FDMGEO4: Antros eilės kreivės I

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "FDMGEO4: Antros eilės kreivės I"

Transcript

1 FDMGEO4: Antros eilės kreivės I Kęstutis Karčiauskas Matematikos ir Informatikos fakultetas 1 Koordinačių sistemos transformacija Antrosios eilės kreivių lgtis prastinsime keisdami (transformuodami) koordinačių sistemą. Prisiminkime svarbiausius plokštumos stačiakampių koordinačių sistemų transformacijos momentus. Apibrėžimas 1 Koordinačių sistemos O ir O ra vienos orentacijos, jei posūkis nuo -ašies link -ašies ra tos pačios krpties kaip ir posūkis nuo -ašies link -ašies (žr. Pav. 1 (a)). Priešingu atveju (žr. Pav. 1 (b)), koordinačių sistemos O ir O ra priešingos orentacijos.. Taip pat svarbu nepamiršti, kad posūkio kampas ra orentuotas jo absoliutinė reikšmė imama su ženklu + arba. O O O O (a) (b) Pav. 1: Vienodai (a) ir skirtingai (b) orentuotos koordinačių sistemos. 1

2 α > 0 α < 0 Pav. 2: Orentuotas posūkio kampas. Apibrėžimas 2 Jei pradinės koordinačių sistemos O -ašies posūkis link naujos koordinačių sistemos O -ašies ra tos pačios krpties, kaip ir posūkis nuo -ašies link - ašies, tai posūkio kampas α ra teigiamas; priešingu atveju posūkio kampas ra neigiamas. (Žr. Pav. 2). Dėmesio: nustatant posūkio kampo ženklą, naujos koordinačių sistemos -ašies krptis nevaidina jokio vaidmens. Bendrąją koordinačių sistemos transformaciją (žr. Pav. 3) dažnai ra patogu suskaidti į du etapus koordinačių sistemos posūkį ir koordinačių sistemos lgiagretų postūmį (žr. Pav. 4). Dabar prisiminkime (sužinokime) koordinačių transformacijos formules. 1.1 Bendrosios koordinačių transformacijos formulės Tegul O ra pradinė koordinačių sistema, o O naujoji. Taško M koordinatės atžvilgiu pradinės sistemos ra (; ), atžvilgiu naujosios ( ; ). Įvedami duomens ra atžvilgiu pradinės koordinačių sistemos: naujosios koordinačių sistemos pradžia O ( 0 ; 0 ); α orentuotas kampas, kuriuo reikia pasukti -ašį kad gautume -ašį. Koordinačių sistemos O ir O ra vienos orentacijos = cos α sin α + 0 = sin α + cos α + 0. (1) 2

3 α O O Pav. 3: Bendroji koordinačių sistemos transformacija. Koordinačių sistemos O ir O ra priešingų orentacijų = cos α + sin α + 0 = sin α cos α + 0. (2) 1.2 Koordinačių sistemos posūkis Žiūrėk Pav. 4(a). Koordinačių sistemos ra vienos orentacijos, o jų pradžios sutampa (O = O ). Kadangi šiuo atveju 0 = 0, 0 = 0, formulės (1) supaprastėja iki = cos α sin α = sin α + cos α. (3) 1.3 Koordinačių sistemos lgiagretus postūmis Žiūrėk Pav. 4(b). Koordinačių sistemų ašs ra tų pačių krpčių (todėl sistemos ra vienos orentacijos). Kadangi šiuo atveju α = 0, formulės (1) supaprastėja iki 3

4 (a) (b) Pav. 4: Koordinačių sistemos posūkis (a) ir lgiagretus postūmis (b). = + 0 = + 0. (4) 1.4 Matricinė koordinačių transformacijos formulių išraiška Pažmėkime c 11 = cos α c 12 = sin α c 13 = 0 c 21 = sin α c 22 = ± cos α c 23 = 0 c 31 = 0 c 32 = 0 c 33 = 1 viršutinis ženklas naudojamas, jei sistemos ra vienos orentacijos formulė (1); apatinis ženklas naudojamas, jei sistemos priešingų orentacijų formulė (2). Pažmėkime X = 1, X = 1, C = c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33. Įvedus šiuos žmenis formulės (1) ir (2) matricinėje formoje tampa vienodomis: X = CX (5) Matriciniai žmens įgalina panaudoti tiesinės algebros rezultatus ten, kur tiesioginiai aritmetiniai skaičiavimai tampa komplikuotais. Matricinė koordinačių transformacijų forma (5) plačiai vartojama kompiuterinėje grafikoje. 4

5 2 Bendroji antros eilės kreivės lgtis Tarkime ra fiksuota stačiakampė koordinačių sistema O. Bendroji antros eilės kreivės lgtis F (, ) = 0 šios sistemos atžvilgiu ra F (, ) = a a 12 + a a a 23 + a 33 = 0. (6) Remiantis bendrąja kreivės lgtimi sudaroma jos matrica A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 apibrėžiant a 21 = a 12, a 31 = a 13, a 32 = a 23. Matrica A ra simetrinė, t.. A T = A. Panaudojus skriaus 1.4 žmenis gaunama matricinė antros eilės kreivės lgties forma, F (, ) = X T AX = 0. (7) Ši lgbė įrodoma elementariais skaičiavimais dauginant matricas. Panašaus sudėtingumo (tiksliau lengvumo) aritmetiniais veiksmais įrodoma, kad F (, ) = F 1 (, ) + F 2 (, ) + F 3 (, ), (8) kur F 1 (, ) = a 11 + a 12 + a 13 F 2 (, ) = a 21 + a 22 + a 23 F 3 (, ) = a 31 + a 32 + a 33. (9) Išraiška a a 12 + a 22 2 paprastai vadinama kvadratine kreivės lgties dalimi, 2a a 23 tiesine dalimi, o a 33 laisvuoju nariu. 2.1 Ršs tarp kreivės lgčių atžvilgiu skirtingų koordinačių sistemų Tarkime turime antros eilės kreivės lgtį atžvilgiu koordinačių sistemos O. Kreivės lgtį F (, ) = X T A X = 0 atžvilgiu naujos koordinačių sistemos O gauname iš (7), pasinaudoję koordinačių transformacijų formulėmis (5): F (, ) = (CX ) T A(CX ) = X T (C T AC)X = X T A X. 5

6 ( ) Kadangi matricos A ir C T AC ra simetrinės (C T AC) T = C T A T C = C T AC, iš paskutinės lgbės seka A = C T AC (10) Koordinačių sistemos posūkis. Pritaikę formulę (10) koordinačių sistemos posūkiui gauname: 1. jei tiesinė lgties dalis buvo lgi 0, tai ir po posūkio ji išlieka lgi 0; 2. laisvasis nars nesikeičia, t.. a 33 = a 33. Lgiagretus postūmis. Pritaikę formulę (10) lgiagrečiam koordinačių sistemos postūmiui gauname: 1. kvadratinė lgties dalis nesikeičia, t.. a 11 = a 11, a 12 = a 12, a 22 = a 22 ; 2. tiesinės dalies kaita nusakoma formulėmis a 13 = F 1 ( 0, 0 ) = a a a 13 a 23 = F 2 ( 0, 0 ) = a a a 23. (11) 3. a 33 = F ( 0, 0 ). 3 Antros eilės kreivės lgties invariantai Efektviai prastinant antros eilės kreivės lgtį labai svarbūs ra lgties ortogonalūs invariantai. Apibrėžimas 3 Antros eilės kreivės lgties ortogonaliuoju invariantu vadinama nuo lgties koeficientų priklausanti funkcija g, kurios reikšmė nesikeičia, stačiakampę koordinačių sistema O pakeitus kita stačiakampe koordinačių sistema O, t.. g(a 11, a 12, a 22, a 13, a 23, a 33 ) = g(a 11, a 12, a 22, a 13, a 23, a 33). Teigins 1 Reiškiniai I 1 = a 11 + a 22, I 2 = a 11 a 12 a 21 a 22, I 3 = ra ortogonalūs antros eilės kreivės lgties invariantai. a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 (12) 6

7 Šis teigins įrodomas tiesinės algebros kurse. Beje, reiškinio I 3 = A invariantiškumas seka iš formulės (10): A = C T AC = A C 2 = A, nes C = ±1. 4 Charakteringoji lgtis Apibrėžimas 4 Antros eilės kreivės charakteringaja lgtimi vadinama antrojo laipsnio lgtis λ 2 I 1 λ + I 2 = 0. (13) Lengva patikrinti, kad charakteringąją lgtį galime užrašti matricinėje formoje λ 2 I 1 λ + I 2 = a 11 λ a 12 a 22 λ = 0. (14) Teigins 2 Charakteringoji lgtis visuomet turi realias šaknis. Įrodmas Skaičiuojame charakteringosios lgties diskriminantą D: a 21 D = I 2 1 4I 2 = (a 11 + a 22 ) 2 4(a 11 a 22 a 2 12) = (a 11 a 22 ) 2 + 4a Taip pat gauname, kad charakteringoji lgtis turi kartotinę šaknį (D = 0), jei a 11 = a 22 ir a 12 = 0. Nesunkiai patikrinima (išskiriant lgtje pilnus kvadratus atžvilgiu ir ), kad šiuo atveju, jei kreivė turi realius taškus, lgtis apibrėžia apskritimą. Charakteringosios lgties šaknis žmime λ 1, λ 2. Kadangi jos visuomet realios, tai λ 2 I 1 λ + I 2 = (λ λ 1 )(λ λ 2 ), o pagal Vijeto teoremą I 1 = λ 1 + λ 2, I 2 = λ 1 λ 2. 7

8 5 Antros eilės kreivės centras Apibrėžimas 5 Antros eilės kreivės centru vadinamas taškas, kurio koordinatės (; ) tenkina lgčių sistem a F1 (, ) = a a a 13 = 0 F 2 (, ) = a a a 23 = 0. (15) Apibrėžimas 6 Antros eilės kreivė vadinama centrine, jei ji turi vienintelį centra. Priešingu atveju kreivė neturi centro arba turi jų be galo daug antros eilės kreivė vadinama necentrine. Sistema (15) turi vienintelį sprendinį, jei I 2 0. Todėl, jei I 2 0 kreivė ra centrinė, jei I 2 = 0 necentrinė. Teigins 3 Jei koordinačių sistemos pradžia sutampa su kreivės centru, tai kreivės lgties tiesinė dalis ra lgi nuliui. Įrodmas Iš centro apibrėžimo bei formulės (11) seka, kad perkėlus koordinačių sistemos pradžią į kreivės centrą, jos tiesinė dalis virsta nuliumi. Bet kuri kita koordinačių sistema su tuo pačiu centru gaunama iš šios (lgiagrečiai pastumtos) sistemos pasukant apie naują koordinačių pradžią. Iš skriaus 2.1 punkto 1 seka, kad tiesinė lgties dalis atžvilgiu pasuktos koordinačių sistemos lieka lgi nuliui. Remdamiesi šiuo teiginiu darome išvadą: jei koordinačių sistemos pradžia sutampa su kreivės centru, tai F (, ) = a a 12 + a a 33 = 0. Tokioje koordinačių sistemoje F ( ; ) = F (; ), todėl: kreivės centras ra kreivės simetrijos centras. 6 Kvadratinės lgties dalies prastinimas Šiame skriuje įrodsime, kad pasukus koordinačių sistemą galima panaikinti skirtingų kintamųjų sandaugą (a 12 = 0). Be to iš įrodmo išpešime papildomos naudingos informacijos. 8

9 Kadangi koordinačių transformacijai naudojame posūkį, tai cos α sin α 0 C = sin α cos α Pasinaudoję formule (10) gauname a 21 = sin α ( ) ( ) a 11 cos α + a 12 sin α + cos α a21 cos α + a }} 22 sin α. }} n 1 n 2 Sąlga, kad pranksta skirtingų kintamųjų sandauga, t.. a 12 = a 21 = 0, ra n 1 sin α + n 2 cos α = 0. Ši sąlga reiškia, kad vektorius (n 1 ; n 2 ) ra statmenas vektoriui ( sin α; cos α). Tai ekvivalentu salgai, kad vektorius (n 1 ; n 2 ) ra lgiagretus vektoriui (cos α; sin α), t.. toks skaičius λ, kad Šią sąlgą perrašome pavidale a11 cos α + a 12 sin α = λ cos α a 21 cos α + a 22 sin α = λ sin α. (a11 λ) cos α + a 12 sin α = 0 a 21 cos α + (a 22 λ) sin α = 0. Sistema (16) turi nenulinį spendinį (cos α, sin α), jei a 11 λ a 12 a 22 λ = 0. a 21 (16) Taigi λ ra charakteringosios lgties šaknis. Pažmėję šią šaknį λ 1 iš sąlgos (16) pirmosios lgbės gauname tan α = λ 1 a 11 a 12. (17) Primename vakarkščiams mokiniams, kad žinodami tangentą nesunkiai apskaičiuojame to paties kampo sinusą ir kosinusą: sin α = tan α 1 + tan 2 α, cos α = tan 2 α. (18) 9

10 Pasinaudoję formule (10) taip pat gauname a 11 = cos α ( ) ( ) a 11 cos α + a 12 sin α + sin α a21 cos α + a }} 22 sin α. }} n 1 n 2 Kadangi n 1 = λ 1 cos α, n 2 = λ 1 sin α, tai a 11 = λ 1 (cos 2 α + sin 2 α) = λ 1. Todėl charakteringoji lgtis, parašta matriciniame pavidale atžvilgiu naujos koordinačių sistemos, ra λ 1 λ 0 0 a 22 λ = (λ λ 1)(λ a 22) = 0. Iš šios lgbės gauname, kad a 22 ra kita charakteringosios lgties šaknis, t.. a 22 = λ 2. Tai ir viskas, ką reikėjo parodti šiame skriuje. Surinkime viščiukus į vieną vietą. Išvada 1 Tegul λ 1 ir λ 2 ra charakteringosios lgties šakns. Pasukus koordinačių sistema kampu α, kurio tan α = λ 1 a 11 a 12, kvadratinė lgties dalis atžvilgiu naujos koordinačių sistemos supaprastėja iki λ 1 2 +λ 2 2, t.. a 11 = λ 1, a 12 = 0, a 22 = λ 2. Posūkio kampo sinusas ir kosinusas apskaičiuojami naudojantis formulėmis (18). 10

Matematika 1 4 dalis

Matematika 1 4 dalis Matematika 1 4 dalis Analizinės geometrijos elementai. Tiesės plokštumoje lygtis (bendroji, kryptinė,...). Taško atstumas nuo tiesės. Kampas tarp dviejų tiesių. Plokščiosios kreivės lygtis Plokščiosios

Διαβάστε περισσότερα

Matematika 1 3 dalis

Matematika 1 3 dalis Matematika 1 3 dalis Vektorių algebros elementai. Vektorių veiksmai. Vektorių skaliarinės, vektorinės ir mišriosios sandaugos ir jų savybės. Vektoriai Vektoriumi vadinama kryptinė atkarpa. Jei taškas A

Διαβάστε περισσότερα

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui)

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui) ngelė aškienė NLIZINĖ GEMETRIJ III skrius (Medžiaga virtualiajam kursui) III skrius. TIESĖS IR PLKŠTUMS... 5. Tiesės lgts... 5.. Tiesės [M, a r ] vektorinė lgtis... 5.. Tiesės [M, a r ] parametrinės lgts...

Διαβάστε περισσότερα

Dviejų kintamųjų funkcijos dalinės išvestinės

Dviejų kintamųjų funkcijos dalinės išvestinės Dviejų kintamųjų funkcijos dalinės išvestinės Dalinės išvestinės Tarkime, kad dviejų kintamųjų funkcija (, )yra apibrėžta srityje, o taškas 0 ( 0, 0 )yra vidinis srities taškas. Jei fiksuosime argumento

Διαβάστε περισσότερα

X galioja nelygyb f ( x1) f ( x2)

X galioja nelygyb f ( x1) f ( x2) Monotonin s funkcijos Tegul turime funkciją f : A R, A R. Apibr žimas. Funkcija y = f ( x) vadinama monotoniškai did jančia (maž jančia) aib je X A, jei x1< x2 iš X galioja nelygyb f ( x1) f ( x2) ( f

Διαβάστε περισσότερα

Vilniaus universitetas. Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS

Vilniaus universitetas. Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS Vilniaus universitetas Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS Vilnius 1992 T U R I N Y S 1. Vektorinė erdvė............................................. 3 2. Matricos rangas.............................................

Διαβάστε περισσότερα

1. Individualios užduotys:

1. Individualios užduotys: IV. PAPRASTOSIOS DIFERENCIALINĖS LYGTYS. Individualios užduots: - trumpa teorijos apžvalga, - pavzdžiai, - užduots savarankiškam darbui. Pirmosios eilės diferencialinių lgčių sprendimas.. psl. Antrosios

Διαβάστε περισσότερα

1 TIES ES IR PLOK TUMOS

1 TIES ES IR PLOK TUMOS G E O M E T R I J A Gediminas STEPANAUSKAS 1 TIES ES IR PLOK TUMOS 11 Plok²tumos ir ties es plok²tumoje normalin es lygtys 111 Vektorin e forma Plok²tumos α padetis koordina iu sistemos Oxyz atºvilgiu

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lgčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA tema. APSKRITIMŲ GEOMETRIJA (00 0) Teorinę medžiagą parengė bei antrąją užduotį sudarė Vilniaus pedagoginio universiteto docentas Edmundas Mazėtis. Apskritimas tai

Διαβάστε περισσότερα

I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI

I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI 008 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO VERTINIMO INSTRUKCIJA Pagrindinė sesija Kiekvieno I dalies klausimo teisingas atsakymas vertinamas tašku. I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI

Διαβάστε περισσότερα

Specialieji analizės skyriai

Specialieji analizės skyriai Specialieji analizės skyriai. Specialieji analizės skyriai Kompleksinio kinamojo funkcijų teorija Furje eilutės ir Furje integralai Operacinis skaičiavimas Lauko teorijos elementai. 2 Kompleksinio kintamojo

Διαβάστε περισσότερα

Specialieji analizės skyriai

Specialieji analizės skyriai Specialieji analizės skyriai. Trigonometrinės Furje eilutės Moksle ir technikoje dažnai susiduriame su periodiniais reiškiniais, apibūdinamais periodinėmis laiko funkcijomis: f(t). 2 Paprasčiausia periodinė

Διαβάστε περισσότερα

I.4. Laisvasis kūnų kritimas

I.4. Laisvasis kūnų kritimas I4 Laisvasis kūnų kitimas Laisvuoju kitimu vadinamas judėjimas, kuiuo judėtų kūnas veikiamas tik sunkio jėos, nepaisant oo pasipiešinimo Kūnui laisvai kintant iš nedidelio aukščio h (dau mažesnio už Žemės

Διαβάστε περισσότερα

FUNKCIJOS. veiksmu šioje erdvėje apibrėžkime dar viena. a = {a 1,..., a n } ir b = {b 1,... b n } skaliarine sandauga

FUNKCIJOS. veiksmu šioje erdvėje apibrėžkime dar viena. a = {a 1,..., a n } ir b = {b 1,... b n } skaliarine sandauga VII DAUGELIO KINTAMU JU FUNKCIJOS 71 Bendrosios sa vokos Iki šiol mes nagrinėjome funkcijas, apibrėžtas realiu skaičiu aibėje Nagrinėsime funkcijas, kurios apibrėžtos vektorinėse erdvėse Tarkime, kad R

Διαβάστε περισσότερα

06 Geometrin e optika 1

06 Geometrin e optika 1 06 Geometrinė optika 1 0.1. EIKONALO LYGTIS 3 Geometrinėje optikoje įvedama šviesos spindulio sąvoka. Tai leidžia Eikonalo lygtis, kuri išvedama iš banginės lygties monochromatinei bangai - Helmholtco

Διαβάστε περισσότερα

Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas

Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas Pirmasis uždavinys Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas Uždavinio formulavimas a) Žinoma n = 50 tiriamo

Διαβάστε περισσότερα

IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam,

IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam, 41 Funkcijos riba IV FUNKCIJOS RIBA Taško x X aplinka vadiname bet koki atvira intervala, kuriam priklauso taškas x Taško x 0, 2t ilgio aplinka žymėsime tokiu būdu: V t (x 0 ) = ([x 0 t, x 0 + t) Sakykime,

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lygčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

4.1 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n. Priminsime, kad šios erdvės elementai yra vektoriai vektoriu

4.1 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n. Priminsime, kad šios erdvės elementai yra vektoriai vektoriu IV DEKARTO KOORDINAČIU SISTEMA VEKTORIAI 41 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n Priminsime, kad šios erdvės elementai yra vektoriai α = (a 1,, a n ) Be mums jau žinomu

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Taikomosios matematikos institutas, Diferencialinių lygčių katedra Naugarduko g. 24, LT-3225

Διαβάστε περισσότερα

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis PATVIRTINTA Ncionlinio egzminų centro direktorius 0 m. birželio d. įskymu Nr. (..)-V-7 0 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pgrindinė sesij I dlis Užd. Nr. 4 7

Διαβάστε περισσότερα

Elektronų ir skylučių statistika puslaidininkiuose

Elektronų ir skylučių statistika puslaidininkiuose lktroų ir skylučių statistika puslaidiikiuos Laisvų laidumo lktroų gracija, t.y. lktroų prėjimas į laidumo juostą, gali vykti kaip iš dooriių lygmų, taip ir iš valtiės juostos. Gracijos procsas visuomt

Διαβάστε περισσότερα

0.1. Bendrosios sąvokos

0.1. Bendrosios sąvokos 0.1. BENDROSIOS SĄVOKOS 1 0.1. Bendrosios sąvokos 0.1.1. Diferencialinės lygtys su mažuoju parametru F ) x n),x n 1),...,x,x,t;ε = 0, xt;ε) C n T), T [0,+ ), 0 < ε ε 0 ) F x n) t;ε),x n 1) t;ε),...,x t;ε),xt;ε),t;ε

Διαβάστε περισσότερα

VIII. FRAKTALINĖ DIMENSIJA. 8.1 Fraktalinės dimensijos samprata. Ar baigtinis Norvegijos sienos ilgis?

VIII. FRAKTALINĖ DIMENSIJA. 8.1 Fraktalinės dimensijos samprata. Ar baigtinis Norvegijos sienos ilgis? VIII FRAKTALINĖ DIMENSIJA 81 Fraktalinės dimensijos samprata Ar baigtinis Norvegijos sienos ilgis? Tarkime, kad duota atkarpa, kurios ilgis lygus 1 Padalykime šia atkarpa n lygiu daliu Akivaizdu, kad kiekvienos

Διαβάστε περισσότερα

1.4. Rungės ir Kuto metodas

1.4. Rungės ir Kuto metodas .4. RUNGĖS IR KUTO METODAS.4. Rungės ir Kuto metodas.4.. Prediktoriaus-korektoriaus metodas Palyginkime išreikštinį ir simetrinį Eulerio metodus. Pirmojo iš jų pagrindinis privalumas tas, kad išreikštinio

Διαβάστε περισσότερα

III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip:

III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip: III MATRICOS DETERMINANTAI Realiu ju skaičiu lentele 3 Matricos a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn vadinsime m n eilės matrica Trumpai šia lentele žymėsime taip: A = a ij ; i =,, m, j =,, n čia

Διαβάστε περισσότερα

0.1. Bendrosios sąvokos

0.1. Bendrosios sąvokos .1. BENDROSIOS SĄVOKOS 1.1. Bendrosios sąvokos.1.1. Diferencialinės lygtys su mažuoju parametru F ) x n),x n 1),...,x,x,t;ε =, xt;ε) C n T), T [,+ ), < ε ε ) F x n) t;ε),x n 1) t;ε),...,x t;ε),xt;ε),t;ε,

Διαβάστε περισσότερα

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA. Algoritmų teorija. Paskaitų konspektas

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA. Algoritmų teorija. Paskaitų konspektas VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Algoritmų teorija Paskaitų konspektas Dėstytojas: lekt. dr. Adomas Birštunas Vilnius 2015 TURINYS 1. Algoritmo samprata...

Διαβάστε περισσότερα

Įžanginių paskaitų medžiaga iš knygos

Įžanginių paskaitų medžiaga iš knygos MATEMATINĖ LOGIKA Įžanginių paskaitų medžiaga iš knygos Aleksandras Krylovas. Diskrečioji matematika: vadovėlis aukštųjų mokyklų studentams. Vilnius: Technika, 2009. 320 p. ISBN 978-9955-28-450-5 1 Teiginio

Διαβάστε περισσότερα

ELEMENTARIOJI TEORIJA

ELEMENTARIOJI TEORIJA ELEMENTARIOJI TEORIJA Pirmosios kombinatorikos þinios siekia senàsias Rytø ðalis, kuriose mokëta suskaièiuoti këlinius bei derinius ir sudarinëti magiðkuosius kvadratus, ypaè populiarius viduramþiais.

Διαβάστε περισσότερα

9. Sukimas Bendrosios žinios

9. Sukimas Bendrosios žinios 9. Sukimas 9.. Benrosios žinios Sukimas ra eformavimo tias, aibūinamas skersjūvių asisukimu stro ašies atžvilgiu nuo sukimo momento (9. av.). Jis susijęs su kaminėmis eformacijomis (žr. 8. oskrį). ai eformuojasi

Διαβάστε περισσότερα

MATEMATINĖ LOGIKA. Įžanginių paskaitų medžiaga iš knygos

MATEMATINĖ LOGIKA. Įžanginių paskaitų medžiaga iš knygos MATEMATINĖ LOGIKA Įžanginių paskaitų medžiaga iš knygos Aleksandras Krylovas. Diskrečioji matematika: vadovėlis aukštųjų mokyklų studentams. Vilnius: Technika, 2009. 320 p. ISBN 978-9955-28-450-5 Teiginio

Διαβάστε περισσότερα

1. Vektoriu veiksmai. Vektoriu skaliarinė, vektorinė ir mišrioji sandaugos

1. Vektoriu veiksmai. Vektoriu skaliarinė, vektorinė ir mišrioji sandaugos 1. Vektoriu veiksmai. Vektoriu skaliarinė, vektorinė ir mišrioji sandaugos Vektoriu užrašymas MAPLE Vektorius MAPLE galime užrašyti daugeliu būdu. Juos grafiškai vaizduosime paketo Student[LinearAlgebra]

Διαβάστε περισσότερα

EKONOMETRIJA 1 (Regresinė analizė)

EKONOMETRIJA 1 (Regresinė analizė) EKONOMETRIJA 1 Regresinė analizė Kontrolinis Sudarė M.Radavičius 004 05 15 Kai kurių užduočių sprendimai KOMENTARAS. Kai kuriems uždaviniams tik nusakytos sprendimų gairės, kai kurie iš jų suskaidyti į

Διαβάστε περισσότερα

Matematinės analizės konspektai

Matematinės analizės konspektai Matematinės analizės konspektai (be įrodymų) Marius Gedminas pagal V. Mackevičiaus paskaitas 998 m. rudens semestras (I kursas) Realieji skaičiai Apibrėžimas. Uždarųjų intervalų seka [a n, b n ], n =,

Διαβάστε περισσότερα

Praeita paskaita. Grafika ir vizualizavimas Atkirtimai dvimatėje erdvėje. Praeita paskaita. 2D Transformacijos. Grafika ir vizualizavimas, VDU, 2010

Praeita paskaita. Grafika ir vizualizavimas Atkirtimai dvimatėje erdvėje. Praeita paskaita. 2D Transformacijos. Grafika ir vizualizavimas, VDU, 2010 Praeita paskaita Grafika ir vizualizavimas Atkirtimai dvimatėje erdvėje Atkarpos Tiesės lgtis = mx+ b kur m krpties koeficientas, o b aukštis, kuriame tiesė kerta ašį Susikirtimo taško apskaičiavimui sulginamos

Διαβάστε περισσότερα

Spalvos. Šviesa. Šviesos savybės. Grafika ir vizualizavimas. Spalvos. Grafika ir vizualizavimas, VDU, Spalvos 1

Spalvos. Šviesa. Šviesos savybės. Grafika ir vizualizavimas. Spalvos. Grafika ir vizualizavimas, VDU, Spalvos 1 Spalvos Grafika ir vizualizavimas Spalvos Šviesa Spalvos Spalvų modeliai Gama koregavimas Šviesa Šviesos savybės Vandens bangos Vaizdas iš šono Vaizdas iš viršaus Vaizdas erdvėje Šviesos bangos Šviesa

Διαβάστε περισσότερα

2008 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija

2008 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 008 M MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA 008 m matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 7 uždavinių atsakymai I variantas Užd

Διαβάστε περισσότερα

AIBĖS, FUNKCIJOS, LYGTYS

AIBĖS, FUNKCIJOS, LYGTYS AIBĖS, FUNKCIJOS, LYGTYS Aibės sąvoka ir pavyzdžiai Atskirų objektų rinkiniai, grupės, sistemos, kompleksai matematikoje vadinami aibėmis. Šie atskiri objektai vadinami aibės elementais. Kai elementas

Διαβάστε περισσότερα

ATSITIKTINIAI PROCESAI. Alfredas Račkauskas. (paskaitų konspektas 2014[1] )

ATSITIKTINIAI PROCESAI. Alfredas Račkauskas. (paskaitų konspektas 2014[1] ) ATSITIKTINIAI PROCESAI (paskaitų konspektas 2014[1] ) Alfredas Račkauskas Vilniaus universitetas Matematikos ir Informatikos fakultetas Ekonometrinės analizės katedra Vilnius, 2014 Iš dalies rėmė Projektas

Διαβάστε περισσότερα

Modalumo logikos S4 kai kurios išsprendžiamos klasės

Modalumo logikos S4 kai kurios išsprendžiamos klasės VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS INFORMATIKOS KATEDRA Magistro baigiamasis darbas Modalumo logikos S4 kai kurios išsprendžiamos klasės Some Decidable Classes of Modal Logic

Διαβάστε περισσότερα

Vilniaus universitetas Matematikos ir informatikos fakultetas Informatikos katedra. Gintaras Skersys. Mokymo priemonė

Vilniaus universitetas Matematikos ir informatikos fakultetas Informatikos katedra. Gintaras Skersys. Mokymo priemonė Vilniaus universitetas Matematikos ir informatikos fakultetas Informatikos katedra Gintaras Skersys Klaidas taisančių kodų teorija Mokymo priemonė Vilnius 2005 I dalis Pagrindinės savokos 1 Įvadas Panagrinėkime

Διαβάστε περισσότερα

2.5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS

2.5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS .5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS 5.. Pirmoji Bolcao Koši teorema. Jei fucija f tolydi itervale [a;b], itervalo galuose įgyja priešigų želų reišmes, tai egzistuoja tos tašas cc, ( ab ; ), uriame

Διαβάστε περισσότερα

Matematinė logika. 1 skyrius Propozicinės formulės. žodį, Graikiškas žodis logos (λóγoς) reiškia

Matematinė logika. 1 skyrius Propozicinės formulės. žodį, Graikiškas žodis logos (λóγoς) reiškia 1 skyrius Matematinė logika Graikiškas žodis logos (λóγoς) reiškia mintį, žodį, protą, sąvoką. Logika arba formalioji logika nagrinėja teisingo mąstymo dėsnius ir formas, kai samprotavimų turinys nėra

Διαβάστε περισσότερα

1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3

1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3 Skaičių teorija paskaitų konspektas Paulius Šarka, Jonas Šiurys 1 Įvadas 1 1.1 Neišspręstos problemos.............................. 1 2 Dalumas 2 2.1 Dalyba su liekana.................................

Διαβάστε περισσότερα

eksponentinės generuojančios funkcijos 9. Grafu

eksponentinės generuojančios funkcijos 9. Grafu DISKREČIOJI MATEMATIKA (2 semestras) KOMBINATORIKOS IR GRAFU TEORIJOS PRADMENYS PROGRAMA I KOMBINATORIKA 1 Matematinės indukcijos ir Dirichlė principai 2 Dauginimo taisyklė,,skaičiuok dukart principas

Διαβάστε περισσότερα

2009 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 1 6 uždavinių atsakymai

2009 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 1 6 uždavinių atsakymai M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA PATVIRTINTA Nacionalinio egzaminų centro direktoriaus -6- įsakymu Nr. (..)-V-8 m. matematikos valstybinio brandos egzamino VERTINIMO

Διαβάστε περισσότερα

Diskrečioji matematika

Diskrečioji matematika VILNIAUS UNIVERSITETAS Gintaras Skersys Julius Andrikonis Diskrečioji matematika Pratybų medžiaga Versija: 28 m. sausio 22 d. Vilnius, 27 Turinys Turinys 2 Teiginiai. Loginės operacijos. Loginės formulės

Διαβάστε περισσότερα

DISKREČIOJI MATEMATIKA

DISKREČIOJI MATEMATIKA VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS INFORMATIKOS KATEDRA Valdas Diči ūnas Gintaras Skersys DISKREČIOJI MATEMATIKA Mokymo priemonė Vilnius 2003 Įvadas Išvertus iš lotynu kalbos

Διαβάστε περισσότερα

t. y. =. Iš čia seka, kad trikampiai BPQ ir BAC yra panašūs, o jų D 1 pav.

t. y. =. Iš čia seka, kad trikampiai BPQ ir BAC yra panašūs, o jų D 1 pav. LIETUVOS JUNŲ J Ų MTEMTIKŲ MOKYKL tema. TRIGONOMETRIJOS TIKYMI GEOMETRIJOJE (008-00) Terinę medžiagą parengė bei šeštąją uždutį sudarė Vilniaus pedaggini universitet dentas Edmundas Mazėtis Šiame darbe

Διαβάστε περισσότερα

Taikomieji optimizavimo metodai

Taikomieji optimizavimo metodai Taikomieji optimizavimo metodai 1 LITERATŪRA A. Apynis. Optimizavimo metodai. V., 2005 G. Dzemyda, V. Šaltenis, V. Tiešis. Optimizavimo metodai, V., 2007 V. Būda, M. Sapagovas. Skaitiniai metodai : algoritmai,

Διαβάστε περισσότερα

Analizės uždavinynas. Vytautas Kazakevičius m. lapkričio 1 d.

Analizės uždavinynas. Vytautas Kazakevičius m. lapkričio 1 d. Analizės uždavinynas Vytautas Kazakevičius m. lapkričio d. ii Vienmatė analizė Faktorialai, binominiai koeficientai. Jei a R, n, k N {}, tai k! = 3 k, (k + )!! = 3 5 (k + ), (k)!! = 4 6 (k); a a(a ) (a

Διαβάστε περισσότερα

DISPERSINĖ, FAKTORINĖ IR REGRESINĖ ANALIZĖ Laboratorinis darbas Nr. 2

DISPERSINĖ, FAKTORINĖ IR REGRESINĖ ANALIZĖ Laboratorinis darbas Nr. 2 DISPERSINĖ, FAKTORINĖ IR REGRESINĖ ANALIZĖ Laboratorinis darbas Nr. 2 Marijus Radavičius, Tomas Rekašius 2010 m. vasario 23 d. Santrauka Antras laboratorinis darbas skirtas išmokti sudarinėti daugialypės

Διαβάστε περισσότερα

8. LENKIAMŲ PLOKŠTELIŲ ELEMENTAI

8. LENKIAMŲ PLOKŠTELIŲ ELEMENTAI 8. LENKIAMŲ PLOKŠELIŲ ELEMENAI 8.1. LENKIAMŲ PLOKŠELIŲ EORIJA Įtempimai: storį: paprastai operuojama įrąžomis įtempimų atstojamosiomis per plokštelės z τ z t τ z M t = zdz, M =...., M =.. t t = τzdz, =

Διαβάστε περισσότερα

Algoritmai. Vytautas Kazakevičius

Algoritmai. Vytautas Kazakevičius Algoritmai Vytautas Kazakevičius September 2, 27 2 Turinys Baigtiniai automatai 5. DBA.................................. 5.. Abėcėlė............................ 5..2 Automatai..........................

Διαβάστε περισσότερα

9. KEVALŲ ELEMENTAI. Pavyzdžiai:

9. KEVALŲ ELEMENTAI. Pavyzdžiai: 9. KEVALŲ ELEMENTAI Kealai Tai ploni storio krptii kūnai, sudarti iš kreių plokštuų. Geoetrija nusakoa iduriniu pairšiui ir storiu t. Kiekiena pairšiaus taške galia rasti di kreies, atitinkančias inialius

Διαβάστε περισσότερα

1 Tada teigini Ne visi šie vaikinai yra studentai galima išreikšti formule. 2 Ta pati teigini galima užrašyti ir taip. 3 Formulė U&B C reiškia, kad

1 Tada teigini Ne visi šie vaikinai yra studentai galima išreikšti formule. 2 Ta pati teigini galima užrašyti ir taip. 3 Formulė U&B C reiškia, kad 45 DISKREČIOJI MATEMATIKA. LOGIKA. PAVYZDŽIAI Raidėmis U, B ir C pažymėti teiginiai: U = Vitas yra studentas ; B = Skirmantas yra studentas ; C = Jonas yra studentas. 1 Tada teigini Ne visi šie vaikinai

Διαβάστε περισσότερα

Matematinis modeliavimas

Matematinis modeliavimas ALGIRDAS AMBRAZEVIƒIUS Matematinis modeliavimas Vilniaus universitetas 2006 2 TURINYS 1 SKYRIUS PAPRASƒIAUSI MATEMATINIAI MODELIAI 4 11 Pagrindines s vokos 4 12 Fundamentaliu gamtos desniu taikymas 10

Διαβάστε περισσότερα

TEORIJA. RINKTINIAI MATEMATIKOS SKYRIAI (Informatikos spec., 2 srautas, magistrantūra, 1 semestras) PROGRAMA. su skaidžia savybe skaičiu

TEORIJA. RINKTINIAI MATEMATIKOS SKYRIAI (Informatikos spec., 2 srautas, magistrantūra, 1 semestras) PROGRAMA. su skaidžia savybe skaičiu GRAFU TEORIJA RINKTINIAI MATEMATIKOS SKYRIAI (Informatikos spec, 2 srautas, magistrantūra, 1 semestras) PROGRAMA 1 Pagrindinės sa vokos, pavyzdžiai Grafu veiksmai 2 Grafo parametru sa ryšiai 3 Jungiantysis

Διαβάστε περισσότερα

KOMPIUTERINIS PROJEKTAVIMAS

KOMPIUTERINIS PROJEKTAVIMAS LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Statybinių konstrukcijų katedra Tatjana Sankauskienė KOMPIUTERINIS PROJEKTAVIMAS AutoCAD sistemoje Mokomoji knyga inžinerinių specialybių

Διαβάστε περισσότερα

Vilijandas Bagdonavi ius. Julius Jonas Kruopis MATEMATIN E STATISTIKA

Vilijandas Bagdonavi ius. Julius Jonas Kruopis MATEMATIN E STATISTIKA VILNIAUS UNIVERSITETO MATEMATIKOS IR INFORMATIKOS FAKULTETAS Vilijandas Bagdonavi ius Julius Jonas Kruopis MATEMATIN E STATISTIKA Vadovelis IV DALIS DAUGIAMAT E STATISTIKA Vilniaus universiteto leidykla

Διαβάστε περισσότερα

Gabija Maršalkaitė Motiejus Valiūnas. Astronomijos pratybų užduočių komplektas

Gabija Maršalkaitė Motiejus Valiūnas. Astronomijos pratybų užduočių komplektas Gabija Maršalkaitė Motiejus Valiūnas Astronomijos pratybų užduočių komplektas Vilnius 2014 1 Įvadas 1.1 Astronomijos olimpiados Lietuvoje kylant moksleivių susidomėjimu astronomijos olimpiada buvo pastebėta,

Διαβάστε περισσότερα

Atsitiktinių paklaidų įvertinimas

Atsitiktinių paklaidų įvertinimas 4.4.4. tsitiktinių paklaidų įvertinimas tsitiktinės paklaidos įvertinamos nurodant du dydžius: pasikliaujamąjį intervalą ir pasikliaujamąją tikimybę. tsitiktinių paklaidų atveju, griežtai tariant, nėra

Διαβάστε περισσότερα

Vilius Stakėnas. Kodavimo teorija. Paskaitu. kursas

Vilius Stakėnas. Kodavimo teorija. Paskaitu. kursas Vilius Stakėnas Kodavimo teorija Paskaitu kursas 2002 2 I vadas Informacija perduodama kanalais, kurie kartais iškraipo informacija Tarsime, kad tie iškraipymai yra atsitiktiniai, t y nėra nei sistemingi,

Διαβάστε περισσότερα

1 iš 15 RIBOTO NAUDOJIMO

1 iš 15 RIBOTO NAUDOJIMO iš 5 PATVIRTINTA Nacionalinio egzaminų centro direktoriau 00-06-08 įakymu Nr. 6.-S- 00 m. matematiko valtybinio brando egzamino VERTINIMO INSTRUKCIJA Pagrindinė eija 8 uždavinių atakymai Užd. Nr. 5 6 7

Διαβάστε περισσότερα

04 Elektromagnetinės bangos

04 Elektromagnetinės bangos 04 Elektromagnetinės bangos 1 0.1. BANGINĖ ŠVIESOS PRIGIMTIS 3 Šiame skyriuje išvesime banginę lygtį iš elektromagnetinio lauko Maksvelo lygčių. Šviesa yra elektromagnetinė banga, kurios dažnis yra optiniame

Διαβάστε περισσότερα

Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis

Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis Techninis aprašymas Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis Aprašymas Šie vožtuvai skirti naudoti su AMV(E) 335, AMV(E) 435 arba

Διαβάστε περισσότερα

LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas. Algirdas Antanavičius GEODEZIJOS PAGRINDAI

LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas. Algirdas Antanavičius GEODEZIJOS PAGRINDAI LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Algirdas Antanavičius GEODEZIJOS PAGRINDAI metodiniai PATARIMAI kaunas, ARDIVA 2008 UDK 528(076) An-136 Algirdas Antanavičius GEODEZIJOS

Διαβάστε περισσότερα

DISPERSINĖ, FAKTORINĖ IR REGRESINĖ ANALIZĖ Laboratorinis darbas Nr. 1

DISPERSINĖ, FAKTORINĖ IR REGRESINĖ ANALIZĖ Laboratorinis darbas Nr. 1 DISPERSINĖ, FAKTORINĖ IR REGRESINĖ ANALIZĖ Laboratorinis darbas Nr. 1 Marijus Radavičius, Tomas Rekašius 2010 m. vasario 9 d. Santrauka Pirmas laboratorinis darbas skirtas išmokti generuoti nesudėtingus

Διαβάστε περισσότερα

MONTE KARLO METODAS. Gediminas Stepanauskas IVADAS Sistemos Modeliai Modeliavimas ir Monte-Karlo metodas...

MONTE KARLO METODAS. Gediminas Stepanauskas IVADAS Sistemos Modeliai Modeliavimas ir Monte-Karlo metodas... MONTE KARLO METODAS Gediminas Stepanauskas 2008 Turinys 1 IVADAS 4 1.1 Sistemos.............................. 4 1.2 Modeliai.............................. 5 1.3 Modeliavimas ir Monte-Karlo metodas.............

Διαβάστε περισσότερα

Dirbtiniai neuroniniai tinklai

Dirbtiniai neuroniniai tinklai Dirbtiniai neuroniniai tinklai Š. Raudžio paskaitų konspektas Marius Gedminas 2003 m. pavasaris (VU MIF informatikos magistrantūros studijų 2 semestras) Šis konspektas rinktas LATEXu Š. Raudžio paskaitų

Διαβάστε περισσότερα

3 modulis. Funkcijos sąvoka. Laipsninė, rodiklinė ir logaritminė funkcija

3 modulis. Funkcijos sąvoka. Laipsninė, rodiklinė ir logaritminė funkcija P R O J E K T A S VP--ŠMM-0-V-0-00 MOKYMOSI KRYPTIES PASIRINKIMO GALIMYBIŲ DIDINIMAS -9 METŲ MOKINIAMS, II ETAPAS: GILESNIS MOKYMOSI DIFERENCIJAVIMAS IR INDIVIDUALIZAVIMAS, SIEKIANT UGDYMO KOKYBĖS, REIKALINGOS

Διαβάστε περισσότερα

TRANSPORTO PRIEMONIŲ DINAMIKA

TRANSPORTO PRIEMONIŲ DINAMIKA Marijonas Bogdevičius RANSPORO PRIEMONIŲ DINAMIKA Projekto kodas VP-.-ŠMM 7-K--3 Studijų programų atnaujinimas pagal ES reikalavimus, gerinant studijų kokybę ir taikant inovatyvius studijų metodus Vilnius

Διαβάστε περισσότερα

Remigijus Leipus. Ekonometrija II. remis

Remigijus Leipus. Ekonometrija II.   remis Remigijus Leipus Ekonometrija II http://uosis.mif.vu.lt/ remis Vilnius, 2013 Turinys 1 Trendo ir sezoniškumo vertinimas bei eliminavimas 4 1.1 Trendo komponentės vertinimas ir eliminavimas........ 4 1.2

Διαβάστε περισσότερα

DEFORMUOJAMO KŪNO MECHANIKA 1 dalis

DEFORMUOJAMO KŪNO MECHANIKA 1 dalis DEFORMUOJAMO KŪNO MECHANIKA dalis T U R I N Y S. Deformuojamojo kūo mechaikos objektas ir jos ršs su kitais mokslais. Tamprumo teorijos sąvokos ir prielaidos 3. Įtempimų būvio teorija 4. Pusiausvros difereciali

Διαβάστε περισσότερα

Teorinė mechanika I. Uždavinių sprendimo vadovas

Teorinė mechanika I. Uždavinių sprendimo vadovas VILNIUS GEDIINO TEHNIKOS UNIVERSITETS R. UŠYS, J. KSNUSKS Teorinė mechania I. Uždavinių sprendimo vadovas OKOOJI KNYG Vilnius Technia 00 R. aušs, J. Kasnausas. TEORINĖ EHNIK I. UŽDVINIŲ SPRENDIO VDOVS

Διαβάστε περισσότερα

AUTOMATINIO VALDYMO TEORIJA

AUTOMATINIO VALDYMO TEORIJA Saulius LISAUSKAS AUTOMATINIO VALDYMO TEORIJA Projekto kodas VP1-.-ŠMM-7-K-1-47 VGTU Elektronikos fakulteto I pakopos studijų programų esminis atnaujinimas Vilnius Technika 1 VILNIAUS GEDIMINO TECHNIKOS

Διαβάστε περισσότερα

ŠVIESOS SKLIDIMAS IZOTROPINĖSE TERPĖSE

ŠVIESOS SKLIDIMAS IZOTROPINĖSE TERPĖSE ŠVIESOS SKLIDIMAS IZOTROPIĖSE TERPĖSE 43 2.7. SPIDULIUOTĖS IR KŪO SPALVOS Spinduliuotės ir kūno optiniam apibūdinimui naudojama spalvos sąvoka. Spalvos reiškinys yra nepaprastas. Kad suprasti spalvos esmę,

Διαβάστε περισσότερα

EUROPOS CENTRINIS BANKAS

EUROPOS CENTRINIS BANKAS 2005 12 13 C 316/25 EUROPOS CENTRINIS BANKAS EUROPOS CENTRINIO BANKO NUOMONĖ 2005 m. gruodžio 1 d. dėl pasiūlymo dėl Tarybos reglamento, iš dalies keičiančio Reglamentą (EB) Nr. 974/98 dėl euro įvedimo

Διαβάστε περισσότερα

Elektrotechnikos pagrindai

Elektrotechnikos pagrindai Valentinas Zaveckas Elektrotechnikos pagrindai Projekto kodas VP1-2.2-ŠMM 07-K-01-023 Vilnius Technika 2012 Studijų programų atnaujinimas pagal ES reikalavimus, gerinant studijų kokybę ir taikant inovatyvius

Διαβάστε περισσότερα

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika 1. (Paskaitų konspektas) 2009 m. sausio d. Prof.

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika 1. (Paskaitų konspektas) 2009 m. sausio d. Prof. Papildoo ugdyo okykla izikos olipas Mechanika Dinaika (Paskaitų konspektas) 9. sausio -8 d. Prof. Edundas Kuokštis Vilnius Paskaita # Dinaika Jei kineatika nagrinėja tik kūnų judėjią, nesiaiškindaa tą

Διαβάστε περισσότερα

KENGŪRA SENJORAS

KENGŪRA SENJORAS KENGŪROS KONKURSO ORGANIZAVIMO KOMITETAS VU MATEMATIKOS IR INFORMATIKOS FAKULTETAS VU MATEMATIKOS IR INFORMATIKOS INSTITUTAS LIETUVOS MATEMATIKŲ DRAUGIJA KENGŪRA 2016. SENJORAS TARPTAUTINIO MATEMATIKOS

Διαβάστε περισσότερα

Arenijaus (Arrhenius) teorija

Arenijaus (Arrhenius) teorija Rūgštys ir bazės Arenijaus (Arrhenius) teorija Rūgštis: Bazė: H 2 O HCl(d) H + (aq) + Cl - (aq) H 2 O NaOH(k) Na + (aq) + OH - (aq) Tuomet neutralizacijos reakcija: Na + (aq) + OH - (aq) + H + (aq) + Cl

Διαβάστε περισσότερα

Pav1 Žingsnio perdavimo funkcija gali būti paskaičiuota integruojant VIPF. Paskaičiavus VIPF FFT gaunamo amplitudinė_dažninė ch_ka.

Pav1 Žingsnio perdavimo funkcija gali būti paskaičiuota integruojant VIPF. Paskaičiavus VIPF FFT gaunamo amplitudinė_dažninė ch_ka. Įvadas į filtrus Skaitmeniniai filtrai, tai viena iš svarbiausių siganalų apdorojimo dalių. Kadangi skaitmeniniai filtrai turi nepalyginamai daugiau pranašumų nei analoginiai filtrai, tai nulėmė jų populiarumą.

Διαβάστε περισσότερα

2 laboratorinis darbas. TIKIMYBINIAI MODELIAI

2 laboratorinis darbas. TIKIMYBINIAI MODELIAI laboratorns darbas laboratorns darbas. TIKIMYBINIAI MODELIAI DARBO TIKSLAS - šstudjuot atstktnų dydžų r vektorų skrstnus, skrstno (passkrstymo) funkcją, tanko funkcją, skatnes charakterstkas r jų savybes.

Διαβάστε περισσότερα

ĮVADAS Į FINANSŲ SISTEMĄ

ĮVADAS Į FINANSŲ SISTEMĄ III. AKCIJOS, OBLIGACIJOS IR JŲ VERTINIMAS 5 ATEITIES VERTĖ, DABARTINĖ VERTĖ IR PALŪKANŲ NORMOS Turinys 5.1 Įvadas 5.2 Mokėjimų dabar ir ateityje vertė 5.2.1 Ateities vertė ir sudėtinė palūkanų norma 5.2.2

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 014 m. birželio 5 d. matematikos valstybinį

Διαβάστε περισσότερα

ELEKTRONIKOS VADOVĖLIS

ELEKTRONIKOS VADOVĖLIS ELEKTRONIKOS VADOVĖLIS Įvadas Mokomoji knyga skiriama elektros inžinerijos bei mechatronikos programų moksleiviams. Knygoje pateikiami puslaidininkinių elementų diodų, tranzistorių, tiristorių, varistorių,

Διαβάστε περισσότερα

KADETAS (VII ir VIII klasės)

KADETAS (VII ir VIII klasės) ADETAS (VII ir VIII klasės) 1. E 10 000 Galima tikrinti atsakymus. adangi vidutinė kainasumažėjo, tai brangiausia papūga kainavo daugiau kaip 6000 litų. Vadinasi, parduotoji papūga kainavo daugiau kaip

Διαβάστε περισσότερα

4.3. Minimalaus dengiančio medžio radimas

4.3. Minimalaus dengiančio medžio radimas SKYRIUS. ALGORITMAI GRAFUOSE.. Minimalaus dengiančio medžio radimas Šiame skyriuje susipažinsime su minimaliu dengiančiu medžių radimo algoritmais. Pirmiausia sudarysime dvi taisykles, leidžiančias pasirinkti

Διαβάστε περισσότερα

V skyrius ĮVAIRŪS PALŪKANŲ APSKAIČIAVIMO KLAUSIMAI

V skyrius ĮVAIRŪS PALŪKANŲ APSKAIČIAVIMO KLAUSIMAI V skyrius ĮVAIRŪS PALŪKANŲ APSKAIČIAVIMO KLAUSIMAI Uždirbtų palūkanų suma priklauso ne tik nuo palūkanų normos dydžio, bet ir nuo palūkanų kapitalizavimo dažnio Metinė palūkanų norma nevisada atspindi

Διαβάστε περισσότερα

PNEUMATIKA - vožtuvai

PNEUMATIKA - vožtuvai Mini vožtuvai - serija VME 1 - Tipas: 3/2, NC, NO, monostabilūs - Valdymas: Mechaninis ir rankinis - Nominalus debitas (kai 6 barai, Δp = 1 baras): 60 l/min. - Prijungimai: Kištukinės jungtys ø 4 žarnoms

Διαβάστε περισσότερα

3 Srovės ir įtampos matavimas

3 Srovės ir įtampos matavimas 3 Srovės ir įtampos matavimas Šiame skyriuje nagrinėjamos srovės ir įtampos matavimo priemonės. Srovė ir įtampa yra vieni iš svarbiausių elektrinių virpesių parametrų. Srovės dažniausiai matuojamos nuolatinės

Διαβάστε περισσότερα

Balniniai vožtuvai (PN 16) VRB 2 dviejų angų, vidiniai ir išoriniai sriegiai VRB 3 trijų angų, vidiniai ir išoriniai sriegiai

Balniniai vožtuvai (PN 16) VRB 2 dviejų angų, vidiniai ir išoriniai sriegiai VRB 3 trijų angų, vidiniai ir išoriniai sriegiai Techninis aprašymas alniniai vožtuvai (PN 16) VR 2 dviejų angų, vidiniai ir išoriniai sriegiai VR 3 trijų angų, vidiniai ir išoriniai sriegiai prašymas Savybės: Padidinto sandarumo ( bubble tight ) konstrukcija

Διαβάστε περισσότερα

Donatas Surgailis Finansų matematika

Donatas Surgailis Finansų matematika Donatas Surgailis Finansų matematika Paskaitų konspektas Vilnius 2015 vasario 9 ii Turinys 1 Įvadas 1 2 Finansų rinka 3 2.1 Finansų rinkos struktūra................................. 3 2.2 Opcionai..........................................

Διαβάστε περισσότερα

Ekonometrija. Trendas ir sezoninė laiko eilutės komponentė

Ekonometrija. Trendas ir sezoninė laiko eilutės komponentė Ekonometrija. Trendas ir sezoninė laiko eilutės komponentė dėst. T. Rekašius, 2012 m. lapkričio 19 d. 1 Duomenys Visi trečiam laboratoriniam darbui reikalingi duomenys yra tekstinio formato failuose http://fmf.vgtu.lt/~trekasius/destymas/2012/ekomet_lab3_xx.dat,

Διαβάστε περισσότερα

1. Pirštu atspaudu atpažinimas

1. Pirštu atspaudu atpažinimas 1. Pirštu atspaudu atpažinimas 1. I vadas 2. Piršto atspaudu taikymai 3. Pirminis apdorojimas 4. Požymiu išskyrimas 5. Požymiu šablonu palyginimas 6. Praktinis darbas Page 1 of 21 7. Literatūra I vadas

Διαβάστε περισσότερα

III.Termodinamikos pagrindai

III.Termodinamikos pagrindai III.ermodinamikos pagrindai III.. Dujų plėtimosi darbas egu dujos yra cilindre su nesvariu judančiu stūmokliu, kurio plotas lygus S, ir jas veikia tik išorinis slėgis p. Pradinius dujų parametrus pažymėkime

Διαβάστε περισσότερα

TEORIJOS PRADMENYS PROGRAMA

TEORIJOS PRADMENYS PROGRAMA DISKREČIOJI MATEMATIKA (2 semestras) KOMBINATORIKOS IR GRAFU TEORIJOS PRADMENYS PROGRAMA I KOMBINATORIKA 1 Matematinės inducijos principas 2 Dauginimo taisylė 3 Gretiniai, ėliniai ir deriniai 4 Kartotiniai

Διαβάστε περισσότερα