UNIVERSITÀ DI PISA. Plane waves 07/10/2011 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "UNIVERSITÀ DI PISA. Plane waves 07/10/2011 1"

Transcript

1 UNIVERSITÀ DI PISA Electromagnetic Radiations and Biological i l Interactions Laurea Magistrale in Biomedical Engineering First semester (6 credits), academic ear 11/1 Prof. Paolo Nepa p.nepa@iet.unipi.it Plane waves Edited b Dr. Anda Guraliuc 7/1/11 1

2 Lecture Content Plane waves Plane Waves in Time Domain Polariation Plane Waves in Frequenc Domain (in dispersive i and loss media) 7/1/11

3 Introduction One of the most important consequences of Mawell s equations is the eistence of electric and magnetic field perturbations that travels with a finite velocit (in a material or even in free space). A particular simple solution of Mawell s equations is the plane wave solution; it allows introducing the fundamental parameters of electromagnetic wave propagation: a. propagation constant, phase and attenuation constants b. wavelength c. phase velocit d. medium characteristic impedance e. polariation Plane waves are particularl important in applications where the electromagnetic field distribution, sufficientl far awa from the source, can be effectivel approimated b a local plane wave. 7/1/11 3

4 Plane Waves (time domain) Assumptions: free space medium (linear, isotropic, homogeneous and non dispersive) with no charges (ρ=) and no currents (j=). A non vanishing solution can be obtained due to the presence of sources located outside the volume where Mawell s equations are going to be solved. 9 = 1/ 36π 1 F / m = F / m µ π 7 = 4 1 H / m drt (,) = ert (,) & brt (,) = µ hrt (,) ert (, ) = µ hrt (, ) hrt (,) = ert (,) [ ert (, )] = [ µ hrt (, )] = A further assumption: electric and magnetic fields are independent of and coordinates (looking for a solution onl dependent on : PLANE WAVE SOLUTION) i i i et (,)& ht (,) e e e= = i + i e e e A A A A A A A = i + i + i 7/1/11 4

5 Plane Waves (time domain) et (, ) = µ ht (, ) ht (,) = et (,) e e i i µ h i h i hi ( ) + = + + h h ( ) i + i = e i + e i + e i TWO vector equations e h = µ h e = & e h = µ h e = & e = h = SIX scalar equations e = const & h = const (static components) we will assume e = & h = (since looking for a dnamic solution) 7/1/11 5

6 Wave equation (D Alambert s equation) e h = µ h e = e h = µ h e = t e e = µ e 1 e = c c = 1 µ e h = µ h e = e h = µ h e = h h = µ h 1 h = c e 1 e = c h 1 h = c D Alambert s equation 7/1/11 6

7 Wave equation (D Alambert s equation) e 1 e = c h 1 h = c ( ) ( ) ( ) ( ) e (,) t = f ct + f 1 + ct h (, t) = f ct + f ct Forward wave (>) (>) Backward wave (<) If considering onl the forward wave which is function of u=-ct h e h u e u = = u u u u = 1& = c h u e = c u h e = u µ h u e u const wrt u ( ) ( ) =.... µ Due to the finite propagation velocit, the electromagnetic field will be ero at t=t in an interval [ 1, ] far form the source (if the latter is ecited at t=t ); then when u is in the interval [u 1,u ]= [ 1 -ct, -ct ] field components are ero and above constant must be ero for an value of u. = = µ h e const µ µ e ( ct) = h ( ct) = ζ h ( ct) ζ = = 1πΩ 377Ω Free space characteristic impedance 7/1/11 7

8 Plane Waves properties (forward wave) e h = µ h e = & > (forward wave) e ct µ h ct h ct ( ) = ( ) = ζ ( ) e h = µ h e = & > (forward wave) e ct µ h ct ζ h ct ( ) = ( ) = ( ) ζ h e ζ h = e e e ( ct) e ( ct) = = ζ h ( ct) h ( ct) ζ h = e e The instantaneous electric field can var arbitraril in time while magnetic field vector (amplitude and direction) will satisf above conditions at an time and for an observation point 7/1/11 8

9 Plane Waves properties (backward wave) e h = µ h e = & < (backward wave) e + ct = µ h + ct = ζ h + ct ( ) ( ) ( ) e h = µ h e = & < (backward wave) e + ct = µ h + ct = ζ h + ct ( ) ( ) ( ) e e ζ h = e e e e ( + ct) e ( + ct) = = ζ h ( + ct) h ( + ct) ζ h = e ζ h The instantaneous electric field can var arbitraril in time while magnetic field vector (amplitude and direction) will satisf above conditions at an time and for an observation point 7/1/11 9

10 Plane Waves properties Electric field and magnetic field are constant on an plane perpendicular p to the plane wave propagation direction. The (finite) perturbation propagation velocit is c = 1/ µ The electric and magnetic fields are related b the medium characteristic impedance 1. e h, (, t) For each plane wave e (forward or backward) = ζ, ( t, ) h ( e h= eh + eh = ζ hh ζ hh = ). ( ) e = e + e = ζ e + ζ e = ζ h ζ 3. 1 > ( forward wave ) h = i e e = ζ h i ζ 1 < ( backward wave) h = ( i ) e e = ζ h ( i ) ζ The phsical properties of a plane wave are independent of the coordinate sstem and propagation direction. For an propagation direction denoted b the versor i: ( rt, ) : er ( i ct )& h ( r i ct), ei = 1 h= i e ζ or equivalentl hi = e= ζ h i 7/1/11 1

11 Plane Waves eample: sinusoidal signals e λ c ζ h π e bcos ct bcos π π π = = t = bcos t e = bcos ( ct) λ ( ) ( β ) λ λ T T = λ / c time period e = ; e = = π / T = π f ππ 1 β = phase constant c = λ µ e bcos( t β ) = e = bcos t For magnetic field: h = ; h = ζ e ; h = = ( ) λ π 1 = = e = bcos t π/ = bsin t 4 β 4 ( ) ( ) π c λ = = Electromagnetic wavelength = spatial period β f 7/1/11 11

12 Linear Polariation Polariation=determines the orientation of the electric field in a fied spatial plane orthogonal to the direction of the propagation. Assume = e = acos( t β) = acos( t) e = bcos( t β + δ ) = b cos( t + δ ) e= e i + e i = acos( t) i + bcos( t+ δ) i δ = Linear Polariation If e and e are in phase e is linearl polaried along a direction given b the angle: e α = tg = tg e 1 1 b a b et= ( ) e () t e () t et () a T et= ( ) 7/1/11 1

13 Circular Polariation a= b& δ =± π / Circular Polariation π e= acos( t) i + acos( t± ) i = acos( t) i ± asin( t) i e = a t e -a a e () t α et () e () t et= ( ) 1 1 sint α = tg = tg m = m t e cost δ = π / δ = π / (LHCP) (RHCP) Light Hand Circular Polariation Right Hand Circular Polariation 7/1/11 13

14 Consider e = acos( t) e = bcos( t+ δ ) Elliptical Polariation a b& δ ± π / Elliptical Polariation e e + = cos + cos + a b ( t ) t δ cost e e e e + cosδ sin δ a = b a b e = a e = bcosδ e = a e = bcosδ If: e = b e = acosδ e = b e = acosδ e < a& e < b bcosδ a cos δ b a cosδ bcosδ ab e If the sstem is rotated b a θ angle: tgθ = cosδ e ' + a b a' = b' ' ' e b cos( t + δ ) α = θ ( e, ); tgα = = e acos( t) dα absinδ Angular velocit: () t = = dt e () t a ' 1 Ellipse equation 7/1/11 14

15 Plane Wave Polariation a<b δ = π /4 δ = π / δ = 3 π /4 δ = b b b b a a a a α Elliptical polariation (LHEP) Elliptical polariation (LHEP) Elliptical polariation (LHEP) Linear polariation (ellipse becomes a line) δ = π /4 δ = π / δ = 3 π /4 δ = π b b b b a a a a α Elliptical polariation (RHEP) Elliptical polariation (RHEP) Elliptical polariation (RHEP) Linear polariation 7/1/11 15 (ellipse becomes a line)

16 Plane Wave Polariation Linear Circular Elliptical Polariation Animation 7/1/11 16

17 Plane Waves Frequenc Domain solution Frequenc domain analsis allows to stud EM propagation in dissipative and dispersive medium Medium: linear, homogeneous, isotropic, Dr (, ) = ( ) Er (, ) dispersive in time and with Br (, ) = µ ( ) Hr (, ) losses In time domain it corresponds to a temporal convolution ( ) = ( ) j ( ) µ ( ) = µ ( ) j µ ( ) Dependence on accounts for time dispersion, while the imaginar part is related to losses Frequenc domain Mawell s equations Er (, ) = jbr (, ) H (, r ) = jd(, r ) + J(, r ) ( Dr (, )) = ρ( r, ) ( Br (, )) = Er (, ) = j µ ( ) Hr (, ) H (, r ) = j ( ) E(, r ) + J(, r ) ( ( ) Er (, )) = ρ( r, ) ( µ ( ) H ( r, )) = ( ) Er (, ) = Er (, ) = Medium homogeneit µ ( ) H( r, ) = H(, r ) = 7/1/11 17

18 Plane Waves Frequenc Domain solution Assumption: Er (, ) = jµ ( ) Hr (, ) J(, r ) = & ρ(, r ) = Hr (, ) = j ( ) Er (, ) Er (, ) = H (, r ) = ( ( ) ( )) A = A A 1 Er (, ) = Hr (, ) jµ ( ) 1 ( Er (, ) ) = j ( ) Er (, ) jµ ( ) ( ) Er (, ) + Er (, ) = ( ) µ ( ) Er (, ) = Er (, ) = Er + µ Er = (, ) ( ) ( ) (, ) 7/1/11 18

19 Plane Waves Frequenc Domain solution Er (, ) = jµ ( ) Hr (, ) Hr (, ) = j ( ) Er (, ) Er (, ) = Hr (, ) = ( ( ) ( )) A = A A 1 H ( r, ) = E ( r, ) j ( ) 1 ( H (, r ) ) = jµ ( ) H(, r ) j ( ) ( ) H ( r, ) + H( r, ) = ( ) µ ( ) H( r, ) = H ( r, ) = Hr + µ Hr = (, ) ( ) ( ) (, ) Er (, ) + ker (, ) = Homogeneous Vector k = µ ( ) ( ) Helmholt s Equations H(, r ) + k H(, r ) = Propagation constant 7/1/11 19

20 Helmholt s equation solution Er + ker = (, ) (, ) In a rectangular coordinate sstem: ( ( ) ( )) A = A A Er (, ) = E( r, ) i+ E( r, ) i + E( r, ) i Consider onl the component along : E r + k E r = φ φ φ (, ) (, ) φ = + + E (, r ) E (, r ) E (, r ) ke(, r) = Assumption : Er (, ) = E (, ) (looking for a solution onl dependent on : PLANE WAVE SOLUTION) E (, ) + (, ) = ke In a similar wa, it can be shown that: + jk E (, ) = E e + E e + jk E (, ) = E e + E e jk jk + jk H (, ) = H e + H e + jk H (, ) = H e + H e 7/1/11 jk jk

21 E (, ) = j µ ( ) H (, ) H(, ) = j ( ) E(, ) E (, ) = H (, ) = Helmholt s equation solution i i i E (, ) = E E E = i+ i = jµ ( ) H (, ) E E E i i i H (, ) = H H = i + i = j ( ) E(, ) H H H E = H = Field components along the propagation p direction must vanish 7/1/11 1

22 Helmholt s equation solution E (, ) = j µ H (, ) H (, ) = je (, ) E E = ζ H + + = ζ H + jk jk E (, ) = E e + E e + E jk E H (, ) = e e ζ ζ jk E (, ) = H (, ) = jµ H (, ) je (, ) E E = ζ H + + = ζ H + jk E (, ) = E e + E e + E jk E H (, ) = e e ζ ζ jk jk ζ = µ / = R+ jx Medium characteristic impedance k = µ ( ) ( ) = β jα β Phase constant α If α = (lossless medium, µ and real): Attenuation constant k = µ = β e = e = e e jk j ( β j α ) j β α 7/1/11

23 Plane Waves phase velocit + Back to jφ { } { } time domain: + e (, t) Re E e jk e jt + Re E e α e jt e jβ + e E e α + = = = cos( t β+ φ ) φ(,) t = t β+ φ + (phase of e (,) t ) Consider φ at (,t) and (+Δ,t+Δt): φ = [ ( t + t ) β ( + ) ] ( t β ) = t β φ = = t β e (,) t v f = = tt β λ t t + t Phase velocit v f = = β Re{ k} = v t f π v f λ = = Electromagnetic wavelength = spatial period β f 7/1/11 3

24 Plane Waves phase velocit + Back to jφ { } { } time domain: jk j t j t j e (, t) = Re E + e e = Re E + e α e e β e = E + e α cos( t β + φ + ) e (,) t = T φ(,) t = t β+ φ + (phase of e (,) t ) = e = b cos( t) 1 = λ π e bcos t / bsin t 4 = β 4 = = ( π ) ( ) = + λ /4 t Free space (, µ ) 1 8 v = = c 31 m/sec f µ If α = (lossless medium, µ and are real): v f 1 = µ ( ) ( ) µ ( ) ( ) 7/1/11 4

25 Plane Waves properties + jk jk + jk E (, ) = E e + E e E (, ) = E e + E e E + ζ H + = E + = ζ H + E = ζ H E = ζ H (, ) / jk jk H E + ζe E jk = / ζe H (, ) = E + / ζe + E / ζe jk jk k jk E = H = ζ = µ / = R + jx E H = E = ζ H k = µ ( ) ( ) = β jα β Phase constant α 1 > ( forward wave) H = i E E = ζ H i ζ 1 < ( backward wave ) H = ( i ) E E = ζ H ( i ) ζ β µ Dielectric medium r with µ and real: π c λ λ = = = β f jk Attenuation constant = f ( ) ζ = µ / = ζ / v = [rad/m] c [m 1 ] or [Neper/m] 7/1/11 r r 5 r r r

26 Plane waves in a conductor Dielectric: σ= Conductor: σ H = j E σ H = j E+ σ E = j + E = j eff E j eff = 1+ σ j + jk jk + jk E (, ) = E e + E e E (, ) = E e + E e E + ζ H + E + = ζ H + = E = ζ H E = ζ H / jk jk H E + e E jk (, ) = ζ / ζ e H (, ) = E + / ζe + E / ζe jk jk k E = H = σ ζ = µ / = µ / 1 R jx eff + = + j σ β Ph = µ = µ 1+ = β jα j α Phase constant Attenuation constant 7/1/11 6

27 Conductor propagation constant µ µ characteristic impedance ζ = = eff σ 1 j r r σ propagation constant k = µ = µ 1 j β j α eff r = r ( ) Re( ) + Re = j µ σ r β = r π c/ f λ = = β σ r r µ σ r α = 1+ 1 r δ 1/ = α = r c σ 1+ 1 r 1 ( δ ) α e = = e = 1/ e (about.37 or 8.69dB) 7/1/11 7

28 Good conductor σ 1 >> r propagation constant: characteristic impedance: k j σ j σµ σµ = µ 1 j r = r µ µ µ ζ = = j σ jσ σ 1 j r r ( 1 j) = j & ( j) 1+ = j σµ k (1 j) = β jα β = α = µ 1 ζ (1 j) (1 j) R (1 j) s σ + = σδ + = + σµ δ = Good conductor 1 Good conductor µσ R penetration depth s = σδ surface resistivit 7/1/11 8

29 Low losses material σ r << 1 π c / f λ = β r k jσ σ µ = µ 1 r j r c r r 1 r δ = α σ µ µ µ σ = + ζ 1 j ζ / r σ r r 1 r j r 7/1/11 9

30 Penetration Depth: eamples Material Frequenc Conductivit [S/m] Depth penetration [mm] Aluminum 1H 3.54*1^ GH 3.54*1^7.85*1^ 3 Blood 9MH GH Fat 9MH GH Sea water 3H 5 13 Penetration depth eplains the skin effect: while the frequenc increases, the penetration depth decreases, and the currents onl flow on the conductor surface. 7/1/11 3

Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall

Διαβάστε περισσότερα

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl Topic 4 Linear Wire and Small Circular Loop Antennas Tamer Abuelfadl Electronics and Electrical Communications Department Faculty of Engineering Cairo University Tamer Abuelfadl (EEC, Cairo University)

Διαβάστε περισσότερα

CYLINDRICAL & SPHERICAL COORDINATES

CYLINDRICAL & SPHERICAL COORDINATES CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Chapter 7 Transformations of Stress and Strain

Chapter 7 Transformations of Stress and Strain Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1

Διαβάστε περισσότερα

For a wave characterized by the electric field

For a wave characterized by the electric field Problem 7.9 For a wave characterized by the electric field E(z,t) = ˆxa x cos(ωt kz)+ŷa y cos(ωt kz+δ) identify the polarization state, determine the polarization angles (γ, χ), and sketch the locus of

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane. upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

4.4 Superposition of Linear Plane Progressive Waves

4.4 Superposition of Linear Plane Progressive Waves .0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

What happens when two or more waves overlap in a certain region of space at the same time?

What happens when two or more waves overlap in a certain region of space at the same time? Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Linearized Lifting Surface Theory Thin-Wing Theory

Linearized Lifting Surface Theory Thin-Wing Theory 13.021 Marine Hdrodnamics Lecture 23 Copright c 2001 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hdrodnamics Lecture 23 Linearized Lifting Surface Theor Thin-Wing Theor

Διαβάστε περισσότερα

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Introduction to Theory of. Elasticity. Kengo Nakajima Summer Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor

Διαβάστε περισσότερα

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Lecture 6 Mohr s Circle for Plane Stress

Lecture 6 Mohr s Circle for Plane Stress P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 6 Mohr s Circle for Plane Stress Transformation equations for plane stress. Procedure for constructing Mohr s circle. Stresses on an inclined element.

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

= l. = l. (Hooke s Law) Tensile: Poisson s ratio. σ = Εε. τ = G γ. Relationships between Stress and Strain

= l. = l. (Hooke s Law) Tensile: Poisson s ratio. σ = Εε. τ = G γ. Relationships between Stress and Strain Relationships between tress and train (Hooke s Law) When strains are small, most of materials are linear elastic. Tensile: Ε hear: Poisson s ratio Δl l Δl l Nominal lateral strain (transverse strain) Poisson

Διαβάστε περισσότερα

Γe jβ 0 z Be jβz 0 < z < t t < z The associated magnetic fields are found using Maxwell s equation H = 1. e jβ 0 z = ˆx β 0

Γe jβ 0 z Be jβz 0 < z < t t < z The associated magnetic fields are found using Maxwell s equation H = 1. e jβ 0 z = ˆx β 0 ECE 6310 Spring 01 Assignment 3 Solutions Balanis 5.10 The plane waves in the three regions are given by E i ŷe 0 e jβ 0 z E r ŷe 0 Γe jβ 0 z z < 0 E a ŷe 0 Ae jβz E b ŷe 0 Be jβz 0 < z < t E t ŷe 0 Te

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in ME 10W E. Evans Stresses in a Plane Some parts eperience normal stresses in two directions. hese tpes of problems are called Plane Stress or Biaial Stress Cross Section thru Bod z angent and normal to

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

= 0.927rad, t = 1.16ms

= 0.927rad, t = 1.16ms P 9. [a] ω = 2πf = 800rad/s, f = ω 2π = 27.32Hz [b] T = /f = 7.85ms [c] I m = 25mA [d] i(0) = 25cos(36.87 ) = 00mA [e] φ = 36.87 ; φ = 36.87 (2π) = 0.6435 rad 360 [f] i = 0 when 800t + 36.87 = 90. Now

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

ANTENNAS and WAVE PROPAGATION. Solution Manual

ANTENNAS and WAVE PROPAGATION. Solution Manual ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents

Διαβάστε περισσότερα

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Dan Censor Ben Gurion University of the Negev Department of Electrical and Computer Engineering Beer Sheva,

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

for fracture orientation and fracture density on physical model data

for fracture orientation and fracture density on physical model data AVAZ inversion for fracture orientation and fracture density on physical model data Faranak Mahmoudian Gary Margrave CREWES Tech talk, February 0 th, 0 Objective Inversion of prestack PP amplitudes (different

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

CT Correlation (2B) Young Won Lim 8/15/14

CT Correlation (2B) Young Won Lim 8/15/14 CT Correlation (2B) 8/5/4 Copyright (c) 2-24 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα