Σύντομη ιστορία των Μαθηματικών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σύντομη ιστορία των Μαθηματικών"

Transcript

1 Σύντομη ιστορία των Μαθηματικών Ο άνθρωπος χρειάστηκε χρόνια για να οδηγηθεί στην αφηρημένη έννοια των αριθμών. Ο Homo sapiens ( χρόνια πριν) κάνει μια μικρή αρίθμηση με κλαδιά. Ο Homo sapiens sapiens ( χρόνια πριν) χρησιμοποιεί κάποιες αριθμητικές λέξεις. Οι κυνηγοί-τροφοσυλλέκτες ( χρόνια πριν) καταλάβαιναν την απλή πρόσθεση, τον πολλαπλασιασμό και την αφαίρεση. Το μοίρασμα της τροφής τους σημαίνει ότι κατανοούσαν τη διαίρεση. Η παλαιότερη ένδειξη αριθμητικής καταγραφής βρέθηκε στη Σουαζιλάνδη της Νότιας Αφρικής και είναι μια περόνη μπαμπουίνου με 29 εμφανείς εγκοπές που χρονολογείται από το π.χ. Μοιάζει με τα «ημερολογιακά ραβδιά» που ακόμα χρησιμοποιούν στη Ναμίμπια για να καταγράφουν την παρέλευση του χρόνου. Άλλα κόκαλα, της νεολιθικής περιόδου, έχουν βρεθεί στη Δυτική Ευρώπη. Μια κερκίδα λύκου που βρέθηκε στην Τσεχία και χρονολογείται από το π.χ. φέρει 55 εγκοπές σε δύο σειρές ανά πέντε, οι οποίες μάλλον αποτελούν καταγραφή θηραμάτων. Ένα από τα πιο ενδιαφέροντα ευρήματα είναι το αποκαλούμενο κόκαλο Ισάνγκο, που βρέθηκε στις όχθες της λίμνης Έντουαρντς, ανάμεσα στην Ουγκάντα και το Κονγκό. Έχει χρονολογηθεί το π.χ. και μοιάζει να είναι κάτι παραπάνω από πίνακας θηραμάτων. Μικροσκοπική ανάλυση αποκάλυψε πρόσθετες εγκοπές, οι οποίες μπορούν να συσχετισθούν με τις φάσεις της σελήνης. Μέσω της αστρονομίας, της αστρολογίας ή της κοσμολογίας, ο ουρανός άσκησε τη μεγαλύτερη επίδραση στην εξέλιξη των μαθηματικών π.χ. Οι Σουμέριοι ζύγιζαν, υπολόγιζαν τη γη σε «σαρ», μετρούσαν τα υγρά σε «κα», χρησιμοποιούσαν κλάσματα και είχαν σύστημα αριθμών με βάση το π.χ. Οι Βαβυλώνιοι έφτασαν σε υψηλό επίπεδο μαθηματικής κουλτούρας, μεγαλύτερη των σύγχρονων Αιγυπτίων. Το Πυθαγόρειο θεώρημα το είχαν ανακαλύψει και οι Βαβυλώνιοι τον 16 ο π.χ. αιώνα (1.000 χρόνια πριν από τη γέννηση του Πυθαγόρα!!!). Οι Βαβυλώνιοι γνώριζαν τις τέσσερις πράξεις και τις ρίζες, λύνανε προβλήματα πρώτου και δεύτερου βαθμού, υπολόγιζαν εμβαδόν ορθογωνίων τριγώνων, παραλληλόγραμμων, τραπεζίων καθώς και το εμβαδόν του κύκλου (π=3 αντί π=3,14). Το αριθμητικό τους σύστημα είχε ως βάση το 60, ήταν μη ψηφιακό, θεσιακό, χωρίς υποδιαστολή και χωρίς μηδέν. Υποστηρίζεται ότι γνωρίζανε και το δεκαδικό σύστημα. Το εξηνταδικό σύστημα των Βαβυλωνίων έχει επιβιώσει μέχρι σήμερα στο μέτρημα του χρόνου. Έτσι π.χ. όταν οι Βαβυλώνιοι ήθελαν να εκφράσουν τον αριθμό 75, έλεγαν «1,15», όπως κι εμείς σήμερα τα 75 λεπτά τα εκφράζουμε σαν 1 ώρα και 15 λεπτά π.χ. Οι Αιγύπτιοι χρησιμοποιούν σύστημα αριθμών με βάση το 10. Το σύστημά τους ήταν δεκαδικό, επαναληπτικό, μη θεσιακό.

2 2852 π.χ. Ο Κινέζικος πολιτισμός χρησιμοποιεί σύστημα αριθμών με βάση το 60. Κάνανε αστρονομικούς υπολογισμούς 1500 χρόνια πριν από τους αρχαίους Έλληνες. Γνώριζαν γραμμικές εξισώσεις, αόριστες εξισώσεις, αρνητικούς αριθμούς και το π.. Τα μαθηματικά τους ήταν ανώτερα των Βαβυλωνίων και των Αιγυπτίων. Το παλαιότερο κινέζικο μαθηματικό κείμενο είναι το Τσόου Πέϊ Σαουντσινγκ, που γράφτηκε μεταξύ του 500 και του 200 π.χ. Το αριθμητικό σύστημα που χρησιμοποιούμε σήμερα είναι ψηφιακό, δεκαδικό, θεσιακό, με υποδιαστολή και μηδέν. Ψηφιακό, γιατί οι μονάδες του παριστάνονται με διαφορετικά σύμβολα και όχι επανάληψη του ίδιου συμβόλου, π.χ. το τρία έχει το δικό του σύμβολο (3), ενώ σε ένα μη ψηφιακό σύστημα θα συμβολιζόταν επαναλαμβάνοντας τρεις φορές το σύμβολο για το 1. Στο βαβυλωνιακό, το αιγυπτιακό, το ρωμαϊκό και πολλά άλλα αριθμητικά συστήματα της αρχαιότητας το τρία παριστάνεται ως ΙΙΙ. Δεκαδικό, επειδή κάθε φορά που συμπληρώνονται δέκα μονάδες δημιουργείται μια μονάδα ανωτέρας τάξης. Οι αριθμοί από το 0 μέχρι το 9 είναι μονοψήφιοι. Ο αριθμός 10 γράφεται ως ένα και μηδέν δηλαδή μια μονάδα ανωτέρας τάξης (δεκάδα) και καμιά απλή μονάδα. Θεσιακό, γιατί η αξία του κάθε ψηφίου καθορίζεται από τη θέση του μέσα στον αριθμό. Έτσι στο 4737 από δεξιά προς τα αριστερά η αξία αυξάνεται. Όταν θέλουμε να χρησιμοποιήσουμε υποδιαιρέσεις της μονάδας (δέκατα, εκατοστά, χιλιοστά, ) τότε η υποδιαστολή μας δείχνει που σταματούν οι ακέραιες μονάδες και που αρχίζουν οι κλασματικές. Έτσι αυτό που μας επιτρέπει να διαφοροποιήσουμε το 31,2 από το 3,12 είναι η υποδιαστολή. Εξηνταδικό, αφού απαιτούνται 60 απλές μονάδες για να δημιουργήσουν μια μονάδα ανωτέρας τάξεως, μια εξηντάδα. Με εξήντα εξηντάδες (3.600 απλές μονάδες) φτιάχνουμε μια μονάδα ανωτέρας τάξεως, μια τρισχιλιοεξακοσάδα, κ.ο.κ Έτσι ο αριθμός 125 απαρτίζεται από δύο (δύο εξηντάδεις=120) και το πέντε (πέντε μονάδες), ενώ ο αριθμός 634 απαρτίζεται από το δέκα (δέκα εξηντάδες=600) και το 24 (24 μονάδες) μ.χ. Οι Ίνκας έφτιαξαν ένα αριθμητικό σύστημα με βάση το 10, για να παρακολουθούν τις καθημερινές δραστηριότητες του μεγάλου πληθυσμού τους (Μέσα σε 200 χρόνια είχαν πληθυσμό άτομα). Το αριθμητικό τους σύστημα βασιζόταν στα κουιπού. Τα κουιπού ήταν περίπλοκα συστήματα σπάγκων με κόμπους που χρησίμευαν για την καταχώρηση και αποθήκευση αριθμητικών πληροφοριών. Το σύστημά τους ήταν δεκαδικό, θεσιακό, μη ψηφιακό. Οι Ίνκας έκαναν τις πράξεις τους χρησιμοποιώντας ένα είδος άβακα, το γιουπάνα. Το γιουπάνα ήταν μια πλάκα χωρισμένη σε τετράγωνα πάνω στα οποία τοποθετούσαν σπόρους καλαμποκιού που τους μετακινούσαν από τετράγωνο σε τετράγωνο για να κάνουν τους λογαριασμούς τους π.χ μ.χ. Οι Μάγια είχαν αριθμητικό σύστημα εικοσαδικό, μη ψηφιακό, θεσμικό και με ειδικό σύμβολο για το μηδέν. Το εικοσαδικό σύστημα οφείλεται ενδεχομένως στη χρήση των δαχτύλων τόσο των χεριών όσο και των ποδιών, για τη στοιχειώδη μέτρηση. Οι Μάγια είχαν δύο ημερολόγια. Το πρώτο, το «Τζόλκιν», ήταν θρησκευτικό και αποτελούταν από 260 μέρες. Περιλάμβανε 13 μήνες των 20

3 ημερών. Το δεύτερο, το «αστικό» ημερολόγιο, ονομαζόταν «Χάαμπ» και ήταν ένα ηλιακό ημερολόγιο 635 ημερών. Είχε 18 μήνες των 20 ημερών και έναν μικρό μήνα των 5 ημερών (αποφράδες μέρες). Οι αρχαίοι Αιγύπτιοι είχαν ένα ημερολόγιο με 12 μήνες των 30 ημερών και ένα κουτσουρεμένο μήνα των 5 ημερών. Σύμπτωση; Κοινό μαθηματικό τέχνασμα για να ξεπεραστεί η δυσκολία που παρουσιάζει η διαίρεση 365 δια 12; Ή κάτι άλλο; Ποιος ξέρει 3000 π.χ.-700 μ.χ. Οι Ινδοί έχουν το δεκαδικό σύστημα αρίθμησης, το οποίο χρησιμοποιείται παγκοσμίως και το οποίο διέδωσαν οι Άραβες. Οι μεγαλύτεροι Άραβες μαθηματικοί ήταν ο αλ Χβαρίσμι ( μ.χ.), πατέρας της Άλγεβρας, τίτλο που διεκδικεί από το δικό μας Διόφαντο και ο Πέρσης ποιητής και αστρονόμος Ομάρ Χαγιάμ ( μ.χ.) Η Πρώτη προσπάθεια εισαγωγής των Ινδοαραβικών αριθμητικών ψηφίων στην Ευρώπη έγινε από τον Φιμπονάτσι ( μ.χ.). Για να τα υιοθετήσουν όμως οι Ευρωπαίοι χρειάστηκαν ακόμα 400 χρόνια. Ακόμα και στο τέλος του 16 ου αιώνα, η αποδοχή των αρνητικών αριθμών, των ρητών αριθμών (που ανακάλυψε ο Βραγμαγκούπτα τον 70 μ.χ. αιώνα) και του μηδέν δεν ήταν πλήρης (πολλοί θεωρούσαν το μηδέν δημιούργημα του Διαβόλου). Όλα τα συστήματα του άνθρωπου περιλαμβάνουν την πενταδική, δεκαδική και εικοσαδική αρίθμηση. Επαναλαμβανόμενα θέματα των αριθμητικών συστημάτων του ανθρώπου είναι: μια βάση που σχετίζεται με την αρίθμηση με τα δάκτυλά μας (πέντε=ένα χέρι, δέκα=δύο χέρια, είκοσι=δάχτυλα των χεριών και των ποδιών), το σύστημα τιμής θέσης και το μηδέν 600 π.χ. 300 μ.χ. Τα επιτεύγματα των Ελλήνων, για 1000 χρόνια επισκιάζουν όλα τα πνευματικά επιτεύγματα των επόμενων 1500 ετών. Οι Έλληνες όμως στηρίχτηκαν στις παλαιότερες αρχαίες κοινωνίες των Βαβυλωνίων και Αιγυπτίων. Χρησιμοποιούσαν δύο είδη αριθμητικών συστημάτων με βάση το 10: το Ηρωδιανό ή Αττικό και το Ιωνικό ή Αλεξανδρινό. Δε χρησιμοποιούσαν τιμές θέσεις όπως έκανα οι Βαβυλώνιοι και όπως γίνεται σήμερα. Επίσης δε χρησιμοποιούσαν το μηδέν και τα κλάσματα. Οι Έλληνες θεμελίωσαν τη γεωμετρία ως μια αμιγώς μαθηματική ενασχόληση: διατύπωσαν και απέδειξαν θεωρήματα. Το πρώτο Ελληνικό μαθηματικό βιβλίο (σε παπύρους) είναι τα Στοιχεία του Ευκλείδη (300 π.χ.) Ο Πυθαγόρας ( π.χ.) υπήρξε ο σπουδαιότερος μαθηματικός όλων των εποχών. Αυτός έπλασε τη λέξη μαθηματικά, δηλαδή εκείνο που έχουμε μάθει. Ο Πυθαγόρας μεταμόρφωσε την επιστήμη των μαθηματικών σε στοιχείο ελεύθερης μόρφωσης. Ο Θαλής ο Μιλήσιος ( π.χ.) Οι γραμμές για το Θαλή δεν ήταν κάτι που μπορείς να δεις στην άμμο, αλλά ήταν αντικείμενα σκέψης στη φαντασία μας. Πήρε φυσικά σχήματα και τα έκανε νοητικά σχήματα. Όλα αυτά ήταν επανάσταση για την εποχή του. Επίσης έκανε λογικές απαγωγές, που τον οδήγησαν από τη μία αλήθεια που αφορούσαν τα θεωρητικά σχήματά του στην ανακάλυψη κι άλλων αληθειών, αυτό επηρέασε τη Δυτική σκέψη για έτη. Ο Πλάτωνας θεωρούσε τα Μαθηματικά προπαρασκευαστικό μάθημα για τη φιλοσοφία. Η εμβάθυνση στον κόσμο των νοητικών αναπαραστάσεων, που είναι ο κατεξοχήν κόσμος που ζει ένας μαθηματικός, οδηγεί στον κόσμο των ιδεών του

4 Πλάτωνα. Αυτός ο κόσμος, όχι μόνο είναι «αντικειμενικός», αλλά είναι ο μόνος που δυνάμεθα να κατανοήσουμε εις βάθος. Παράδειγμα: η βαθύτερη, δυνατή κατανόηση του παράξενου και μυστηριώδους κβαντικού κόσμου, επιτυγχάνεται με την ανάλυση της περίφημης εξίσωσης του Scrodinger, η οποία κατοικεί στον κόσμο που πρώτος περιέγραψε ο Πλάτωνας. Είναι εκπληκτικό ότι οι Αρχαίοι πρόγονοί μας είχαν φθάσει σε τόσο βαθιά επίπεδα κατανόησης της ουσίας των πραγμάτων. Δεν είναι τυχαίο ότι σήμερα οι περισσότεροι ώριμοι μαθηματικοί είναι Πλατωνιστές. Η «Οδός Μαθηματικής» είναι το πρώτο ελληνικό μαθηματικό εγχειρίδιο της νεότερης ιστορίας μας, γραμμένο από τον Μεθόδιο Ανθρακίτη και τον Μπαλάνο Βασιλόπουλο, για χρήση μαθητών στα ελληνικά σχολεία την εποχή της Τουρκοκρατίας. Οι σπουδαιότεροι Μαθηματικοί όλων των εποχών είναι: Ο Πυθαγόρας, ο Ευκλείδης, ο Θαλής, ο Αρχιμήδης, ο Γκαλουά, ο Καρτέσιος, Ο Νεύτων, ο Γκάους, ο Φερμά, ο Ντέντεκιντ, ο Κάντορ, ο Νόιμαν, ο Γκέντελ, ο Ράσελ, ο Γαλιλαίος, ο Ώιλερ και ο Ουάϊλς. Στην κορυφή της πυραμίδας των Μαθηματικών πρέπει να τοποθετήσουμε τον Αρχιμήδη, τον Νεύτωνα και τον Γκάους. Γυναίκες μαθηματικοί ήταν η Υπατία ( μ.χ.), η Μαρία Γκαετάνα Ανιέζι ( μ.χ.), η Σοφί Ζερμαίν ( ), η Αουγκούστα Άντα Κινγκ, κόρη του Λόρδου Βύρωνα, θεωρείται σήμερα η πρώτη προγραμματίστρια υπολογιστών στον κόσμο, η Σοφία Κοβαλέβσκαγια ( ) και η καθηγήτρια Μαθηματικών του Πανεπιστημίου του Μπέρκλει Τζούλια Ρόμπινσον ( ). Ζώα που ξέρουν να μετρούν είναι: τα δελφίνια, οι φάλαινες, οι φώκιες, οι σκίουροι, οι αρουραίοι, τα έντομα και οι παπαγάλοι. Μια εφαρμογή των Μαθηματικών είναι οι Ηλεκτρονικοί Υπολογιστές. Οι Η/Υ είναι υπολογιστικές μηχανές δυαδικών αριθμών (0 και 1). Τα πάντα στους Η/Υ ξεκινούν από την αποθήκευση, την πρόσθεση ή την αφαίρεση δυαδικών αριθμών. Άρα στον πυρήνα τους βρίσκονται οι αριθμοί. Οι Η/Υ ξεπήδησαν, με ένα τρόπο απρόσμενο και ειρωνικό, από την αποτυχία των μαθηματικών να φέρουν εις πέρας το περίφημο σχέδιο του Χίλμπερτ. Ο Χίλμπερτ το 1900, ήλπιζε να αυτοματοποιήσει τη μαθηματική σκέψη, να βρίσκει με μηχανικό τρόπο την απόδειξη οποιουδήποτε θεωρήματος. Όμως, ο Κούρτ Γκαίντελ απέδειξε το 1931 ότι υπάρχουν θεωρήματα που δεν έχουν αποδείξεις ( Θεώρημα της μη πληρότητος του Γκαίντελ ). Και μερικά χρόνια αργότερα, ο Τούρινγκ (1937) έδωσε τη χαριστική βολή στα μεγαλεπήβολα σχέδια του Χίλμπερτ, αποδεικνύοντας ότι δεν υπάρχει καμιά μηχανή που βρίσκει αποδείξεις θεωρημάτων. Τούτο αποτέλεσε τη βάση για την παραπέρα δουλειά του Τούρινγκ σε μηχανές αποκρυπτογράφησης του κώδικα «Αίνιγμα» του γερμανικού ναυτικού κατά τον Β Παγκόσμιο Πόλεμο και τελικά την έλευση του υπολογιστή (ENIAC) με τον Τζον Φον Νόιμαν το Η καλπάζουσα ανάπτυξη των υπολογιστών επηρέασε βαθιά τα μαθηματικά. Δημιούργησε έναν νέο σημαντικό κλάδο των μαθηματικών που λέγεται «Θεωρία του Υπολογισμού». Δηλαδή, στα κλασικά αντικείμενα των μαθηματικών, που ήταν από την εποχή των αρχαίων Ελλήνων οι Αριθμοί και η Γεωμετρία προστέθηκαν ισότιμα και οι Αλγόριθμοι(οι λεπτομερείς ακολουθίες εντολών που ακολουθούν οι υπολογιστές).

5 Η πρώτη μεγάλη ανακάλυψη που βασίστηκε στο παιχνίδι με τους Η/Υ είναι η Θεωρία των Φράκταλ στα μαθηματικά (σύνθετες γεωμετρικές καμπύλες, που δε μετασχηματίζονται σε απλά σχήματα αν τις μεγεθύνουμε και η διάστασή τους βρίσκεται ανάμεσα σε ακέραιους αριθμούς) και η θεωρία του χάους στις φυσικές επιστήμες. Σήμερα η θεωρία της πολυπλοκότητας (επιστήμη του Χάους), των δυναμικών συστημάτων και των φράκταλ (δύο απλά φράκταλ είναι η «Χιονονιφάδα βαν Κωχ» και το «τρίγωνο Σιερπίνσκι»), είναι από τους πιο ζωντανούς τομείς επιστημονικής έρευνας, με εφαρμογές στη Βιολογία, τα Οικονομικά, τη Σεισμολογία, τις Τηλεπικοινωνίες, Η ανακάλυψη στην Ιατρική του αξονικού και αργότερα του μαγνητικού τομογράφου (Νόμπελ Ιατρικής 1979 και 2003) στηρίζονται στη λύση μαθηματικών προβλημάτων, ο δε αξονικός τομογράφος στηρίζεται στη λύση ενός συγκεκριμένου μαθηματικού προβλήματος που λέγεται Αντιστροφή του μετασχηματισμού Radom. Το 2006 ανακαλύφθηκαν τρεις καινούργιες απεικονιστικές τεχνικές, ο λειτουργικός μαγνητικός τομογράφος, το PET (Τομογράφος εκπομπής πρωτονίων) και το SPECT (Toμογράφος εκπομπής Φωτονίων) οι οποίες επιτρέπουν να παρατηρούμε τον εγκέφαλο εν λειτουργία. Το PET στηρίζεται ακριβώς στον ίδιο μαθηματικό φορμαλισμό που στηρίζεται και ο αξονικός τομογράφος, ενώ το αντίστοιχο μαθηματικό πρόβλημα για το SPECT είναι πολύ πιο δύσκολο και παρέμενε άλυτο για πολλά χρόνια. Όταν το 1977 το διαστημόπλοιο Βόγιατζερ ξεκινούσε το μοναχικό του ταξίδι στο αχανές διάστημα, οι υπεύθυνοι της ΝΑΣΑ, σκεπτόμενοι μια πιθανή συνάντηση του με εξωγήινα όντα, τοποθέτησαν στο εσωτερικό του ηχογραφημένα πολιτικά μηνύματα, την Πέμπτη του Μπετόβεν και μια πλάκα επικοινωνίας όπου είχαν χαρακτεί μαθηματικά σύμβολα. Μαθηματικά : ο εφιάλτης της σχολικής ζωής για πολλούς, πάνω από όλα όμως, μια αυτόνομη γλώσσα ή ακριβέστερα: μια συμπαντική γλώσσα. Όπως ο Κολόμβος, που ψάχνοντας έναν καινούργιο δρόμο για την Κίνα ανακάλυψε την Αμερική, οι μέθοδοι που αναπτύχθηκαν για να απαντηθούν τα διάφορα άλυτα μαθηματικά προβλήματα, οδήγησαν σε κάθε είδους ανακάλυψη, έτσι που όλο και περισσότεροι μαθηματικοί άρχισαν να συμμετέχουν στο κυνήγι. Κλασσικό παράδειγμα είναι ο τετραγωνισμός του κύκλου, ένα πρόβλημα που ενώ η τελική, αρνητική απάντηση που έλαβε το1882, μετά από περίπου 2300 χρόνια ζωής, έχει πολύ μικρή σημασία στα μαθηματικά, προκάλεσε την ανάπτυξη πλούσιων και γόνιμων θεωριών που βρίσκονται σήμερα στο κέντρο της μαθηματικής έρευνας. Με τον ίδιο τρόπο λειτούργησε και το τελευταίο «Θεώρημα του Φερμά», που λύθηκε το 1995, από τον Άντριου Ουάιλς, ενώ είχε διατυπωθεί το Λένε ότι τα άλυτα προβλήματα, όπως η «Η υπόθεση του Ρίμαν», ίσως είναι καλύτερο να παραμείνουν άλυτα, εξαιτίας των μεγάλων μαθηματικών ανακαλύψεων που έχουν επιτευχθεί κατά την προσπάθεια λύσης τους. Η υπόθεση Ρίμαν είναι ένα νέο «Γκράαλ-Δισκοπότηρο». Οι καθαροί μαθηματικοί αγαπούν το ταξίδι, την πρόκληση. Αγαπούν τα άλυτα προβλήματα. Το ταξίδι είναι πολύ πιο ενδιαφέρον από την άφιξη στον προορισμό. Τέτοια προβλήματα αποτελούν τη μαθηματική υλοποίηση του Καβαφικού : «Η Ιθάκη σου έδωσε το ωραίο ταξίδι. Χωρίς αυτήν δε θα βγαινες στο δρόμο. Άλλα δεν έχει να σε δώσει πια.»

6 Πηγές: «Το άπειρο και ο νους», Ρ. Ράκερ, Πανεπιστημιακές Εκδόσεις Κρήτης «Ιερή Γεωμετρία», Δ. Ευαγγελόπουλος, Εκδόσεις Αρχέτυπο «Η Μαγεία των παραδόξων», Μ. Γκάρντερ, Εκδόσεις Τροχαλία «Τούρινγκ-Μαθήματα αγάπης», Χ. Παπαδημητρίου, Εκδόσεις Λιβάνη «Οι άγριοι αριθμοί», Φ. Σογκτ, ΕκδόσειςΠόλις «Η θεωρητική αριθμητική των Πυθαγορείων», Τ. Τέυλορ, Εκδόσεις Ιάμβλιχος «Καταραμένα μαθηματικά», Κ. Φραμπέτι, Εκδόσεις Opera «Η ιστορία των Μαθηματικών», Ρ. Μάνκιβιτς, ΕκδόσειςΑλεξάνδρεια «Ο ταξιδευτής των μαθηματικών», Κ. Κλάουσεν, Εκδόσεις Κέδρος «Μαθηματικά επίκαιρα», Τ. Μιχαηλίδης, ΕκδόσειςΠόλις. Γράφει: Ο Κώστας Τραχανάς

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2 Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια Μαριάννα Μπιτσάνη Α 2 Τι είναι η φιλοσοφία; Φιλοσοφία είναι η επιστήμη που ασχολείται με: ερωτήματα προβλήματα ή απορίες που μπορούμε να αποκαλέσουμε οριακά,

Διαβάστε περισσότερα

2 ο Εργαστήρι Λεσχών Ανάγνωσης. Πάρος 2-6 Ιουλίου 2007

2 ο Εργαστήρι Λεσχών Ανάγνωσης. Πάρος 2-6 Ιουλίου 2007 2 ο Εργαστήρι Λεσχών Ανάγνωσης Πάρος 2-6 Ιουλίου 2007 Περίληψη Η Αλίκη µισεί τα µαθηµατικά και θεωρεί πως δε χρησιµεύουν σε τίποτα. Μια µέρα που κάθεται και διαβάζει στο πάρκο, ένα παράξενο άτοµο την προσκαλεί

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα

ΣΤΟΥΣ ΑΡΧΑΙΟΥΣ ΠΟΛΙΤΙΣΜΟΥΣ

ΣΤΟΥΣ ΑΡΧΑΙΟΥΣ ΠΟΛΙΤΙΣΜΟΥΣ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟΥΣ ΑΡΧΑΙΟΥΣ ΠΟΛΙΤΙΣΜΟΥΣ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΒΑΒΥΛΩΝΙΩΝ Οι Βαβυλώνιοι ζούσαν στη Μεσοποταµία,περιοχή µεταξύ των ποταµών Τίγρη και Ευφράτη.Η Μεσοποταµία ήταν κέντρο πολιτισµού των Σουµέριων,Ακκάδιων,Ασσύριων,Αραµαίων

Διαβάστε περισσότερα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα Κ. Σ. Δ. Μ. Ο. Μ. Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα της Κάτω Ιταλίας. Η κοινότητα στεγαζόταν

Διαβάστε περισσότερα

Εαρινό Εξάμηνο 2011. 23.02.11 Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ

Εαρινό Εξάμηνο 2011. 23.02.11 Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ Εαρινό εξάμηνο 2011 23.02.11 Χ. Χαραλάμπους ΑΠΘ Υπολογισμός (ακρίβεια έως 5 δεκαδικά) Yale Babylonian collection, 1800 π.χ. 24 51 10 1+ + + = 1.41421296 2 3 60 60 60 Τετραγωνική ρίζα του 2 Ποια είναι η

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΒΙΒΛΙΟΥ «Ο Ταξιδευτής των Μαθηµατικών»

ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΒΙΒΛΙΟΥ «Ο Ταξιδευτής των Μαθηµατικών» ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΒΙΒΛΙΟΥ «Ο Ταξιδευτής των Μαθηµατικών» Τίτλος: Ο Ταξιδευτής των Μαθηµατικών. Η εξερεύνηση της εντυπωσιακής ιστορίας των αριθµών Συγγραφέας: Calvin Clawson (Κάλβιν Κλόουσον) Μεταφράστρια:

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ

ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.1 ΕΙΣΑΓΩΓΗ Ασχολήθηκα 30 χρόνια με τη διδασκαλία των Μαθηματικών του Γυμνασίου, τόσο στην Μέση Εκπαίδευση όσο και σε Φροντιστήρια. Η μέθοδος που χρησιμοποιούσα για τη

Διαβάστε περισσότερα

ΓΙΑ ΔΙΚΗ ΜΑΣ ΕΝΗΜΕΡΩΣΗ + ΠΡΟΣΘΕΤΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ. - http://pratt.edu/~arch543p/readings/mathematics_and_philosophy.html

ΓΙΑ ΔΙΚΗ ΜΑΣ ΕΝΗΜΕΡΩΣΗ + ΠΡΟΣΘΕΤΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ. - http://pratt.edu/~arch543p/readings/mathematics_and_philosophy.html ΓΙΑ ΔΙΚΗ ΜΑΣ ΕΝΗΜΕΡΩΣΗ + ΠΡΟΣΘΕΤΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ Α. ΑΡΧΑΙΑ ΕΛΛΑΔΑ Για Θαλή: - http://pratt.edu/~arch543p/readings/mathematics_and_philosophy.html - http://www.anselm.edu/homepage/dbanach/thales.htm -http://www-groups.dcs.stand.ac.uk/~history/birthplacemaps/places/miletus.html

Διαβάστε περισσότερα

ΣΥΝΘΕΤΙΚΗ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ «ΤΑ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ» ..και μην αριθμόν, έξοχον σοφισμάτων, εξηύρον αυτοίς..

ΣΥΝΘΕΤΙΚΗ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ «ΤΑ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ» ..και μην αριθμόν, έξοχον σοφισμάτων, εξηύρον αυτοίς.. 1 ΣΥΝΘΕΤΙΚΗ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ «ΤΑ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ»..και μην αριθμόν, έξοχον σοφισμάτων, εξηύρον αυτοίς.. (Αισχύλος, Προμηθέας Δεσμώτης) Τα μέλη της ομάδας που ασχολήθηκαν με την εκπόνηση αυτής της

Διαβάστε περισσότερα

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 102, Στρόβολος 2003 Λευκωσία, Κύπρος Τηλ: 22378101- Φαξ:22379122 cms@cms.org.cy, www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Η Κυπριακή Μαθηματική Εταιρεία

Διαβάστε περισσότερα

Οι επιστήμες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίμανδρο. Θαλής ο Μιλήσιος

Οι επιστήμες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίμανδρο. Θαλής ο Μιλήσιος ΕΝΟΤΗΤΑ 1 - ΕΙΣΑΓΩΓΙΚΑ ΕΛΛΗΝΙΚΑ Κείμενο 1 Οι επιστήμες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίμανδρο. Είναι γνωστό πως στην Αρχαία Ελλάδα γίνονται τα πρώτα σημαντικά βήματα για την ανάπτυξη των επιστημών,

Διαβάστε περισσότερα

Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας. Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο

Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας. Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο Πρώτη νύχτα Μονάδα Όνειρα ( εργασία ) Η έννοια του απείρου Φρόυντ Κλάσματα Αριθμητικό σύστημα ( εργασία

Διαβάστε περισσότερα

Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε!

Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε! Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε! Συντελεστές: Γιάννης Π. Κρόκος - Μαθηματικός Βασίλης Τσιλιβής Μαθηματικός Φιλίππια Γαλιατσάτου - Δασκάλα Πολιτικός Μηχανικός «Η επίλυση των προβλημάτων & των

Διαβάστε περισσότερα

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Ιωάννης Λιακόπουλος 1, Χαράλαμπος Λυπηρίδης 2 1 Μαθητής B Λυκείου, Εκπαιδευτήρια «Ο Απόστολος Παύλος» liakopoulosjohn0@gmail.com, 2 Μαθητής

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα. Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος

Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα. Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος Διαπανεπιστημιακό Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών ΔΙΔΑΚΤΙΚΗ ΚΑΙ

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών ΑΡ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

Λίγα ιστορικά στοιχεία για το Πυθαγόρειο Θεώρημα.

Λίγα ιστορικά στοιχεία για το Πυθαγόρειο Θεώρημα. Λίγα ιστορικά στοιχεία για το Πυθαγόρειο Θεώρημα. 1. Είναι απαραίτητο να εξετάζουμε στην περίοδο που διανύουμε το ξεκίνημα των τεχνών και των επιστημών, έτσι διαπιστώνουμε, ότι πρώτα οι Αιγύπτιοι ανακάλυψαν

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΟΙ. Έρευνα-επιλογή: Μαρτίνα Λόος Μετάφραση-επιµέλεια: Βασιλική Καντζάρα

ΜΑΘΗΜΑΤΙΚΟΙ. Έρευνα-επιλογή: Μαρτίνα Λόος Μετάφραση-επιµέλεια: Βασιλική Καντζάρα Έρευνα-επιλογή: Μαρτίνα Λόος Μετάφραση-επιµέλεια: Βασιλική Καντζάρα ΜΑΘΗΜΑΤΙΚΟΙ Εισαγωγή Το παρόν κείµενο περιλαµβάνει ορισµένα µόνο ονόµατα γνωστών µαθηµατικών από την ιστορία της επιστήµης. Η έρευνα

Διαβάστε περισσότερα

Μονάδες μέτρησης χρόνου

Μονάδες μέτρησης χρόνου Μονάδες μέτρησης χρόνου ΜΑΘΗΜΑ: Μαθηματικός Γραμματισμός ΤΑΞΗ: Α ΕΝΟΤΗΤΑ: Μονάδες μέτρησης χρόνου ΕΚΠΑΙΔΕΥΤΗΣ: Δραγανιδάκη Στυλιανή Διδακτικοί στόχοι: Α: Βασικοί στόχοι: 1. Να εξοικειωθούν στους αλγορίθμους

Διαβάστε περισσότερα

Αφαίρεση και Γενίκευση στα Μαθηματικά

Αφαίρεση και Γενίκευση στα Μαθηματικά 1 Αφαίρεση και Γενίκευση στα Μαθηματικά Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ3 www.p-theodoropoulos.gr ΠΕΡΙΛΗΨΗ Στην εργασία αυτή εξετάζεται εντός του πλαισίου της Διδακτικής των

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

Για τα παιδιά (αλλά και για τους γονείς)...

Για τα παιδιά (αλλά και για τους γονείς)... Eισαγωγικό σημείωμα: «Οι κατ οίκον εργασίες στη διδασκαλία των μαθηματικών» Οι εργασίες «για το σπίτι» ή όπως λέγονται στις παιδαγωγικές επιστήμες οι κατ οίκον εργασίες αποτελούν αναπόσπαστο κομμάτι της

Διαβάστε περισσότερα

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1 ΑΝΔΡΕΑΣ Λ. ΠΕΤΡΑΚΗΣ ΑΡΙΣΤΟΥΧΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΔΙΔΑΚΤΩΡ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΤΑ ΚΟΙΝΑ ΣΗΜΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΤΟΥΣ ΠΑΡΑΣΤΑΣΕΩΝ, ΑΝ ΥΠΑΡΧΟΥΝ, ΒΡΙΣΚΟΝΤΑΙ ΜΟΝΟ ΠΑΝΩ ΣΤΗΝ ΕΥΘΕΙΑ y = x ΔΕΥΤΕΡΗ

Διαβάστε περισσότερα

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΠΡΟΛΟΓΟΣ Ξ εκινώντας τη προσπάθεια μου να γράψω αυτό το βιβλίο αναρωτιόμουν πως

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο.

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. Στόχοι: Οι εκπαιδευόμενοι: Να ενημερωθούν για το σύμπαν. Να παρατηρήσουν τα ουράνια σώματα. Να σκεφτούν -να

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

Εξηγώντας τα μαθηματικά στις κόρες μου. του ΝΤΕΝΙ ΓΚΕΤΖ Νάουσα Ιούλης 2010

Εξηγώντας τα μαθηματικά στις κόρες μου. του ΝΤΕΝΙ ΓΚΕΤΖ Νάουσα Ιούλης 2010 Εξηγώντας τα μαθηματικά στις κόρες μου του ΝΤΕΝΙ ΓΚΕΤΖ Νάουσα Ιούλης 2010 ΓΙΑ ΠΟΙΟ ΠΡΑΓΜΑ ΜΙΛΟΥΝ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Τι σημαίνει εξηγώ; Τι είναι τα μαθηματικά; Σε τι χρησιμεύουν τα μαθηματικά; Στα μαθηματικά

Διαβάστε περισσότερα

Εκπαιδευτήριο ΤΟ ΠΑΓΚΡΗΤΙΟΝ - ΓΥΜΝΑΣΙΟ. Αρχαϊκή Εποχή και στο Ισλάμ. Ανάτυπο από τον τόμο «ΣΥΝΘΕΤΙΚΕΣ ΕΡΓΑΣΙΕΣ, ΣΤ, 2011-2012»

Εκπαιδευτήριο ΤΟ ΠΑΓΚΡΗΤΙΟΝ - ΓΥΜΝΑΣΙΟ. Αρχαϊκή Εποχή και στο Ισλάμ. Ανάτυπο από τον τόμο «ΣΥΝΘΕΤΙΚΕΣ ΕΡΓΑΣΙΕΣ, ΣΤ, 2011-2012» Ανάτυπο από τον τόμο «ΣΥΝΘΕΤΙΚΕΣ ΕΡΓΑΣΙΕΣ, ΣΤ, 2011-2012» Εκπαιδευτήριο ΤΟ ΠΑΓΚΡΗΤΙΟΝ - ΓΥΜΝΑΣΙΟ Χαρτογραφία στην Αρχαϊκή Εποχή και στο Ισλάμ Ανάτυπο από τον τόμο «ΣΥΝΘΕΤΙΚΕΣ ΕΡΓΑΣΙΕΣ, ΣΤ, 2011-2012» Τάξη

Διαβάστε περισσότερα

«ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ»

«ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ» Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο «ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ» ΜΠΙΘΗΜΗΤΡΗ ΒΑΣΙΛΙΚΗ ΣΤΕΛΛΑ Επιβλέπουσα: Αν. Καθηγήτρια

Διαβάστε περισσότερα

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη Ο ΠΥΘΑΓΟΡΑΣ (572-500 ΠΧ) ΗΤΑΝ ΦΟΛΟΣΟΦΟΣ, ΜΑΘΗΜΑΤΙΚΟΣ ΚΑΙ ΘΕΩΡΗΤΙΚΟΣ ΤΗΣ ΜΟΥΙΣΚΗΣ. ΥΠΗΡΞΕ Ο ΠΡΩΤΟΣ ΠΟΥ ΕΘΕΣΕ ΤΙΣ ΒΑΣΕΙΣ

Διαβάστε περισσότερα

THOMAS VOGEL Το τελευταίο παραµύθι του Μιγκέλ Τόρρες ντα Σίλβα (ΜΥΘΙΣΤΟΡΗΜΑ)

THOMAS VOGEL Το τελευταίο παραµύθι του Μιγκέλ Τόρρες ντα Σίλβα (ΜΥΘΙΣΤΟΡΗΜΑ) THOMAS VOGEL Το τελευταίο παραµύθι του Μιγκέλ Τόρρες ντα Σίλβα (ΜΥΘΙΣΤΟΡΗΜΑ) Μετάφραση: ΛΙΝΑ ΣΙΠΙΤΑΝΟΥ Εκδόσεις Κριτική 2003 Παρουσίαση του βιβλίου: Ευαγγελία Τατάγια ΠΕΡΙΛΗΨΗ Το µυθιστόρηµα ξετυλίγεται

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Fractals: Μια νέα ματιά στον κόσμο μας του Τεύκρου Μιχαηλίδη

Fractals: Μια νέα ματιά στον κόσμο μας του Τεύκρου Μιχαηλίδη Fractals: Μια νέα ματιά στον κόσμο μας του Τεύκρου Μιχαηλίδη Στις 14 Οκτωβρίου 2010 έφυγε από τη ζωή ο Μπενουά Μάντελμπροτ (Benoît Mandelbrot), ο άνθρωπος που έδωσε το όνομά του σ ένα από τα πιο περίπλοκα

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ 1.6 Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. Αρ

Διαβάστε περισσότερα

Διδακτικές ενότητες Στόχος

Διδακτικές ενότητες Στόχος Η διδασκαλία του τριγωνομετρικού κύκλου με τον παραδοσιακό τρόπο στον πίνακα, είναι μία διαδικασία όχι εύκολα κατανοητή για τους μαθητές, με αποτέλεσμα τη μηχανική παπαγαλίστικη χρήση των τύπων της τριγωνομετρίας.

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ & ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2014-15 (ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1 )

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ & ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2014-15 (ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1 ) ΠΑΡΑΣΚΕΥΗ 19/6/2015 ΠΕΜΠΤΗ 18/6/2015 ΤΕΤΑΡΤΗ 17/6/2015 ΤΡΙΤΗ 16/6/2015 ΔΕΥΤΕΡΑ 15/6/2015 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ

Διαβάστε περισσότερα

0 0 30 π/6 45 π/4 60 π/3 90 π/2

0 0 30 π/6 45 π/4 60 π/3 90 π/2 Βασικός Πίνακας Μοίρες (Degrees) Ακτίνια (Radians) ΓΩΝΙΕΣ 0 0 30 π/6 45 π/4 60 π/3 90 π/2 Έστω ότι θέλω να μετατρέψω μοίρες σε ακτίνια : Έχω μία γωνία σε φ μοίρες. Για να την κάνω σε ακτίνια, πολλαπλασιάζω

Διαβάστε περισσότερα

Η επιστημονική και καλλιτεχνική δημιουργία ως αρωγοί στην εκπαιδευτική διαδικασία

Η επιστημονική και καλλιτεχνική δημιουργία ως αρωγοί στην εκπαιδευτική διαδικασία Η επιστημονική και καλλιτεχνική δημιουργία ως αρωγοί στην εκπαιδευτική διαδικασία Β. Δρακόπουλος Σχολικός Σύμβουλος Δευτεροβάθμιας Εκπαίδευσης Τμήμα Πληροφορικής και Τηλεπικοινωνιών, Ε.Κ.Π.Α. Σχολή Θετικών

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο Το Πυθαγόρειο θεώρημα: μία διάσημη μαθηματική σχέση στον εργαστηριακό πάγκο της Φυσικής Παναγιώτης Μουρούζης Το Πυθαγόρειο θεώρημα, το οποίο συνήθως περιγράφεται φορμαλιστικά από μία σχέση της μορφής 2

Διαβάστε περισσότερα

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Ποια από τις πιο κάτω προτάσεις είναι ΛΑΝΘΑΣΜΕΝΗ; Α. 8 7 > 7 6 Β. 8 5 < 6 7 Γ. 7 0 < 8 8 Δ. 1 7 > 1 8 Ε. 60 7 > 60 8 2. Ο αδύναμος κρίκος μιας αλυσίδας είναι ο 7 ος από την αρχή της και ο 11 ος από

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

3 + 5 = 23 :13 + 18 = 23

3 + 5 = 23 :13 + 18 = 23 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

Κάπως έτσι ονειρεύτηκα την Γραμμική Αρμονική Ταλάντωση!!! Μπορεί όμως και να ήταν.

Κάπως έτσι ονειρεύτηκα την Γραμμική Αρμονική Ταλάντωση!!! Μπορεί όμως και να ήταν. Ένα όνειρο που ονειρεύεσαι μόνος είναι απλά ένα όνειρο. Ένα όνειρο που ονειρεύεσαι με άλλους μαζί είναι πραγματικότητα. John Lennon Κάπως έτσι ονειρεύτηκα την Γραμμική Αρμονική Ταλάντωση!!! Μπορεί όμως

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 1) Δίνεται η εξίσωση x 2-2(λ + 2) χ + 2λ 2-17 = 0. Να βρείτε το λ ώστε η εξίσωση να έχει μία ρίζα διπλή. Υπολογίστε τη ρίζα. Aσκήσεις στις εξισώσεις Β βαθμού Για να έχει η εξίσωση μία ρίζα διπλή πρέπει:

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια

Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Οδηγίες Εγκατάστασης & Εγχειρίδιο Χρήσης Πίνακας περιεχομένων 1. Εισαγωγή... 3 2. Οδηγίες εγκατάστασης...

Διαβάστε περισσότερα

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Κεφάλαιο 3 Αριθµητική για υπολογιστές Ασκήσεις Η αρίθµηση των ασκήσεων είναι από την 4 η έκδοση του «Οργάνωση και Σχεδίαση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φοιτητής: Παύλου Νικόλαος, Α.Ε.Μ: 2245, Ε Εξάμηνο Σχολείο: 1 ο Πειραματικό

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

ΙΕ ΔΗΜΟΤΙΚΟ ΛΕΜΕΣΟΥ (Κ.Α.) ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ:

ΙΕ ΔΗΜΟΤΙΚΟ ΛΕΜΕΣΟΥ (Κ.Α.) ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΙΕ ΔΗΜΟΤΙΚΟ ΛΕΜΕΣΟΥ (Κ.Α.) ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2007-2008 Τάξη: Γ 3 Όνομα: Η μύτη μου είναι μεγάλη. Όχι μόνο μεγάλη, είναι και στραβή. Τα παιδιά στο νηπιαγωγείο με λένε Μυτόγκα. Μα η δασκάλα τα μαλώνει: Δεν

Διαβάστε περισσότερα

OXFORD UNIVERSITY PRESS, ISBN 978 0 19 285361-5

OXFORD UNIVERSITY PRESS, ISBN 978 0 19 285361-5 W.T. Gowers Mathematics A very short introduction OXFORD UNIVERSITY PRESS, ISBN 978 0 19 285361-5 Μετάφραση του κεφαλαίου Numbers and abstraction στα Ελληνικά από τον Παππά Ιωάννη. 1 Κάποια χρόνια πριν,

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

Δραστηριότητα Εύρεση του π

Δραστηριότητα Εύρεση του π Δραστηριότητα Εύρεση του π Ανάµεσα σε πολλά πρωτότυπα και εντυπωσιακά επιτεύγµατα του Αρχιµήδη, η µέθοδός του για την εύρεση µιας αριθµητικής προσέγγισης για το π ξεχωρίζει για την κοµψότητα και την ασυνήθιστη

Διαβάστε περισσότερα

Να φύγει ο Ευκλείδης;

Να φύγει ο Ευκλείδης; Να φύγει ο Ευκλείδης; Σωτήρης Ζωιτσάκος Βαρβάκειο Λύκειο Μαθηματικά στα ΠΠΛ Αθήνα 2014 Εισαγωγικά Dieudonné: «Να φύγει ο Ευκλείδης». Douglas Quadling: «Ο Ευκλείδης έχει φύγει, αλλά στο κενό που άφησε πίσω

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ

ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ Κατασκευή: Το μονόχορδο του Πυθαγόρα 2005-2006 Τόλιας Γιάννης Α1 Λ Υπεύθυνη Καθηγήτρια: Α. Τσαγκογέωργα Περιεχόμενα: Τίτλος Εργασίας Σκοπός Υπόθεση (Περιγραφή Κατασκευής) Ορισμός Μεταβλητών

Διαβάστε περισσότερα

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΘΗΓΗΤΗΣ Χ. ΛΕΜΟΝΙΔΗΣ ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 Στη διδασκαλία συνήθως τα παιδιά αρχικά διδάσκονται τις

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ. Οι αριθμοί πέρα απ τους κανόνες

ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ. Οι αριθμοί πέρα απ τους κανόνες ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ Οι αριθμοί πέρα απ τους κανόνες Οι αριθμοί πέρα απ τους κανόνες Γιάννης Καραγιαννάκης Copyright Γιάννης Καραγιαννάκης Eκδότης: Διερευνητική Μάθηση, Αθήνα 2012 Επιμέλεια: Γιάννης Καραγιαννάκης

Διαβάστε περισσότερα

Μεγιστοποίηση μέσα από το τριώνυμο

Μεγιστοποίηση μέσα από το τριώνυμο Μεγιστοποίηση μέσα από το τριώνυμο Μια από τις πιο όμορφες εφαρμογές του τριωνύμου στη φυσική είναι η μεγιστοποίηση κάποιου μεγέθους μέσα από αυτό. Η ιδέα απλή και βασίζεται στη λογική επίλυσης του παρακάτω

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΙΣΤΟΡΙΕΣ ΑΓΝΩΣΤΩΝ - ΣΚΙΑΘΟΣ, 7-11 ΙΟΥΛΙΟΥ 2008 Εργαστήρι Λεσχών Ανάγνωσης Μαθηµατικής Λογοτεχνίας

ΙΣΤΟΡΙΕΣ ΑΓΝΩΣΤΩΝ - ΣΚΙΑΘΟΣ, 7-11 ΙΟΥΛΙΟΥ 2008 Εργαστήρι Λεσχών Ανάγνωσης Μαθηµατικής Λογοτεχνίας ΥΠΟΘΕΣΗ ΡΙΜΑΝ (Η ΕΜΜΟΝΗ ΜΕ ΤΟΥΣ ΠΡΩΤΟΥΣ ΑΡΙΘΜΟΥΣ) του John Derbyshire (Εκδόσεις Τραυλός) Η ΜΟΥΣΙΚΗ ΤΩΝ ΠΡΩΤΩΝ ΑΡΙΘΜΩΝ του Marcus du Sautoy (Εκδόσεις Τραυλός) Γενικά Υπόθεση Ρίµαν Όλες οι µη τετριµµένες

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

Sudoku. - Οι άμεσοι αποκλεισμοί είναι δυο ειδών, ήτοι: 1) Απευθείας αποκλεισμός από ένα κουτάκι όλων, πλην ενός, των αριθμών.

Sudoku. - Οι άμεσοι αποκλεισμοί είναι δυο ειδών, ήτοι: 1) Απευθείας αποκλεισμός από ένα κουτάκι όλων, πλην ενός, των αριθμών. 1 από 10 Sudoku. Αν κάποιος ασχοληθεί με ένα λαό το σίγουρο είναι πως θα βρει πολλά ενδιαφέροντα πράγματα, χαρακτηριστικά του τρόπου σκέψης - και της στάσης ζωής γενικότερα - του λαού αυτού, και πιθανόν

Διαβάστε περισσότερα

ΜΕΡΟΣ Α 2 Ô. º π. Πραγματικοί αριθμοί

ΜΕΡΟΣ Α 2 Ô. º π. Πραγματικοί αριθμοί ΜΕΡΟΣ Α º π Ô Πραγματικοί αριθμοί ΕΙΣΑΩΙΚΟ ΣΗΜΕΙΩΜΑ ª ÚÈ ÙÒÚ Ô ÌÂ Û Ó ÓÙ ÛÂÈ Ê ÛÈÎÔ, Î Ú ÈÔ Î È ÚËÙÔ ÚÈıÌÔ. ÙÔ ÙÂÏÂ Ù Ô Â ÌÂ ÂÍÂÙ ÛÂÈ ÙË ÂÎ ÈÎ ÙÔ apple Ú ÛÙ ÛË, Ë ÔappleÔ Ù Ó ÁÓˆÛÙ ÛÂ appleï appleâúèô

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα

Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα Βασίλειος Παπαντωνίου Ομ. Καθηγητής Πανεπιστημίου Πατρών bipapant@math.upatras.gr Επίκεντρο της παρουσίασης Η εξέλιξη της μαθηματικής σκέψης

Διαβάστε περισσότερα