Μαθηματικά Στ Δημοτικού

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μαθηματικά Στ Δημοτικού"

Transcript

1 Μαθηματικά Στ Δημοτικού Τετράδιο εργασιών α τεύχος _MATHIMATIKA_A_TEU_ST_DHM.indd 1

2 ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚΔΟΣΗΣ ΣYΓΓPAΦEIΣ ΚΡΙΤΕΣ-ΑΞΙΟΛΟΓΗΤΕΣ ΕΙΚΟΝΟΓΡΑΦΗΣΗ ΦΙΛΟΛΟΓΙΚΗ ΕΠΙΜΕΛΕΙΑ ΥΠΕΥΘΥΝΟΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΚΑΤΑ ΤΗ ΣΥΓΓΡΑΦΗ ΥΠΕΥΘΥΝΟΣ TOY ΥΠΟΕΡΓΟΥ ΕΞΩΦΥΛΛΟ ΠΡΟΕΚΤΥΠΩΤΙΚΕΣ ΕΡΓΑΣΙΕΣ Όλγα Kασσώτη, Eκπαιδευτικός Πέτρος Kλιάπης, Eκπαιδευτικός Θωμάς Oικονόμου, Eκπαιδευτικός Δέσποινα Πόταρη, Kαθηγήτρια του Πανεπιστημίου Πατρών Δέσποινα Aγγελοπούλου, Σχολική Σύμβουλος Kωνσταντίνος Bρυώνης, Eκπαιδευτικός Aνδρέας Kατσαούνης, Σκιτσογράφος - Eικονογράφος Eυφροσύνη Ξιξή, Φιλόλογος Γεώργιος Tύπας, Mόνιμος Πάρεδρος του Παιδαγωγικού Iνστιτούτου Aθανάσιος Σκούρας, Mόνιμος Πάρεδρος του Παιδαγωγικού Iνστιτούτου Nικόλαος Nαυρίδης, Eικαστικός Kαλλιτέχνης ACCESS Γραφικές Tέχνες A.E. Στη συγγραφή του δεύτερου μέρους (1/3) έλαβε μέρος και ο Κώστας Ζιώγας, Εκπαιδευτικός Γ Κ.Π.Σ. / ΕΠΕΑΕΚ ΙΙ / Ενέργεια / Κατηγορία Πράξεων α: «Αναμόρφωση των προγραμμάτων σπουδών και συγγραφή νέων εκπαιδευτικών πακέτων» ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Μιχάλης Αγ. Παπαδόπουλος Ομότιμος Καθηγητής του Α.Π.Θ. Πρόεδρος του Παιδαγωγικού Ινστιτούτου Πράξη με τίτλο: «Συγγραφή νέων βιβλίων και παραγωγή υποστηρικτικού εκπαιδευτικού υλικού με βάση το ΔΕΠΠΣ και τα ΑΠΣ για το Δημοτικό και το Nηπιαγωγείο» Επιστημονικός Υπεύθυνος Έργου Γεώργιος Τύπας Mόν. Πάρεδρος του Παιδαγωγικού Ινστιτούτου Αναπληρωτής Επιστημονικός Υπεύθυνος Έργου Γεώργιος Oικονόμου Mόν. Πάρεδρος του Παιδαγωγικού Iνστιτούτου Έργο συγχρηματοδοτούμενο 75% από το Ευρωπαϊκό Κοινωνικό Ταμείο και 25% από εθνικούς πόρους. ΣΤΟΙΧΕΙΑ ΕΠΑΝΕΚΔΟΣΗΣ ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΨΗΦΙΑΚΗΣ ΜΑΚΕΤΑΣ, ΕΝΣΩΜΑΤΩΣΗ ΑΛΛΑΓΩΝ ΒΑΣEI ΥΠΟΔΕΙΞEΩΝ ΤΟΥ ΠΑΙΔΑΓΩΓΙΚΟΥ ΙΝΣΤΙΤΟΥΤΟΥ, ΠΡΟΕΚΤΥΠΩΤΙΚΕΣ ΕΡΓΑΣΙΕΣ: ΔΙΕΥΘΥΝΣΗ ΕΚΔΟΣΕΩΝ / Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» _MATHIMATIKA_A_TEU_ST_DHM.indd 2

3 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Πέτρος Kλιάπης Όλγα Kασσώτη Θωμάς Oικονόμου ANAΔOXOΣ ΣYΓΓPAΦHΣ: ΕΛΛΗΝΙΚΑ ΓΡΑΜΜΑΤΑ Α.Ε. Μαθηματικά Στ Δημοτικού Τετράδιο εργασιών α τεύχος ΙΝΣΤΙΤΟΥΤΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΕΚΔΟΣΕΩΝ «ΔΙΟΦΑΝΤΟΣ» _MATHIMATIKA_A_TEU_ST_DHM.indd 3

4 _MATHIMATIKA_A_TEU_ST_DHM.indd 4

5 1 ο Τεύχος Περιεχόμενα ΤΙΤΛΟΣ ΚΕΦΑΛΑΙΟΥ ΜΑΘΗΜΑΤΙΚΟΣ ΤΙΤΛΟΣ ΣΕΛΙΔΑ 1. Καλημέρα, φίλε μου Αριθμέ Φυσικοί αριθμοί 7 2. Αριθμοί με... συνοδεία Δεκαδικοί αριθμοί 9 3. Οι αριθμοί αλλάζουν εμφάνιση Μετατροπή δεκαδικών σε κλάσματα και αντίστροφα Οι αριθμοί αναμετριούνται Σύγκριση φυσικών ή δεκαδικών αριθμών Προσθέσεις και αφαιρέσεις Πρόσθεση και αφαίρεση φυσικών και δεκαδικών αριθμών Οι αριθμοί αναπαράγονται Πολλαπλασιασμός φυσικών και δεκαδικών αριθμών Δίκαιη μοιρασιά! Διαίρεση φυσικών και δεκαδικών αριθμών Μαθαίνω τη γλώσσα των αριθμών Πράξεις με μεικτές αριθμητικές παραστάσεις Μιλώ τη γλώσσα των αριθμών Λύνω σύνθετα προβλήματα των 4 πράξεων Ένα μηχάνημα που μιλάει μαθηματικά Η χρήση του υπολογιστή τσέπης 25 μαζί μου 11. Πρόχειροι λογαριασμοί Στρογγυλοποίηση φυσικών και δεκαδικών αριθμών Μπαίνεις μόνο αν χωράς ακριβώς Διαιρέτες ενός αριθμού Μ.Κ.Δ. αριθμών Μάντεψε τον μυστικό κανόνα μου Κριτήρια διαιρετότητας Είμαστε και οι πρώτοι! Πρώτοι και σύνθετοι αριθμοί Δέντρα με αριθμούς Παραγοντοποίηση φυσικών αριθμών Έχουμε πολλά κοινά μεταξύ μας Πολλαπλάσια ενός αριθμού Ε.Κ.Π Πολλοί μαζί είμαστε πιο δυνατοί Δυνάμεις Συσκευασία: «Δέκα σε ένα» Δυνάμεις του _MATHIMATIKA_A_TEU_ST_DHM.indd 5

6 _MATHIMATIKA_A_TEU_ST_DHM.indd 6

7 Kεφάλαιο 1ο Φυσικοί αριθμοί Kαλημέρα, φίλε µου Aριθμέ Άσκηση 1η Να γράψεις με ψηφία τους παρακάτω αριθμούς: α) διακόσια πέντε:... δ) πεντακόσια τριάντα δύο:... β) τρεις χιλιάδες δύο:... ε) τριακόσια εννιά:... γ) χίλια πενήντα:... στ) χίλια εκατόν ένα:... Άσκηση 2η Να σχηματίσεις όσο περισσότερους τριψήφιους φυσικούς αριθμούς μπορείς με τα ψηφία 2, 7 και 9. Σε κάθε αριθμό να χρησιμοποιήσεις κάθε ψηφίο μία φορά Πόσοι αριθμοί σχηματίστηκαν;... Άσκηση 3η Στον υπολογιστή τσέπης οι αριθμοί εμφανίζονται χωρίς διαχωριστικό στις χιλιάδες και στα εκατομμύρια. Να χωρίσεις τους παρακάτω αριθμούς με τελείες. Άσκηση 4η Όπως στο σταυρόλεξο γράφουμε λέξεις που διασταυρώνονται, έτσι και στον «σταυράριθμο» γράφουμε αριθμούς που διασταυρώνονται. Με την ομάδα σας να λύσετε τον «σταυράριθμο» κάνοντας τις πράξεις και να γράψετε τα αποτελέσματα οριζόντια ή κάθετα. ΟΡΙΖΟΝΤΙΑ (Α, Β, Γ,...) Α επί 7. Β συν Γ επί τις ημέρες μιας Εβδομάδας. Δ. Οι εκατοντάδες του είναι 1. Ε. Οι δεκάδες του είναι 8. ΚΑΘΕΤΑ (1, 2, 3,...) 1. Βρίσκονται μεταξύ 1 και 4. Το χωρίς... την 1η Ολυμπιάδα. 2. Η 2η χιλιετία πλην συν πλην τον αριθμό των εκατοντάδων του. 5. Όλες οι ώρες του Γενάρη. Προσπαθήστε με την ομάδα σας να φτιάξετε έναν δικό σας «σταυράριθμο» _MATHIMATIKA_A_TEU_ST_DHM.indd 7

8 Πρόβλημα 1ο Το βιβλίο του Ευγένιου Τριβιζά «Τα 88 Ντολμαδάκια» έχει τόσες σελίδες όσες θα βρεις αν διπλασιάσεις τον αριθμό που μας δείχνει πόσα είναι τα ντολμαδάκια και αφαιρέσεις τον αριθμό που μας δείχνει τις μέρες δύο εβδομάδων. Απάντηση:... Πρόβλημα 2ο Πόσα χρόνια έζησε καθένας από τους παρακάτω διάσημους επιστήμονες; l Rene Descartes (Καρτέσιος) l Sir Isaac Newton (Νεύτωνας) l Etienne Pascal (Πασκάλ) l Nicolaus Copernicus (Κοπέρνικος) l Pierre-Simon Laplace (Λαπλάς) l Διόφαντος της Αλεξανδρείας Συζητήστε στην ομάδα σας και βρείτε ποιοι από αυτούς δεν είχαν τη δυνατότητα να γνωριστούν προσωπικά. Απάντηση: Δραστηριότητα με προεκτάσεις: «Ιστορικές επέτειοι» Υπολογίστε πόσα χρόνια έχουν περάσει από: α) την επανάσταση του 1821, β) το ιστορικό ΟΧΙ του 1940, γ) την εξέγερση των φοιτητών στο Πολυτεχνείο το Απάντηση:... 8 Θέμα για διερεύνηση και συζήτηση l Σε ποιες ημερομηνίες τιμούνται αυτές οι επέτειοι κατά τη διάρκεια του σχολικού έτους; _MATHIMATIKA_A_TEU_ST_DHM.indd 8

9 Kεφάλαιο 2ο Δεκαδικοί αριθμοί Aριθμοί µε... συνοδεία Άσκηση 1η Να γράψεις με δεκαδικό αριθμό τα παρακάτω: α) τέσσερα εκατοστά... δ) σαράντα κόμμα δύο... β) εξήντα πέντε χιλιοστά... ε) ένα κόμμα ογδόντα ένα... γ) τριακόσια εβδομήντα εννιά χιλιοστά... Άσκηση 2η Να γράψεις την αξία του ψηφίου 3 στους παρακάτω αριθμούς: 123,041: ,09:... 0,36:... 18,293: ,93:... 20,3:... Άσκηση 3η Να γράψεις τους παρακάτω αριθμούς καταργώντας το μηδέν εκεί που δεν επηρεάζει την αξία του αριθμού: 1,650 μέτρα: ,50 :... 18,300 :... 06,900 κιλά:... 2,080 κιλά:... 30,090 χιλιόμετρα:... Άσκηση 4η Παρατηρώντας την αριθμογραμμή να αντιστοιχίσεις τον κατάλληλο αριθμό στο κατάλληλο γράμμα. A 0,88 2,02 4,003 6,008 0,8 2,22 4,33 6,08 B Γ Δ 0,008 2,002 4,3 6,8 0,08 2,2 4,03 6,88 Πρόβλημα 1ο Ο Άλκης θέλησε να μετρήσει το ύψος του. Δεν είχε όμως μέτρο, παρά μόνο έναν χάρακα 30 εκατοστών. Αποτύπωσε το ύψος του στον τοίχο και το μέτρησε με τον χάρακα. Το ύψος του ήταν 5 χάρακες και 11 εκατοστά. Πόσο είναι το ύψος του, αν το εκφράσουμε με δεκαδικό αριθμό; Απάντηση: _MATHIMATIKA_A_TEU_ST_DHM.indd 9

10 Πρόβλημα 2ο Οι μαθητές της Στ τάξης του 4ου Δημοτικού Σχολείου Κοκκινιάς, για να ενισχύσουν το ταμείο της τάξης τους, αποφάσισαν στο μάθημα των τεχνικών να κατασκευάσουν ημερολόγια και να τα πουλήσουν στη γειτονιά και τους συγγενείς τους. Τα παιδιά κατασκεύασαν 25 ημερολόγια και τα πούλησαν όλα προς 3,20 το καθένα. Ο ταμίας της τάξης, καθώς συγκέντρωνε τα χρήματα, πρόσεξε στο τέλος ότι είχε μόνο χαρτονομίσματα χωρίς να έχει καθόλου κέρματα. Ανησύχησε μήπως έχασε τα ψιλά. Εσείς τι λέτε; Απάντηση:... Δραστηριότητα με προεκτάσεις: «Μέγεθος και αξία χαρτονομισμάτων» Τα παιδιά της Στ τάξης του 2ου Δημοτικού Σχολείου Νίκαιας επισκέφθηκαν το Νομισματοκοπείο. Εκεί συγκέντρωσαν πολλές πληροφορίες για τα χαρτονομίσματα και την προστασία που έχουν από την παραχάραξη. Έμαθαν ότι τα χαρτονομίσματα δεν έχουν όλα τις ίδιες διαστάσεις και συγκεκριμένα για το κάθε χαρτονόμισμα οι διαστάσεις είναι οι εξής: 5 : πλάτος 6,15 εκ., μήκος 12,1 εκ., 10 : πλάτος 6,7 εκ., μήκος 12,75 εκ.,20 : πλάτος 7,2 εκ., μήκος 13,3 εκ.,50 : πλάτος 7,7 εκ., μήκος 14,1 εκ. Στη συνέχεια έβαλαν δύο χάρακες και άρχισαν να σχεδιάζουν το μήκος και το πλάτος των χαρτονομισμάτων στο χαρτί. Ξεκίνησαν με το νόμισμα των 5. Συνεχίστε σχεδιάζοντας με οδηγούς τους δύο χάρακες τα άλλα δύο χαρτονομίσματα με τα χρώματα του καθενός. Υπάρχει σχέση ανάμεσα στο μέγεθος και την αξία των χαρτονομισμάτων; Θέματα για διερεύνηση και συζήτηση 10 l Γνήσια και πλαστά προϊόντα στην οικονομία, τη μουσική, τις καλές τέχνες. l Υπήρχαν στην αρχαιότητα πλαστά νομίσματα; Γιατί; l Τι σημαίνει «προστασία πνευματικών δικαιωμάτων»; Τι δηλώνει το σήμα ; _MATHIMATIKA_A_TEU_ST_DHM.indd 10

11 Kεφάλαιο 3ο Μετατροπή δεκαδικών σε κλάσματα και αντίστροφα Oι αριθμοί αλλάζουν εμφάνιση Άσκηση 1η Να βάλεις σε κύκλο τα δεκαδικά κλάσματα και να τα γράψεις με τη μορφή δεκαδικού αριθμού: 25, 2, 50, 5, 234, 10, 1, 3, 150, Άσκηση 2η Να γράψεις τους παρακάτω δεκαδικούς αριθμούς με τη μορφή κλάσματος: 12,4:... 30,50:... 20,03:... 0,36:... 1,009:... 0,09:... Άσκηση 3η Να αντιστοιχίσεις το κατάλληλο κλάσμα στον κατάλληλο δεκαδικό αριθμό: l 8,08 l 0,8 l 0, l 4, l l l l 4,03 l l l l 0, l l l l 0,62 l 6,02 l 0,062 Πρόβλημα 1ο Ο Σωτήρης βγήκε πρώτος στο σχολείο του στο αγώνισμα του άλματος με επίδοση 2,08 μέτρα. Ο Λευτέρης βγήκε πρώτος στο δικό του σχολείο στο ίδιο αγώνισμα με επίδοση 280 του μέτρου. Ποιος 100 από τους δύο έκανε το καλύτερο άλμα; Απάντηση:... Πρόβλημα 2ο Η Εύη και η Βίκυ για το πάρτι τους θα φτιάξουν δύο γλυκά. Για το γλυκό της Εύης χρειάζονται 0,75 6 κιλά ζάχαρης, ενώ για το γλυκό της Βίκυς χρειάζονται του κιλού ζάχαρη. Θα τους φτάσουν τα 1,5 10 κιλά ζάχαρης που έχουν; Απάντηση: _MATHIMATIKA_A_TEU_ST_DHM.indd 11

12 Πρόβλημα 3ο Ο Στέργιος παραπονιέται ότι το χαρτζιλίκι που παίρνει κάθε πρωί για το σχολείο δεν του φτάνει και ζητά από τους γονείς του αύξηση. Εκείνοι του βάζουν το παρακάτω δίλημμα: «Τι προτιμάς ως αύξηση στα χρήματα που παίρνεις: 15 την ημέρα ή 0,8 κάθε Δευτέρα πρωί;». Τι να προτιμήσει; 100 Απάντηση:... Δραστηριότητα με προεκτάσεις: «Αστική συγκοινωνία» Ο δήμος Χανίων, στο πλαίσιο της αναβάθμισης των συγκοινωνιών για τους κατοίκους του νομού, αποφάσισε να σχεδιάσει ξανά τα δρομολόγια της αστικής συγκοινωνίας που συνδέει την πόλη (1) με το αεροδρόμιο (3) και τα γύρω χωριά. Εξέτασαν λοιπόν το οδικό δίκτυο του νομού και κατέληξαν στα εξής συμπεράσματα σε ό,τι αφορά τις διαδρομές που είναι δυνατό να σχεδιαστούν: Α ΔΙΑΔΡΟΜΗ (ΜΟΒ) Χιλιόμετρα Β ΔΙΑΔΡΟΜΗ (ΜΠΛΕ) Χιλιόμετρα Χανιά διασταύρωση (1-2) 5,5 Χανιά - διασταύρωση (1-2) 5,5 Διασταύρωση Κουνουπιδιανά 2,5 Διασταύρωση Κορακιές Κουνουπιδιανά Καμπάνι 3,5 Κορακιές Αρώνι Καμπάνι αεροδρόμιο (3) 5,5 Αρώνι Ανεμόμυλοι Ανεμόμυλοι Ζορνάδης 1 Ζορνάδης αεροδρόμιο (3) 1 ΣΥΝΟΛΟ Α ΔΙΑΔΡΟΜΗΣ ΣΥΝΟΛΟ Β ΔΙΑΔΡΟΜΗΣ Συμπληρώστε τα σύνολα κάθε διαδρομής και συζητήστε στην ομάδα σας για τη συντομότερη διαδρομή. Θέματα για διερεύνηση και συζήτηση 12 l Εκτός από την απόσταση, ποιοι άλλοι παράγοντες πρέπει να ληφθούν υπόψη κατά τη σχεδίαση συγκοινωνιακών διαδρομών; l Γιατί χρειάζεται επανεξέταση των δρομολογίων σε μια περιοχή, αφού υπάρχει συγκοινωνιακό δίκτυο από πολλά χρόνια; l Ο ρόλος της συγκοινωνίας στην αρχαιότητα και σήμερα _MATHIMATIKA_A_TEU_ST_DHM.indd 12

13 Kεφάλαιο 4ο Σύγκριση φυσικών ή δεκαδικών αριθμών Άσκηση 1η Oι αριθμοί αναμετριούνται Να γράψεις τους παρακάτω φυσικούς αριθμούς: α) τον μικρότερο τετραψήφιο:... β) τον μεγαλύτερο πενταψήφιο:... γ) τις πιθανές τιμές της θερμοκρασίας, όταν η Ε.Μ.Υ. ανακοινώνει ότι η θερμοκρασία θα κυμανθεί μεταξύ 7 και 11 βαθμών:... Άσκηση 2η Να συμπληρώσεις το σύμβολο της σχέσης ανάμεσα στα παρακάτω ζευγάρια αριθμών: 165, ,99 165,75 9,935 9,93 0,096 0, , ,01 401, Άσκηση 3η Να βρεις τους αριθμούς που αντιστοιχούν στα γράμματα σε κάθε αριθμογραμμή και να τους γράψεις: Απάντηση:... Απάντηση:... Πρόβλημα 1ο α. 2,80 β. 1,15 γ. 3,20 δ. 2,25 ε. 1,35 στ. 1,20 ζ. 2,40 η. 1,85 Με βάση τις παραπάνω τιμές να παραγγείλετε: α) ένα γεύμα ακριβότερο από 3,20 και φθηνότερο από 5,40 β) ένα γεύμα φθηνότερο από 3,80 γ) ένα γεύμα ακριβότερο από 3,80 Απάντηση: _MATHIMATIKA_A_TEU_ST_DHM.indd 13

14 Πρόβλημα 2ο Το ασανσέρ μιας πολυκατοικίας μπορεί να μεταφέρει 200 κιλά (μέγιστο επιτρεπόμενο φορτίο). Το συνολικό βάρος των ανθρώπων που μεταφέρονται κάθε φορά πρέπει να είναι μικρότερο ή ίσο με αυτό. Να εξετάσετε τις περιπτώσεις που ακολουθούν και να εκφράσετε το αποτέλεσμα με τα σύμβολα της σύγκρισης. α) Μια οικογένεια απαρτίζεται από τα εξής μέλη: μπαμπάς 85 κιλά, μαμά 62 κιλά, αγόρι 40 κιλά, κορίτσι 31 κιλά. Μπορούν να ανέβουν όλοι μαζί; β) Πέντε φίλοι του αγοριού ζυγίζουν: 38 κιλά, 37 κιλά, 40 κιλά, 42 κιλά και 41 κιλά. Μπορούν να ανέβουν όλοι μαζί; Μπορούν να κατέβουν μαζί με το αγόρι; γ) Δύο άλλοι ένοικοι ετοιμάζονται να ανέβουν, από τους οποίους ο ένας ζυγίζει 98 κιλά και ο άλλος 79 κιλά. Το κορίτσι θέλει επίσης να ανέβει. Είναι δυνατόν να ανεβεί μαζί τους; Γιατί; Απαντήσεις: α)... β)... γ)... Δραστηριότητα με προεκτάσεις: «Ο πληθυσμός της Ελλάδας» Στον διπλανό πίνακα παρουσιάζεται ο πληθυσμός της Ελλάδας κατά τις απογραφές των ετών 1971, 1981, 1991 και l Πόσα χρόνια έχουν περάσει από το 1971 ως το 2001; l Κατά τη διάρκεια αυτών των χρόνων ο πληθυσμός συνολικά παρουσιάζει αύξηση ή μείωση; Πόσο; Πραγματικός πληθυσμός της Ελλάδας κατά φύλο και ομάδες ηλικιών Απογραφές Άρρενες Θήλεις Σύνολο ετών ετών Άνω των Πηγή: ΕΣΥΕ - Η Ελλάδα με αριθμούς, l Στην τελευταία απογραφή είναι περισσότεροι οι άνδρες ή οι γυναίκες; Πόσο;... l Ποια μερίδα πληθυσμού, παρουσιάζει μείωση μετά το 1981; Πόσο μειώθηκε ο πληθυσμός της από την απογραφή του 1991 μέχρι την απογραφή του 2001;... l Αν υποθέσουμε ότι η μείωση του πληθυσμού αυτής της μερίδας θα είναι ίδια και κατά τα επόμενα χρόνια, με αυτή της τελευταίας δεκαετίας τότε ποιος θα είναι ο πληθυσμός της το 2011;... Θέματα για διερεύνηση και συζήτηση l Τι φαίνεται ότι θα συμβεί στον συνολικό πληθυσμό της Ελλάδας το 2011; 14 l Ποιοι παράγοντες επηρεάζουν την αύξηση ή τη μείωση του πληθυσμού μιας χώρας; _MATHIMATIKA_A_TEU_ST_DHM.indd 14

15 Kεφάλαιο 5ο Πρόσθεση και αφαίρεση φυσικών και δεκαδικών αριθμών Προσθέσεις και αφαιρέσεις Άσκηση 1η Να κάνεις τις παρακάτω πράξεις κάθετα: α) 199,09 + 0,09 β) 27,5 + 4,085 γ) 100 5,123 δ) 5 + 8,01+ 0,1 ε) 0,111 0,009 στ) 34, ,35 ζ) 47,2 9,99 η) , ,58 α) β) γ) δ) ε) στ) ζ) η) Άσκηση 2η Να συμπληρώσετε τον αριθμό ή το σύμβολο που λείπει από τις παρακάτω πράξεις: α) β) γ) δ) ε) στ) 3,8 +...,35 37, , ,15 0,8 10,5 + 3, , ,07 120,07 10, = = = 130 ζ) 13,2 + 2,6 =... 15,8 13,2 =... 15,8...= 13,2 Άσκηση 3η Το μαγικό τετράγωνο ανακαλύφθηκε από τους Κινέζους το 90 μ.χ. Στο τετράγωνο αυτό το άθροισμα κάθε γραμμής, κάθε στήλης και κάθε διαγωνίου είναι το ίδιο. Να συμπληρώσετε με την ομάδα σας τα παρακάτω μαγικά τετράγωνα: ,4 2, ,3 2,8 293 Πρόβλημα 1ο Το κοινό μιας παιδικής θεατρικής παράστασης απαρτίζεται από 416 θεατές. Οι άνδρες μαζί με τα παιδιά είναι 304. Οι γυναίκες μαζί με τα παιδιά είναι 333. Οι άνδρες μαζί με τις γυναίκες είναι 195. Πόσοι είναι οι άνδρες, πόσες οι γυναίκες και πόσα τα παιδιά; Απάντηση:... Διατυπώστε ένα δικό σας παρόμοιο πρόβλημα με κότες, γαλοπούλες και πάπιες σε ένα πτηνοτροφείο, ή ό,τι άλλο σκεφτείτε _MATHIMATIKA_A_TEU_ST_DHM.indd 15

16 Πρόβλημα 2ο Η μητέρα της Μαργαρίτας αγόρασε 2,5 κιλά ζάχαρη. Χρησιμοποίησε 325 γραμμάρια για να φτιάξει μπισκότα και 1,45 κιλά για να φτιάξει μαρμελάδα. Πόση ζάχαρη της έμεινε; Δώσε την απάντηση σε κιλά. Απάντηση:... Δραστηριότητα με προεκτάσεις: «Θερμίδες: Τα καύσιμα του σώματος» Η τροφή περιέχει ουσίες που αναπληρώνουν τα συστατικά του ανθρώπινου σώματος που φθείρονται ή σχηματίζουν τους ιστούς ενός αναπτυσσόμενου οργανισμού. Τέτοιες ουσίες είναι οι πρωτεΐνες (λευκώματα), οι υδατάνθρακες και τα λίπη. Το ποσό της ενέργειας που απελευθερώνεται από την «καύση» (διάσπαση) της τροφής μέσα στον οργανισμό λέγεται ενεργειακή ή θερμιδική αξία της τροφής και εξαρτάται από την αναλογία σε υδατάνθρακες, λίπη, πρωτεΐνες και νερό που περιέχει. Πίνακας θερμιδικής αξίας τροφών Στα 100 γρ. Γάλα πλήρες Τυρί φέτα Γιαούρτι Δημητριακά Corn Flakes Μπισκότα Φυσικός Χυμός Λουκάνικα χωριάτικα Θερμίδες (kcal) ,8 320 Πρωτεΐνη (γρ.) 3,2 16,5 6,65 9 7,5 0,6 20 Υδατάνθρακες (γρ.) 4,7 0,7 3, ,5 11,6 Λίπη (γρ.) 3,5 23 3, Γνωρίζοντας ότι τα παιδιά ηλικίας ετών χρειάζονται 60 θερμίδες την ημέρα για κάθε κιλό βάρους τους και με βάση την πυραμίδα διατροφής που βλέπετε να σχεδιάσετε τη διατροφή μιας ημέρας για ένα παιδί 43 κιλών. Τροφές που περιέχουν περίπου 100 kcal (θερμίδες) 20 γραμμάρια σοκολάτας 1 μεγάλο αβγό 2 φέτες ψωμιού ολικής άλεσης 95 γρ. ψημένης πατάτας ενάμισι μήλο 1 κιλό κουνουπίδι 60 γρ. κοτόπουλο 50 γρ. πατατάκια Θέματα για διερεύνηση και συζήτηση 16 l Ο ρόλος της άσκησης και του αθλητισμού στην «καύση» θερμίδων. l Ο ρόλος της διατροφής στην υγεία. l Ιστορικά στοιχεία για τη διατροφή των Ελλήνων και τη διατροφή σε άλλους λαούς και πολιτισμούς _MATHIMATIKA_A_TEU_ST_DHM.indd 16

17 Kεφάλαιο 6ο Πολλαπλασιασμός φυσικών και δεκαδικών αριθμών Οι αριθμοί αναπαράγονται Άσκηση 1η Συμπληρώστε τις ισότητες: 9,75... = 97,5 4, =... 6,97... = Άσκηση 2η Υπολογίζω τα παρακάτω γινόμενα: 8, =... 0,97 10=... 8,7... = 0,87 978,87 0,1 = ,89... = 9, ,5 0,001 = (3 + 2) = (3 + 0,2) = (0,3 + 0,2) =... 1,5 (3 + 2) = (2,3 + 3,2) =... 0,15 (3 + 2) =... Άσκηση 3η Συμπληρώστε τους παρακάτω πίνακες πολλαπλασιασμού: X X Άσκηση 4η Με τη βοήθεια του πρώτου γινομένου κάθε στήλης να υπολογίσεις με τον νου τα παρακάτω γινόμενα: = ,2 8,5 =... 0, = = ,3 97 =... 5,83 0,97 = = ,8 6,38 = =... Πρόβλημα 1ο Ο Bill Gates, ιδρυτής της εταιρείας Microsoft, το 2003 κέρδιζε 5 λεπτά κάθε δευτερόλεπτο. Πόσα χρήματα κέρδιζε σε 1 λεπτό, σε 1 ώρα, σε 1 ημέρα, σε 1 μήνα, σε 1 έτος; Απάντηση: _MATHIMATIKA_A_TEU_ST_DHM.indd 17

18 Πρόβλημα 2ο Το κυλικείο του σχολείου κάθε μέρα πουλάει 4 κιβώτια φυσικό χυμό. Κάθε κιβώτιο περιέχει 25 χυμούς που ο καθένας πουλιέται 0,35. Πόσα χρήματα εισπράττει από τη Δευτέρα μέχρι την Παρασκευή; Απάντηση:... Πρόβλημα 3ο Ο δήμος Ρόδου θέλησε να συντηρήσει τη μία δεξαμενή υδροδότησης της πόλης. Αφού έκλεισαν τις παροχές που φένουν νερό στη δεξαμενή, σε 80 λεπτά η δεξαμενή άδειασε από τους δύο αγωγούς υδροδότησης της πόλης. Ο ένας αγωγός αδειάζει 119,8 λίτρα νερού το λεπτό, ενώ ο άλλος 192,7 λίτρα το λεπτό. Πόσα λίτρα νερού είχε η δεξαμενή; Απάντηση:... Δραστηριότητα με προεκτάσεις: «Νοικιάζω αυτοκίνητο» Η οικογένεια Δροσινού σχεδιάζει διακοπές στην Πελοπόννησο για περίπου μια εβδομάδα και χρειάζεται να νοικιάσει ένα αυτοκίνητο για το διάστημα αυτό. Έπειτα από έρευνα βρήκαν τις παρακάτω επιλογές: *εβδομαδιαία χρέωση 1 *εβδομαδιαία χρέωση 2 ημερήσια χρέωση 1 ημερήσια χρέωση την εβδομάδα, απεριόριστα χιλιόμετρα. 199 την εβδομάδα, συν 20 λεπτά το χιλιόμετρο. 50 την ημέρα, απεριόριστα χιλιόμετρα. 40 την ημέρα, συν 10 λεπτά το χιλιόμετρο. (*) επιπλέον ημέρες χρεώνονται ως πλήρης εβδομάδα. Η οικογένεια υπολογίζει ότι θα διανύσει περίπου 600 χιλιόμετρα. l Ποιο πρόγραμμα τους συμφέρει να επιλέξουν, αν μείνουν ακριβώς μια εβδομάδα;... l Ποιο πρόγραμμα είναι πιο οικονομικό, αν μείνουν περισσότερες ημέρες;... Θέματα για διερεύνηση και συζήτηση 18 l Γιατί οι άνθρωποι χρειάζονται διακοπές; l Έκαναν διακοπές κατά την αρχαιότητα; l Κάνουν διακοπές τα ζώα; _MATHIMATIKA_A_TEU_ST_DHM.indd 18

19 Kεφάλαιο 7ο Διαίρεση φυσικών και δεκαδικών αριθμών ίκαιη µοιρασιά! Άσκηση 1η Να υπολογίσεις με τον νου τα παρακάτω πηλίκα: (22+30) : 2 =... (80+160) : 8 =... 0 : 3 = : =... 0,99 : 10 =... 3,05 : 100 =... 0,25 : 0,1 = : 0,001 = : 50 =... Άσκηση 2η Συμπλήρωσε τους αριθμούς που λείπουν από τον πίνακα, κάνοντας τις πράξεις με τον νου: Διαιρετέος Δ διαιρέτης δ πηλίκο π υπόλοιπο υ Δ = δ. π + υ = Πρόβλημα 1ο Για να φτιάξουμε ένα δικό μας CD με τις φωτογραφίες, τα κείμενα και τις εργασίες μας χρειαζόμαστε τα εξής: άγραφα CDs, αυτοκόλλητες ετικέτες και πλαστικές θήκες. Τα άγραφα CDs κοστίζουν 4,50 τα 25, οι ετικέτες 0,55 οι 5 και οι θήκες 4,20 η δεκάδα. Μπορείς να υπολογίσεις πόσο θα κοστίσει το ένα CD; Απάντηση: _MATHIMATIKA_A_TEU_ST_DHM.indd 19

20 Πρόβλημα 2ο O Σύλλογος Γονέων του Δημοτικού Σχολείου Κάσου αγόρασε για το σχολείο τρεις υπολογιστές, από τους οποίους ο καθένας κόστισε 710, και έναν εκτυπωτή που κόστισε 60. Συμφώνησαν να πληρώσουν σε 8 δόσεις. Τι ποσό θα πληρώνουν σε κάθε δόση; Απάντηση:... Δραστηριότητα με προεκτάσεις: «Η γέφυρα του Γκαρ (Gard)» Περίπου δύο χιλιάδες χρόνια πριν, στη Γαλατία (σημερινή Γαλλία) οι Ρωμαίοι κατασκεύασαν ένα σπουδαίο έργο. Πρόκειται για ένα κανάλι που έφερνε νερό στο υδραγωγείο της πόλης Νιμ από απόσταση 50 χιλιομέτρων χρησιμοποιώντας μόνο τη φυσική ροή του νερού που, λόγω της βαρύτητας, αναγκάζεται να κυλά από ένα ψηλό σημείο προς ένα χαμηλότερο (όπως συμβαίνει στα ποτάμια). Για να περνά το πόσιμο νερό τα φυσικά εμπόδια, χρειάστηκε να κατασκευαστούν γέφυρες και σήραγγες. Η πιο σπουδαία γέφυρα είναι αυτή του ποταμού Γκαρ. Αποτελείται από 3 επίπεδα τα οποία στηρίζονται σε αψίδες. Το κάτω επίπεδο έχει 6 αψίδες, οι οποίες έχουν ύψος 22 μ. Το μεσαίο επίπεδο έχει 11 αψίδες με ύψος 20 μ. Το ψηλότερο επίπεδο έχει 35 αψίδες, η καθεμία από τις οποίες έχει ύψος 7 μ. και πλάτος 3,06 μ. Η κατασκευή όλου του έργου διήρκεσε 10 χρόνια και το κόστος του ήταν όσο οι μισθοί στρατιωτών για την ίδια χρονική περίοδο. Στο υδραγωγείο της πόλης, που τροφοδοτούσε τις δημόσιες βρύσες, τα λουτρά και τις κατοικίες των ευγενών, διοχετεύονταν από το κανάλι 430 λίτρα νερού το δευτερόλεπτο. α) Υπολογίστε το συνολικό ύψος της γέφυρας. β) Γνωρίζοντας ότι η υψομετρική διαφορά ανάμεσα στην πηγή και το υδραγωγείο της Νιμ είναι 12 μέτρα (και ότι η διαφορά αυτή μοιράζεται στα 50 χιλιόμετρα του καναλιού), να βρείτε την κλίση ανά χιλιόμετρο (δηλαδή πόσο «χαμηλώνει» το κανάλι σε κάθε χιλιόμετρο) ώστε να μπορεί να κυλά το νερό. γ) Αν οι ανάγκες του ατόμου σε νερό ήταν 50 λίτρα το 24ωρο, να υπολογίσετε πόσοι άνθρωποι θα μπορούσαν να ζήσουν στη Νιμ εκείνη την εποχή. Φωτογραφία: Alison Scott 20 Θέματα για διερεύνηση και συζήτηση l Γιατί απεικονίζεται η γέφυρα του Γκαρ στο χαρτονόμισμα των 5 ; l Γιατί η UNESCO συμπεριέλαβε αυτή τη γέφυρα στον κατάλογο «Παγκόσμιας Πολιτιστικής Κληρονομιάς» το 1985; l Το νερό στην αρχαία εποχή και σήμερα ως παράγοντας ευημερίας. l Το κόστος του έργου με σημερινές τιμές _MATHIMATIKA_A_TEU_ST_DHM.indd 20

21 Kεφάλαιο 8ο Πράξεις με μεικτές αριθμητικές παραστάσεις Μαθαίνω τη γλώσσα των αριθμών Άσκηση 1η Να υπολογίσετε με την ομάδα σας τις παρακάτω αριθμητικές παραστάσεις: 3. (5 + 4). 6 = 5, (6,7-0,7) (8,2 + 1,8) = : = 6. (2 + 15) - 12 : = Άσκηση 2η Να βρείτε με δυο τρόπους την τιμή των παραστάσεων: : = : 2. (4-3) + 1 = ,7. ( ) = α τρόπος β τρόπος Άσκηση 3η ( ) : 15 = α τρόπος β τρόπος ,4. (4,5-2,5) = α τρόπος β τρόπος Συμπλήρωσε τις παραστάσεις με τις παρενθέσεις που λείπουν για να ισχύουν οι ισότητες: = 2 4,5 + 5,5. 10 = : = 12 Πρόβλημα 1ο «Η κρυφή συνταγή» Ο αρχιμάγειρας Ανρί έχει «κρύψει» την ποσότητα για κάθε υλικό του διάσημου μους του σε αριθμητικές παραστάσεις, γιατί πιστεύει πως οι ανταγωνιστές του προσπαθούν να του κλέψουν τη συνταγή. Στον πίνακα βλέπετε τον κατάλογο των συστατικών, όπως τον έγραψε ο Ανρί. Μπορείτε να υπολογίσετε τις αριθμητικές παραστάσεις για να ανακαλύψετε την ποσότητα κάθε υλικού για 4 μερίδες μους; Σοκολάτα (γρ.) (4 + 5). (18 + 7) + 25 Βανίλια (γρ.) 100 : 25 : 4 Βούτυρο (κουταλιές) Αβγά Ζάχαρη (κούπες) 6. 2 : (2 + 4) Κρέµα γάλακτος (γρ.) 28. (20-10) - 55 = = = = = = _MATHIMATIKA_A_TEU_ST_DHM.indd 21

22 Πρόβλημα 2ο Η Γεωργία, η Αθηνά, η Σμαρώ και η Κατερίνα πήγαν το Σάββατο το μεσημέρι στην πιτσαρία της γειτονιάς τους. Παρήγγειλαν 2 πίτσες, 2 μακαρονάδες, 1 φυσικό χυμό, 3 αναψυκτικά και 4 παγωτά. Στο τέλος μοιράστηκαν τον λογαριασμό. Συμβουλέψου τον τιμοκατάλογο και υπολόγισε με μια αριθμητική παράσταση πόσο πλήρωσε η καθεμία. Τιµοκατάλογος Πίτσα 4,60 Μακαρονάδα 3,90 Αναψυκτικά 0,90 Φυσικός χυμός 1, 30 Παγωτό 1,25 Απάντηση:... Δραστηριότητα με προεκτάσεις: «Νερό, το πιο πολύτιμο αγαθό» Μαγείρεμα, καθάρισμα, πότισμα, πλύσιμο... το νερό είναι απαραίτητο κάθε μέρα στους ανθρώπους σε κάθε γωνιά της γης. Το ξοδεύουμε όμως με σύνεση; Μελετήστε τον πίνακα και απαντήστε. Ενεργώ απερίσκεπτα Λίτρα Ενεργώ με περίσκεψη Λίτρα Μπάνιο σε γεμάτη μπανιέρα Πλύσιμο δοντιών (η βρύση ανοιχτή) Πλύσιμο πιάτων στο χέρι (24ωρο) Πλυντήριο πιάτων (πλήρες πρόγρ.) Πλυντήριο ρούχων (πλήρες πρόγρ.) Ξύρισμα (βρύση συνεχώς ανοιχτή) Πλύσιμο αυτοκινήτου με λάστιχο Βρύση που στάζει (24ωρο) Καζανάκι χωρίς ειδική σακούλα 180 Ντους (κλειστό στο σαπούνισμα) Πλύσιμο δοντιών (η βρύση κλειστή) 0,5 150 Πλύσιμο-ξέβγαλμα στον νεροχύτη Πλυντ. πιάτων (οικονομικό πρόγρ.) Πλυντ. ρούχων (οικονομικό πρόγρ.) Ξύρισμα (νερό όταν χρειάζεται) Πλύσιμο αυτοκινήτου με κουβά Βρύση που δεν στάζει 0 10 Καζανάκι με ειδική σακούλα Καζανάκι 2 ταχυτήτων 7 3 ή 6 Πηγή: ΕΥΑΘ 2004, ΔΕΥΑΚ 2004 Με βάση τις παραπάνω πληροφορίες μπορείς να υπολογίσεις χρησιμοποιώντας αριθμητικές παραστάσεις; α) Το νερό που ξοδεύεις εσύ σε μια εβδομάδα;... β) Το νερό που ξοδεύει η οικογένειά σου σε μια εβδομάδα;... Θέματα για διερεύνηση και συζήτηση l Επαρκούν τα 150 λίτρα νερό την ημέρα για τις ανάγκες της σύγχρονης οικογένειας; l Οι ανάγκες μας για νερό στο μέλλον θα αυξηθούν ή θα ελαττωθούν; l Τι γίνεται το νερό που χρησιμοποιούμε; l Ο ρόλος των φυτών στο νερό Μια μικρή έρευνα: Σύμφωνα με στοιχεία από την εταιρεία ύδρευσης της περιοχής σας υπολογίστε την κατανάλωση νερού ανά οικογένεια _MATHIMATIKA_A_TEU_ST_DHM.indd 22

23 Kεφάλαιο 9ο Λύνω σύνθετα προβλήματα των 4 πράξεων Πρόβλημα 1ο Μιλώ τη γλώσσα των αριθμών Ο Παναγιώτης χρωστά σε δύο συμμαθητές του το ίδιο χρηματικό ποσό. Παρατηρεί ότι με τα χρήματα που έχει, αν εξοφλήσει τον έναν, θα του περισσέψουν 2,30. Όμως, για να εξοφλήσει και τον δεύτερο, του χρειάζονται ακόμη 1,70. Πόσα χρήματα έχει; Απάντηση:... Πρόβλημα 2ο Ο Φίλιππος θέλει να αγοράσει τρία αυτοκίνητα-μινιατούρες, το καθένα από τα οποία κοστίζει 3,6. Έχει ήδη συγκεντρώσει 8. Σε πόσες ημέρες θα συγκεντρώσει όλο το ποσό, αν μπορεί να αποταμιεύει 0,2 την ημέρα; Απάντηση:... Πρόβλημα 3ο Ο Κωνσταντίνος δίνει στον Θωμά τις μισές κάρτες της συλλογής του. Εκείνος με τη σειρά του δίνει τις μισές από αυτές που πήρε στον Δημήτρη. Ο Δημήτρης κρατάει 10 και χαρίζει τις υπόλοιπες 8. Πόσες κάρτες είχε ο Κωνσταντίνος; Απάντηση: _MATHIMATIKA_A_TEU_ST_DHM.indd 23

24 Πρόβλημα 4ο Ο κύριος Κατσαρίδης πρόκειται να αγοράσει ένα αυτοκίνητο αξίας Ο έμπορος του προσφέρει τις εξής επιλογές: να πληρώσει το συνολικό ποσό σε μετρητά ή να δώσει προκαταβολή και 24 δόσεις των 230. Πόσο θα πληρώσει περισσότερο αν αποφασίσει να το αγοράσει με δόσεις; Απάντηση:... Δραστηριότητα με προεκτάσεις: «Η μεγαλύτερη κρεμαστή γέφυρα του κόσμου» Από το τέλος του 2004 η χώρα μας έχει τη μεγαλύτερη σε μήκος κρεμαστή γέφυρα στον κόσμο. Πρόκειται για τη γέφυρα που συνδέει το Ρίο με το Αντίρριο. Πριν από την κατασκευή της γέφυρας 2 εκατομμύρια αυτοκίνητα τον χρόνο που μετέφεραν 6 εκατομμύρια επιβάτες περνούσαν από την Πελοπόννησο στη Στερεά Ελλάδα με πλοία. Η διαδρομή διαρκούσε 45 λεπτά και πολλές φορές λόγω του κακού καιρού τα πλοία έμεναν δεμένα. Η γέφυρα άρχισε να κατασκευάζεται το 1998 και τελείωσε το Η κυρίως γέφυρα είναι καλωδιωτή (κρέμεται σε συρματόσχοινα) και στηρίζεται σε 4 πυλώνες (κολόνες), το ύψος των οποίων επάνω από τη στάθμη της θάλασσας φθάνει τα 159 μ. και το βύθισμά τους από 44 έως 62 μ. κάτω από τη στάθμη της θάλασσας. Η γέφυρα έχει τρία κεντρικά ανοίγματα των 560 μ. και δύο ακραία των 305 μ. Για να συνδεθεί με το οδικό δίκτυο κατασκευάστηκαν στα δύο άκρα της γέφυρες πρόσβασης. Οι γέφυρες πρόσβασης έχουν μήκος 378 μ. στην πλευρά του Ρίου και 252 μ. στην πλευρά του Αντιρρίου. α) Να υπολογίσετε το συνολικό μήκος της γέφυρας (μαζί με τις γέφυρες πρόσβασης). β) Να υπολογίσετε τον χρόνο (σε δευτερόλεπτα) που θα κάνει ένα αυτοκίνητο για να διασχίσει τη γέφυρα κινούμενο με ταχύτητα 36 χιλιομέτρων την ώρα. γ) Να υπολογίσετε πόσο πρέπει να χρεώνεται για διόδια η διέλευση κάθε αυτοκινήτου από τη γέφυρα, αν ισχύουν οι ακόλουθες προϋποθέσεις: l Η συνολική δαπάνη του έργου ανέρχεται σε 588 εκατομμύρια. l Ο αριθμός των αυτοκινήτων που περνούν απέναντι με τη γέφυρα έχει διπλασιαστεί σε σχέση με τον αριθμό των αυτοκινήτων που χρησιμοποιούσαν τα πλοία. l Η απόσβεση του ποσού κατασκευής της γέφυρας έχει οριστεί να γίνει σε 20 χρόνια. 24 Θέμα για διερεύνηση και συζήτηση l Ωφέλησε η γέφυρα τις δύο περιοχές που συνδέει; _MATHIMATIKA_A_TEU_ST_DHM.indd 24

25 Kεφάλαιο 10ο Η χρήση του υπολογιστή τσέπης Ένα µηχάνηµα που µιλάει µαθηματικά µαζί µου Άσκηση 1η Στην παρακάτω εικόνα να ενώσεις με μια γραμμή τα πλήκτρα του υπολογιστή τσέπης με τα ονόματά τους: Εισαγωγή αριθμού στην αθροιστική μνήμη Εμφάνιση περιεχομένου μνήμης Καθαρισμός (άδειασμα) της μνήμης Καθαρισμός οθόνης Πλήκτρο πολλαπλασιασμού Πλήκτρο πρόσθεσης Πλήκτρο διαίρεσης Πλήκτρο αφαίρεσης Άσκηση 2η Κάνε μια πράξη στον υπολογιστή τσέπης, ώστε να αλλάξει το ψηφίο που είναι υπογραμμισμένο με αυτό που δίνεται στην παρένθεση, χωρίς να αλλάξουν τα υπόλοιπα ψηφία του αριθμού και σημείωσε την πράξη που έκανες (9) (0) ÕÛÎËÛË 3Ë... Άσκηση 3η (1)... 0,24(5)... 23,55 (0) (2)... Κάνε μια πράξη στον υπολογιστή τσέπης (και σημείωσέ τη μετά) ώστε: το 103 να γίνει Τι πρέπει να κάνουμε για να: γίνει πάλι το 9,45 να γίνει 94,5... γίνει πάλι 9,45... το να γίνει 56,2... γίνει πάλι Πρόβλημα 1ο Η Γη κατά την περιφορά της γύρω από τον Ήλιο διανύει σε έναν μήνα χιλιόμετρα. Υπολόγισε με τον υπολογιστή τσέπης πόσα χιλιόμετρα διανύει την ημέρα. Απάντηση: _MATHIMATIKA_A_TEU_ST_DHM.indd 25

Όλες οι απαντήσεις. Μαθηματικά Στ Δημοτικού

Όλες οι απαντήσεις. Μαθηματικά Στ Δημοτικού Όλες οι απαντήσεις Μαθηματικά Στ Δημοτικού ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Στ Δημοτικού Σειρά: Τα εκπαιδευτικά μου βιβλία / Δημοτικό / Μαθηματικά Γιάννης Ζαχαρόπουλος, Όλες οι απαντήσεις:

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης

Διαβάστε περισσότερα

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 1 (ΜΟΝΑΔΕΣ 40) α) Ο αριθμός 1.047 έχει διαιρέτη το 3; Να δικαιολογήσετε την απάντησή σας. β) Να βάλετε

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20 Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20 Πηγή: e-selides 1. Μετρώ από το 1.000 μέχρι το 2.000 ανά 100: 1.000, 1.100. 2. Γράφω με

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

Λύνω τις ασκήσεις. 2. Γράφω δίπλα πώς διαβάζεται καθένας από τους παρακάτω αριθμούς:

Λύνω τις ασκήσεις. 2. Γράφω δίπλα πώς διαβάζεται καθένας από τους παρακάτω αριθμούς: Λύνω τις ασκήσεις 1. Γράφω δίπλα με ψηφία τους παρακάτω αριθμούς: Εκατόν ενενήντα εννέα:.. Τριακόσια ένα: Τετρακόσια πενήντα οκτώ:... Πεντακόσια εννέα:.. Οχτακόσια ογδόντα οκτώ:.... Εννιακόσια δύο: Εννιακόσια

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ Περιεχόμενα Κεφάλαιο : Θυμάμαι ό,τι έμαθα από την Γ Τάξη... 5 Κεφάλαιο : Διαχειρίζομαι αριθμούς ως το 0.000... 8 Κεφάλαιο

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ

THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΔΟΚΙΜΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΧΡΟΝΟΣ: 1 ΩΡΑ 3 ΛΕΠΤΑ Το δοκίμιο αυτό αποτελείται από δύο μέρη. Το πρώτο μέρος αποτελείται από 15 ερωτήσεις πολλαπλής επιλογής.

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα ilias ili Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα Αριθμοί μέχρι το 1000 - Οι τέσσερις πράξεις Γεωμετρικά σχήματα Πηγή: e-selides 1) Γράφω τους

Διαβάστε περισσότερα

Όλες οι απαντήσεις. Μαθηματικά Γ Δημοτικού

Όλες οι απαντήσεις. Μαθηματικά Γ Δημοτικού Όλες οι απαντήσεις Μαθηματικά Γ Δημοτικού ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Γ Δημοτικού Σειρά: Τα εκπαιδευτικά μου βιβλία / Δημοτικό / Μαθηματικά Γιάννης Ζαχαρόπουλος, Όλες οι απαντήσεις:

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής Κλάσματα Ένα βράδυ τρεις φίλοι αγοράζουν πίτσα και την χωρίζουν σε οκτώ κομμάτια. Ο ένας έφαγε το ένα, ο δεύτερος τα τρία και ο τρίτος δύο κομμάτια. Μπορείς να βρεις το μέρος της πίτσας που έφαγε ο καθένας

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 10 ΜΕΤΡΗΣΗ-ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

ΕΝΟΤΗΤΑ 10 ΜΕΤΡΗΣΗ-ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ-ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα και δεκαδικούς αριθμούς, χρησιμοποιώντας κατάλληλο υλικό όπως επιφάνειες,

Διαβάστε περισσότερα

Γρήγοροι πολλαπλασιασμοί και διαιρέσεις με 10, 100, 1.000

Γρήγοροι πολλαπλασιασμοί και διαιρέσεις με 10, 100, 1.000 Γρήγοροι πολλαπλασιασμοί και διαιρέσεις με 0, 00,.000 α. Τα παιδιά ενός σχολείου πλήρωσαν για την εκδρομή τους 0. Πόσο κόστισε το εισιτήριο για κάθε παιδί αν πάρουν μέρος στην εκδρομή συνολικά 00 παιδιά;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΜΕΤΡΗΣΕΙΣ ΜΕΓΕΘΩΝ 2.1 Παράσταση αριθμών με σημεία μιας ευθείας.

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΜΕΤΡΗΣΕΙΣ ΜΕΓΕΘΩΝ 2.1 Παράσταση αριθμών με σημεία μιας ευθείας. 1. ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΜΕΤΡΗΣΕΙΣ ΜΕΓΕΘΩΝ 2.1 Παράσταση αριθμών με σημεία μιας ευθείας. α) Στην παραπάνω εικόνα οι χρωματιστοί δείκτες μας δείχνουν κάποιους αριθμούς. Συμπληρώστε τον παρακάτω

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ. Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ. Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες 1 Ερμηνεία και κατασκευή γραφικών παραστάσεων 1. Η αγαπημένη γεύση παγωτού των παιδιών Γεύση

Διαβάστε περισσότερα

Διαχειρίζομαι αριθμούς έως το 10.000

Διαχειρίζομαι αριθμούς έως το 10.000 Α Περίοδος Διαχειρίζομαι αριθμούς έως το 10.000 Στο μάθημα αυτό θα ασχοληθούμε με την εκτίμηση υπολογισμών, δηλαδή με την εύρεση ενός αποτελέσματος στο «περίπου» ή «κατ εκτίμηση» ή «πάνω-κάτω» ή «χοντρά-χοντρά»,

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 0-0 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 0 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής). THE G

Διαβάστε περισσότερα

Αισθητοποίηση, γραφή και ονομασία αριθμών

Αισθητοποίηση, γραφή και ονομασία αριθμών Αριθμοί Θέματα: - Αισθητοποίηση, γραφή και ονομασία αριθμών - Αξία θέσης ψηφίου, ανάλυση/σύνθεση αριθμών - Σύγκριση αριθμών - Στρογγυλοποίηση - Πράξεις και ιδιότητες πράξεων - Κλάσματα - εκαδικοί - Αναλογίες

Διαβάστε περισσότερα

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 2 1. Ο Άρης έφαγε 5 μιας σοκολάτας και ο Φίλιππος έφαγε 1 10 σοκολάτας περισσότερο από τον Άρη. Τι μέρος της σοκολάτας έμεινε;

Διαβάστε περισσότερα

Mαρία Πριοβόλου. Οδηγός προετοιμασίας. για τα Πρότυπα Πειραματικά Γυμνάσια. Μαθηματικά

Mαρία Πριοβόλου. Οδηγός προετοιμασίας. για τα Πρότυπα Πειραματικά Γυμνάσια. Μαθηματικά Mαρία Πριοβόλου Οδηγός προετοιμασίας για τα Πρότυπα Πειραματικά Γυμνάσια Μαθηματικά Θέση υπογραφής δικαιούχου δικαιωμάτων πνευματικής ιδιοκτησίας, εφόσον η υπογραφή προβλέπεται από τη σύμβαση. Το παρόν

Διαβάστε περισσότερα

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ.

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 1. Οι φυσικοί αριθμοί. Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 0, 1,2,3,4,5,6,7,8,9, 10,..., 100,..., 1.000,..., 10.0000,10.001,..., 100.000, 100.001, 100.002,..., 200.000,...,

Διαβάστε περισσότερα

4 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

4 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 6 79 ΑΘΗΝΑ Τηλ. 366532-367784 - Fax: 36425 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 6 79 - Athens

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Çëßáò Ã. ÊáñêáíéÜò - Έφη Ι. Σουλιώτου Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Α Τεύχος 1 Απαγορεύεται η αναπαραγωγή µέρους ή του συνόλου του παρόντος έργου µε οποιοδήποτε τρόπο ή µορφή, στο πρωτότυπο ή σε

Διαβάστε περισσότερα

Μαθηματικά A Γυμνασίου

Μαθηματικά A Γυμνασίου Μαθηματικά A Γυμνασίου Κεφ 5 ο - Ποσοστά. Μέρος Α Θεωρία 1. Πως ονομάζεται το σύμβολο α% και με τι είναι ίσο; 2. Πως μπορούμε να υπολογίσουμε το α% του β; 3. Τι είναι ο ΦΠΑ και πως τον υπολογίζουμε; Μέρος

Διαβάστε περισσότερα

Α = 2010 2009 + 2008 2007 + 2006 2005 +...+ 4 3 + 2 1 είναι : Α) 2010 Β) 1005 Γ) 5 Δ) 2009 Ε) Κανένα από τα προηγούμενα. είναι :

Α = 2010 2009 + 2008 2007 + 2006 2005 +...+ 4 3 + 2 1 είναι : Α) 2010 Β) 1005 Γ) 5 Δ) 2009 Ε) Κανένα από τα προηγούμενα. είναι : ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 010 Χρόνος: 60 λεπτά Ε ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ 1 Η τιμή της αριθμητικής παράστασης Α = 010 009 + 008 007 + 006 005 +...+ 4 3 + 1 είναι

Διαβάστε περισσότερα

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +...

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +... 2 Διαχειρίζομαι αριθμούς ως το 10. 00 Για να εξασκηθώ 1. Βρίσκω το διπλάσιο των αριθμών όπως στο παράδειγμα. 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200 α) 3.400... +... +... +...... +... =...

Διαβάστε περισσότερα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 015 Εισαγωγικό σημείωμα Σύμφωνα με τις οδηγίες της ΔΕΠΠΣ: Στα Μαθηματικά ελέγχονται οι ικανότητες των μαθητών/τριών στην κατανόηση και στην

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Ακολουθίας. Πίνακας τιµών µεταβλητών Χ Α Β α 5 20 8 10 23 15 15 23 8 β 3 18 4 8 17 13 13 17 4 γ

ΑΣΚΗΣΕΙΣ Ακολουθίας. Πίνακας τιµών µεταβλητών Χ Α Β α 5 20 8 10 23 15 15 23 8 β 3 18 4 8 17 13 13 17 4 γ ΑΣΚΗΣΕΙΣ Ακολουθίας Η δοµή Ακολουθίας είναι η πιο απλή δοµή του δοµηµένου προγραµµατισµού. Η κάθε εντολή ακολουθεί κάποια άλλη. Οι εντολές εκτελούνται ακριβώς µε τη σειρά όπως θα δοθούν στον αλγόριθµο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: ΣΤΡΑΤΗΓΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΡΙΘΜΩΝ-19 ο ΚΕΦΑΛΑΙΟ ΣΧΟΛΕΙΟ: 2 ο ΠΕΙΡΑΜΑΤΙΚΟ ΦΛΩΡΙΝΑΣ

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 2 η Ενότητα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 2 η Ενότητα Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 2 η Ενότητα Πηγή: e-selides 1. Βρίσκω και γράφω τα γινόμενα: 4Χ8= 3Χ8= 4Χ9= 3Χ9= 2Χ8= 8Χ8= 6Χ8= 8Χ9= 6Χ9= 2Χ9=

Διαβάστε περισσότερα

16 ΟΚΤΩΒΡΙΟΥ : Παγκόσμια Ημέρα Διατροφής. 24 ΟΚΤΩΒΡΙΟΥ Παγκόσμια Ημέρα Παχυσαρκίας

16 ΟΚΤΩΒΡΙΟΥ : Παγκόσμια Ημέρα Διατροφής. 24 ΟΚΤΩΒΡΙΟΥ Παγκόσμια Ημέρα Παχυσαρκίας 16 ΟΚΤΩΒΡΙΟΥ : Παγκόσμια Ημέρα Διατροφής 24 ΟΚΤΩΒΡΙΟΥ Παγκόσμια Ημέρα Παχυσαρκίας Η διατροφή σημαντικός παράγοντας υγείας!! ΔΙΑΤΡΟΦΗ ΚΛΗΡΟΝΟ ΜΙΚΟΤΗΤΑ ΥΓΕΙΑ ΠΕΡΙΒΑΛΛΟΝ ΑΝΘΥΓΕΙΝΕΣ ΣΥΝΗΘΕΙΕΣ Ποιά είναι η

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΕΙΣ ΓΝΩΣΕΩΝ ΔΕΞΙΟΤΗΤΩΝ

ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΕΙΣ ΓΝΩΣΕΩΝ ΔΕΞΙΟΤΗΤΩΝ 1. Φτιάχνουμε στόχους με άδεια κουτιά. Αν χρειαστήκαμε 6 κουτιά για να στήσουμε 3 σειρές, πόσα κουτιά θα χρειαστούμε για να στήσουμε μία παρόμοια πυραμίδα με 5 σειρές; Α. Β. Γ. Δ. 2. Πόσα κουτιά θα χρειαστούμε

Διαβάστε περισσότερα

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,

Διαβάστε περισσότερα

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ : ΛΕΜΟΝΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ ΑΠΟΣΠΑΣΜΕΝΗ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : ΚΑΠΠΑΤΟΥ ΝΑΤΑΣΣΑ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ:

Διαβάστε περισσότερα

Ακολουθίες ΕΝΟΤΗΤΑ. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε την ακολουθία. Να ορίζουμε τι είναι όρος ακολουθίας.

Ακολουθίες ΕΝΟΤΗΤΑ. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε την ακολουθία. Να ορίζουμε τι είναι όρος ακολουθίας. ΕΝΟΤΗΤΑ Ακολουθίες Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε την ακολουθία. Να ορίζουμε τι είναι όρος ακολουθίας. Να αναπαριστούμε τις ακολουθίες με διάφορους τρόπους. Να βρίσκουμε τον επόμενο όρο ή τον

Διαβάστε περισσότερα

Η λεοπάρδαλη, η νυχτερίδα ή η κουκουβάγια βλέπουν πιο καλά μέσα στο απόλυτο σκοτάδι;

Η λεοπάρδαλη, η νυχτερίδα ή η κουκουβάγια βλέπουν πιο καλά μέσα στο απόλυτο σκοτάδι; ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ Η λεοπάρδαλη, η νυχτερίδα ή η κουκουβάγια βλέπουν πιο καλά μέσα στο απόλυτο σκοτάδι; Κανένα από αυτά τα ζώα. Στο απόλυτο σκοτάδι είναι αδύνατο να δει κανείς ο,τιδήποτε. Ποια δουλειά

Διαβάστε περισσότερα

3. Ποιες είναι οι χρήσεις του νερού;

3. Ποιες είναι οι χρήσεις του νερού; φ ύλ τάξη: όνομα: σχολείο: υλικά: μολύβια, στυλό, χαρτί / διάρκεια: 2 διδακτικές ώρες λ ο ε ργ α σί α ς3 3. Ποιες είναι οι χρήσεις του νερού; Σε ποιες ανθρώπινες δραστηριότητες (στο σπίτι, στην εργασία,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ. α. 3:8 β. 9:10 γ. 132:234 δ. 45:68. 2. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα:

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ. α. 3:8 β. 9:10 γ. 132:234 δ. 45:68. 2. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα: ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Κλάσματα Η έννοια του κλάσματος. Να γραφούν σαν κλάσματα τα πηλίκα των διαιρέσεων 0 δ.. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα δ.. Ένα σχολείο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ 1. Ταξινόμηση αντικειμένων ως προς τα χαρακτηριστικά τους Βάλε μαζί σε έναν κύκλο τα λουλούδια με το ίδιο χρώμα και το ίδιο όνομα. Κοίταξε προσεκτικά την εικόνα και απάντησε: Πόσα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις :

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις : ΓΥΜΝΑΣ Ο ΕΞΑΠ ΑΤΑΝΟΥ ΣχολK Έτος: OMNM-OMNN Τάξη: Α Μάθημα: ΜΑΘΗΜΑΤΙ Α Ημερομηνία : 30/0/2011 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN Θέμα 1 ο (ΘΕΩΡ Α) Επιλέξτε τη σωστή απάντηση στις παρακάτω

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ 2.1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ.

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ 2.1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Στην πρώτη στήλη του παρακάτω πίνακα δίνονται κάποιες προτάσεις στην φυσική τους γλώσσα. Να συμπληρώσετε την δεύτερη στήλη

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty Επαναληπτικό Φυλλάδιο Μαθηματικών Α Γυμνασίου uiopasdfghjklzxcvbnmqwertyui 3 η έκδοση 29/04/15

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Γ Δημοτικού Γ 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Γ Δημοτικού Γ 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά Γ Δημοτικού Γ 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Γ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 01, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 2 ο. Πρόγραμμα ΤΡΟΠΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΤΡΟΦΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ. Εκπαίδευση στην πυραμίδα της υγιεινής διατροφής ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΜΑΘΗΜΑ 2 ο. Πρόγραμμα ΤΡΟΠΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΤΡΟΦΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ. Εκπαίδευση στην πυραμίδα της υγιεινής διατροφής ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΡΕΥΝΗΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Πρόγραμμα ΤΡΟΠΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΤΡΟΦΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΣΕ ΕΥΠΑΘΕΙΣ ΟΜΑΔΕΣ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΠΛΗΘΥΣΜΟΥ ΚΑΤA ΤΗ ΔΙΑΡΚΕΙΑ ΖΩΗΣ ΟΜΑΔΑ ΠΑΡΕΜΒΑΣΗΣ ΜΕ 4 ΕΙΔΙΚΟΥΣ ΜΑΘΗΜΑ

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 1. ΟΙ ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1.000

ΕΝΟΤΗΤΑ 1 1. ΟΙ ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1.000 Γ Δ η μ ο τ ι κ ο ύ 1 ΕΝΟΤΗΤΑ 1 1. ΟΙ ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1.000 Μαθαίνω... Τριψήφιοι λέγονται οι αριθμοί που έχουν τρία ψηφία. Οι τριψήφιοι αριθμοί αποτελούνται από Εκατοντάδες (Ε), Δεκάδες (Δ) και Μονάδες

Διαβάστε περισσότερα

Στρογγυλοποίηση. Βασικές ασκήσεις Βασική θεωρία. Δεκαδικό ανάπτυγμα φυσικού αριθμού - Δεκαδική τάξη ψηφίων 1.1 Δίνεται ο αριθμός 23.586.504.

Στρογγυλοποίηση. Βασικές ασκήσεις Βασική θεωρία. Δεκαδικό ανάπτυγμα φυσικού αριθμού - Δεκαδική τάξη ψηφίων 1.1 Δίνεται ο αριθμός 23.586.504. 1 1 Φυσικοί αριθμοί Διάταξη Στρογγυλοποίηση Δεκαδικό ανάπτυγμα φυσικού αριθμού - Δεκαδική τάξη ψηφίων 1.1 Δίνεται ο αριθμός 23.586.504. α) Τι δηλώνει κάθε ψηφίο αυτού του αριθμού ανάλογα με τη θέση του;

Διαβάστε περισσότερα

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Πόσες ώρες έχουν περάσει από τις 6:45 πμ μέχρι τις 11:45 μμ της ίδιας μέρας; Α. 5 Β. 17 Γ. 24 Δ. 29 Ε. 41 1 1 2. Αν το χ είναι μεταξύ 1 και 1 +, τότε το χ μπορεί να είναι ίσο με τον κάθε 5 5 αριθμό

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Εισαγωγή. Ειρήνη Σταματούδη, LL.M., Ph.D. Διευθύντρια Ο.Π.Ι.

Εισαγωγή. Ειρήνη Σταματούδη, LL.M., Ph.D. Διευθύντρια Ο.Π.Ι. Εισαγωγή Ο οδηγός που κρατάς στα χέρια σου είναι μέρος μιας σειράς ενημερωτικών οδηγών του Οργανισμού Πνευματικής Ιδιοκτησίας. Σκοπό έχει να δώσει απαντήσεις σε κάποια βασικά ερωτήματα που μπορεί να έχεις

Διαβάστε περισσότερα

Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ. Να γραφεί ο τύπος της Ευκλείδειας διαίρεσης. Πότε ένας αριθμός διαιρείται με το, πότε με το, το, και πότε με το 9. ( Δώστε παράδειγμα) Ποιοι αριθμοί καλούνται πρώτοι

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

Περιεχόμενα. Σελίδα 3 από 21

Περιεχόμενα. Σελίδα 3 από 21 Σελίδα 1 από 21 Σελίδα 2 από 21 Περιεχόμενα Κεφάλαιο 1 Χρήσεις του υπολογιστή... 4 Κεφάλαιο 2 Βασικά τμήματα υπολογιστή... 6 Κεφάλαιο 3 - Ασφάλεια... 9 Κεφάλαιο 4 - Ποντίκι... 11 Κεφάλαιο 5 - Πληκτρολόγιο...

Διαβάστε περισσότερα

για τους µαθητές της 2ας ηµοτικού

για τους µαθητές της 2ας ηµοτικού για τους µαθητές της 2ας ηµοτικού ΗΡΑΚΛΕΙΟ 2006 2 Αυτό το βιβλίο εργασίας ανήκει στ... µαθητ Αντώνης Καφάτος Καθηγητής Προληπτικής Ιατρικής και ιατροφής Τοµέας Κοινωνικής Ιατρικής Τµήµα Ιατρικής Πανεπιστήµιο

Διαβάστε περισσότερα

THE GRAMMAR SCHOOL ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011. Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα.

THE GRAMMAR SCHOOL ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011. Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα. THE GRAMMAR SCHOOL ΑΡΙΘΜΟΣ: ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011 ΘΕΜΑ : ΧΡΟΝΟΣ : ΜΑΘΗΜΑΤΙΚΑ 1 ΩΡΑ ΚΑΙ 30 ΛΕΠΤΑ Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα. 2. Απαγορεύεται

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 4 (για µαθητές της Γ' τάξης Γυµνασίου και Α' τάξης Λυκείου)

Θέµατα Καγκουρό 2007 Επίπεδο: 4 (για µαθητές της Γ' τάξης Γυµνασίου και Α' τάξης Λυκείου) Kangourou Sans Frontières αγκουρό Ελλάς Επώνυµο:... Όνοµα:... Όνοµα πατέρα:... e-mail:... ιεύθυνση:... Τηλέφωνο:... Εξεταστικό έντρο:... Σχολείο προέλευσης:... Τάξη:... Θέµατα αγκουρό 007 Επίπεδο: 4 (για

Διαβάστε περισσότερα

B. ΠΡΟΒΛΗΜΑΤΑ ΑΠΟ ΔΙΑΓΩΝΙΣΜΟΥΣ

B. ΠΡΟΒΛΗΜΑΤΑ ΑΠΟ ΔΙΑΓΩΝΙΣΜΟΥΣ Τα Mαθηματικά παίζουν κυρίαρχο ρόλο σε όλους τους χώρους της σύγχρονης κοινωνίας. Όλα σχεδόν τα επιτεύγματα της τεχνολογίας και της ε- πιστήμης στηρίζονται στην ανάπτυξη των Μαθηματικών. Αλλά και τα προβλήματα

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΙΣΟΔΥΝΑΜΑ ΚΛΑΣΜΑΤΑ

ΣΧΕΔΙΑΣΜΟΣ ΙΣΟΔΥΝΑΜΑ ΚΛΑΣΜΑΤΑ ΣΧΕΔΙΑΣΜΟΣ ΙΣΟΔΥΝΑΜΑ ΚΛΑΣΜΑΤΑ ΒΙΩΝΟΝΤΑΣ ΤΟ ΓΝΩΣΤΟ ΔΡΑΣΤΗΡΙΟΤΗΤΑ 1 Δέκα μαθητές (εθελοντές) θα μοιραστούν 6 σοκολάτες που βρίσκονται πάνω σε 3 καρέκλες, όπως δείχνει η εικόνα. Κάθε ένας πρέπει να κατευθυνθεί

Διαβάστε περισσότερα

ΓΙΑ ΕΦΗΒΟΥΣ ΚΑΙ ΕΝΗΛΙΚΟΥΣ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ

ΓΙΑ ΕΦΗΒΟΥΣ ΚΑΙ ΕΝΗΛΙΚΟΥΣ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ ΓΙΑ ΕΦΗΒΟΥΣ ΚΑΙ ΕΝΗΛΙΚΟΥΣ Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Π Ρ Ο Φ Ο Ρ Ι Κ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 5 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α

Διαβάστε περισσότερα

ΠΡΟΣΘΕΣΗ ΤΡΙΨΗΦΙΩΝ ΑΡΙΘΜΩΝ. Δέσπω Σωτηρίου

ΠΡΟΣΘΕΣΗ ΤΡΙΨΗΦΙΩΝ ΑΡΙΘΜΩΝ. Δέσπω Σωτηρίου ΠΡΟΣΘΕΣΗ ΤΡΙΨΗΦΙΩΝ ΑΡΙΘΜΩΝ ΜΕ ΑΘΡΟΙΣΜΑ ΜΕΧΡΙ ΤΟ 1000 Δέσπω Σωτηρίου Ε Δημοτικό Σχολείο Αγλαντζιάς Γενικές πληροφορίες Σχολείο: Ε Δημοτικό Αγλαντζιάς Τμήμα: Γ 2 Αριθμός μαθητών: 16 Όνομα Συμβούλου: Ιφιγένεια

Διαβάστε περισσότερα

Περί Γνώσεως Φροντιστήριο Μ.Ε. Φυσική Α Γυμνασίου. ΜΕΤΡΗΣΕΙΣ Μήκους - Μάζας Χρόνου.

Περί Γνώσεως Φροντιστήριο Μ.Ε. Φυσική Α Γυμνασίου. ΜΕΤΡΗΣΕΙΣ Μήκους - Μάζας Χρόνου. 10 ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΓΙΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΤΗΣ Α' ΓΥΜΝΑΣΙΟΥ > ΜΕΤΡΗΣΕΙΣ Μήκους - Μάζας Χρόνου. Επιμέλεια ύλης και απαντήσεων: Γ.Φ.Σ ι ώ ρ η ς Φυσικός.- Email: georgesioris@yahoo.gr

Διαβάστε περισσότερα

Ερωτηματολόγιο Προγράμματος "Ασφαλώς Κυκλοφορώ" (αρχικό ερωτηματολόγιο) Για μαθητές Δ - Ε - ΣΤ Δημοτικού

Ερωτηματολόγιο Προγράμματος Ασφαλώς Κυκλοφορώ (αρχικό ερωτηματολόγιο) Για μαθητές Δ - Ε - ΣΤ Δημοτικού Ερωτηματολόγιο Προγράμματος "Ασφαλώς Κυκλοφορώ" (αρχικό ερωτηματολόγιο) Για μαθητές Δ - Ε - ΣΤ Δημοτικού Tάξη & Τμήμα:... Σχολείο:... Ημερομηνία:.../.../200... Όνομα:... Ερωτηματολόγιο Προγράμματος "Ασφαλώς

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού)

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Ερωτήσεις 3 πόντων: 1) Η γάτα θέλει να πάει στο γάλα και το ποντίκι στο τυρί, ακολουθώντας τους δρόµους του κήπου. Οι διαδροµές

Διαβάστε περισσότερα

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω.

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω. η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 200 Χρόνος: 60 λεπτά ΣΤ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ Ο πενταψήφιος αριθμός 45Β7Α, στον οποίο τα ψηφία των μονάδων και των εκατοντάδων είναι σημειωμένα με Α και Β, διαιρείται

Διαβάστε περισσότερα

Η ΤΡΟΧΙΑ ΤΟΥ ΗΛΙΟΥ. Σελίδα 1 από 6

Η ΤΡΟΧΙΑ ΤΟΥ ΗΛΙΟΥ. Σελίδα 1 από 6 Η ΤΡΟΧΙΑ ΤΟΥ ΗΛΙΟΥ Στόχος(οι): Η παρατήρηση της τροχιάς του ήλιου στον ουρανό και της διακύμανση της ανάλογα με την ώρα της ημέρας ή την εποχή. Εν τέλει, η δραστηριότητα αυτή θα βοηθήσει τους μαθητές να

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΘΕΜΑ: «Αριθμοί στην καθημερινή ζωή»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΘΕΜΑ: «Αριθμοί στην καθημερινή ζωή» ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΙΙ ΘΕΜΑ: «Αριθμοί στην καθημερινή ζωή» Βόκα Δέσποινα & Δούρου

Διαβάστε περισσότερα

«ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική)

«ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική) ΝΤΑΗ ΕΙΡΗΝΗ ΤΜΗΜΑ: Π.Τ.Δ.Ε, ΠΑΤΡΑΣ 2012-13 ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ Ε.ΚΟΛΕΖΑ «ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική) [1] Στόχοι της ενότητας(οι μαθητές

Διαβάστε περισσότερα

3 + 5 = 23 :13 + 18 = 23

3 + 5 = 23 :13 + 18 = 23 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών ΑΡ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

κάθε σχήματος. 1. Σκιάζω τα 3 4

κάθε σχήματος. 1. Σκιάζω τα 3 4 Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΑΘΗΝΑ Τηλ. 665-6778 - Fax: 605 ος Μαθητικός Διαγωνισμός Για μαθητές της Ε Τάξης Δημοτικού Ονοματεπώνυμο:. Δημοτικό Σχολείο. Τάξη/Τμήμα. Σκιάζω τα κάθε σχήματος..

Διαβάστε περισσότερα

για τους µαθητές της 1ης ηµοτικού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Ιατρικής Τοµέας Κοινωνικής Ιατρικής Κλινική Προληπτικής Ιατρικής και ιατροφής

για τους µαθητές της 1ης ηµοτικού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Ιατρικής Τοµέας Κοινωνικής Ιατρικής Κλινική Προληπτικής Ιατρικής και ιατροφής για τους µαθητές της 1ης ηµοτικού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Ιατρικής Τοµέας Κοινωνικής Ιατρικής Κλινική Προληπτικής Ιατρικής και ιατροφής ΗΡΑΚΛΕΙΟ 2006 1 Αυτό το βιβλίο εργασίας ανήκει στ... µαθητ Αντώνης

Διαβάστε περισσότερα

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Ορισμός Ευκλείδεια διαίρεση ονομάζεται η πράξη κατά την οποία ένας αριθμός

Διαβάστε περισσότερα

Γρίφος 1 ος Ένας έχει μια νταμιτζάνα με 20 λίτρα κρασί και θέλει να δώσει σε φίλο του 1 λίτρο. Πώς μπορεί να το μετρήσει, χωρίς καθόλου απ' το κρασί να πάει χαμένο, αν διαθέτει μόνο ένα δοχείο των 5 λίτρων

Διαβάστε περισσότερα

Η Έννοια του Κλάσµατος

Η Έννοια του Κλάσµατος Η Έννοια του Κλάσµατος Κεφάλαιο ο. Κλασµατική µονάδα λέγεται το ένα από τα ίσα µέρη, στα οποία χωρίζουµε την ακέραια µονάδα. Έχει τη µορφή, όπου α µη µηδενικός φυσικός αριθµός (α 0, α διάφορο του µηδενός).

Διαβάστε περισσότερα