FDMGEO4: Antros eilės kreivės I

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "FDMGEO4: Antros eilės kreivės I"

Transcript

1 FDMGEO4: Antros eilės kreivės I Kęstutis Karčiauskas Matematikos ir Informatikos fakultetas 1 Koordinačių sistemos transformacija Antrosios eilės kreivių lgtis prastinsime keisdami (transformuodami) koordinačių sistemą. Prisiminkime svarbiausius plokštumos stačiakampių koordinačių sistemų transformacijos momentus. Apibrėžimas 1 Koordinačių sistemos O ir O ra vienos orentacijos, jei posūkis nuo -ašies link -ašies ra tos pačios krpties kaip ir posūkis nuo -ašies link -ašies (žr. Pav. 1 (a)). Priešingu atveju (žr. Pav. 1 (b)), koordinačių sistemos O ir O ra priešingos orentacijos.. Taip pat svarbu nepamiršti, kad posūkio kampas ra orentuotas jo absoliutinė reikšmė imama su ženklu + arba. O O O O (a) (b) Pav. 1: Vienodai (a) ir skirtingai (b) orentuotos koordinačių sistemos. 1

2 α > 0 α < 0 Pav. 2: Orentuotas posūkio kampas. Apibrėžimas 2 Jei pradinės koordinačių sistemos O -ašies posūkis link naujos koordinačių sistemos O -ašies ra tos pačios krpties, kaip ir posūkis nuo -ašies link - ašies, tai posūkio kampas α ra teigiamas; priešingu atveju posūkio kampas ra neigiamas. (Žr. Pav. 2). Dėmesio: nustatant posūkio kampo ženklą, naujos koordinačių sistemos -ašies krptis nevaidina jokio vaidmens. Bendrąją koordinačių sistemos transformaciją (žr. Pav. 3) dažnai ra patogu suskaidti į du etapus koordinačių sistemos posūkį ir koordinačių sistemos lgiagretų postūmį (žr. Pav. 4). Dabar prisiminkime (sužinokime) koordinačių transformacijos formules. 1.1 Bendrosios koordinačių transformacijos formulės Tegul O ra pradinė koordinačių sistema, o O naujoji. Taško M koordinatės atžvilgiu pradinės sistemos ra (; ), atžvilgiu naujosios ( ; ). Įvedami duomens ra atžvilgiu pradinės koordinačių sistemos: naujosios koordinačių sistemos pradžia O ( 0 ; 0 ); α orentuotas kampas, kuriuo reikia pasukti -ašį kad gautume -ašį. Koordinačių sistemos O ir O ra vienos orentacijos = cos α sin α + 0 = sin α + cos α + 0. (1) 2

3 α O O Pav. 3: Bendroji koordinačių sistemos transformacija. Koordinačių sistemos O ir O ra priešingų orentacijų = cos α + sin α + 0 = sin α cos α + 0. (2) 1.2 Koordinačių sistemos posūkis Žiūrėk Pav. 4(a). Koordinačių sistemos ra vienos orentacijos, o jų pradžios sutampa (O = O ). Kadangi šiuo atveju 0 = 0, 0 = 0, formulės (1) supaprastėja iki = cos α sin α = sin α + cos α. (3) 1.3 Koordinačių sistemos lgiagretus postūmis Žiūrėk Pav. 4(b). Koordinačių sistemų ašs ra tų pačių krpčių (todėl sistemos ra vienos orentacijos). Kadangi šiuo atveju α = 0, formulės (1) supaprastėja iki 3

4 (a) (b) Pav. 4: Koordinačių sistemos posūkis (a) ir lgiagretus postūmis (b). = + 0 = + 0. (4) 1.4 Matricinė koordinačių transformacijos formulių išraiška Pažmėkime c 11 = cos α c 12 = sin α c 13 = 0 c 21 = sin α c 22 = ± cos α c 23 = 0 c 31 = 0 c 32 = 0 c 33 = 1 viršutinis ženklas naudojamas, jei sistemos ra vienos orentacijos formulė (1); apatinis ženklas naudojamas, jei sistemos priešingų orentacijų formulė (2). Pažmėkime X = 1, X = 1, C = c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33. Įvedus šiuos žmenis formulės (1) ir (2) matricinėje formoje tampa vienodomis: X = CX (5) Matriciniai žmens įgalina panaudoti tiesinės algebros rezultatus ten, kur tiesioginiai aritmetiniai skaičiavimai tampa komplikuotais. Matricinė koordinačių transformacijų forma (5) plačiai vartojama kompiuterinėje grafikoje. 4

5 2 Bendroji antros eilės kreivės lgtis Tarkime ra fiksuota stačiakampė koordinačių sistema O. Bendroji antros eilės kreivės lgtis F (, ) = 0 šios sistemos atžvilgiu ra F (, ) = a a 12 + a a a 23 + a 33 = 0. (6) Remiantis bendrąja kreivės lgtimi sudaroma jos matrica A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 apibrėžiant a 21 = a 12, a 31 = a 13, a 32 = a 23. Matrica A ra simetrinė, t.. A T = A. Panaudojus skriaus 1.4 žmenis gaunama matricinė antros eilės kreivės lgties forma, F (, ) = X T AX = 0. (7) Ši lgbė įrodoma elementariais skaičiavimais dauginant matricas. Panašaus sudėtingumo (tiksliau lengvumo) aritmetiniais veiksmais įrodoma, kad F (, ) = F 1 (, ) + F 2 (, ) + F 3 (, ), (8) kur F 1 (, ) = a 11 + a 12 + a 13 F 2 (, ) = a 21 + a 22 + a 23 F 3 (, ) = a 31 + a 32 + a 33. (9) Išraiška a a 12 + a 22 2 paprastai vadinama kvadratine kreivės lgties dalimi, 2a a 23 tiesine dalimi, o a 33 laisvuoju nariu. 2.1 Ršs tarp kreivės lgčių atžvilgiu skirtingų koordinačių sistemų Tarkime turime antros eilės kreivės lgtį atžvilgiu koordinačių sistemos O. Kreivės lgtį F (, ) = X T A X = 0 atžvilgiu naujos koordinačių sistemos O gauname iš (7), pasinaudoję koordinačių transformacijų formulėmis (5): F (, ) = (CX ) T A(CX ) = X T (C T AC)X = X T A X. 5

6 ( ) Kadangi matricos A ir C T AC ra simetrinės (C T AC) T = C T A T C = C T AC, iš paskutinės lgbės seka A = C T AC (10) Koordinačių sistemos posūkis. Pritaikę formulę (10) koordinačių sistemos posūkiui gauname: 1. jei tiesinė lgties dalis buvo lgi 0, tai ir po posūkio ji išlieka lgi 0; 2. laisvasis nars nesikeičia, t.. a 33 = a 33. Lgiagretus postūmis. Pritaikę formulę (10) lgiagrečiam koordinačių sistemos postūmiui gauname: 1. kvadratinė lgties dalis nesikeičia, t.. a 11 = a 11, a 12 = a 12, a 22 = a 22 ; 2. tiesinės dalies kaita nusakoma formulėmis a 13 = F 1 ( 0, 0 ) = a a a 13 a 23 = F 2 ( 0, 0 ) = a a a 23. (11) 3. a 33 = F ( 0, 0 ). 3 Antros eilės kreivės lgties invariantai Efektviai prastinant antros eilės kreivės lgtį labai svarbūs ra lgties ortogonalūs invariantai. Apibrėžimas 3 Antros eilės kreivės lgties ortogonaliuoju invariantu vadinama nuo lgties koeficientų priklausanti funkcija g, kurios reikšmė nesikeičia, stačiakampę koordinačių sistema O pakeitus kita stačiakampe koordinačių sistema O, t.. g(a 11, a 12, a 22, a 13, a 23, a 33 ) = g(a 11, a 12, a 22, a 13, a 23, a 33). Teigins 1 Reiškiniai I 1 = a 11 + a 22, I 2 = a 11 a 12 a 21 a 22, I 3 = ra ortogonalūs antros eilės kreivės lgties invariantai. a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 (12) 6

7 Šis teigins įrodomas tiesinės algebros kurse. Beje, reiškinio I 3 = A invariantiškumas seka iš formulės (10): A = C T AC = A C 2 = A, nes C = ±1. 4 Charakteringoji lgtis Apibrėžimas 4 Antros eilės kreivės charakteringaja lgtimi vadinama antrojo laipsnio lgtis λ 2 I 1 λ + I 2 = 0. (13) Lengva patikrinti, kad charakteringąją lgtį galime užrašti matricinėje formoje λ 2 I 1 λ + I 2 = a 11 λ a 12 a 22 λ = 0. (14) Teigins 2 Charakteringoji lgtis visuomet turi realias šaknis. Įrodmas Skaičiuojame charakteringosios lgties diskriminantą D: a 21 D = I 2 1 4I 2 = (a 11 + a 22 ) 2 4(a 11 a 22 a 2 12) = (a 11 a 22 ) 2 + 4a Taip pat gauname, kad charakteringoji lgtis turi kartotinę šaknį (D = 0), jei a 11 = a 22 ir a 12 = 0. Nesunkiai patikrinima (išskiriant lgtje pilnus kvadratus atžvilgiu ir ), kad šiuo atveju, jei kreivė turi realius taškus, lgtis apibrėžia apskritimą. Charakteringosios lgties šaknis žmime λ 1, λ 2. Kadangi jos visuomet realios, tai λ 2 I 1 λ + I 2 = (λ λ 1 )(λ λ 2 ), o pagal Vijeto teoremą I 1 = λ 1 + λ 2, I 2 = λ 1 λ 2. 7

8 5 Antros eilės kreivės centras Apibrėžimas 5 Antros eilės kreivės centru vadinamas taškas, kurio koordinatės (; ) tenkina lgčių sistem a F1 (, ) = a a a 13 = 0 F 2 (, ) = a a a 23 = 0. (15) Apibrėžimas 6 Antros eilės kreivė vadinama centrine, jei ji turi vienintelį centra. Priešingu atveju kreivė neturi centro arba turi jų be galo daug antros eilės kreivė vadinama necentrine. Sistema (15) turi vienintelį sprendinį, jei I 2 0. Todėl, jei I 2 0 kreivė ra centrinė, jei I 2 = 0 necentrinė. Teigins 3 Jei koordinačių sistemos pradžia sutampa su kreivės centru, tai kreivės lgties tiesinė dalis ra lgi nuliui. Įrodmas Iš centro apibrėžimo bei formulės (11) seka, kad perkėlus koordinačių sistemos pradžią į kreivės centrą, jos tiesinė dalis virsta nuliumi. Bet kuri kita koordinačių sistema su tuo pačiu centru gaunama iš šios (lgiagrečiai pastumtos) sistemos pasukant apie naują koordinačių pradžią. Iš skriaus 2.1 punkto 1 seka, kad tiesinė lgties dalis atžvilgiu pasuktos koordinačių sistemos lieka lgi nuliui. Remdamiesi šiuo teiginiu darome išvadą: jei koordinačių sistemos pradžia sutampa su kreivės centru, tai F (, ) = a a 12 + a a 33 = 0. Tokioje koordinačių sistemoje F ( ; ) = F (; ), todėl: kreivės centras ra kreivės simetrijos centras. 6 Kvadratinės lgties dalies prastinimas Šiame skriuje įrodsime, kad pasukus koordinačių sistemą galima panaikinti skirtingų kintamųjų sandaugą (a 12 = 0). Be to iš įrodmo išpešime papildomos naudingos informacijos. 8

9 Kadangi koordinačių transformacijai naudojame posūkį, tai cos α sin α 0 C = sin α cos α Pasinaudoję formule (10) gauname a 21 = sin α ( ) ( ) a 11 cos α + a 12 sin α + cos α a21 cos α + a }} 22 sin α. }} n 1 n 2 Sąlga, kad pranksta skirtingų kintamųjų sandauga, t.. a 12 = a 21 = 0, ra n 1 sin α + n 2 cos α = 0. Ši sąlga reiškia, kad vektorius (n 1 ; n 2 ) ra statmenas vektoriui ( sin α; cos α). Tai ekvivalentu salgai, kad vektorius (n 1 ; n 2 ) ra lgiagretus vektoriui (cos α; sin α), t.. toks skaičius λ, kad Šią sąlgą perrašome pavidale a11 cos α + a 12 sin α = λ cos α a 21 cos α + a 22 sin α = λ sin α. (a11 λ) cos α + a 12 sin α = 0 a 21 cos α + (a 22 λ) sin α = 0. Sistema (16) turi nenulinį spendinį (cos α, sin α), jei a 11 λ a 12 a 22 λ = 0. a 21 (16) Taigi λ ra charakteringosios lgties šaknis. Pažmėję šią šaknį λ 1 iš sąlgos (16) pirmosios lgbės gauname tan α = λ 1 a 11 a 12. (17) Primename vakarkščiams mokiniams, kad žinodami tangentą nesunkiai apskaičiuojame to paties kampo sinusą ir kosinusą: sin α = tan α 1 + tan 2 α, cos α = tan 2 α. (18) 9

10 Pasinaudoję formule (10) taip pat gauname a 11 = cos α ( ) ( ) a 11 cos α + a 12 sin α + sin α a21 cos α + a }} 22 sin α. }} n 1 n 2 Kadangi n 1 = λ 1 cos α, n 2 = λ 1 sin α, tai a 11 = λ 1 (cos 2 α + sin 2 α) = λ 1. Todėl charakteringoji lgtis, parašta matriciniame pavidale atžvilgiu naujos koordinačių sistemos, ra λ 1 λ 0 0 a 22 λ = (λ λ 1)(λ a 22) = 0. Iš šios lgbės gauname, kad a 22 ra kita charakteringosios lgties šaknis, t.. a 22 = λ 2. Tai ir viskas, ką reikėjo parodti šiame skriuje. Surinkime viščiukus į vieną vietą. Išvada 1 Tegul λ 1 ir λ 2 ra charakteringosios lgties šakns. Pasukus koordinačių sistema kampu α, kurio tan α = λ 1 a 11 a 12, kvadratinė lgties dalis atžvilgiu naujos koordinačių sistemos supaprastėja iki λ 1 2 +λ 2 2, t.. a 11 = λ 1, a 12 = 0, a 22 = λ 2. Posūkio kampo sinusas ir kosinusas apskaičiuojami naudojantis formulėmis (18). 10

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui)

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui) ngelė aškienė NLIZINĖ GEMETRIJ III skrius (Medžiaga virtualiajam kursui) III skrius. TIESĖS IR PLKŠTUMS... 5. Tiesės lgts... 5.. Tiesės [M, a r ] vektorinė lgtis... 5.. Tiesės [M, a r ] parametrinės lgts...

Διαβάστε περισσότερα

Matematika 1 3 dalis

Matematika 1 3 dalis Matematika 1 3 dalis Vektorių algebros elementai. Vektorių veiksmai. Vektorių skaliarinės, vektorinės ir mišriosios sandaugos ir jų savybės. Vektoriai Vektoriumi vadinama kryptinė atkarpa. Jei taškas A

Διαβάστε περισσότερα

X galioja nelygyb f ( x1) f ( x2)

X galioja nelygyb f ( x1) f ( x2) Monotonin s funkcijos Tegul turime funkciją f : A R, A R. Apibr žimas. Funkcija y = f ( x) vadinama monotoniškai did jančia (maž jančia) aib je X A, jei x1< x2 iš X galioja nelygyb f ( x1) f ( x2) ( f

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lgčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA tema. APSKRITIMŲ GEOMETRIJA (00 0) Teorinę medžiagą parengė bei antrąją užduotį sudarė Vilniaus pedagoginio universiteto docentas Edmundas Mazėtis. Apskritimas tai

Διαβάστε περισσότερα

Specialieji analizės skyriai

Specialieji analizės skyriai Specialieji analizės skyriai. Specialieji analizės skyriai Kompleksinio kinamojo funkcijų teorija Furje eilutės ir Furje integralai Operacinis skaičiavimas Lauko teorijos elementai. 2 Kompleksinio kintamojo

Διαβάστε περισσότερα

FUNKCIJOS. veiksmu šioje erdvėje apibrėžkime dar viena. a = {a 1,..., a n } ir b = {b 1,... b n } skaliarine sandauga

FUNKCIJOS. veiksmu šioje erdvėje apibrėžkime dar viena. a = {a 1,..., a n } ir b = {b 1,... b n } skaliarine sandauga VII DAUGELIO KINTAMU JU FUNKCIJOS 71 Bendrosios sa vokos Iki šiol mes nagrinėjome funkcijas, apibrėžtas realiu skaičiu aibėje Nagrinėsime funkcijas, kurios apibrėžtos vektorinėse erdvėse Tarkime, kad R

Διαβάστε περισσότερα

06 Geometrin e optika 1

06 Geometrin e optika 1 06 Geometrinė optika 1 0.1. EIKONALO LYGTIS 3 Geometrinėje optikoje įvedama šviesos spindulio sąvoka. Tai leidžia Eikonalo lygtis, kuri išvedama iš banginės lygties monochromatinei bangai - Helmholtco

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lygčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam,

IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam, 41 Funkcijos riba IV FUNKCIJOS RIBA Taško x X aplinka vadiname bet koki atvira intervala, kuriam priklauso taškas x Taško x 0, 2t ilgio aplinka žymėsime tokiu būdu: V t (x 0 ) = ([x 0 t, x 0 + t) Sakykime,

Διαβάστε περισσότερα

III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip:

III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip: III MATRICOS DETERMINANTAI Realiu ju skaičiu lentele 3 Matricos a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn vadinsime m n eilės matrica Trumpai šia lentele žymėsime taip: A = a ij ; i =,, m, j =,, n čia

Διαβάστε περισσότερα

Elektronų ir skylučių statistika puslaidininkiuose

Elektronų ir skylučių statistika puslaidininkiuose lktroų ir skylučių statistika puslaidiikiuos Laisvų laidumo lktroų gracija, t.y. lktroų prėjimas į laidumo juostą, gali vykti kaip iš dooriių lygmų, taip ir iš valtiės juostos. Gracijos procsas visuomt

Διαβάστε περισσότερα

Matematinės analizės konspektai

Matematinės analizės konspektai Matematinės analizės konspektai (be įrodymų) Marius Gedminas pagal V. Mackevičiaus paskaitas 998 m. rudens semestras (I kursas) Realieji skaičiai Apibrėžimas. Uždarųjų intervalų seka [a n, b n ], n =,

Διαβάστε περισσότερα

ATSITIKTINIAI PROCESAI. Alfredas Račkauskas. (paskaitų konspektas 2014[1] )

ATSITIKTINIAI PROCESAI. Alfredas Račkauskas. (paskaitų konspektas 2014[1] ) ATSITIKTINIAI PROCESAI (paskaitų konspektas 2014[1] ) Alfredas Račkauskas Vilniaus universitetas Matematikos ir Informatikos fakultetas Ekonometrinės analizės katedra Vilnius, 2014 Iš dalies rėmė Projektas

Διαβάστε περισσότερα

1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3

1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3 Skaičių teorija paskaitų konspektas Paulius Šarka, Jonas Šiurys 1 Įvadas 1 1.1 Neišspręstos problemos.............................. 1 2 Dalumas 2 2.1 Dalyba su liekana.................................

Διαβάστε περισσότερα

KOMPIUTERINIS PROJEKTAVIMAS

KOMPIUTERINIS PROJEKTAVIMAS LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Statybinių konstrukcijų katedra Tatjana Sankauskienė KOMPIUTERINIS PROJEKTAVIMAS AutoCAD sistemoje Mokomoji knyga inžinerinių specialybių

Διαβάστε περισσότερα

04 Elektromagnetinės bangos

04 Elektromagnetinės bangos 04 Elektromagnetinės bangos 1 0.1. BANGINĖ ŠVIESOS PRIGIMTIS 3 Šiame skyriuje išvesime banginę lygtį iš elektromagnetinio lauko Maksvelo lygčių. Šviesa yra elektromagnetinė banga, kurios dažnis yra optiniame

Διαβάστε περισσότερα

TRANSPORTO PRIEMONIŲ DINAMIKA

TRANSPORTO PRIEMONIŲ DINAMIKA Marijonas Bogdevičius RANSPORO PRIEMONIŲ DINAMIKA Projekto kodas VP-.-ŠMM 7-K--3 Studijų programų atnaujinimas pagal ES reikalavimus, gerinant studijų kokybę ir taikant inovatyvius studijų metodus Vilnius

Διαβάστε περισσότερα

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika 1. (Paskaitų konspektas) 2009 m. sausio d. Prof.

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika 1. (Paskaitų konspektas) 2009 m. sausio d. Prof. Papildoo ugdyo okykla izikos olipas Mechanika Dinaika (Paskaitų konspektas) 9. sausio -8 d. Prof. Edundas Kuokštis Vilnius Paskaita # Dinaika Jei kineatika nagrinėja tik kūnų judėjią, nesiaiškindaa tą

Διαβάστε περισσότερα

Teorinė mechanika I. Uždavinių sprendimo vadovas

Teorinė mechanika I. Uždavinių sprendimo vadovas VILNIUS GEDIINO TEHNIKOS UNIVERSITETS R. UŠYS, J. KSNUSKS Teorinė mechania I. Uždavinių sprendimo vadovas OKOOJI KNYG Vilnius Technia 00 R. aušs, J. Kasnausas. TEORINĖ EHNIK I. UŽDVINIŲ SPRENDIO VDOVS

Διαβάστε περισσότερα

Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis

Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis Techninis aprašymas Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis Aprašymas Šie vožtuvai skirti naudoti su AMV(E) 335, AMV(E) 435 arba

Διαβάστε περισσότερα

Vilniaus universitetas Matematikos ir informatikos fakultetas. Algirdas Ma iulis. Duomenu tyrimas. Paskaitu konspektas

Vilniaus universitetas Matematikos ir informatikos fakultetas. Algirdas Ma iulis. Duomenu tyrimas. Paskaitu konspektas Vilniaus universitetas Matematikos ir informatikos fakultetas Algirdas Ma iulis Duomenu tyrimas Paskaitu konspektas 2011 Turinys Ivadas 5 1 Pagrindines tikimybiu teorijos ir informacijos teorijos s vokos

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 014 m. birželio 5 d. matematikos valstybinį

Διαβάστε περισσότερα

EUROPOS CENTRINIS BANKAS

EUROPOS CENTRINIS BANKAS 2005 12 13 C 316/25 EUROPOS CENTRINIS BANKAS EUROPOS CENTRINIO BANKO NUOMONĖ 2005 m. gruodžio 1 d. dėl pasiūlymo dėl Tarybos reglamento, iš dalies keičiančio Reglamentą (EB) Nr. 974/98 dėl euro įvedimo

Διαβάστε περισσότερα

Fizika. doc. dr. Vytautas Stankus. Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas

Fizika. doc. dr. Vytautas Stankus. Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas Fizika doc. dr. Vytautas Stankus Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas Studentų 50 58 kab. Darbo tel.: 861033946 Vytautas.Stankus@ktu.lt Bendrosios fizikos

Διαβάστε περισσότερα

= γ. v = 2Fe(k) O(g) k[h. Cheminė kinetika ir pusiausvyra. Reakcijos greičio priklausomybė nuo temperatūros. t2 t

= γ. v = 2Fe(k) O(g) k[h. Cheminė kinetika ir pusiausvyra. Reakcijos greičio priklausomybė nuo temperatūros. t2 t Cheminė kineika ir pusiausyra Nagrinėja cheminių reakcijų greiį ir mechanizmą. Cheminių reakcijų meu kina reaguojančių iagų koncenracijos: c ų koncenracija, mol/l laikas, s c = Reakcijos greičio io ()

Διαβάστε περισσότερα

1 teorinė eksperimento užduotis

1 teorinė eksperimento užduotis 1 teorinė eksperimento užduotis 2015 IPhO stovykla DIFERENCINIS TERMOMETRINIS METODAS Šiame darbe naudojame diferencinį termometrinį metodą šiems dviems tikslams pasiekti: 1. Surasti kristalinės kietosios

Διαβάστε περισσότερα

GEOMETRINĖS OPTIKOS PAGRINDAI

GEOMETRINĖS OPTIKOS PAGRINDAI OPTINĖS SISTEMOS GEOMETRINĖS OPTIKOS PAGRINDAI sites.google.com/site/optinessistemos/ I. ĮVADAS Ženklai geometrinėje optikoje LABAI SVARBU! Fizikinė optika ir geometrinė optika Fizikinė optika - bangų

Διαβάστε περισσότερα

LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA

LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 6 tem. SĄLYGINĖS TAPATYBĖS IR NELYGYBĖS 009 0 Teorinę medžigą prengė ei šeštąją užduotį sudrė Vilnius pedgoginio universiteto doents Juos Šinkūns Įrodmo uždvinii r vieni

Διαβάστε περισσότερα

10. Lenkimas. 10.1. Bendrosios žinios

10. Lenkimas. 10.1. Bendrosios žinios 10. Lenkimas 10.1. Bendrosios žinios Lenkimu vadinamas deformavimo tipas, apibūdinamas strpo ašies išsikreivinimu nuo lenkimo momento. Skersinio lenkimo atveu sios ašies išsikreivinimo priežastis ra ir

Διαβάστε περισσότερα

MATEMATIKOS BRANDOS EGZAMINO PROGRAMA I. BENDROSIOS NUOSTATOS

MATEMATIKOS BRANDOS EGZAMINO PROGRAMA I. BENDROSIOS NUOSTATOS PATVIRTINTA Lietuvos Respublikos švietimo ir mokslo ministro 0 m. liepos d. įsakymu Nr. V-97 (Lietuvos Respublikos švietimo ir mokslo ministro 04 m. gruodžio 9 d. įsakymo Nr. V- 7 redakcija) MATEMATIKOS

Διαβάστε περισσότερα

KLASIKIN E MECHANIKA

KLASIKIN E MECHANIKA KLASIKIN E MECHANIKA Algirdas MATULIS Puslaidininkiu zikos institutas Vadoveliu serijos papildymas auk²tuju mokyklu tiksliuju mokslu specialybiu studentams Email: amatulis@takas.lt Mob.: +370 654 543 06

Διαβάστε περισσότερα

f (x) = l R, τότε f (x 0 ) = l.

f (x) = l R, τότε f (x 0 ) = l. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα 1. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

TEORINĖ ELEKTROTECHNIKA

TEORINĖ ELEKTROTECHNIKA Zita SAVICKIENĖ TEORINĖ ELEKTROTECHNIKA Prjekt kdas VP1-2.2-ŠMM-07-K-01-047 VGTU Elektrniks fakultet I pakps studijų prgramų esminis atnaujinimas Vilnius Technika 2012 VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS

Διαβάστε περισσότερα

Praeitos paskaitos. Grafika ir vizualizavimas. Grafika ir vizualizavimas, VDU, Trimatė grafika, transformacijos

Praeitos paskaitos. Grafika ir vizualizavimas. Grafika ir vizualizavimas, VDU, Trimatė grafika, transformacijos Grafika ir viuaiavimas VDU Praeitos askaitos Grafika ir viuaiavimas Trimatė grafika transformacijos D Transformacijos: Visos transformacijos dvimatėje erdvėje atiekamos koordinačių sistemos radžios taško

Διαβάστε περισσότερα

ẋ = f(x) n 1 f i (i = 1, 2,..., n) x i (i = 1, 2,..., n) x(0) = x o x(t) t > 0 t < 0 x(t) x o U I xo I xo : α xo < t < β xo α xo β xo x(t) t β t α + x f(x) = 0 x x x x V 1 x x o V 1 x(t) t > 0 x o V 1

Διαβάστε περισσότερα

lt, Red. 4. GSA-AA tipo pervadiniai izoliatoriai Montavimo ir techninės priežiūros vadovas

lt, Red. 4. GSA-AA tipo pervadiniai izoliatoriai Montavimo ir techninės priežiūros vadovas 2750 515-137 lt, Red. 4 GSA-AA tipo pervadiniai izoliatoriai Montavimo ir techninės priežiūros vadovas Originali instrukcija Šiame dokumente pateikta informacija yra bendrojo pobūdžio ir neapima visų galimų

Διαβάστε περισσότερα

Kengūra Užduotys ir sprendimai. Senjoras

Kengūra Užduotys ir sprendimai. Senjoras Kengūra 2014 Užduotys ir sprendimai Senjoras KENGŪROS KONKURSO ORGANIZAVIMO KOMITETAS KENGŪRA 2014 TARPTAUTINIO MATEMATIKOS KONKURSO UŽDUOTYS IR SPRENDIMAI Autorius ir sudarytojas Aivaras Novikas Redaktorius

Διαβάστε περισσότερα

JONAS DUMČIUS TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA

JONAS DUMČIUS TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA JONAS DUMČIUS (1905 1986) TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA 1975 metais rotaprintu spausdintą vadovėlį surinko klasikinės filologijos III kurso studentai Lina Girdvainytė Aistė Šuliokaitė Kristina

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS STATISTINĖ ANALIZĖ

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS STATISTINĖ ANALIZĖ LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS 2010 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 2010 m. birželio 8 d. valstybinį matematikos

Διαβάστε περισσότερα

2 TEMOS SKAITINIAI. Z.Lydeka. Rinkos ekonomikos tapsmas: teoriniai svarstymai. Kaunas: VDU leidykla, 2001, p.27-33; 45-60; ;

2 TEMOS SKAITINIAI. Z.Lydeka. Rinkos ekonomikos tapsmas: teoriniai svarstymai. Kaunas: VDU leidykla, 2001, p.27-33; 45-60; ; 2 TEMOS SKAITINIAI Z.Lydeka. Rinkos ekonomikos tapsmas: teoriniai svarstymai. Kaunas: VDU leidykla, 2001, p.27-33; 45-60; 112-117; 126-135. Mokslinėje literatūroje sutinkamus požiūrius į ekonominę sistemą,

Διαβάστε περισσότερα

Integriniai diodai. Tokio integrinio diodo tiesiogin įtampa mažai priklauso nuo per jį tekančios srov s. ELEKTRONIKOS ĮTAISAI 2009

Integriniai diodai. Tokio integrinio diodo tiesiogin įtampa mažai priklauso nuo per jį tekančios srov s. ELEKTRONIKOS ĮTAISAI 2009 1 Integriniai diodai Integrinių diodų pn sandūros sudaromos formuojant dvipolių integrinių grandynų tranzistorius. Dažniausiai integriniuose grandynuose kaip diodai naudojami tranzistoriniai dariniai.

Διαβάστε περισσότερα

Praktinis vadovas elektros instaliacijos patikrai Parengta pagal IEC standartą

Praktinis vadovas elektros instaliacijos patikrai Parengta pagal IEC standartą Praktinis vadovas elektros instaliacijos patikrai Parengta pagal IEC 60364-6 standartą TURINYS 1. Įžanga 2. Standartai 3. Iki 1000V įtampos skirstomojo tinklo sistemos 4. Kada turi būti atliekami bandymai?

Διαβάστε περισσότερα

TERMOCHEMIJA. Cheminių bei fizikinių procesų energetinius pokyčius, jų kryptį bei vyksmo sąlygas nagrinėja cheminė termodinamika.

TERMOCHEMIJA. Cheminių bei fizikinių procesų energetinius pokyčius, jų kryptį bei vyksmo sąlygas nagrinėja cheminė termodinamika. Cheminių bei fizikinių procesų energetinius pokyčius, jų kryptį bei vyksmo sąlygas nagrinėja cheminė termodinamika. TERMOCHEMIJA Termodinamikos dalis, nagrinėjanti cheminių reakcijų šiluminius efektus,

Διαβάστε περισσότερα

TRUMAN. Vartotojo vadovas

TRUMAN. Vartotojo vadovas TRUMAN Vartotojo vadovas Jūsų PRESIDENT TRUMAN ASC iš pirmo žvilgsnio DĖMESIO! Prieš pradedant naudotis stotele, pirmiausia būtina prie jos prijungti anteną (jungtis, esanti prietaiso galinėje dalyje)

Διαβάστε περισσότερα

TEDDY Vartotojo vadovas

TEDDY Vartotojo vadovas TEDDY Vartotojo vadovas Jūsų PRESIDENT TEDDY ASC iš pirmo žvilgsnio DĖMESIO! Prieš pradedant naudotis stotele, pirmiausia būtina prie jos prijungti anteną (jungtis, esanti prietaiso galinėje dalyje) ir

Διαβάστε περισσότερα

Deivydas Dusevièius MEDŽIAGŲ APDIRBIMAS CNC STAKLĖMIS. CNC STAKLIŲ PROGRAMAVIMAS

Deivydas Dusevièius MEDŽIAGŲ APDIRBIMAS CNC STAKLĖMIS. CNC STAKLIŲ PROGRAMAVIMAS Deivydas Dusevièius MEDŽIAGŲ APDIRBIMAS CNC STAKLĖMIS. CNC STAKLIŲ PROGRAMAVIMAS Konspektas sukurtas finansuojant projekto Virtualiųjų ir nuotolinių laboratorijų aplinka pramonės inžinerijos studijoms

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Kurį bazinį insuliną pasirinkti

Kurį bazinį insuliną pasirinkti Kurį bazinį insuliną pasirinkti g y d y t o j u i p r a k t i k u i L. Zabulienė, Vilniaus universitetas, Vilniaus Karoliniškių poliklinika Cukrinis diabetas (CD) yra viena sparčiausiai plintančių ligų

Διαβάστε περισσότερα

Laißkas moteriai alkoholikei

Laißkas moteriai alkoholikei Laißkas moteriai alkoholikei Margaret Lee Runbeck / Autori teis s priklauso The Hearst Corporation Jeigu aß b çiau tavo kaimyn ir matyçiau, kaip tu narsiai ir beviltißkai kovoji su savo negalia, ir kreipçiausi

Διαβάστε περισσότερα

klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2014 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis

klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2014 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS (miestas / rajonas, mokykla) klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2014 m. pagrindinio ugdymo pasiekimų patikrinimo

Διαβάστε περισσότερα

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika (II dalis) (Paskaitų konspektas) 2009 m. kovo d. Prof.

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika (II dalis) (Paskaitų konspektas) 2009 m. kovo d. Prof. Papldoo ugdyo okykla Fzkos olpas Mechanka Dnaka (II dals) (Paskatų konspektas) 9 kovo 1-18 d Prof Edundas Kuokšts Planas Ketojo kūno asės centras Statka Pagrndnė sukaojo judėjo lygts Judeso keko (pulso)

Διαβάστε περισσότερα

Kodėl mikroskopija? Optinė mikroskopija: įvadas. Žmogaus akis. Žmogaus akis. Žmogaus akis. Vaizdo formavimasis žmogaus akyje

Kodėl mikroskopija? Optinė mikroskopija: įvadas. Žmogaus akis. Žmogaus akis. Žmogaus akis. Vaizdo formavimasis žmogaus akyje Kodėl mikroskopija? Todėl, kad pamatyti reiškia patikėti... Optinė mikroskopija: įvadas Žmogaus akis Žmogaus akis Mato šviesą, kurios bangų ilgis nuo 400 nm (violetinė) iki 750 nm (mėlyna) Stiebelių ir

Διαβάστε περισσότερα

Elektrotechnika ir elektronika modulio konspektas

Elektrotechnika ir elektronika modulio konspektas KAUNO TECHNIKOS KOLEGIJA ELEKTROMECHANIKOS FAKULTETAS MECHATRONIKOS KATEDRA Elektrotechnika ir elektronika modulio konspektas Parengė: doc. dr. Marius Saunoris KAUNAS, 0 TURINYS ĮŽANGINIS ŽODIS...6 3.

Διαβάστε περισσότερα

ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION)

ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION) . 1 (INTERPOLATION) A a 1x1 [ ] Sin[ A] [ Sin[ a]], Cos[ A] [ Cos[ a]], Tan[ A] [ Tan[ a]], Cot[ A] [ Cot[ a]]. a x + yi x, y R Sin[ a] Cosh[ y] Sin[ x] + Cos[ x] Sinh[ y] i Cos[ a] Cos[ x] Cosh[ y] Sin[

Διαβάστε περισσότερα

XXXVII TARPTAUTINĖ FIZIKOS OLIMPIADA 2006 m. liepos 8 17 d., Singapūras

XXXVII TARPTAUTINĖ FIZIKOS OLIMPIADA 2006 m. liepos 8 17 d., Singapūras XXXVII TARPTAUTINĖ FIZIKOS OLIMPIADA 006 m. liepos 8 17 d., Singapūras Teorinė užduotis 1 Gravitacija neutronų interferometre Nagrinėsime Collela, Overhauser and Werner neutronų interferencijos eksperimentą

Διαβάστε περισσότερα

KOMISIJOS REGLAMENTAS (ES)

KOMISIJOS REGLAMENTAS (ES) 2012 12 21 Europos Sąjungos oficialusis leidinys L 353/31 KOMISIJOS REGLAMENTAS (ES) Nr. 1230/2012 2012 m. gruodžio 12 d. kuriuo įgyvendinamas Europos Parlamento ir Tarybos reglamentas (EB) Nr. 661/2009

Διαβάστε περισσότερα

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΜΑΣ: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΟΛΟΚΛΗΡΩΜΑΤΑ:. Να υπολογιστούν τα ολοκληρώματα: 5 d d csc cot d (β) Απάντησεις: C (β) ln C C. Να υπολογιστούν τα ορισμένα ολοκληρώματα: d csc( ) C C d d (β) /5

Διαβάστε περισσότερα

AVIACINĖS RADIOLOKACINĖS SISTEMOS

AVIACINĖS RADIOLOKACINĖS SISTEMOS VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS Romualdas Malinauskas AVIACINĖS RADIOLOKACINĖS SISTEMOS Mokomoji knyga Vilnius 2007 UDK 621.396.9:629.7(075.8) Ma 308 Romualdas Malinauskas. AVIACINĖS RADIOLOKACINĖS

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Pagrindiniai pasiekimai kokybin je molekulių elektronin s sandaros ir cheminių reakcijų teorijoje. V.Gineityt

Pagrindiniai pasiekimai kokybin je molekulių elektronin s sandaros ir cheminių reakcijų teorijoje. V.Gineityt Pagrindiniai pasiekimai kokybin je molekulių elektronin s sandaros ir cheminių reakcijų teorijoje V.Gineityt Gamtos moksluose teorijoms keliami du pagrindiniai uždaviniai: paaiškinti stebimų objektų savybes

Διαβάστε περισσότερα

, t.y. per 41 valandą ir 40 minučių. (3 taškai) v Braižome h = f(t) priklausomybės grafiką.

, t.y. per 41 valandą ir 40 minučių. (3 taškai) v Braižome h = f(t) priklausomybės grafiką. 5 m. Lietuvos 7-ojo fizikos čempionato UŽDUOČIŲ SPENDIMI 5 m. gruodžio 5 d. (Kiekvienas uždavinys vertinamas taškų, visa galimų taškų suma ). L 5 m ilgio ir s m pločio baseino dugno profilis pavaizduotas

Διαβάστε περισσότερα

Vandens kokybės rekomendacijos variu lituotiems plokšteliniams šilumokaičiams

Vandens kokybės rekomendacijos variu lituotiems plokšteliniams šilumokaičiams Suvestinė Vandens kokybės rekomendacijos variu lituotiems plokšteliniams šilumokaičiams Danfoss centralizuoto šildymo padalinys parengė šias rekomendacijas, vadovaujantis p. Marie Louise Petersen, Danfoss

Διαβάστε περισσότερα

1 iš 8 RIBOTO NAUDOJIMO M. CHEMIJOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis

1 iš 8 RIBOTO NAUDOJIMO M. CHEMIJOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis iš 8 RIBT NAUDJIM PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 00 m. birželio 0 d. įsakymu 6.-S- 00 M. EMIJS VALSTYBINI BRANDS EGZAMIN UŽDUTIES VERTINIM INSTRUKIJA Pagrindinė sesija I dalis Kiekvienas

Διαβάστε περισσότερα

Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató Automatická pračka Používateľská príručka

Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató Automatická pračka Používateľská príručka WMB 71032 PTM Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató utomatická pračka Používateľská príručka Dokumentu Nr 2820522945_LT / 06-07-12.(16:34) 1 Svarbūs

Διαβάστε περισσότερα

Gyvųjų organizmų architektūra: baltymai

Gyvųjų organizmų architektūra: baltymai Gyvųjų organizmų architektūra: baltymai Dr. Zita Naučienė Baltymai yra gausiausia biologinių makromolekulių klasė randama visose ląstelėse. Baltymų įvairovė yra labai didelė, nei viena makromolekulių klasė

Διαβάστε περισσότερα

Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Ο πολλαπλασιασμός Ax μπορεί να ειδωθεί σαν μετασχηματισ

Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Ο πολλαπλασιασμός Ax μπορεί να ειδωθεί σαν μετασχηματισ Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Ο πολλαπλασιασμός

Διαβάστε περισσότερα

1 tema. Bendroji mokslinių tyrimų metodologija

1 tema. Bendroji mokslinių tyrimų metodologija 1 tema. Bendroji mokslinių tyrimų metodologija Mokslas, kaip viena protinės veiklos sudėtinė dalis - tai žmonių veikla, kurios funkcijos yra gauti ir teoriškai sisteminti objektyvias žinias apie tikrovę.

Διαβάστε περισσότερα

ISOVER GYPROC PERTVAROS IR KONSTRUKCIJOS. Garso izoliacija Atsparumas ugniai

ISOVER GYPROC PERTVAROS IR KONSTRUKCIJOS. Garso izoliacija Atsparumas ugniai ISOVER GYPROC PERTVAROS IR KONSTRUKCIJOS Garso izoliacija Atsparumas ugniai 2017 Psl. Sistema Eskizas PERTVAROS 1) Maksimalus 1 2 Atsparumas ugniai A(GKB) arba H2 (GKBI) DF (GKF) arba DFH2(GKFI) 4 3.40.02

Διαβάστε περισσότερα

SINOPTINĖS METEOROLOGIJOS PAGRINDŲ PRAKTIKOS DARBAI

SINOPTINĖS METEOROLOGIJOS PAGRINDŲ PRAKTIKOS DARBAI SINOPTINĖS METEOROLOGIJOS PAGRINDŲ PRAKTIKOS DARBAI VILNIAUS UNIVERSITETAS GAMTOS MOKSLŲ FAKULTETAS Mokomosios knygos parengimą parėmė 2007 2013 m. Žmogiškųjų išteklių plėtros veiksmų programos 2 prioriteto

Διαβάστε περισσότερα

PAPILDOMA INFORMACIJA

PAPILDOMA INFORMACIJA PAPILDOMA INFORMACIJA REKOMENDACIJOS, KAIP REIKIA ĮRENGTI, PERTVARKYTI DAUGIABUČIŲ PASTATŲ ANTENŲ ŪKIUS, KAD BŪTŲ UŽTIKRINTAS GEROS KOKYBĖS SKAITMENINĖS ANTŽEMINĖS TELEVIZIJOS SIGNALŲ PRIĖMIMAS I. BENDROSIOS

Διαβάστε περισσότερα

Οδηγίες Χρήσης naudojimo instrukcija Упутство за употребу navodila za uporabo

Οδηγίες Χρήσης naudojimo instrukcija Упутство за употребу navodila za uporabo Οδηγίες Χρήσης naudojimo instrukcija Упутство за употребу navodila za uporabo Πλυντήριο πιάτων Indaplovė Машинa за прање посуђа Pomivalni stroj ESL 46010 2 electrolux Περιεχόμενα Electrolux. Thinking of

Διαβάστε περισσότερα

klasės (grupės) mokinio (-ės) (vardas ir pavardė) 2016 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis

klasės (grupės) mokinio (-ės) (vardas ir pavardė) 2016 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis N A C I O N A L I N I S E G Z A M I N Ų C E N T R A S (miestas / rajonas, mokykla) klasės (grupės) mokinio (-ės) (vardas ir pavardė) 06 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis 06 m. gegužės

Διαβάστε περισσότερα

SKYSČIŲ MECHANIKA. HIDRAULINIŲ IR PNEUMATINIŲ SISTEMŲ ELEMENTAI IR PAVAROS

SKYSČIŲ MECHANIKA. HIDRAULINIŲ IR PNEUMATINIŲ SISTEMŲ ELEMENTAI IR PAVAROS Bronislovas SPRUOGIS SKYSČIŲ MECHANIKA. HIDRAULINIŲ IR PNEUMATINIŲ SISTEMŲ ELEMENTAI IR PAVAROS Projekto kodas VP1-.-ŠMM 07-K-01-03 Studijų programų atnaujinimas pagal ES reikalavimus, gerinant studijų

Διαβάστε περισσότερα

FIZ 313 KOMPIUTERINĖ FIZIKA. Laboratorinis darbas FIZIKOS DIFERENCIALINIŲ LYGČIŲ SPRENDIMAS RUNGĖS KUTOS METODU

FIZ 313 KOMPIUTERINĖ FIZIKA. Laboratorinis darbas FIZIKOS DIFERENCIALINIŲ LYGČIŲ SPRENDIMAS RUNGĖS KUTOS METODU EUROPOS SĄJUNGA Europos socialinis fondas KURKIME ATEITĮ DRAUGE! 2004-2006 m. Bendrojo programavimo dokumento 2 prioriteto Žmogiškųjų išteklių plėtra 4 priemonė Mokymosi visą gyvenimą sąlygų plėtra Projekto

Διαβάστε περισσότερα

MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMŲ PATIKRINIMO PROGRAMA NEPRIGIRDINČIŲJŲ IR KURČIŲJŲ MOKYKLOMS

MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMŲ PATIKRINIMO PROGRAMA NEPRIGIRDINČIŲJŲ IR KURČIŲJŲ MOKYKLOMS PATVIRTINTA Lietuvos Respublikos švietimo ir mokslo ministro 004 m. gegužės 7 d. įsakymu Nr. ISAK-75 MATEMATIKOS PAGRINDINIO UGDYMO PASIEKIMŲ PATIKRINIMO PROGRAMA NEPRIGIRDINČIŲJŲ IR KURČIŲJŲ MOKYKLOMS

Διαβάστε περισσότερα

DVB-T, DVB-S ir WiMAX sistemų radijo sąsajų signalų tyrimas

DVB-T, DVB-S ir WiMAX sistemų radijo sąsajų signalų tyrimas Vilniaus universiteto Fizikos fakultetas, Radiofizikos katedra Telekomunikacijų sistemų mokomoji laboratorija Laboratorinis darbas Nr. 9 DVB-T, DVB-S ir WiMAX sistemų radijo sąsajų signalų tyrimas Vilnius

Διαβάστε περισσότερα

Palmira Pečiuliauskienė. Fizika. Vadovėlis XI XII klasei. Elektra ir magnetizmas KAUNAS

Palmira Pečiuliauskienė. Fizika. Vadovėlis XI XII klasei. Elektra ir magnetizmas KAUNAS Palmira Pečiuliauskienė Fizika Vadovėlis XI XII klasei lektra ir magnetizmas KAUNAS UDK 53(075.3) Pe3 Turinys Leidinio vadovas RGIMANTAS BALTRUŠAITIS Recenzavo mokytoja ekspertė ALVIDA LOZDINĖ, mokytojas

Διαβάστε περισσότερα

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3 大阪電気通信大学研究論集 ( 自然科学編 ) 第 51 号 A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3 Takuya IWATA and Kiyoshi

Διαβάστε περισσότερα

(OL L 344, , p. 1)

(OL L 344, , p. 1) 2006D0861 LT 01.07.2009 001.001 1 Šis dokumentas yra skirtas tik informacijai, ir institucijos nėra teisiškai atsakingos už jo turinį B KOMISIJOS SPRENDIMAS 2006 m. liepos 28 d. dėl transeuropinės paprastųjų

Διαβάστε περισσότερα

2014 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija

2014 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 04 m. birželio 6 d. Nr. (.)-V-69birželio 4 04 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA I dalis Kiekvieno I dalies klausimo

Διαβάστε περισσότερα

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h A n a l i s a M a n a j e m e n B P I H d i B a n k S y a r i a h I S S N : 2 0 8 7-9 2 0 2 I S L A M I N O M I C P e n e r b i t S T E S I S L A M I C V I L L A G E P e n a n g g u n g J a w a b H. M

Διαβάστε περισσότερα

PREPARATO CHARAKTERISTIKŲ SANTRAUKA

PREPARATO CHARAKTERISTIKŲ SANTRAUKA PREPARATO CHARAKTERISTIKŲ SANTRAUKA 1. VAISTINIO PREPARATO PAVADINIMAS DIAPREL MR 60 mg modifikuoto atpalaidavimo tabletės 2. KOKYBINĖ IR KIEKYBINĖ SUDĖTIS Vienoje modifikuoto atpalaidavimo tabletėje yra

Διαβάστε περισσότερα

Ląstelės biologija. Laboratorinis darbas. Mikroskopavimas

Ląstelės biologija. Laboratorinis darbas. Mikroskopavimas Ląstelės biologija Laboratorinis darbas Mikroskopavimas Visi gyvieji organizmai sudaryti iš ląstelių. Ląstelės yra organų, o kartu ir viso organizmo pagrindinis struktūrinis bei funkcinis vienetas. Dauguma

Διαβάστε περισσότερα

XI. MIKROSKOPAI OPTINĖS SISTEMOS. XI. Mikroskopai. sites.google.com/site/optinessistemos/ 2016 pavasario semestras

XI. MIKROSKOPAI OPTINĖS SISTEMOS. XI. Mikroskopai. sites.google.com/site/optinessistemos/ 2016 pavasario semestras OPTINĖS SISTEMOS XI. Mikroskopai sites.google.com/site/optinessistemos/ Mikroskopas Pagrindiniai mikroskopijos principai Vaizdų susidarymas Kohler apšvietimas Tiesioginis ir invertuotas mikroskopas Objektyvai

Διαβάστε περισσότερα

NEKILNOJAMOJO TURTO VERTINIMAS

NEKILNOJAMOJO TURTO VERTINIMAS LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Žemėtvarkos katedra Audrius ALEKNAVIČIUS NEKILNOJAMOJO TURTO VERTINIMAS Metodiniai patarimai Akademija, 2007 UDK 332.6(076) Spausdino UAB Judex, Europos pr. 122, LT-46351

Διαβάστε περισσότερα

23 PENSIJŲ SISTEMŲ REFORMA: DEMOGRAFIJA, KITOS PRIEŽASTYS IR REFORMŲ MITAI

23 PENSIJŲ SISTEMŲ REFORMA: DEMOGRAFIJA, KITOS PRIEŽASTYS IR REFORMŲ MITAI 23 PENSIJŲ SISTEMŲ REFORMA: DEMOGRAFIJA, KITOS PRIEŽASTYS IR REFORMŲ MITAI 23.1 Gresiančios fiskalinės krizės priežastys 23.2 Pensijų finansavimo sistemų ekvivalentiškumas: pensijų krizės anatomija 23.2.1

Διαβάστε περισσότερα

Disbopox 442 GaragenSiegel

Disbopox 442 GaragenSiegel Sustiprinta anglies (karbono) pluoštu, vandeninė, 2-jų komponentų epoksidinės dervos danga garažų, sandėlių, rūsių grindims. Produkto aprašymas Paskirtis Savybės Mineralinės grindų ir kietojo asfalto išlyginamosios

Διαβάστε περισσότερα

Γραμμική Διαφορική Εξίσωση 2 ου βαθμού

Γραμμική Διαφορική Εξίσωση 2 ου βαθμού //04 Γραμμική Διαφορική Εξίσωση ου βαθμού, με τη βοήθεια του αορίστου ολοκληρώματος, της χρήσιμης γραμμικής διαφορικής εξίσωσης πρώτου βαθμού af ( ) f ( ) cf ( ) g( ), ac,, σταθεροί πραγματικοί αριθμοί

Διαβάστε περισσότερα

INTERPRETACIJOS PROBLEMOS

INTERPRETACIJOS PROBLEMOS ISSN 0258 0802. LITERATŪRA 2010 52 (3) PLUTARCHO ALEKSANDRAS: INTERPRETACIJOS PROBLEMOS Nijolė Juchnevičienė Vilniaus universiteto Klasikinės filologijos katedros docentė Ἥ τε γὰρ τύχη ταῖς ἐπιβολαῖς ὑπείκουσα

Διαβάστε περισσότερα

Investicijų grąža. Parengė Investuok Lietuvoje analitikai

Investicijų grąža. Parengė Investuok Lietuvoje analitikai Investicijų grąža Parengė Investuok Lietuvoje analitikai Turinys Lietuva pateisina investuotojų lūkesčius... 3 Nuosavo kapitalo grąža... 4 Kokią grąžą generuoja Lietuvos įmonės?... 4 Kokią grąžą generuoja

Διαβάστε περισσότερα

Išorinės duomenų saugyklos

Išorinės duomenų saugyklos Išorinės duomenų saugyklos HDD, SSD, sąsajos 5 paskaita Išorinė atmintis Ilgalaikiam informacijos (programų ir duomenų) saugojimui kompiuteriuose naudojami: standieji diskai; lankstieji diskeliai (FDD);

Διαβάστε περισσότερα

4 Συνέχεια συνάρτησης

4 Συνέχεια συνάρτησης 4 Συνέχεια συνάρτησης Σε αυτό το κεφάλαιο ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της

Διαβάστε περισσότερα

ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1

ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1 ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης /6/7 Διάρκεια ώρες. Θέμα. Θεωρηστε ενα συστημα δυο σωματων ισων μαζων (μαζας Μ το καθενα) και δυο ελατηριων (χωρις μαζα) με σταθερες ελατηριων

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ.30 2 Αρµονικοί ταλαντωτές q Μερικά από τα θέµατα που θα καλύψουµε: q Μάζες σε ελατήρια, εκκρεµή q Διαφορικές εξισώσεις: d 2 x dt 2 + K m x = 0 Ø Mε λύση της µορφής:

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA m. valstybinio brandos egzamino uþduotis

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA m. valstybinio brandos egzamino uþduotis LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA 006 m. valstybinio brandos egzamino uþduotis Pagrindinë sesija 006 m. geguþës 17 d. Trukmë 3 val. Nacionalinis

Διαβάστε περισσότερα