prevención de Riscos Laborais Instituto Galego de Seguridade e Saúde Laboral Edita: Instituto Galego de Seguridade e Saúde Laboral

Διαβάστε περισσότερα

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS

MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS 61 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS O alumno debe resolver só un exercicio de cada un dos tres bloques temáticos. BLOQUE DE ÁLXEBRA (Puntuación máxima 3 puntos) 1 0 0 1-1 -1 Sexan as matrices

Διαβάστε περισσότερα

1.- Movemento Ondulatorio. Clases de onda! Ondas Harmónias. Función de onda unidimensional! Enerxía! 5

1.- Movemento Ondulatorio. Clases de onda! Ondas Harmónias. Función de onda unidimensional! Enerxía! 5 1.- Moeento Ondulatorio. Clases de onda!.- Ondas Harónias. Función de onda unidiensional! 3 3.- Enerxía! 5 3.1.- Absorción!... 6 4.- Principio de HUYGENS! 6 4.1.- Reflexión!... 6 4..- Refracción!... 7

Διαβάστε περισσότερα

A onda posterior influe na onda frontal

A onda posterior influe na onda frontal Xullo Xermade A onda posterior influe na onda frontal Onda de presión cando o cono vai hacia atras Onda de presión cando o cono vai hacia diante λ = v/f λ f = v/λ Caixa doméstica Caixa profesional

Διαβάστε περισσότερα

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Solucionario Trigonometría ACTIVIDADES INICIALES.I. En una recta r hay tres puntos: A, B y C, que distan, sucesivamente, y cm. Por esos puntos se trazan rectas paralelas que cortan otra, s, en M, N y P.

Διαβάστε περισσότερα

S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA EXTRACCIÓN DO ADN EXTRACCIÓN DO ADN CUANTIFICACIÓN. 260 280 260/280 ng/µl

S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA EXTRACCIÓN DO ADN EXTRACCIÓN DO ADN CUANTIFICACIÓN. 260 280 260/280 ng/µl CUANTIFICACIÖN 26/VI/2013 S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA - ESPECTROFOTÓMETRO: Cuantificación da concentración do ADN extraido. Medimos a absorbancia a dúas lonxitudes

Διαβάστε περισσότερα

2.6 Teoría atómica (unha longa historia)

2.6 Teoría atómica (unha longa historia) 2.6 Teoría atómica (unha longa historia) Milleiros de resultados experimentais avalan a idea de que as partículas que forman os gases, os sólidos e os líquidos, en todo o universo, están constituídas por

Διαβάστε περισσότερα

FORMULARIO DE ELASTICIDAD

FORMULARIO DE ELASTICIDAD U. D. Resistencia de Mateiales, Elasticidad Plasticidad Depatamento de Mecánica de Medios Continuos Teoía de Estuctuas E.T.S. Ingenieos de Caminos, Canales Puetos Univesidad Politécnica de Madid FORMULARIO

Διαβάστε περισσότερα

PAU XUÑO 2014 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II

PAU XUÑO 2014 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II PAU XUÑO 2014 Código: 36 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II (O alumno/a debe responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1 = 3 puntos,

Διαβάστε περισσότερα

την..., επειδή... Se usa cuando se cree que el punto de vista del otro es válido, pero no se concuerda completamente

την..., επειδή... Se usa cuando se cree que el punto de vista del otro es válido, pero no se concuerda completamente - Concordar En términos generales, coincido con X por Se usa cuando se concuerda con el punto de vista de otro Uno tiende a concordar con X ya Se usa cuando se concuerda con el punto de vista de otro Comprendo

Διαβάστε περισσότερα

O MÉTODO CIENTÍFICO. ten varias etapas 2. BUSCA DE REGULARIDADES. cifras significativas

O MÉTODO CIENTÍFICO. ten varias etapas 2. BUSCA DE REGULARIDADES. cifras significativas PROGRAMACIÓN DE AULA MAPA DE CONTIDOS 1. OBTENCIÓN DA INFORMACIÓN O MÉTODO CIENTÍFICO ten varias etapas 2. BUSCA DE REGULARIDADES 3. EXPLICACIÓN DAS LEIS PROGRAMACIÓN DE AULA E mediante utilizando na análise

Διαβάστε περισσότερα

PROBLEMAS DE SELECTIVIDADE: EQUILIBRIO QUÍMICO

PROBLEMAS DE SELECTIVIDADE: EQUILIBRIO QUÍMICO PROBLEMAS DE SELECTIVIDADE: EQUILIBRIO QUÍMICO 3013 2. Para a seguinte reacción: 2NaHCO 3(s) Na 2 CO 3(s) + CO 2(g) + H 2 O (g) ΔH

Διαβάστε περισσότερα

Centrado de lentes 20 de novembro de 2009

Centrado de lentes 20 de novembro de 2009 Centrado de lentes 20 de novembro de 2009 Sistemas de medidas de monturas Sistema Datum CD CD DEL DEC CD: DEC: DEL: DEC Centro Datum Distancia entre centros Distancia entre lentes 1 Sistema Boxing Definida

Διαβάστε περισσότερα

Académico Introducción

Académico Introducción - Σε αυτήν την εργασία/διατριβή θα αναλύσω/εξετάσω/διερευνήσω/αξιολογήσω... general para un ensayo/tesis Για να απαντήσουμε αυτή την ερώτηση, θα επικεντρωθούμε πρώτα... Para introducir un área específica

Διαβάστε περισσότερα

13 Estrutura interna e composición da Terra

13 Estrutura interna e composición da Terra 13 composición da Terra EN PORTADA: Un mensaxeiro con diamantes En Kimberley (África do Sur) atópase unha das minas de diamantes máis importantes do planeta. En honor a esa cidade, déuselle o nome de kimberlita

Διαβάστε περισσότερα

Catálogodegrandespotencias

Catálogodegrandespotencias www.dimotor.com Catálogogranspotencias Índice Motores grans potencias 3 Motores asíncronos trifásicos Baja Tensión y Alta tensión.... 3 Serie Y2 Baja tensión 4 Motores asíncronos trifásicos Baja Tensión

Διαβάστε περισσότερα

U.D. 1: PRINCIPIOS FÍSICOS DA PNEUMÁTICA, TRATAMENTO E DISTRIBUCIÓN DO AIRE COMPRIMIDO

U.D. 1: PRINCIPIOS FÍSICOS DA PNEUMÁTICA, TRATAMENTO E DISTRIBUCIÓN DO AIRE COMPRIMIDO U.D. 1: PRINCIPIOS FÍSICOS DA PNEUMÁTICA, TRATAMENTO E DISTRIBUCIÓN DO AIRE COMPRIMIDO INDICE 1. Introdución 2. O sistema pneumático básico 3. Principios físicos da pneumática 4. Humidade do aire 5. Presión

Διαβάστε περισσότερα

As nanopartículas metálicas

As nanopartículas metálicas As nanopartículas metálicas Manolo R. Bermejo Ana M. González Noya Marcelino Maneiro Rosa Pedrido Departamento de Química Inorgánica Contido Introdución Qué son os NANOMATERIAIS INORGÁNICOS Qué son as

Διαβάστε περισσότερα

A actividade científica. Tema 1

A actividade científica. Tema 1 A actividade científica Tema 1 A ciencia trata de coñecer mellor o mundo que nos rodea. Para poder levar a cabo a actividade científica necesitamos ter un método que nos permita chegar a unha conclusión.

Διαβάστε περισσότερα

PAU Xuño 2015 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II

PAU Xuño 2015 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II PAU Xuño 015 Código: 36 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II (O alumno/a debe responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1 = 3 puntos,

Διαβάστε περισσότερα