ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΤΗΣ ΣΤ ΗΜΟΤΙΚΟΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΤΗΣ ΣΤ ΗΜΟΤΙΚΟΥ"

Transcript

1 Αναπαραστάσεις στη Στατιστική της ΣΤ ηµοτικού ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΤΗΣ ΣΤ ΗΜΟΤΙΚΟΥ Αθανάσιος Γαγάτσης, Αντρέας Κουσιάππας, Ελένη Κοιλιάρη Τµήµα Επιστηµών της Αγωγής-Πανεπιστήµιο Κύπρου ΠΕΡΙΛΗΨΗ Η έρευνα προσπαθεί να διερευνήσει την ικανότητα αλλαγής πεδίου αναπαράστασης για διάφορες στατιστικές έννοιες που διδάσκονται στη Στ τάξη δηµοτικού. Μια αντίστοιχη έρευνα διεξάχθηκε στην Ελλάδα και γίνεται σύγκριση των αποτελεσµάτων των δύο ερευνών. Τα αποτελέσµατα στις δύο έρευνες παρουσιάζουν κοινά στοιχεία αλλά προκύπτουν και ενδιαφέρουσες διαφορές. 1. Θεωρητικό πλαίσιο O Kaput (αναφέρεται από τους Γαγάτση, 2001; Γαγάτση & Ηλία, 2003) εισηγείται πέντε ολότητες, οι οποίες περιλαµβάνονται στην έννοια της αναπαράστασης. Η πρώτη ολότητα αναφέρεται στην ολότητα που αναπαρίσταται και η δεύτερη ολότητα αναφέρεται στην ολότητα που αναπαριστά η αναπαράσταση. Έστω ότι η ολότητα προς αναπαράσταση είναι οι µαθητές και οι µαθήτριες της Στ δηµοτικού ενός σχολείου της Λάρνακας. Μια αναπαράσταση που µπορεί να χρησιµοποιηθεί για την ολότητα αυτή είναι χρωµατιστά µολύβια για τα αγόρια και κίτρινα για τα κορίτσια. Η τρίτη ολότητα αναφέρεται στις συγκεκριµένες πτυχές της ολότητας προς αναπαράσταση και η τέταρτη ολότητα αναφέρεται στις συγκεκριµένες πτυχές της ολότητας που αναπαριστά. Για παράδειγµα, µια πτυχή της ολότητας που αναπαρίσταται µπορεί να είναι η ηλικία των µαθητών και των µαθητριών. Έστω ότι ζητείται να αναπαρασταθεί ο αριθµός των µαθητών και των µαθητριών που έχουν ηλικία πάνω από 11 χρονών. Για κάθε ένα/µια µαθητή/τρια µε ηλικία πάνω από 11 χρονών υπάρχει και ένα ξυσµένο µολύβι, από το αντίστοιχο χρώµα. Η πέµπτη ολότητα αναφέρεται στην αντιστοιχία ανάµεσα στις δύο ολότητες. Στις δύο ολότητες που αναφέρονται πιο πάνω (µαθητές/τριες και µολύβια) υπάρχουν κάποιες αντιστοιχίες, όπως, για παράδειγµα, τα κίτρινα ξυσµένα µολύβια αντιστοιχούν στις µαθήτριες µε ηλικία πάνω από11 χρόνων. Μια διάκριση των αναπαραστάσεων, σύµφωνα µε τον Dufour-Janvier (Γαγάτσης, 2001) είναι η κατηγοριοποίησή τους σε εσωτερικές και εξωτερικές αναπαραστάσεις. Με τον όρο εσωτερικές αναπαραστάσεις αναφερόµαστε σε νοητικές εικόνες που κατασκευάζουν τα υποκείµενα, για να αναπαραστήσουν την εξωτερική πραγµατικότητα. Ο όρος εξωτερικές αναπαραστάσεις αναφέρεται σε όλους τους εξωτερικούς συµβολικούς φορείς (σύµβολα, σχήµατα, διαγράµµατα) οι οποίοι στοχεύουν στην εξωτερική αναπαράσταση µιας συγκεκριµένης πραγµατικότητας. Στη στατιστική χρησιµοποιούνται διάφορες µορφές αναπαράστασης, όπως για παράδειγµα λεκτικές, συµβολικές, διαγραµµατικές, για σκοπούς κατανόησης εννοιών 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 3

2 Α. Γαγάτσης κ.ά. αλλά και επίλυσης µαθηµατικού προβλήµατος. Η επίλυση προβλήµατος, σύµφωνα µε τους Αναστασιάδου και Γαγάτση (2005), διέρχεται από τρεις φάσεις: την εκφώνηση του προβλήµατος, την επεξεργασία µέσων µετάφρασης ή µετασχηµατισµού και την συµβολική επεξεργασία. Στον ελληνικό χώρο, η στατιστική αποτελεί µέρος των αναλυτικών προγραµµάτων του δηµοτικού σχολείου και αφορά σε στοιχειώδεις έννοιες της στατιστικής, όπως ποσοστά επιτυχίας, συχνότητα, µέσος όρος κ.ά. Πέραν της λεκτικής έκφρασης, στο δηµοτικό σχολείο χρησιµοποιούνται οι γραφικές αναπαραστάσεις και η µορφή πίνακα (Αναστασιάδου & Γαγάτσης 2005). Συνήθεις µορφές γραφικής παράστασης, που χρησιµοποιούνται και στο σχολείο είναι αυτές που εισηγήθηκε ο William Playfair στα τέλη του 18 ου αιώνα και περιλαµβάνουν τις εικονικές γραφικές παραστάσεις, τα ραβδογράµµατα, τα ιστογράµµατα και τα κυκλικά διαγράµµατα. Ο πίνακας είναι µια άλλη µορφή συγκέντρωσης δεδοµένων στη στατιστική. Οι Mosenthal και Kirsch (Friel et al, 2001) µελέτησαν τις γραφικές παραστάσεις από την οπτική της σχέσης τους µε τους πίνακες και ορίζουν τους πίνακες ως απλές λίστες που φτιάχνονται για ένα σύνολο στοιχείων που µοιράζονται ένα κοινό χαρακτηριστικό. Το χαρακτηριστικό αυτό παρουσιάζεται µε µια ταµπέλα. Οι πίνακες φαίνεται να χρησιµοποιούνται µε δύο τρόπους. Ένας τρόπος χρήσης του πίνακα είναι η παρουσίαση δεδοµένων. Ο Ehrenberg (Friel et al, 2001) διατύπωσε εισηγήσεις σχετικά µε το σχεδιασµό πινάκων ως είδος παρουσίασης δεδοµένων. Οι εισηγήσεις του περιλάµβαναν διάφορες αρχές, όπως το στρογγύλεµα των αριθµών σε δύο δεκαδικά ψηφία, για διευκόλυνση των νοερών πράξεων, καθώς και να δίνεται ο µέσος όρος των στηλών, των σειρών ή και των δύο ως αντιληπτικά σηµεία αναφοράς. Ένας άλλος τόπος χρήσης του πίνακα είναι η οργάνωση πληροφοριών, ως ενδιάµεσο στάδιο για τη δηµιουργία γραφικών παραστάσεων. Η κατασκευή γραφικής παράστασης απαιτεί την οργάνωση των δεδοµένων σε πίνακες. Για την κατασκευή της γραφικής παράστασης πρέπει να αποφασιστεί το πώς θα φτιαχτεί ο πίνακας. Έννοιες της περιγραφικής στατιστικής έχουν εισαχθεί στα αναλυτικά προγράµµατα της µαθηµατικής εκπαίδευσης λόγω των αυξανόµενων αριθµών επαγγελµατικών πεδίων που απαιτούν τη χρήση στοιχείων στατιστικής συλλογιστικής (Αναστασιάδου & Γαγάτσης, 2005). Ειδικότερα, όσον αφορά στους στόχους που σχετίζονται άµεσα µε τις γραφικές παραστάσεις και τους πίνακες, οι µαθητές µαθαίνουν να καταγράφουν δεδοµένα, να κατασκευάζουν απλές γραφικές παραστάσεις µε τη βοήθεια των δεδοµένων ενός πίνακα και να παίρνουν πληροφορίες από µια γραφική παράσταση στη Γ και Ε τάξη του δηµοτικού σχολείου. Στην Στ δηµοτικού, αναφέρουν οι Αναστασιάδου και Γαγάτσης, οι µαθητές πρέπει να αποκτήσουν τις ικανότητες, που αναφέρονται στα αναλυτικά προγράµµατα, να κατασκευάζουν δηλαδή σχετικούς πίνακες για γεγονότα και να ασκηθούν σε µεγαλύτερο βάθος στην κατασκευή γραφικών παραστάσεων. Παραδοσιακά, οι δάσκαλοι και τα σχολικά εγχειρίδια δίνουν ιδιαίτερη έµφαση τόσο στις συµβάσεις των γραφικών αναπαραστάσεων όσο και στην καθαρή παρουσίαση. Η Ainley et al (2000) τονίζει ότι ο σχεδιασµός καθαρών, λεπτοµερών γραφικών παραστάσεων µε το χέρι είναι χρονοβόρα διαδικασία, ιδιαίτερα για τα µικρά 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 4

3 Αναπαραστάσεις στη Στατιστική της ΣΤ ηµοτικού παιδιά µε περιορισµένες κινητικές ικανότητες, ακόµη και όταν οι νοητικές απαιτήσεις της άσκησης είναι σχετικά χαµηλές. Επεκτείνοντας, υποστηρίζεται ότι ο παράγοντας χρόνος, σε συνδυασµό µε τη σχετικά µεγάλη αξία που δίνεται στην γραφική αναπαράσταση, ως αυτοτελές θέµα, οδήγησε στην αντίληψη ότι η κατασκευή της γραφικής παράστασης είναι το τελικό στάδιο και ο σκοπός κάθε άσκησης, µε ελάχιστη έµφαση να δίνεται στην ερµηνεία ή τη χρήση της γραφικής παράστασης ως εργαλείο λύσης προβλήµατος (Ainley et al, 2000). Η κατανόηση-αντίληψη των γραφικών παραστάσεων (graph comprehension) ορίζεται από την Friel et al (2001) ως το σύνολο των ικανοτήτων των αναγνωστών των γραφικών παραστάσεων να λαµβάνουν µηνύµατα από παραστάσεις, κατασκευασµένες από τους ίδιους ή από άλλους. Η κατανόηση-αντίληψη των γραφικών παραστάσεων περιλαµβάνει την ικανότητα του ατόµου να διαβάζει και να βγάζει νόηµα από ήδη κατασκευασµένες γραφικές παραστάσεις, όπως για παράδειγµα αυτές που συναντιούνται στον καθηµερινό τύπο (π.χ. δηµοσκοπήσεις). Επιπλέον, περιλαµβάνει την αντίληψη των στοιχείων που λαµβάνουν µέρος στην κατασκευή γραφικών παραστάσεων ως εργαλεία για την οργάνωση δεδοµένων και, το σηµαντικότερο, τη σηµασία της γραφικής παράστασης σε µια δεδοµένη κατάσταση. 2. Η έρευνα Υποθέσεις της έρευνας- Πειραµατικός πληθυσµός -Ερωτηµατολόγιο Βασικός στόχος της έρευνας είναι η διερεύνηση της ικανότητας αλλαγής πεδίου αναπαράστασης για διάφορες στατιστικές έννοιες, που διδάσκονται στην τελευταία τάξη του δηµοτικού σχολείου, από τους µαθητές αυτής της συγκεκριµένης τάξης. Πιο συγκεκριµένα η έρευνα προσπάθησε να απαντήσει στο κατά πόσο οι µαθητές της Στ τάξης του ηµοτικού έχουν γνώσεις για αναπαραστάσεις απλών στοιχείων της καθηµερινής ζωής σε µορφή πίνακα. έχουν γνώσεις για αναπαραστάσεις απλών στοιχείων της καθηµερινής ζωής σε µορφή γραφικής παράστασης. µπορούν να ερµηνεύουν τα δεδοµένα γραφικών παραστάσεων. Παρόµοια έρευνα έγινε και στην Ελλάδα από τους Αναστασιάδου και Γαγάτση το 2005, συγκεκριµένα στη υτική Μακεδονία και θα επιχειρηθεί να γίνει µια σύγκριση των αποτελεσµάτων σε Ελλάδα και Κύπρο. Στην έρευνα πήραν µέρος 138 µαθητές της Στ τάξης του ηµοτικού Σχολείου από την επαρχία Λάρνακας. Η έρευνα διεξάχθηκε το Μάρτιο του Το ερωτηµατολόγιο (παράρτηµα) αποτελείται από τέσσερα προβλήµατα/ ασκήσεις µε ερωτήµατα που αφορούσαν την έννοια του µέσου όρου, του ραβδογράµµατος και ιστογράµµατος και των εφαρµογών τους στην επίλυση προβληµάτων της καθηµερινής ζωής. Θεωρήσαµε τις παρακάτω µεταβλητές: V1tf: ανάγνωση από πίνακα και συµπλήρωση αριθµητικών στοιχείων σε κλάσµα V1tp: ανάγνωση από πίνακα και συµπλήρωση αριθµητικών στοιχείων σε ποσοστό. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 5

4 Α. Γαγάτσης κ.ά. V1tg1: κατασκευή ιστογράµµατος µε βάση τον προηγούµενο πίνακα. V1tg2: κατασκευή ραβδογράµµατος µε βάση τον προηγούµενο πίνακα. V2tf: ανάγνωση από πίνακα και συµπλήρωση αριθµητικών στοιχείων σε κλάσµα V2tp: ανάγνωση από πίνακα και συµπλήρωση αριθµητικών στοιχείων σε ποσοστό. V3ta: ανάγνωση από πίνακα και εύρεση του µέσου όρου τιµών. V3ag: γραφική παράσταση του µέσου όρου τιµών. V3ing: ανάγνωση ραβδογράµµατος και άντληση πληροφοριών από αυτό. V4vg: µετατροπή λεκτικής µορφής σε διαγραµµατική. V4va: µετατροπή λεκτικής µορφής σε αλγεβρική (εύρεση του µέσου όρου). V4ag: γραφική παράσταση του µέσου όρου τιµών. V4ing: ανάγνωση από πίνακα και άντληση πληροφοριών από αυτή. V4vv: επεξεργασία των πληροφοριών της γραφικής παράστασης για την εξαγωγή γενικού συµπεράσµατος. 3. Αποτελέσµατα Ανάλυση δεδοµένων Για την ανάλυση των δεδοµένων χρησιµοποιήθηκε το Συνεπαγωγικό Στατιστικό Μοντέλο του Gras µε τη χρήση του λογισµικού CHIC και το πρόγραµµα Microsoft Excel ιαγράµµατα Οµοιότητας V1tf V3ta V1tg1 V1tg2 V3ag V3ing V4ing V4vv V4ag V4vg V4va V1tp V2tf V2tp ιάγραµµα 1 ιάγραµµα οµοιότητας της έρευνας στην Κύπρο 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 6

5 Αναπαραστάσεις στη Στατιστική της ΣΤ ηµοτικού v1tf v1tp v3ta v3ag v1tg1 v4vg v1tg2 v3ing v4ing v4va v4ag v2tf v2tp ιάγραµµα 2 ιάγραµµα οµοιότητας της έρευνας στην Ελλάδα Παρατηρήσεις από τα διαγράµµατα οµοιότητας 1. Παρατηρούµε µια έντονη οµοιότητα στα προβλήµατα v3ing και v4ing που πλησιάζει το 1. Είναι δύο διαφορετικά προβλήµατα, αλλά αφορούν και τα δύο ερµηνεία γραφικών παραστάσεων (ανάγνωση από γραφική παράσταση). Άρα οι µαθητές που αποκτούν αυτές τις δεξιότητες τις κατέχουν και τις εφαρµόζουν ανεξάρτητα από το πλαίσιο της άσκησης. Αυτό παρατηρείται και στην αντίστοιχη έρευνα στην Ελλάδα 2. Επίσης παρατηρούµε σύνδεση αυτών των δύο µε τη V4vv που έχει να κάνει µε την αξιολόγηση των συµπερασµάτων της ανάγνωσης από γραφική παράσταση και τη γενίκευσή τους. Αυτό ήταν αναµενόµενο γιατί για να µπορέσει κανείς να καταλήξει σε ένα γενικό συµπέρασµα από µια γραφική παράσταση, προϋποθέτει τη γνώση της ανάγνωσης από γραφική παράσταση. 3. Αυτές οι τρεις συνδέονται και µε τις V3ag και V4ag που απαιτούν σωστή τοποθέτηση του µέσου όρου στη γραφική παράσταση. Σ αυτή τη οµάδα των πέντε µεταβλητών, οµαδοποιούνται οι µεταβλητές που απαιτούν µια πιο βαθιά κατανόηση της γραφικής παράστασης από την επιφανειακή απλή τοποθέτηση κάποιων τιµών για να κατασκευάσουµε µια γραφική παράσταση. Εδώ απαιτείται κατανόηση του τι παριστάνει η γραφική παράσταση για να µπορέσουν να τοποθετήσουν σωστά την τιµή του µέσου όρου και να εξαγάγουν σωστά συµπεράσµατα. Στην αντίστοιχη έρευνα στην Ελλάδα δεν παρατηρείται κάτι ανάλογο, οι µεταβλητές αυτές πλέκονται µαζί µε άλλες. Οµαδοποιούνται οι τρεις µεταβλητές V3ing, V4ing και V1tg1 που έχουν να κάνουν µε γραφική παράσταση ραβδογράµµατος, έπαιξε δηλαδή µεγαλύτερο ρόλο το είδος της γραφικής παράστασης στις απαντήσεις των µαθητών. 4. Παρατηρούµε ότι συνδέονται οι µεταβλητές V4vg και V4va, δηλαδή η κατασκευή γραφικής παράστασης µε λεκτικά δεδοµένα και η εύρεση του µέσου όρου από τα λεκτικά δεδοµένα. Φαινοµενικά, αυτές οι δύο µεταβλητές δεν έχουν καµιά σχέση, αλλά φαίνεται ότι η ικανότητα να διαβάζουν και να κατανοούν λεκτικά δεδοµένα οµαδοποιεί 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 7

6 Α. Γαγάτσης κ.ά. τις δύο µεταβλητές. Με άλλα λόγια οι µαθητές που κατάφεραν να κατανοήσουν το λεκτικό µέρος του προβλήµατος έκαναν και τη γραφική παράσταση και βρήκαν το µέσο όρο. Θα ανέµενε κανείς η V4va να συνδέεται µε τη V3ta, αφού και οι δύο ζητούσαν την εύρεση του µέσου όρου. Αυτό όµως δε συµβαίνει λόγω του διαφορετικού λεκτικού µέρους. Στην Ελλάδα οµαδοποιούνται οι V4va και V4ag, που όπως θα δούµε πιο καθαρά στο συνεπαγωγικό διάγραµµα όσοι βρήκαν το µέσο όρο κατά 99% τον τοποθέτησαν σωστά στη γραφική παράσταση, άρα σηµείο κλειδί για αυτή τη σύνδεση ήταν η εύρεση του µέσου όρου. 5. Στο διάγραµµα οµοιότητας παρατηρούµε και µια άλλη παράξενη, εν πρώτης, σύνδεση µεταξύ των µεταβλητών V1tf και V3ta που και οι δύο όµως απαιτούν ορθή ανάγνωση πινάκων µε τιµές και µετατροπή τους στη µεν πρώτη σε κλασµατική µορφή και στη δεύτερη εύρεση του µέσου όρου. Καταλήγουµε ότι σ αυτή την οµάδα ανήκουν µαθητές που έχουν άνεση στην ανάγνωση από πίνακα τιµών, αφού µπορούν να το κάνουν σε διάφορα είδη πινάκων. Το ίδιο συµπέρασµα βγαίνει και από τη σύνδεση της V1tp µε τις V2tp και V2tf. Στην Ελλάδα παρατηρούµε ότι οµαδοποιούνται οι µεταβλητές V1tf - V1tp, V2tf - V2tp και V3ta - V3ag δηλαδή συνδέονται οι µεταβλητές της ίδιας άσκησης όταν έχουν να κάνουν µε πίνακα, έτσι διακρίνουµε µια δυσκολία στην ανάγνωση πίνακα, αφού τα παιδιά δεν µπορούν να το κάνουν σε διαφορετικές ασκήσεις. 6. Η σύνδεση µεταξύ των V1tg1 και V1tg2 δείχνει ότι οι µαθητές της Κύπρου συνδέουν το ιστόγραµµα µε το ραβδόγραµµα φτάνει να είναι οι ίδιες τιµές. Στην Ελλάδα υπάρχει ισχυρή και πάλι σύνδεση µεταξύ των δύο µεταβλητών, αλλά πιο ισχυρή είναι η σύνδεση της V1tg2 µε τις V3ing και V4ing που αφορούν ραβδογράµµατα ενώ η V1tg1 συνδέεται µε την V4vg που έχουν να κάνουν και τα µε ιστογράµµατα. Βλέπουµε λοιπόν ότι οι µαθητές στη έρευνα στην Κύπρο αντιµετωπίζουν το ίδιο τα ραβδογράµµατα και ιστογράµµατα και θεωρούν πιο σηµαντικό τις τιµές και τα δεδοµένα της άσκησης (δυσκολεύονται στην κατανόηση του λεκτικού µέρους) ενώ στην Ελλάδα πρωταρχικό ρόλο παίζει ο τύπος της γραφικής παράστασης (δυσκολεύονται στη χρήση διαφόρων µορφών γραφικών παραστάσεων). 7. Γενικά µε εξαίρεση τη V3ta βλέπουµε να διαχωρίζονται τα προβλήµατα που απαιτούσαν να εκφραστούν κάποια δεδοµένα σε κλάσµα ή ποσοστό από τα υπόλοιπα που είχαν να κάνουν µε χειρισµό γραφικών παραστάσεων. Φαίνεται ότι τα παιδιά δε συνδέουν αυτές τις δύο µορφές αναπαράστασης των στατιστικών δεδοµένων. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 8

7 Αναπαραστάσεις στη Στατιστική της ΣΤ ηµοτικού Συνεπαγωγικά διαγράµµατα V4vv v3ing V4ing v4ing v3ag v2tf v3ta v1tg2 v4ag v2tp v1tf v1tp V3ing v1tg1 v4va V1tg1 V4ag v4vg V4va V3ta V3ag ιάγραµµα 4 Συνεπαγωγικό διάγραµµα της έρευνας στην Ελλάδα V4vg V1tg2 ιάγραµµα 3 Συνεπαγωγικό διάγραµµα της έρευνας στην Κύπρο. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 9

8 Α. Γαγάτσης κ.ά. Παρατηρήσεις από τα συνεπαγωγικά διαγράµµατα Παρατηρούµε ότι τα συνεπαγωγικά διαγράµµατα ενισχύουν τις παρατηρήσεις και τα συµπεράσµατα από τα διαγράµµατα οµοιότητας, αλλά οδηγούν και σε νέα όπως: 1. Συγκρινόµενα τα δύο διαγράµµατα παρατηρούµε τον πρωταγωνιστικό ρόλο των V3ing και V4ing. Και στις δύο έρευνες αυτές οι µεταβλητές προϋποθέτουν σχεδόν όλες τις άλλες. Η σηµαντική διαφορά είναι ότι στην Ελλάδα δε συνδέονται µεταξύ τους πράγµα που σηµαίνει ότι δε θεώρησαν τη µια πιο εύκολη από την άλλη και παρόλο που τις αντιµετωπίζουν µε τον ίδιο τρόπο η επιτυχία στη µια δε συνεπάγεται και επιτυχία στην άλλη, ενώ στην Κύπρο το 99% αυτών που έλυσαν την V4ing έλυσαν και την V3ing, άρα η V3ing τους φάνηκε πιο εύκολη. 2. Στο συνεπαγωγικό διάγραµµα της έρευνας στην Κύπρο, παρατηρούµε ότι η V4vv (δεν υπάρχει αντίστοιχη στην Ελλάδα) δυσκόλεψε περισσότερο από όλα τα άλλα ερωτήµατα, πράγµα που φαίνεται και από τα χαµηλά ποσοστά που συγκέντρωσε. Η εξαγωγή γενικών συµπερασµάτων είναι από τη φύση της δύσκολη, γιατί απαιτεί τη κατανόηση τόσο του λεκτικού µέρους του προβλήµατος όσο και της διαδικασίας επίλυσής του (γραφική παράσταση, εύρεση µέσου όρου, σωστή ερµηνεία µέσου όρου) Οι µαθητές, όπως θα δούµε, δυσκολεύτηκαν και λόγω ελλιπούς κατανόησης της έννοιας του µέσου όρου. 3. Στις καταλήξεις των συνεπαγωγικών αλυσίδων βλέπουµε να βρίσκονται οι µεταβλητές V1tg1 και V1tg2 καθώς και η V4vg, δηλαδή η κατασκευή γραφικών παραστάσεων είναι µια εύκολη διαδικασία για τους µαθητές. Ανάλογο συµπέρασµα βγαίνει και από την αντίστοιχη έρευνα στην Ελλάδα. 4. Αξιοσηµείωτο και αναµενόµενο είναι η σχέση µεταξύ της V4ag και V3ag που δείχνει ότι το 99% αυτών που απάντησαν σωστά τη V4ag απάντησαν και τη V3ag. ηλαδή η τοποθέτηση του µέσου όρου στη γραφική παράσταση αντιµετωπίστηκε µε τον ίδιο τρόπο ανεξάρτητα από τα δεδοµένα της άσκησης. Στην αντίστοιχη έρευνα στην Ελλάδα αυτό δεν ισχύει πράγµα που δείχνει αδυναµία στο να εντοπίσουν ότι είναι η ίδια άσκηση µε διαφορετικές τιµές. Γενικά στην Ελλάδα διαχωρίζονται εντελώς οι µεταβλητές των δύο ασκήσεων (3 και 4) µε τις µεταβλητές της άσκησης 4 να έχουν ισχυρή σύνδεση µεταξύ τους. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 10

9 Αναπαραστάσεις στη Στατιστική της ΣΤ ηµοτικού Ποσοστά επιτυχίας Μεταβλητές Ποσοστά επιτυχίας στην Κύπρο Ποσοστά επιτυχίας στην Ελλάδα V1tf 97,8 V1tp 97,8 V1tg1 81,2 V1tg2 92,7 V2tf 96,3 V2tp 92 V3ta 67,4 88 V3ag 67,4 80 V3ing 60,9 30,7 V4vg 84,8 87,3 V4va 65,9 74 V4ag 63,8 68,7 V4ing 58,7 37,7 V4vv 10,1 Παρατηρήσεις από τα ποσοστά επιτυχίας 1. Στην έρευνα στην Ελλάδα βλέπουµε µια µεγάλη διαφορά στα ποσοστά επιτυχίας στα ερωτήµατα V3ing και V4ing, που δείχνει δυσκολία των µαθητών να διαβάσουν και να ερµηνεύσουν γραφικές παραστάσεις. Στην έρευνα της Κύπρου η διαφορά είναι µικρότερη. Μια εξήγηση γι αυτό είναι τα διαφορετικά σχολικά εγχειρίδια που χρησιµοποιούν οι µαθητές στην Ελλάδα και την Κύπρο. Οι Κύπριοι µαθητές έχουν την δυνατότητα να έχουν έγχρωµες γραφικές παραστάσεις και µε πιο οικεία θέµατα, αφού τα βιβλία γράφτηκαν πολύ πιο µετά από αυτά που χρησιµοποιούν οι µαθητές στην Ελλάδα. 2. Γενικά όµως υπάρχει ένα πιο ψηλό ποσοστό επιτυχίας στην Ελλάδα που µπορεί να οφείλεται σε διάφορους λόγους όπως: - καλύτερη κατανόηση της γλώσσας (έρευνες έχουν δείξει ότι οι µαθητές στην Κύπρο δυσκολεύονται στην κατανόηση κειµένου και οδηγιών) - το δείγµα στην Κύπρο ήταν από σχολεία της υπαίθρου 3. Παρατηρούµε ότι πολύ ψηλά ποσοστά επιτυχίας συγκεντρώνουν οι ασκήσεις 1 και 2 που ήταν πιο απλές και ακολουθεί η V4vg που ζητούσε κατασκευή γραφικής παράστασης. Οι µαθητές όπως είδαµε φαίνεται να κατέχουν τη δεξιότητα αυτή. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 11

10 Α. Γαγάτσης κ.ά. Ανάλυση των απαντήσεων που έδωσαν οι µαθητές Ενδιαφέρον παρουσιάζουν τα λάθη των µαθητών στις πιο κάτω µεταβλητές V3ing: Το πιο συχνό λάθος ήταν να περιλαµβάνουν και το Σάββατο, που η θερµοκρασία ήταν όση ακριβώς και η µέση θερµοκρασία των υπόλοιπων ηµερών στην οµάδα των ηµερών πάνω ή κάτω από το µέσο όρο. Σωστή θεωρούσαµε την απάντηση που δεν περιλάµβανε σε καµιά από τις δύο οµάδες το Σάββατο. Σχετική διευκρίνιση έγινε και πριν αρχίσουν τα παιδιά το τεστ. Εδώ έχουµε ένα είδος διδακτικού συµβολαίου, όπου αφού ζητήθηκε από τα παιδιά να ορίσουν τις µέρες που είναι πάνω και κάτω από το µέσο όρο τα παιδιά δεν µπορούσαν να αφήσουν µια πίσω. V4ing. Εδώ τα παιδιά έκαναν το αντίθετο λάθος. Ο µέσος όρος ήταν κάποια εκατοστά του εκατοστόµετρου πιο κάτω από τα 60cm. Πολλά παιδιά δεν τοποθετούσαν σε καµιά από τις δύο οµάδες τον Περικλή που είχα µήκος χεριών 60 cm. V4vv: Εδώ η σωστή απάντηση ήταν ότι δεν έχει σηµασία το φύλο για το µήκος του χεριού, διότι όσα κορίτσια ήταν πάνω από το µέσο όρο ήταν και αγόρια, το ίδιο και κάτω από το µέσο όρο. Ποσοστό πέρα του 25% απάντησε περίπου ως εξής: «Το µήκος των χεριών των παιδιών είναι πάνω από το µέσο όρο» ή παροµοίως «τα περισσότερα παιδιά είναι πάνω από το µέσο όρο». Αυτό φανερώνει ελλιπή κατανόηση της έννοιας του µέσου όρου και δυσκολία κατανόησης της άσκησης και των οδηγιών. - Πρώτο η άσκηση ζητούσε να βρουν αν τα χέρια των αγοριών ή των κοριτσιών είναι µακρύτερα στην τάξη τους και άρα θα έπρεπε να συγκρίνουν πως κατανέµονται τα αγόρια και τα κορίτσια ως προς το µέσο όρο και όχι να συγκρίνουν συνολικά όλα τα παιδιά που είναι πάνω και κάτω από το µέσο όρο. - εύτερο, δε σηµαίνει ότι ο µέσος όρος θα χωρίζει το δείγµα σε δύο ισοδύναµες οµάδες (όσα παιδιά είναι πάνω από το µέσο όρο να είναι και κάτω). - Τρίτο, θα µπορούσε να ειπωθεί αυτό το συµπέρασµα αν ο µέσος όρος έβγαινε από µια µεγάλη έρευνα σε πολλά παιδιά αυτής της ηλικίας και µετά συγκρίναµε τα παιδιά µε αυτό το µέσο όρο, αλλά από τη στιγµή που ο µέσος όρος βγήκε µέσα από τα µήκη των χεριών αυτών των παιδιών δεν µπορούµε να πούµε ότι βρίσκονται πάνω από το µέσο όρο. Τέλος, αξιοσηµείωτο είναι ότι πολλά παιδιά απάντησαν ότι τα κορίτσια έχουν µεγαλύτερο µήκος χεριών από τα αγόρια, ενώ κανένα παιδί δεν απάντησε ότι τα αγόρια έχουν µεγαλύτερο µήκος χεριών. Αυτό ίσως να οφείλεται στο ότι το πιο µακρύ χέρι το είχε ένα κορίτσι και το πιο κοντό ένα αγόρι. 4. Συµπεράσµατα 1. Γενικά φαίνεται ότι οι µαθητές της έκτης τάξης ηµοτικού έχουν σε πολύ ικανοποιητικό βαθµό γνώσεις για αναπαραστάσεις απλών στοιχείων της καθηµερινής ζωής σε µορφή πίνακα ή γραφικής παράστασης. Έχουν µεγάλη άνεση στο να κατασκευάζουν γραφικές παραστάσεις. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 12

11 Αναπαραστάσεις στη Στατιστική της ΣΤ ηµοτικού 2. Οι µαθητές µειονεκτούν στην ερµηνεία γραφικών παραστάσεων που είναι και το πιο σηµαντικό στοιχείο της στατιστικής αυτού του επιπέδου. Στην καθηµερινή ζωή κυρίως χρειάζεται να ερµηνεύουµε γραφικές παραστάσεις που παρουσιάζονται σε εφηµερίδες και τηλεοράσεις. Σπάνια µας ζητείται να κατασκευάσουµε γραφική παράσταση. Στη σηµαντική αυτή δεξιότητα φαίνεται να υστερούν οι µαθητές. Συγκριτικά οι µαθητές στην Ελλάδα φαίνεται να υστερούν σε µεγαλύτερο βαθµό σε αυτή τη δεξιότητα από ότι στην Κύπρο. 3. Μεγάλη δυσκολία φαίνεται να αντιµετωπίζουν στο συνδυασµό διαφόρων δεξιοτήτων (κατανόηση προβλήµατος και σωστή ερµηνεία της γραφικής παράστασης και του µέσου όρου) για την εξαγωγή γενικού συµπεράσµατος. 4. Οι µαθητές στη Κύπρο φαίνεται να υστερούν στην κατανόηση του λεκτικού µέρους του προβλήµατος, αλλά έχουν µεγαλύτερη ευχέρεια στο χειρισµό γραφικών παραστάσεων ραβδογράµµατος και ιστογράµµατος. Οι µαθητές στην Ελλάδα έχουν καλύτερη κατανόηση του λεκτικού µέρους, αλλά δυσκολεύονται στο να τα εκφράσουν σε ραβδόγραµµα και ιστόγραµµα. 5. Οι µαθητές στην Κύπρο κατανοούν και χειρίζονται καλύτερα τους πίνακες τιµών σε σχέση µε την Ελλάδα. Στην έρευνα στην Κύπρο οι µεταβλητές που έχουν να κάνουν µε ανάγνωση πίνακα συνδέονται, ενώ στην Ελλάδα συνδέονται µόνο µεταβλητές που έχουν να κάνουν µε πίνακα µέσα στην ίδια άσκηση. ηλαδή, τα παιδιά που κατανοούν το πίνακα σε µια άσκηση δεν κατανοούν και τον πίνακα σε µια άλλη. Περιορισµοί της έρευνας 1.Το ερωτηµατολόγιο περιλάµβανε µόνο τέσσερις ασκήσεις και δεν µπορούσαµε να επαληθεύσουµε αν ένα λάθος που κάνουν σε µια άσκηση είναι τυχαίο ή επαναλαµβάνεται. 2. Η έρευνα έγινε σε σχολεία της υπαίθρου, θα ήταν καλό να γινόταν µια παρόµοια έρευνα σε αστικές περιοχές, που οι µαθητές πιθανόν να έχουν µεγαλύτερη επαφή µε εφηµερίδες και περιοδικά και άρα καλύτερη σχέση µε ερµηνεία γραφικών παραστάσεων της καθηµερινής ζωής. ΒΙΒΛΙΟΓΡΑΦΙΑ Αναστασιάδου, Σ. & Γαγάτσης. Α. (2005). Αναπαραστάσεις στη Στατιστική της Στ ηµοτικού της Ελλάδας. Στο: Α. Γαγάτσης, Α. Παναούρα & Π. αµιανού(επιµ.), Πρακτικά 8 ου Παγκύπριου Συνεδρίου Μαθηµατικής Παιδείας και Επιστήµης (σελ ). Λευκωσία: Κυπριακή Μαθηµατική Εταιρεία. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 13

12 Α. Γαγάτσης κ.ά. Γαγάτσης, Α. & Ηλία, Ι. (2003). Οι αναπαραστάσεις και τα γεωµετρικά µοντέλα στη µάθηση των µαθηµατικών. Τόµοι I και II. Λευκωσία: Εκδόσεις Intercollege. Γαγάτσης, Α., Μιχαηλίδου, Ε. & Σιακαλλή, Μ. (2001). Θεωρίες αναπαράστασης και µάθησης των µαθηµατικών. Λευκωσία: Πανεπιστήµιο Κύπρου-Erasmus IP1. Ainley, J., Nardi, E. & Pratt, D. (2000). The construction of meanings for trend in active graphing. International Journal of Computers for Mathematical Learning, 5, Friel, S. N., Curcio, F. R. & Bright, G. W. (2001). Making sense of graphs: Critical factors influencing comprehension and instructional implications. Journal for Research in Mathematics Education, 32, Iss 2, ΠΑΡΑΡΤΗΜΑ Απάντησε σε όλες τις ερωτήσεις 1. Ο Κώστας προπονείται στην καλαθόσφαιρα. Σε κάθε προπόνηση ρίχνει την µπάλα στο καλάθι 50 φορές και ο προπονητής του καταγράφει τις επιτυχίες του. Ο πίνακας δείχνει τις επιτυχίες του στις τελευταίες 6 προπονήσεις. Προπόνηση Επιτυχίες Επιτυχίες σε Επιτυχίες σε κλάσµα ποσοστό 1 η 10 10/50 20% 2 η 25 3 η 35 4 η 20 5 η 30 6 η 40 α) Να συµπληρώσετε τον πιο πάνω πίνακα β) Να συµπληρώσετε τις γραφικές παραστάσεις που δείχνουν τις επιτυχίες του Κώστα µε τον έναν τρόπο και µε τον άλλο. (ραβδόγραµµα και τεθλασµένη γραµµή) η 2η 3η 4η 5η 6η η 2η 3η 4η 5η 6η 2. Ο δάσκαλος στην τάξη της Ειρήνης έδωσε στα παιδιά ένα τεστ µε απλές αριθµητικές πράξεις δεκαδικών αριθµών: 10 στην πρόσθεση, 10 στην αφαίρεση, 10 στον πολλαπλασιασµό και 10 στη διαίρεση. Η Ειρήνη κατέγραψε σε έναν πίνακα τις επιτυχίες της κατά αριθµητική πράξη. Να συµπληρώσετε τον πίνακα. Αριθµητικές πράξεις Επιτυχίες Επιτυχίες σε κλάσµα Επιτυχίες σε ποσοστό Πρόσθεση 10 10/10 100% Αφαίρεση 8 Πολλαπλασιασµός 9 ιαίρεση 7 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 14

13 Αναπαραστάσεις στη Στατιστική της ΣΤ ηµοτικού 3. Τρία παιδιά παρουσίασαν µε πίνακα και γραφική παράσταση τη θερµοκρασία των ηµερών µιας εβδοµάδας Ηµέρα ευτέρα Θερµοκρασία 5 ο C Να βρείτε το µέσο όρο της θερµοκρασίας, να τον σηµειώσετε στη γραφική παράσταση. Ύστερα να πείτε Τρίτη 11 ο C ποιες ηµέρες η θερµοκρασία ήταν πάνω ή κάτω από το Τετάρτη 6 ο C µέσο όρο. Πέµπτη 11 ο C Παρασκευή 14 ο C Σάββατο 9 ο C Κυριακή 7 ο C Πάνω από το µέσο όρο. Κάτω από το µέσο όρο 4. Ο ηµήτρης αναρωτιέται: Τα χέρια των αγοριών ή των κοριτσιών είναι µακρύτερα στην τάξη τους Τα παιδιά, για να διαπιστώσουν τι συµβαίνει, µέτρησαν το µήκος των χεριών 16 παιδιών: Α. Να κάνετε στο τετραγωνισµένο χαρτί µια γραφική παράσταση µε το µήκος των χεριών των 16 παιδιών. Β. Ύστερα να βρείτε το µέσο όρο, να τον σηµειώσετε στη γραφική παράσταση (µε µια ευθεία) και να χρωµατίσετε µε διαφορετικό χρώµα τα σηµεία που είναι πάνω και κάτω από αυτόν. Γ. Κατόπιν να ονοµάσετε τα παιδιά που είναι πάνω και κάτω από το µέσο όρο και να καταλήξετε σε ένα συµπέρασµα. -Φώτης 50 εκ - ήµητρα 56 εκ -Μαρία 63 εκ -Φωφώ 67 εκ -Σπύρος 52 εκ -Παύλος 66 εκ -Νίκη 57 εκ -Στέφανος 61 εκ -Βούλα 64 εκ -Γεωργία 54 εκ -Αθηνά 64 εκ -Περικλής 60 εκ -Νίκος 62 εκ -Πυθαγόρας 59 εκ -Βάσω 61 εκ -Ευκλείδης 63 εκ Πάνω από το µέσο όρο Κάτω από το µέσο όρο Συµπέρασµα: 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 15

14 Α. Γαγάτσης κ.ά. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 16

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Αθανάσιος Γαγάτσης Τµήµα Επιστηµών της Αγωγής Πανεπιστήµιο Κύπρου Χρήστος Παντσίδης Παναγιώτης Σπύρου Πανεπιστήµιο

Διαβάστε περισσότερα

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4.1. Αποτελέσματα από το πρόγραμμα εξ αποστάσεως επιμόρφωσης δασκάλων και πειραματικής εφαρμογής των νοερών

Διαβάστε περισσότερα

Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση

Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Πέρα όµως από την Γνωσιακή/Εννοιολογική ανάλυση της δοµής και του περιεχοµένου των σχολικών εγχειριδίων των Μαθηµατικών του Δηµοτικού ως προς τις έννοιες

Διαβάστε περισσότερα

Γιαννάκης Βασιλειάδης, Γιώργος Σαββίδης, Μαίρη Κουτσελίνη Τµήµα Επιστηµών της Αγωγής, Πανεπιστήµιο Κύπρου ΠΕΡΙΛΗΨΗ

Γιαννάκης Βασιλειάδης, Γιώργος Σαββίδης, Μαίρη Κουτσελίνη Τµήµα Επιστηµών της Αγωγής, Πανεπιστήµιο Κύπρου ΠΕΡΙΛΗΨΗ Αναγνωστικός Αλφαβητισµός σε Μαθητές Ε Τάξης ηµοτικού ΑΝΑΓΝΩΣΤΙΚΟΣ ΑΛΦΑΒΗΤΙΣΜΟΣ: ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ ΣΕ ΜΑΘΗΤΕΣ Ε ΤΑΞΗΣ ΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ ΣΕ ΣΥΝΕΧΟΜΕΝΑ ΚΑΙ ΜΗ ΣΥΝΕΧΟΜΕΝΑ ΚΕΙΜΕΝΑ ΠΟΥ ΠΕΡΙΛΑΜΒΑΝΟΝΤΑΙ ΣΤΑ ΝΕΑ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

Ο ΡΟΛΟΣ ΤΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΩΝ ΣΥΝΟΛΩΝ ΚΑΙ ΤΩΝ ΛΕΙΤΟΥΡΓΙΩΝ ΤΟΥΣ

Ο ΡΟΛΟΣ ΤΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΩΝ ΣΥΝΟΛΩΝ ΚΑΙ ΤΩΝ ΛΕΙΤΟΥΡΓΙΩΝ ΤΟΥΣ Αναπαραστάσεις και Κατανόηση Συνόλων Ο ΡΟΛΟΣ ΤΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΩΝ ΣΥΝΟΛΩΝ ΚΑΙ ΤΩΝ ΛΕΙΤΟΥΡΓΙΩΝ ΤΟΥΣ Ειρήνη Αριστοτέλους, Χρυστάλλα Περικλέους, Αθανάσιος Γαγάτσης Τµήµα Επιστηµών Αγωγής,

Διαβάστε περισσότερα

THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION

THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION E F R A I M F I S C H B E I N, T E L - A V I V U N I V E R S I T Y M A R I A D E R I, U N I V E R S I T Y O F P I S

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

ΙΑΙΣΘΗΤΙΚΕΣ ΑΝΤΙΛΗΨΕΙΣ ΜΑΘΗΤΩΝ ΗΜΟΤΙΚΟΥ ΓΙΑ ΤΗΝ ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΙΑΙΣΘΗΤΙΚΕΣ ΑΝΤΙΛΗΨΕΙΣ ΜΑΘΗΤΩΝ ΗΜΟΤΙΚΟΥ ΓΙΑ ΤΗΝ ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ιαισθητικές Αντιλήψεις στην Έννοια της Πιθανότητας ΙΑΙΣΘΗΤΙΚΕΣ ΑΝΤΙΛΗΨΕΙΣ ΜΑΘΗΤΩΝ ΗΜΟΤΙΚΟΥ ΓΙΑ ΤΗΝ ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Κώστας Κωνσταντίνου, Γεωργία Τάνου, Ιλιάδα Ηλία, Αθανάσιος Γαγάτσης Τµήµα Επιστηµών

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 15. Πρόσθεση και αφαίρεση μέχρι το 100. Διατυπώνουν και επιλύουν προβλήματα διαδικασίας και λεκτικά προβλήματα μίας και δύο πράξεων.

ΕΝΟΤΗΤΑ 15. Πρόσθεση και αφαίρεση μέχρι το 100. Διατυπώνουν και επιλύουν προβλήματα διαδικασίας και λεκτικά προβλήματα μίας και δύο πράξεων. Πρόσθεση και αφαίρεση μέχρι το 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ1.12 Υπολογίζουν το άθροισμα και τη διαφορά αριθμών εντός της δεκάδας και αριθμών πολλαπλασίων του δέκα μέχρι το

Διαβάστε περισσότερα

6.5. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΣΤΟΥΣ ΚΑΤ ΕΚΤΙΜΗΣΗ ΥΠΟΛΟΓΙΣΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ

6.5. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΣΤΟΥΣ ΚΑΤ ΕΚΤΙΜΗΣΗ ΥΠΟΛΟΓΙΣΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 6.5. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΣΤΟΥΣ ΚΑΤ ΕΚΤΙΜΗΣΗ ΥΠΟΛΟΓΙΣΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 6.5.1. Οι γνώσεις υποψηφίων δασκάλων για την υπολογιστική εκτίμηση Σε μια έρευνα των Lemonidis

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Παιδαγωγικό Τμήμα Νηπιαγωγών. σύμβολα αριθμών. επ. Κωνσταντίνος Π. Χρήστου. Πανεπιστήμιο Δυτικής Μακεδονίας

Πανεπιστήμιο Δυτικής Μακεδονίας. Παιδαγωγικό Τμήμα Νηπιαγωγών. σύμβολα αριθμών. επ. Κωνσταντίνος Π. Χρήστου. Πανεπιστήμιο Δυτικής Μακεδονίας Παιδαγωγικό Τμήμα Νηπιαγωγών σύμβολα αριθμών επ. Κωνσταντίνος Π. Χρήστου 1 αναπαραστάσεις των αριθμών Εμπράγματες Υλικά αντικείμενα ($$$) Εικονικές (***) Λεκτικές (τρία) Συμβολικές, (3, τρία) Διαφορετικές

Διαβάστε περισσότερα

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ. Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ. Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες 1 Ερμηνεία και κατασκευή γραφικών παραστάσεων 1. Η αγαπημένη γεύση παγωτού των παιδιών Γεύση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΙΚΗ ΠΡΑΚΤΙΚΗ IV ΕΠΟΠΤΗΣ ΚΑΘΗΓΗΤΗΣ: Κ. ΧΡΗΣΤΟΥ ΣΥΝΕΡΓΑΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΟΣ: Μ. ΣΤΡΙΛΙΓΚΑ ΘΕΜΑ: Η ΚΑΛΥΤΕΡΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ

Διαβάστε περισσότερα

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Ενότητα 6: Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιγραφική στατιστική ΕΡΩΤΗΜΑ ΑΠΑΝΤΗΣΗ Όλες

Διαβάστε περισσότερα

Publishers, London. Ευκλείδης Γ Τεύχη:

Publishers, London. Ευκλείδης Γ Τεύχη: Ανάλυση και Συγκριτικές Επισηµάνσεις Σχολικών Βιβλίων του ηµοτικού Σχολείου (Ελλάδας, Κύπρου, Αγγλίας) όσον αφορά στην Έννοια της Πιθανότητας. Συγγραφέας: Ιδιότητα: Καλαβάσης Φραγκίσκος Σκουµπουρδή Χρυσάνθη

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη: Ε Η ομάδα χορού 1. Σε μια ομάδα παραδοσιακών χορών συμμετέχουν 39 αγόρια και 23 κορίτσια. Κάθε εβδομάδα προστίθενται στην ομάδα 6 νέα αγόρια και 8 νέα κορίτσια.

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών ΑΡ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 10 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΟ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 6

ΕΝΟΤΗΤΑ 10 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΟ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 6 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΟ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 6 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7 Αναπαριστούν εναδικά κλάσματα ( 1, 1, 1, 1, 1 ) ενός συνόλου ή μιας επιφάνειας, 2 3 4 6 8 χρησιμοποιώντας

Διαβάστε περισσότερα

«ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική)

«ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική) ΝΤΑΗ ΕΙΡΗΝΗ ΤΜΗΜΑ: Π.Τ.Δ.Ε, ΠΑΤΡΑΣ 2012-13 ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ Ε.ΚΟΛΕΖΑ «ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική) [1] Στόχοι της ενότητας(οι μαθητές

Διαβάστε περισσότερα

ΤΑΞΗ: Γ. Προτείνεται να αξιοποιηθούν διδακτικά τα παρακάτω «ψηφιακά δομήματα» από τα εμπλουτισμένα σχ. εγχειρίδια. Προτείνεται να μην

ΤΑΞΗ: Γ. Προτείνεται να αξιοποιηθούν διδακτικά τα παρακάτω «ψηφιακά δομήματα» από τα εμπλουτισμένα σχ. εγχειρίδια. Προτείνεται να μην ΤΑΞΗ: Γ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ: Βιβλίο μαθητή, Μαθηματικά Γ Δημοτικού, 2015, ένα τεύχος Τετράδιο εργασιών, Μαθηματικά Γ Δημοτικού, 2015, α τεύχος Τετράδιο εργασιών, Μαθηματικά Γ Δημοτικού, 2015, β τεύχος Τετράδιο

Διαβάστε περισσότερα

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ ΣΕΝΑΡΙΟ του Κύπρου Κυπρίδηµου, µαθηµατικού ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ Περίληψη Στη δραστηριότητα αυτή οι µαθητές καλούνται να διερευνήσουν το πρόσηµο του τριωνύµου φ(x) = αx 2 + βx + γ. Προτείνεται να διδαχθεί

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 7 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 7 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 7 ο, Τμήμα Α Δεδομένα Συχνότητα Μέτρα θέσης Μέτρα διασποράς Στοχαστικά μαθηματικά διαφέρουν από τα κλασσικά μαθηματικά διότι τα φαινόμενα δεν είναι αιτιοκρατικά,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100

ΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, αφαιρέτης, αφαιρετέος, προσθετέος, διαιρέτης,

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Σεπτέμβριος 2013 Συγγραφική ομάδα: Συντονιστές: Επιστημονικός Συνεργάτης: Σύνδεσμος Επιθεωρητής: Eνδοτμηματική Επιτροπή Μαθηματικών: Σύμβουλοι Μαθηματικών:

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ

ΕΝΟΤΗΤΑ 6 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα και δεκαδικούς αριθμούς,

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών).

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Θέµα: Η διερεύνηση µερικών βασικών ιδιοτήτων των παραλληλογράµµων από τους µαθητές µε χρήση

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας Μονοψήφια διαίρεση Προβλήματα αναλογίας ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.13 Αναπτύσσουν και εφαρμόζουν αλγόριθμους της πρόσθεσης, της αφαίρεσης, του πολλαπλασιασμού με τριψήφιους

Διαβάστε περισσότερα

Διδακτικές προσεγγίσεις στην Πληροφορική. Η εποικοδομιστική προσέγγιση για τη γνώση. ως ενεργητική και όχι παθητική διαδικασία

Διδακτικές προσεγγίσεις στην Πληροφορική. Η εποικοδομιστική προσέγγιση για τη γνώση. ως ενεργητική και όχι παθητική διαδικασία Διδακτικές προσεγγίσεις στην Πληροφορική Η εποικοδομιστική προσέγγιση για τη γνώση ως ενεργητική και όχι παθητική διαδικασία ως κατασκευή και όχι ως μετάδοση ως αποτέλεσμα εμπειρίας και όχι ως μεταφορά

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ

ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 7 περιλαμβάνει την ανάλυση και τη σύνθεση των αριθμών μέχρι το 10, στρατηγικές πρόσθεσης/αφαίρεσης και επίλυση προβλημάτων πρόσθεσης και αφαίρεσης. ΔΕΙΚΤΕΣ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΦΑΙΡΕΣΗ ΜΕ ΧΑΛΑΣΜΑ ΔΕΚΑΔΑΣ

ΕΝΟΤΗΤΑ 4 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΦΑΙΡΕΣΗ ΜΕ ΧΑΛΑΣΜΑ ΔΕΚΑΔΑΣ ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΦΑΙΡΕΣΗ ΜΕ ΧΑΛΑΣΜΑ ΔΕΚΑΔΑΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.11 Αναπαριστούν καταστάσεις πρόσθεσης, αφαίρεσης, πολλαπλασιασμού, τέλειας και ατελούς διαίρεσης,

Διαβάστε περισσότερα

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΜΑΘΗΣΙΑΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ Η ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ Η/Υ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΚΛΑΣΜΑΤΩΝ

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΜΑΘΗΣΙΑΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ Η ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ Η/Υ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΚΛΑΣΜΑΤΩΝ 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 415 ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΜΑΘΗΣΙΑΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ Η ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ Η/Υ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΚΛΑΣΜΑΤΩΝ Μεταφετζής Γιώργος Δάσκαλος, 1ο ΔΣ Βόλου gmetafetz@in.gr

Διαβάστε περισσότερα

Κατανοµές. Η κατανοµή (distribution) µιας µεταβλητής (variable) φαίνεται από το σχήµα του ιστογράµµατος (histogram).

Κατανοµές. Η κατανοµή (distribution) µιας µεταβλητής (variable) φαίνεται από το σχήµα του ιστογράµµατος (histogram). Ιωάννης Παραβάντης Επίκουρος Καθηγητής Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών Πανεπιστήµιο Πειραιώς Μάρτιος 2010 Κατανοµές 1. Οµοιόµορφη κατανοµή Η κατανοµή (distribution) µιας µεταβλητής (variable) φαίνεται

Διαβάστε περισσότερα

Η ΙΚΑΝΟΤΗΤΑ ΑΝΑΓΝΩΡΙΣΗΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗΣ ΓΕΩΜΕΤΡΙΚΩΝ ΣΧΗΜΑΤΩΝ ΣΤΙΣ Γ - ΤΑΞΕΙΣ ΤΟΥ ΗΜΟΤΙΚΟΥ

Η ΙΚΑΝΟΤΗΤΑ ΑΝΑΓΝΩΡΙΣΗΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗΣ ΓΕΩΜΕΤΡΙΚΩΝ ΣΧΗΜΑΤΩΝ ΣΤΙΣ Γ - ΤΑΞΕΙΣ ΤΟΥ ΗΜΟΤΙΚΟΥ Αναγνώριση και Κατασκευή Γεωµετρικών Σχηµάτων Η ΙΚΑΝΟΤΗΤΑ ΑΝΑΓΝΩΡΙΣΗΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗΣ ΓΕΩΜΕΤΡΙΚΩΝ ΣΧΗΜΑΤΩΝ ΣΤΙΣ Γ - ΤΑΞΕΙΣ ΤΟΥ ΗΜΟΤΙΚΟΥ Ελένη Μιχαήλ, Κλεοπάτρα Μουσκή, Αθανάσιος Γαγάτσης Τµήµα Επιστηµών

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν

Διαβάστε περισσότερα

Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων

Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων Στόχος Εκμάθηση τεχνικών και μεθόδων για να χρησιμοποιείται το λογισμικό φύλλων εργασίας στη διδασκαλία. Διατυπωμένες Θέσεις 1 Δε χρησιμοποιείται

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

Οδηγός διαφοροποίησης για την πρωτοβάθµια

Οδηγός διαφοροποίησης για την πρωτοβάθµια Οδηγός διαφοροποίησης για την πρωτοβάθµια Γιατί χρειάζεται να κάνουµε τόσο ειδική διαφοροποίηση; Τα παιδιά που βρίσκονται στο φάσµα του αυτισµού έχουν διαφορετικό τρόπο σκέψης και αντίληψης για τον κόσµο,

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

Κέντρο Εκπαιδευτικής Έρευνας και Αξιολόγησης (ΚΕΕΑ) Παιδαγωγικό Ινστιτούτο (ΠΙ)

Κέντρο Εκπαιδευτικής Έρευνας και Αξιολόγησης (ΚΕΕΑ) Παιδαγωγικό Ινστιτούτο (ΠΙ) Κέντρο Εκπαιδευτικής Έρευνας και Αξιολόγησης (ΚΕΕΑ) Παιδαγωγικό Ινστιτούτο (ΠΙ) Διεθνής Έρευνα Δεξιοτήτων Ενηλίκων H πιο διεξοδική και εκτενής διεθνής έρευνα μελέτης των δεξιοτήτων και ικανοτήτων ενηλίκων

Διαβάστε περισσότερα

Α. 200 C B. 100 C Γ. 50 C

Α. 200 C B. 100 C Γ. 50 C ιδακτική ενότητα: Βρασµός Β' Γυµνασίου Σχέδιο µαθήµατος Α) ιδακτικοί στόχοι Οι µαθητές θα πρέπει: 1. Να αναγνωρίζουν πότε ένα υγρό βράζει 2. Να διακρίνουν το βρασµό από την εξάτµιση 3. Να διατυπώνουν τον

Διαβάστε περισσότερα

ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Y404. ΔΙΜΕΠΑ: ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΕΡΓΑΣΙΑ ΠΕΙΡΑΜΑΤΙΣΜΟΥ ΜΕ ΜΑΘΗΤΗ ΔΙΔΑΣΚΩΝ: ΧΑΡΑΛΑΜΠΟΣ ΛΕΜΟΝΙΔΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΔΗΜΗΤΡΙΑΔΗΣ ΗΡΑΚΛΗΣ ΑΕΜ: 3734 Περιεχόμενα

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2010 Επίπεδο: 2 (για µαθητές της Ε' και ΣΤ' τάξης ηµοτικού)

Θέµατα Καγκουρό 2010 Επίπεδο: 2 (για µαθητές της Ε' και ΣΤ' τάξης ηµοτικού) Μιχάλης Λάµπρου Νίκος Κ. Σπανουδάκης Θέµατα Καγκουρό 2010 Επίπεδο: 2 (για µαθητές της Ε' και ΣΤ' τάξης ηµοτικού) Ερωτήσεις 3 πόντων: 1) Αν όπου είναι κάποιος συγκεκριµένος αριθµός, τότε ο αριθµός αυτός

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 13 ΔΙΑΙΡΕΣΗ. Αρ2.12 Κατανοούν την προπαίδεια του πολλαπλασιασμού και τη διαίρεση ως αντίστροφη πράξη του πολλαπλασιασμού.

ΕΝΟΤΗΤΑ 13 ΔΙΑΙΡΕΣΗ. Αρ2.12 Κατανοούν την προπαίδεια του πολλαπλασιασμού και τη διαίρεση ως αντίστροφη πράξη του πολλαπλασιασμού. ΔΙΑΙΡΕΣΗ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.11 Αναπαριστούν καταστάσεις πρόσθεσης, αφαίρεσης, πολλαπλασιασμού, τέλειας και ατελούς διαίρεσης, χρησιμοποιώντας υλικό όπως κύβους Dienes,

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Κωνσταντίνος Χρίστου Ρίτα Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Οκτώβριος 2014 Συγγραφική ομάδα: Συντονιστές: Επιστημονικός Συνεργάτης:

Διαβάστε περισσότερα

Πρόλογος. «ΚΙ ΟΜΩΣ, ΤΑ ΚΟΙΝΑ ΣΗΜΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΔΥΟ ΑΝΤΙΣΤΡΟΦΩΝ ΣΥΝΑΡΤΗΣΕΩΝ, ΑΝ ΥΠΑΡΧΟΥΝ, ΒΡΙΣΚΟΝΤΑΙ ΜΟΝΟ ΠΑΝΩ ΣΤΗΝ ΕΥΘΕΙΑ y=x»

Πρόλογος. «ΚΙ ΟΜΩΣ, ΤΑ ΚΟΙΝΑ ΣΗΜΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΔΥΟ ΑΝΤΙΣΤΡΟΦΩΝ ΣΥΝΑΡΤΗΣΕΩΝ, ΑΝ ΥΠΑΡΧΟΥΝ, ΒΡΙΣΚΟΝΤΑΙ ΜΟΝΟ ΠΑΝΩ ΣΤΗΝ ΕΥΘΕΙΑ y=x» 5 Περιεχόμενα Πρόλογος 7 Ίσες συναρτήσεις και συναρτήσεις Ορισμός αντίστροφης συνάρτησης 2 Η μόνη συνάρτηση που είναι ίση με την αντίστοφή της είναι η ταυτοτική 3 Συμπεράσματα 5 Βασικές ιδιότητες αντίστροφων

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ Δείκτες Επιτυχίας ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επάρκειας ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν

Διαβάστε περισσότερα

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1 ΑΝΔΡΕΑΣ Λ. ΠΕΤΡΑΚΗΣ ΑΡΙΣΤΟΥΧΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΔΙΔΑΚΤΩΡ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΤΑ ΚΟΙΝΑ ΣΗΜΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΤΟΥΣ ΠΑΡΑΣΤΑΣΕΩΝ, ΑΝ ΥΠΑΡΧΟΥΝ, ΒΡΙΣΚΟΝΤΑΙ ΜΟΝΟ ΠΑΝΩ ΣΤΗΝ ΕΥΘΕΙΑ y = x ΔΕΥΤΕΡΗ

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

Αξιολόγηση Προγράμματος Αλφαβητισμού στο Γυμνάσιο Πρώτο Έτος Αξιολόγησης (Ιούλιος 2009)

Αξιολόγηση Προγράμματος Αλφαβητισμού στο Γυμνάσιο Πρώτο Έτος Αξιολόγησης (Ιούλιος 2009) Αξιολόγηση Προγράμματος Αλφαβητισμού στο Γυμνάσιο Πρώτο Έτος Αξιολόγησης (Ιούλιος 2009) 1. Ταυτότητα της Έρευνας Το πρόβλημα του λειτουργικού αναλφαβητισμού στην Κύπρο στις ηλικίες των 12 με 15 χρόνων

Διαβάστε περισσότερα

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται:

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται: 4.4 Ερωτήσεις διάταξης Στις ερωτήσεις διάταξης δίνονται:! µία σειρά από διάφορα στοιχεία και! µία πρόταση / κανόνας ή οδηγία και ζητείται να διαταχθούν τα στοιχεία µε βάση την πρόταση αυτή. Οι ερωτήσεις

Διαβάστε περισσότερα

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007 Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Ονοματεπώνυμα Σπουδαστριών: Μποτονάκη Ειρήνη (5422), Καραλή Μαρία (5601) Μάθημα: Β06Σ03 Στατιστική

Διαβάστε περισσότερα

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Γ Γυμνασίου» των Δημητρίου Αργυράκη, Παναγιώτη Βουργάνα, Κωνσταντίνου Μεντή, Σταματούλας Τσικοπούλου, Μιχαήλ Χρυσοβέργη, έκδοση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΜΕΛΕΤΗ ΑΠΟ ΟΣΗΣ ΚΑΙ ΕΠΙΤΥΧΙΑΣ ΗΜΕΡΗΣΙΩΝ ΗΜΟΣΙΩΝ ΚΑΙ Ι ΙΩΤΙΚΩΝ ΛΥΚΕΙΩΝ ΕΙΣΑΓΩΓΗ

ΚΕΦΑΛΑΙΟ 3 ΜΕΛΕΤΗ ΑΠΟ ΟΣΗΣ ΚΑΙ ΕΠΙΤΥΧΙΑΣ ΗΜΕΡΗΣΙΩΝ ΗΜΟΣΙΩΝ ΚΑΙ Ι ΙΩΤΙΚΩΝ ΛΥΚΕΙΩΝ ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 3 ΜΕΛΕΤΗ ΑΠΟ ΟΣΗΣ ΚΑΙ ΕΠΙΤΥΧΙΑΣ ΗΜΕΡΗΣΙΩΝ ΗΜΟΣΙΩΝ ΚΑΙ Ι ΙΩΤΙΚΩΝ ΛΥΚΕΙΩΝ ΕΙΣΑΓΩΓΗ Στο κεφάλαιο αυτό θα εξετάσουµε την απόδοση και την επιτυχία των υποψηφίων η µερησίων δηµοσίων και ιδιωτικών λυκείων

Διαβάστε περισσότερα

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα x 1 2x 7 x 8 4

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα x 1 2x 7 x 8 4 Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα 1 1) Na λυθούν οι εξισώσεις : α) 2 3x 1 x 8 x 1 (απ.: x = -2) β) γ) 2x 7 x 1 (απ.: x = -12) 4 3 4 5 x 2 x 4 2 x (απ.: x = 1) 4 5 δ) x 1

Διαβάστε περισσότερα

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ Ενότητα 2: Επαγωγική-περιγραφική στατιστική, παραµετρικές

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10

ΕΝΟΤΗΤΑ 5 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Ενότητα 5 1 ΕΝΟΤΗΤΑ 5 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 5 αποτελεί εισαγωγή στην έννοια της πρόσθεσης και αφαίρεσης αριθμών μέχρι το 10. Οι διαμερισμοί των αριθμών και εξάσκηση των μαθητών

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΟΛΙΤΙΣΜΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΙΜΕΛΕΙΑ: ΘΕΟΔΩΡΟΥ ΕΛΕΝΗ ΑΜ:453 ΕΞ.: Ζ ΕΙΣΗΓΗΤΗΣ: ΔΡ. ΔΗΜΗΤΡΗΣ ΤΣΩΛΗΣ ΚΟΛΟΜΒΟΥ ΑΦΡΟΔΙΤΗ

Διαβάστε περισσότερα

Στον πίνακα που ακολουθεί παρουσιάζονται οι τρεις τρόποι νοηµατοδότησης της ταυτότητας α 3 +β 3 +3αβ(α+β)......

Στον πίνακα που ακολουθεί παρουσιάζονται οι τρεις τρόποι νοηµατοδότησης της ταυτότητας α 3 +β 3 +3αβ(α+β)...... 4. Βασικά Στοιχεία ιδακτικής της Άλγεβρας µε τη χρήση Ψηφιακών Τεχνολογιών Οι ψηφιακές τεχνολογίες που έχουν µέχρι τώρα αναπτυχθεί για τη διδασκαλία και τη µάθηση εννοιών της Άλγεβρας µπορούν να χωριστούν

Διαβάστε περισσότερα

Θέµα ιερεύνησης: Ο καιρός

Θέµα ιερεύνησης: Ο καιρός Θέµα ιερεύνησης: Ο καιρός Αντικείµενο της συγκεκριµένης δραστηριότητας είναι η µεθοδική παρατήρηση των καιρικών συνθηκών για ένα σχετικά µεγάλο χρονικό διάστηµα, η καταγραφή και οργάνωση των παρατηρήσεων

Διαβάστε περισσότερα

Σύστηµα αν/σης Φυσική γλώσσα Συµβολική γλώσσα Γεωµετρικό σχήµα Αναπ/ση Στο ισόπλευρο τρίγωνο ΑΒΓ η πλευρά ΑΒ ισούται µε την πλευρά ΑΓ και µε την πλευρ

Σύστηµα αν/σης Φυσική γλώσσα Συµβολική γλώσσα Γεωµετρικό σχήµα Αναπ/ση Στο ισόπλευρο τρίγωνο ΑΒΓ η πλευρά ΑΒ ισούται µε την πλευρά ΑΓ και µε την πλευρ Μορφές Εικονικής Αναπαράστασης της Έννοιας του Τριγώνου στα Μαθηµατικά του ηµοτικού Σχολείου Χρυσάνθη Σκουµπουρδή Περίληψη Σκοπός της εργασίας αυτής είναι να µελετήσει το ρόλο των παραστάσεων του τριγώνου

Διαβάστε περισσότερα

Εφαρµοσµένη ιδακτική των Φυσικών Επιστηµών (Πρακτικές Ασκήσεις Β Φάσης)

Εφαρµοσµένη ιδακτική των Φυσικών Επιστηµών (Πρακτικές Ασκήσεις Β Φάσης) Πανεπιστήµιο Αιγαίου Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης Μιχάλης Σκουµιός Εφαρµοσµένη ιδακτική των Φυσικών Επιστηµών (Πρακτικές Ασκήσεις Β Φάσης) Παρατήρηση ιδασκαλίας και Μοντέλο Συγγραφής Έκθεσης

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5. Μονοψήφιος πολλαπλασιασμός Προβλήματα αναλογίας

ΕΝΟΤΗΤΑ 5. Μονοψήφιος πολλαπλασιασμός Προβλήματα αναλογίας Μονοψήφιος πολλαπλασιασμός Προβλήματα αναλογίας ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.13 Αναπτύσσουν και εφαρμόζουν αλγόριθμους της πρόσθεσης, της αφαίρεσης, του πολλαπλασιασμού με τριψήφιους

Διαβάστε περισσότερα

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης Μαθηματικά Γ Δημοτικού Πέτρος Κλιάπης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση της προϋπάρχουσας

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα.

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα. Γιώργος Μαντζώλας ΠΕ03 Βοηθήστε τη ΕΗ Η προβληµατική της Εκπαιδευτικής ραστηριότητας Η επίλυση προβλήµατος δεν είναι η άµεση απόκριση σε ένα ερέθισµα, αλλά ένας πολύπλοκος µηχανισµός στον οποίο εµπλέκονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΛΟΓΑΡΕΖΩ ΜΕ ΤO TΖΙΜΙΔΙ Μ. ΚΕΦΑΛΑΙΟ 1: Γενικά θεωρητικά θέματα των νοερών υπολογισμών

ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΛΟΓΑΡΕΖΩ ΜΕ ΤO TΖΙΜΙΔΙ Μ. ΚΕΦΑΛΑΙΟ 1: Γενικά θεωρητικά θέματα των νοερών υπολογισμών ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΛΟΓΑΡΕΖΩ ΜΕ ΤO TΖΙΜΙΔΙ Μ Εισαγωγή ΚΕΦΑΛΑΙΟ 1: Γενικά θεωρητικά θέματα των νοερών υπολογισμών 1.1.: Η θέση των νοερών υπολογισμών στο σύγχρονο διδακτικό

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

Τα συμπτώματα που προειδοποιούν για τυχόν μαθησιακές δυσκολίες στην αριθμητική είναι τα εξής:

Τα συμπτώματα που προειδοποιούν για τυχόν μαθησιακές δυσκολίες στην αριθμητική είναι τα εξής: ...δεν σημαίνει χαμηλή νοημοσύνη Ονομάζεται δυσαριθμησία και είναι η μαθησιακή δυσκολία στα μαθηματικά. Τα παιδιά που παρουσιάζουν δυσκολίες στα μαθηματικά, δε σημαίνει πως έχουν χαμηλή νοημοσύνη. Της

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Α+Β Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 1.1 Αριθμοί 1-1000 Γραφή, Ανάγνωση, Απαγγελία, Απαρίθμηση, Σύγκριση, Συμπλήρωση (κατά αύξουσα

Διαβάστε περισσότερα

Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.

Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών. ΜΕΡΟΣ Α 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ 185 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα. εύτερη διάλεξη. Η στα αναλυτικά προγράµµατα. Η Ευκλείδεια αποτελούσε για χιλιάδες χρόνια µέρος της πνευµατικής καλλιέργειας των µορφωµένων ατόµων στο δυτικό κόσµο. Από τις αρχές του 20 ου αιώνα, καθώς

Διαβάστε περισσότερα

4.4 ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

4.4 ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΜΕΡΟΣ Α. ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ 177. ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΟΡΙΣΜΟΙ Αν οι παρατηρήσεις είναι πολλές τότε κάνουμε ομαδοποίηση των παρατηρήσεων χωρίζοντας το διάστημα που ανήκουν οι παρατηρήσεις σε υποδιαστήματα.

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1000

ΕΝΟΤΗΤΑ 12 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1000 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1000 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 1000. Αρ2.2 Συγκρίνουν και διατάσσουν τους φυσικούς αριθμούς

Διαβάστε περισσότερα

4.2 Μελέτη Επίδρασης Επεξηγηματικών Μεταβλητών

4.2 Μελέτη Επίδρασης Επεξηγηματικών Μεταβλητών 4.2 Μελέτη Επίδρασης Επεξηγηματικών Μεταβλητών Στο προηγούμενο κεφάλαιο (4.1) παρουσιάστηκαν τα βασικά αποτελέσματα της έρευνάς μας σχετικά με την άποψη, στάση και αντίληψη των μαθητών γύρω από θέματα

Διαβάστε περισσότερα

Η προβληματική κατάσταση Χρήστος Πανούτσος

Η προβληματική κατάσταση Χρήστος Πανούτσος Η προβληματική κατάσταση Χρήστος Πανούτσος Η Τζούλι και η μαμά της έχουν βγει για να αγοράσουν ένα τζιν για το σχολείο. Παρατηρούν έναν πάγκο με την εξής ταμπέλα πάνω: 40% έκπτωση των τιμών στις ετικέτες

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την

ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την 1 ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την παλαιότερη γνώση τους, σημειώνουν λεπτομέρειες, παρακολουθούν

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 9 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100. Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 100. Αρ1.2

ΕΝΟΤΗΤΑ 9 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100. Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 100. Αρ1.2 ΕΝΟΤΗΤΑ 9 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 100. Αρ1.2 Συγκρίνουν και διατάσσουν τους φυσικούς

Διαβάστε περισσότερα

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1

Διαβάστε περισσότερα

Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).

Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Μάθημα 5ο Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Ο δεύτερος ηλικιακός κύκλος περιλαμβάνει την ηλικιακή περίοδο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση )

ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση ) ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση ) Ι ΑΚΤΙΚΟ ΣΥΜΒΟΛΑΙΟ,ΕΙΚΟΝΕΣ ΚΑΙ ΕΠΙΛΥΣΗ ΜΗ ΡΕΑΛΙΣΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Η ΕΠΙ ΡΑΣΗ ΤΩΝ ΕΙΚΟΝΩΝ ΣΤΗΝ ΕΠΙΛΥΣΗ ΜΗ ΡΕΑΛΙΣΤΙΚΩΝ

Διαβάστε περισσότερα

ΑΝΑΓΝΩΣΙΜΟΤΗΤΑ ΤΩΝ ΚΕΙΜΕΝΩΝ ΚΑΙ Ο ΡΟΛΟΣ ΤΩΝ ΕΙΚΟΝΩΝ

ΑΝΑΓΝΩΣΙΜΟΤΗΤΑ ΤΩΝ ΚΕΙΜΕΝΩΝ ΚΑΙ Ο ΡΟΛΟΣ ΤΩΝ ΕΙΚΟΝΩΝ Αναγνωσιµότητα και Eικόνες ΑΝΑΓΝΩΣΙΜΟΤΗΤΑ ΤΩΝ ΚΕΙΜΕΝΩΝ ΚΑΙ Ο ΡΟΛΟΣ ΤΩΝ ΕΙΚΟΝΩΝ Αθανάσιος Γαγάτσης, Ιλιάδα Ηλία, Στυλιανή Καταλάνου Μοδεστίνα Μοδέστου, Ορτάνζια Ιωάννου Τµήµα Επιστηµών της Αγωγής, Πανεπιστήµιο

Διαβάστε περισσότερα

Βασικές έννοιες. Παραδείγµατα: Το σύνολο των φοιτητών που είναι εγγεγραµµένοι

Βασικές έννοιες. Παραδείγµατα: Το σύνολο των φοιτητών που είναι εγγεγραµµένοι Τι είναι η Στατιστική? Η ΣΤΑΤΙΣΤΙΚΗ ορίζεται σήµερα ως η επιστήµη που σχετίζεται µε τις επιστηµονικές µεθόδους συλλογής, παρουσίασης, αξιολόγησης και γενίκευσης (: εξαγωγής συµπερασµάτων) της πληροφορίας.

Διαβάστε περισσότερα

Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα.

Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 7 περιλαμβάνει τους διαμερισμούς και τη σύνθεση των αριθμών μέχρι το 10, στρατηγικές πρόσθεσης/αφαίρεσης και επίλυση προβλημάτων πρόσθεσης και αφαίρεσης.

Διαβάστε περισσότερα

Χαρακτηριστικά άτυπης αξιολόγησης

Χαρακτηριστικά άτυπης αξιολόγησης Προσαρμογή Διδακτικών Στόχων σε μαθητές με Μαθησιακές Δυσκολίες Νιάκα Ευγενία Ειδική παιδαγωγός, Σχολική Σύμβουλος Τι λάβαμε υπόψη; Το ατομικό ιστορικό των μαθητών Την αξιολόγηση της διεπιστημονικής ομάδας

Διαβάστε περισσότερα

Περιεχόμενα. Προλογικό Σημείωμα 9

Περιεχόμενα. Προλογικό Σημείωμα 9 Περιεχόμενα Προλογικό Σημείωμα 9 1 ο ΚΕΦΑΛΑΙΟ 1.1. Εισαγωγή 14 1.2 Τα βασικά δεδομένα των Μαθηματικών και οι γνωστικές απαιτήσεις της κατανόησης, απομνημόνευσης και λειτουργικής χρήσης τους 17 1.2.1. Η

Διαβάστε περισσότερα

Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά

Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά Καργιωτάκης Γιώργος, Μπελίτσου Νατάσσα Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά στις τάξεις Β, Δ και Ε (μιας διδακτικής ώρας). ΣΤΟΧΟΣ ΒΗΜΑΤΑ ΥΛΙΚΟ- ΧΡΟΝΟΣ ΕΝΕΡΓΕΙΕΣ Αρχική αξιολόγηση επιπέδου

Διαβάστε περισσότερα

Πώς μαθαίνουν οι μαθητές;

Πώς μαθαίνουν οι μαθητές; Τεχνικές για την καλλιέργεια δεξιοτήτων ανάγνωσης και γραφής Ευγενία Νιάκα Σχολική Σύμβουλος Πώς μαθαίνουν οι μαθητές; Οι μαθητές δεν απορροφούν «σαν σφουγγάρια», ούτε αποδέχονται άκριτα κάθε νέα πληροφορία.

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Σέργιος Σεργίου Λάμπρος Στεφάνου ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ 16 ο Συνέδριο Ε.Ο.Κ. 8-19 Οκτωβρίου 2016 Αξιοποίηση των Δεικτών Επάρκειας Ομαδική Εργασία Διαφοροποιημένη διδασκαλία

Διαβάστε περισσότερα

(http://www.statistics.gr, Στατιστικά στοιχεία -> Απογραφή -> Απογραφές >

(http://www.statistics.gr, Στατιστικά στοιχεία -> Απογραφή -> Απογραφές > Σενάριο 9. Μελέτη του πληθυσµού των µεταναστών στην Ελλάδα Γνωστική περιοχή: Στατιστική. Θέµα: Η χώρα µας όπως πολλές άλλες έχει δεχτεί τα τελευταία χρόνια µεγάλο αριθµό µεταναστών από διαφορετικές χώρες.

Διαβάστε περισσότερα

Μάϊος ιεύθυνση αλληλογραφίας: Ταµείο Θήρας, Υπουργείο Εσωτερικών, 1453, Λευκωσία. Ηλεκτρονική διεύθυνση:

Μάϊος ιεύθυνση αλληλογραφίας: Ταµείο Θήρας, Υπουργείο Εσωτερικών, 1453, Λευκωσία. Ηλεκτρονική διεύθυνση: Στατιστική Επεξεργασία Τηλεφωνικής Έρευνας Κάρπωσης Για Την Περίοδο Κυνηγίου 26 27 Μάϊος 27 ιεύθυνση αλληλογραφίας: Ταµείο Θήρας, Υπουργείο Εσωτερικών, 1453, Λευκωσία Ηλεκτρονική διεύθυνση: wildlife.thira@cytanet.com.cy

Διαβάστε περισσότερα

Πολύγωνο αθροιστικών σχετικών συχνοτήτων και διάµεσος µιας τυχαίας µεταβλητής ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Στην εργασία αυτή αναλύονται

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ

ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών

Διαβάστε περισσότερα