ΑΝΩΣΗ ΑΡΧΗ ΤΟΥ ΑΡΧΙΜΗΔΗ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΝΩΣΗ ΑΡΧΗ ΤΟΥ ΑΡΧΙΜΗΔΗ"

Transcript

1 ΑΝΩΣΗ ΑΡΧΗ ΤΟΥ ΑΡΧΙΜΗΔΗ Έστω στερεό πρίσμα ύψους h και διατομής A έχει βυθιστεί σε ρευστό πυκνότητας ρ. H πίεση που ασκείται επάνω του εκ μέρους του υγρού έχει σαν αποτέλεσμα την εμφάνιση δυνάμεων, από τις οποίες, εκείνες που ασκούνται στην παράπλευρη επιφάνεια αλληλοαναιρούνται. 'Eτσι μένουν μόνον οι δυνάμεις οι ασκούμενες στις βάσεις: F = p A και F = p A h A W F F F B = F F W H F που ασκείται στην κάτω επιφάνεια, θα είναι οπωσδήποτε μεγαλύτερη από την F, γιατί και η πίεση στο σημείο εκείνο είναι μεγαλύτερη, λόγω του μεγαλύτερου βάθους. Επομένως στο πρίσμα ασκείται εκ μέρους του υγρού δύναμη: F B = F - F = (p - p ) A που έχει φορά προς τα επάνω και ονομάζεται άνωση. 'Oταν το πρίσμα βρίσκεται μέσα σε ρευστό σταθερής πυκνότητας, Υπόθεση σωστή για τα υγρά Ισχύει για τα αέρια όταν το ύψος του πρίσματος h δεν ξεπερνά τα 00m: p - p = ρgh

2 F B = ρ υ g h A = ρ υ g V Αλλά ρ υγρού g V βυθ. = m υγρού_βυθ. g: είναι το βάρος υγρού όγκου ίσου με τον αντίστοιχο του βυθισμένου σώματος Καταλήγουμε λοιπόν ότι η δύναμη που ασκείται στο σώμα ισούται με το βάρος του ρευστού που εκτοπίζεται από αυτό. Tο συμπέρασμα αυτό ονομάζεται αρχή του Aρχιμήδη, και φυσικά δεν ισχύει μόνο στην περίπτωση πρίσματος αλλά και για σώμα οποιουδήποτε σχήματος.

3 Ασκηση Στο βυθισμένο σε βάθος D κεφάλι ενός κολυμβητή σε μια πισίνα, η διαφορική πίεση είναι Ρ 0 και ασκείται άνωση F 0. Αν ο κολυμβητής βουτήξει βαθύτερα με τον ίδιο προσανατολισμό ώστε το κεφάλι του να φτάσει σε βάθος D, θα δέχεται πίεση και άνωση στο κεφάλι του ίσες αντίστοιχα με: (α) Ρ 0 και F 0 (β) Ρ 0 και F 0 (γ) Ρ 0 και F 0 (δ) Ρ 0 και F 0

4

5 Ασκήσεις Το φαινόμενο βάρος ενός βυθισμένου σώματος είναι ίσο με: (α) το βάρος του σώματος. (β) τη διαφορά μεταξύ του βάρους του σώματος και του βάρους του εκτοπιζόμενου ρευστού. (γ) το βάρος του ρευστού που εκτοπίζεται από το σώμα. (δ) τη μέση πίεση του ρευστού επί το εμβαδόν της επιφάνειας του σώματος. (ε) κανένα από τα παραπάνω. Ένας άντρας βάρους 00 Ν βυθίζεται πλήρως στο νερό και αφού εκπνεύσει όλο τον αέρα από τους πνεύμονές του βρίσκεται να έχει φαινόμενο βάρος ίσο με 50 Ν. Βρείτε την πυκνότητα και την σχετική πυκνότητα του (ρ άνδρα /ρ νερού ).

6 ΠΛΕΥΣΗ Το φαινόμενο κατά το οποίο ένα σώμα ισορροπεί μέσα σε ρευστό. Όταν η άνωση, η οποία ασκείται στο βυθισμένο τμήμα του ισούται με το βάρος του

7 Παράδειγμα Η πυκνότητα του πάγου είναι 97 kg/m 3 ενώ του νερού 04 kg/m 3. Η έκφραση βλέπουμε μόνο την κορυφή του παγόβουνου αντιστοιχεί στο ότι το 97/04 = 89.6% ενός παγόβουνου βρίσκεται κάτω από την επιφάνεια του νερού. Παράδειγμα Το ανθρώπινο σώμα αποτελείται κυρίως από νερό και γι αυτό είμαστε σχεδόν ουδέτεροι ως προς την επίπλευση. Εάν εισπνεύσουμε βαθιά αυξάνουμε τον όγκο και ελαττώνουμε την μέση πυκνότητα μας με αποτέλεσμα να επιπλέουμε. Επίσης τα λιποκύτταρα έχουν μικρότερη πυκνότητα από το νερό επομένως οι άνθρωποι που έχουν μεγάλη περίσσεια λίπους επιπλέουν ευκολότερα. Παράδειγμα 3 Ένα κουτάκι Diet Coke θα επιπλέει ενώ ένα κουτάκι Classic Coke όχι, διότι η Classic Coke περιέχει κουταλιές ζάχαρης ενώ η Diet Coke δεν περιέχει ζάχαρη. Η πυκνότητα της ζάχαρης είναι μεγαλύτερη από αυτήν του νερού.

8 Ερωτήσεις Γιατί είναι ευκολότερο να επιπλέουμε σε καθαρό νερό όταν οι πνεύμονές μας είναι γεμάτοι παρά όταν είναι άδειοι; Γιατί είναι ευκολότερο να επιπλέει κανείς στη Νεκρά θάλασσα (λίμνη στα σύνορα Ιορδανίας και Ισραήλ με ιδιαίτερη αυξημένη αλατότητα, μέχρι και δέκα φορές μεγαλύτερη από το νερό της θάλασσας) παρά σε μια λίμνη με καθαρό νερό;

9 ΠΑΡΑΔΕΙΓΜΑ 4: Γεμίζουμε ένα γυάλινο σωλήνα με διάλυμα τέτοιο ώστε η συνολική του πυκνότητα να είναι 938 kg/m 3 και τον σφραγίζουμε. Ο σωλήνας αυτός βυθίζεται στην αλκοόλη (ρ α = 855 kg/m 3 ) αλλά επιπλέει στο νερό. Πόσο είναι το τμήμα του σωλήνα που βρίσκεται κάτω από την επιφάνεια του νερού; W = B ρ σ V σ g = ρ ν V βυθ g ρ σ L S = ρ ν d S d = L ρ σ / ρ ν Προσθέτουμε αλκοόλη στο νερό και παρατηρούμε: Ο σωλήνας σηκώνεται ακόμη περισσότερο από την επιφάνεια του νερού εξαιτίας της πρόσθετης άνωσης που δέχεται από την αλκοόλη. Το μέρος του σωλήνα που είναι τώρα βυθισμένο στο νερό υπολογίζεται ως εξής: W B B a V g V g V a a g L S d S ( L d) S a d a a L Όταν ο σωλήνας ισορροπήσει στην κοινή επιφάνεια νερού-αλκοόλης, το βυθισμένο στο νερό τμήμα του δεν μεταβάλλεται αν προσθέσουμε περισσότερη αλκοόλη. Το ρευστό πάνω από τον σωλήνα ασκεί πίεση στην κορυφή του και θα μπορούσαμε να οδηγηθούμε στο συμπέρασμα ότι ο σωλήνας θα σπρώχνεται προς τα κάτω όσο η στάθμη της αλκοόλης αυξάνει. Η αλκοόλη, όμως, ασκεί πίεση και στην επιφάνεια του νερού. Η πίεση αυτή μεταφέρεται και στο κάτω άκρο του σωλήνα σύμφωνα με την αρχή του Pascal.

10 ΑΣΚΗΣΗ: Ένα σφαιρικό μπαλόνι που περιέχει Ήλιο (He) έχει ακτίνα R = m και μαζί με τα σχοινιά και το καλάθι μάζα m = 96 Kg. Πόση είναι η μάζα Μ του μέγιστου φορτίου που μπορεί αυτό το αερόστατο να μεταφέρει; (Δίνονται: ρ He = 0.6 Kg/m 3 και ρ αέρα =.5 Kg/m 3 Το βάρος του εκτοπιζόμενου αέρα, που είναι η δύναμη της άνωσης, και το βάρος του He στο μπαλόνι δίνονται: B = W αέρα = W = ρ αέρα V g και W He = ρ He V g όπου V = 4πR 3 /3 είναι ο όγκος του μπαλονιού Το σύστημα θα ισορροπεί, σύμφωνα με την αρχή του Αρχιμήδη, όταν: B W W mg Mg 4 3 He 3 M R ( a a He) m 7690Kg

11 ΑΣΚΗΣΗ Κυλινδρικό κομμάτι πάγου (ρ πάγου = 900 kg/m 3 ) με ακτίνα κυκλικής διατομής R =.0m και ύψος H = 0cm επιπλέει σε θαλάσσιο νερό πυκνότητας ρ θαλ. = 030 kg/m 3. (α) Μια ομάδα Ν=50 πιγκουίνων που η μάζα του καθενός είναι ίση με m=5 kg, αποφασίζει να ανέβει πάνω σε αυτό το κομμάτι πάγου για να ξεκουραστεί. Προσδιορίστε το ύψος h που θα εξέχει της επιφάνειας του νερού ο πάγος (i) χωρίς τους πιγκουίνους και (ii) αφού οι πιγκουίνοι έχουν ανεβεί πάνω του. (β) Το κομμάτι πάγου ταξιδεύει νότια, σε θερμότερες θαλάσσιες περιοχές. Τότε ο πάγος λιώνει ομοιόμορφα με ρυθμό 500 cm 3 την ώρα. Σε πόσο χρόνο το κομμάτι του πάγου δεν θα μπορεί να υποστηρίξει άλλο όλους τους πιγκουίνους;

12 ΛΥΣΗ (i) χωρίς τους πιγκουίνους F B = W π cm h m h H m kg m kg R H R h H V V g V g V,5 0, / 030 / 900 ) ( 3 3 (ii) αφού οι πιγκουίνοι έχουν ανεβεί πάνω του. cm R m N V H h m V m R R h H m N V V g m N g V g V W W F N B 0,6... ),54 ( ),57 ( ) ( 3

13 (β) Το κομμάτι πάγου ταξιδεύει νότια, σε θερμότερες θαλάσσιες περιοχές. Τότε ο πάγος λιώνει ομοιόμορφα με ρυθμό 500 cm 3 την ώρα. Σε πόσο χρόνο το κομμάτι του πάγου δεν θα μπορεί να υποστηρίξει άλλο όλους τους πιγκουίνους; Αν V' π ο ελάχιστος όγκος που συγκρατεί τους πιγκουίνους, τότε V' π = V βυθ. και: F B V W V g V g,9m W 3 N N m g V N m Για να χάσει V π - V' π =,54,9 0,6 m 3 = 6 x 0 5 cm 3 χρειάζεται: V 3 Q 500cm / h t 5 60 t h 00h 50days 50

14 Άσκηση Ένα κομμάτι ξύλου επιπλέει σε μια μπανιέρα με νερό έχοντας πάνω του ένα δεύτερο κομμάτι ξύλου το οποίο δεν ακουμπά καθόλου το νερό. Αν πάρουμε το πάνω κομμάτι και το τοποθετήσουμε το νερό τι θα συμβεί στη στάθμη του νερού στη μπανιέρα; (α) Θα ανέλθει. (β) Θα κατέλθει. (γ) Δεν θα αλλάξει. (δ) Δεν μπορούμε να ξέρουμε μόνο από τις πληροφορίες που μας δίνονται.

15 Άσκηση Μια ξύλινη σχεδία διαστάσεων 4 m 4 m 0,3 m, επιπλέει στην επιφάνεια μιας λίμνης. (α) Αν η πυκνότητα του ξύλου είναι 600 kg/m 3, βρείτε το κλάσμα της σχεδίας που εξέχει της επιφάνειας του νερού. (β) Πόσους ανθρώπους βάρους 670 Ν μπορεί να υποστηρίξει η σχεδία παραμένοντας οριακά πάνω από την επιφάνεια του νερού;

16 ΑΣΚΗΣΗ Ένα κυβικό κομμάτι ξύλου με ακμή 0cm επιπλέει στη διεπιφάνεια μεταξύ λαδιού και νερού με την κάτω επιφάνεια του cm κάτω από τη διεπιφάνεια (βλέπε σχήμα). Η πυκνότητα του λαδιού είναι 650 kg/m 3 (g = 9,8 m/s ). α) Πόση είναι η διαφορική πίεση στην πάνω επιφάνεια του κομματιού; β) Πόση είναι η διαφορική πίεση στην κάτω επιφάνεια; γ) Πόση είναι η μάζα του ξύλου; ΛΥΣΗ Δp πάνω = ρ λαδ g cm = 650 9,8 0,0 Pa = 7,4 Pa (ρ νερ = 000 kg/m 3 ) Δp κάτω = ρ λαδ g 0cm + ρ νερ g cm = 833 Pa W ξ = B ν + Β λ m ξ g = ρ ν g V v + ρ λαδ g V λ V ν = 00cm 3 V λ = 800cm 3 Επομένως, m ξ = 0,7 kg

17 Εισαγωγικές έννοιες ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ - Pοή ονομάζεται η κίνηση ρευστού σε περιοχή του χώρου - Η περιοχή αυτή ονομάζεται πεδίο ροής - H τροχιά την οποία διαγράφει στοιχειώδης όγκος του ρευστού («σωματίδιο» ρευστού) κατά την κίνησή του στο πεδίο ροής, ονομάζεται γραμμή ροής. v Καθώς αυτά κινούνται η ταχύτητα τους μπορεί να μεταβάλλεται σε μέτρο και κατεύθυνση. Η ταχύτητα τους σε κάθε σημείο θα είναι εφαπτόμενη της γραμμής ροής. Οι γραμμές ροής δεν τέμνονται πουθενά γιατί τότε το «σωματίδιο» που θα έφτανε σε αυτή την τομή θα είχε ταυτόχρονα δύο ταχύτητες ΑΔΥΝΑΤΟ.

18 ΠΡΑΓΜΑΤΙΚΑ ΙΔΑΝΙΚΑ ΡΕΥΣΤΑ Η κίνηση των πραγματικών ρευστών είναι πολύπλοκη και δεν έχει κατανοηθεί πλήρως μέχρι σήμερα ( εμφανίζουν αποδιάταξη στο χώρο και τον χρόνο ΧΑΟΣ) ΑΡΧΙΚΟ ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ: Ιδανικά ρευστά Υποθέσεις ΜΟΝΙΜΗ ΣΤΡΩΤΗ ΡΟΗ: Aν ο στοιχειώδης όγκος του ρευστού, που περνά από το τυχαίο σημείο του πεδίου ροής, διαγράφει πάντοτε την ίδια γραμμή ροής ενώ η ταχύτητά του στο δεδομένο σημείο είναι ανεξάρτητη του χρόνου, η ροή ονομάζεται μόνιμη (steady). Στην ειδική περίπτωση που η μόνιμη ροή γίνεται κατά παράλληλα στρώματα, καθένα από τα οποία έχει καθορισμένη ταχύτητα, η ροή ονομάζεται στρωτή (laminar). Στη γενική περίπτωση η ροή εξαρτάται από τον χρόνο, και είναι δυνατόν ο στοιχειώδης όγκος dv του υγρού, που διέρχεται από δεδομένο σημείο του πεδίου ροής, είτε να διαγράφει διαφορετικές γραμμές ροής σε διαφορετικές χρονικές στιγμές είτε να σχηματίζει στροβίλους. Tότε η ροή ονομάζεται τυρβώδης ή στροβιλώδης και το αποτέλεσμα είναι η εμφάνιση εσωτερικής τριβής, οπότε ένα μέρος από τη μηχανική ενέργεια μετατρέπεται σε θερμότητα..ασυμπιεστα: Η πυκνότητα των ιδανικών ρευστών είναι παντού σταθερή. Η παραδοχή της μη συμπιεστότητας είναι συνήθως μια καλή προσέγγιση για υγρά. Μπορούμε και ένα αέριο να το θεωρήσουμε ως ασυμπίεστο όταν η διαφορά πίεσης μεταξύ των διαφόρων περιοχών του δεν είναι πολύ μεγάλη.

19 Ιδανικά ρευστά - Υποθέσεις (συνέχεια) 3. Η ΡΟΗ ΔΕΝ ΣΥΝΑΝΤΑ ΚΑΜΙΑ ΕΣΩΤΕΡΙΚΗ ΑΝΤΙΣΤΑΣΗ (Nonviscous flow). Η εσωτερική αντίσταση που εμφανίζει ένα ρευστό όταν ρέει μετράται με το ιξώδες. Π.χ ροή μελιού ροή νερού. Το ιξώδες είναι το ανάλογο της τριβής μεταξύ των στερεών διότι και στους δύο μηχανισμούς η ΚΕ της κίνησης μετατρέπεται σε θερμική ενέργεια. - Η εσωτερική τριβή σε ένα ρευστό προκαλεί διατμητικές τάσεις, όταν ένα στρώμα ρευστού κινείται ως προς κάποιο γειτονικό του στρώμα, όπως για παράδειγμα σε ένα ρευστό που ρέει μέσα σε ένα σωλήνα ή γύρω από ένα αντικείμενο. Σε μερικές περιπτώσεις, μπορούμε να αγνοήσουμε αυτές τις δια τμητικές δυνάμεις, που είναι αμελητέες συγκρινόμενες με αυτές που προέρχονται από τη βαρύτητα και τις διαφορές πίεσης. - Απουσία τριβής ένα στερεό σώμα θα ολίσθαινε με σταθερή ταχύτητα σε μια οριζόντια επιφάνεια. Ομοίως, ένα σώμα δεν θα συναντούσε καμία αντίσταση κατά την κίνηση του μέσα σε ιδανικό ρευστό. Ο Λόρδος Rayleigh παρατήρησε ότι η προπέλα ενός πλοίου δεν θα δούλευε σε ιδανικό ρευστό, από την άλλη όμως, το πλοίο (αφού τεθεί σε κίνηση σε τέτοιο ρευστό) δεν θα χρειαζόταν προπέλα. 4. Μη περιστροφική κίνηση (Irrotational flow). Εάν μελετήσουμε τη κίνηση ενός μικρού κόκκου σκόνης που κινείται μαζί με το ρευστό τότε ο κόκκος μπορεί να κινείται σε κυκλική διαδρομή όχι όμως γύρω από άξονα που περνά από το κέντρο μάζας του. «Χαλαρό ανάλογο»: η κίνηση της ρόδας ενός ποταμόπλοιου είναι περιστροφική όχι όμως και των επιβατών του.

20 Σε ροή που ακολουθεί τα προηγούμενα μπορούμε να μελετήσουμε την κίνηση απομονώνοντας την σε νοητό σωλήνα φλέβα φτιαγμένο από γραμμές ροής (στρωτή ροή, όχι στρόβιλοι - ρευματικές γραμμές). *Στο πλαίσιο αυτού του μαθήματος θα θεωρήσουμε μόνο μόνιμες καταστάσεις, στις οποίες οι γραμμές ροής συμπίπτουν με τις ρευματικές γραμμές Ένα «σωματίδιο ρευστού» που βρίσκεται σε μια τέτοια φλέβα δεν μπορεί να δραπετεύσει από τα νοητά τοιχώματα της. Εάν αυτό συνέβαινε θα είχαμε τομή ρευματικών γραμμών.

21 ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ Β: το ρευστό κινείται με ταχύτητα υ. Β C A Στο χρονικό διάστημα dt, ένα «σωματίδιο» ρευστού θα διανύσει απόσταση υ dt και όγκος dv = A υ dt θα περάσει από την A. Αφού το ρευστό είναι ασυμπίεστο ο ίδιος όγκος θα περάσει από το C. C: Εάν η ταχύτητα εκεί είναι υ τότε: dv = A υ dt = A υ dt A Το ρευστό δεν διαπερνά το πλευρικό τοίχωμα σε κανένα σημείο του. ή ή A υ dt = A υ dt Q = dv/dt = Aυ = σταθ. (ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ) Παροχή φλέβας Q ονομάζεται ο όγκος dv ρευστού που διέρχεται από μία διατομή της σε χρόνο dt, διά του χρόνου αυτού: Q = dv/dt Μονάδα μετρήσεως της παροχής είναι το m 3 /sec ή cm 3 /sec. ΣΥΜΠΕΡΑΣΜΑΤΑ: Η ροή είναι ταχύτερη στα στενότερα τμήματα ενός σωλήνα όπου οι ρευματικές γραμμές είναι πυκνότερες Είναι μια έκφραση της αρχής διατήρησης της μάζας (αφού ρ = σταθ. mass flow rate SI units kg/s - constant)

22 Εξίσωση συνέχειας ως απόρροια της αρχής διατήρησης της μάζας: Αν η πυκνότητα του ρευστού είναι ρ (=σταθερή, ασυμπίεστο ρευστό), η μάζα dm που εισρέει στο σωλήνα στη διατομή Β είναι: dm = ρ A υ dt. Παρόμοια, η μάζα dm, που εκρέει μέσα από την A (διατομή C) στον ίδιο χρόνο είναι dm = ρ A υ dt. Στη μόνιμη ροή, η ολική μάζα μέσα στο θεωρούμενο τμήμα του σωλήνα ροής είναι σταθερή, οπότε: ρ A υ dt = ρ A υ dt ή A υ = σταθ. Ο ρυθμός ροής μάζας ανά μονάδα χρόνου διαμέσου μιας εγκάρσιας διατομής (Παροχή μάζας), ισούται με την πυκνότητα επί την παροχή όγκου (παροχή φλέβας) dm dt dv dt Μπορούμε να γενικεύσουμε για την περίπτωση που το ρευστό δεν είναι ασυμπίεστο. Αν ρ και ρ είναι οι πυκνότητες στις διατομές B και C, τότε: ρ A υ = ρ A υ

23 Εξίσωση Συνέχειας: Η παροχή είναι σταθερή κατά μήκος οποιουδήποτε σωλήνα ροής Συνακόλουθο: Όταν η εγκάρσια διατομή ενός σωλήνα ροής ελαττώνεται, η ταχύτητα αυξάνει. Παραδείγματα: ) Έστω ποταμός σταθερού πλάτους. Το ρηχό τμήμα του ποταμού έχει μικρότερη εγκάρσια διατομή και γρηγορότερο ρεύμα από το βαθύ τμήμα αφού η παροχή είναι ίδια και στα δύο. Επομένως, το νερό τρέχει γρηγορότερα εκεί που το ποτάμι είναι ρηχό και βραδύτερα (πιο σιγανά) εκεί όπου είναι βαθύ. Τα σιγανά (που είναι τα βαθύτερα) ποτάμια να φοβάσαι... ) Βρύση

24 ΕΦΑΡΜΟΓΗ (Άσκηση από Κουίζ) Καθώς το νερό «πέφτει», η ταχύτητα του αυξάνει και επομένως η διατομή θα πρέπει να μειώνεται σύμφωνα με την εξ. συνέχειας. ΑΣΚΗΣΗ: Το εμβαδόν της διατομής στη στάθμη Α 0 είναι, cm και στην Α: 0,35 cm. H απόσταση h μεταξύ των Α 0 και Α είναι 45 mm. Πόση είναι η παροχή του νερού από τη βρύση; Από εξ. συνέχειας: Α 0 υ 0 = Αυ Το νερό εκτελεί ελεύθερη πτώση με σταθερή επιτάχυνση g, επομένως: υ = υ 0 + gh (Υπολογίζεται εύκολα εφαρμόζοντας ΘΜΚΕ) Απαλείφουμε το υ στις παραπάνω και έχουμε: gha (9,8m / s )(0,045m)(0,35cm ) 0 0,86m / s A A (, cm ) (0,35cm ) 0 Η παροχή είναι τότε: Q = A 0 υ 0 = (, cm ) (8,6 cm/s) = 34 cm 3 /s 8,6cm / s Με αυτή την παροχή θα χρειαστούν περίπου 3s για να γεμίσει δοχείο 00 ml

25 Άσκηση 3 Ένα λάστιχο ποτίσματος εσωτερικής διαμέτρου cm συνδέεται με ένα ραντιστήρι που αποτελείται απλώς από ένα κλειστό περίβλημα με 4 τρύπες, η καθεμιά διαμέτρου 0, cm. Αν το νερό στο λάστιχο έχει ταχύτητα m/sec, με ποια ταχύτητα φεύγει το νερό από τις τρύπες του ραντιστηριού;

26 ΕΞΙΣΩΣΗ BERNOULLI (για στρωτή, ασυμπίεστη, χωρίς εσωτερικές τριβές ροή) Η Αρχή Διατήρησης της Μηχανικής Ενέργειας στον φορμαλισμό της ρευστομηχανικής Ο νόμος Bernoulli απαιτεί την ανυπαρξία απώλειών μηχανικής ενέργειας κατά τη ροή, δηλαδή την ανυπαρξία εσωτερικής τριβής. Θεωρήστε τη χωρίς εσωτερικές τριβές, στρωτή, ασυμπίεστη ροή ενός ρευστού μέσα από ένα σωλήνα ή μια φλέβα ροής. ΘΜΚΕ: W = ΔΚ (Το έργο που παράγεται από τη συνισταμένη δύναμη η οποία δρα πάνω σε ένα σύστημα ισούται με τη μεταβολή της κινητικής ενέργειας του συστήματος) ΔΚ = ½ dm υ ½ dm υ = ½ ρ dv (υ - υ ) ρ=σταθ. Ασυμπίεστο ρευστό

27 Οι δυνάμεις που παράγουν έργο πάνω στο σύστημα, υποθέτοντας ότι μπορούμε να αγνοήσουμε τις δυνάμεις τριβής, είναι οι δυνάμεις πίεσης p A και p A που δρουν στο αριστερό και δεξί άκρο του συστήματος αντίστοιχα και η δύναμη βαρύτητας. Καθώς το ρευστό ρέει μέσα στο σωλήνα το συνολικό αποτέλεσμα είναι η ανύψωση ενός ποσού ρευστού που δείχνεται με τη γραμμοσκιασμένη περιοχή του (α) στη θέση που δείχνει το (β). Το ποσό του ρευστού που παριστάνεται με τις οριζόντιες γραμμές δεν έχει μεταβληθεί κατά τη ροή.

28 Το έργο W που παράγει πάνω στο σύστημα η συνισταμένη δύναμη είναι:. Το έργο που παράγεται πάνω στο σύστημα από τη βαρύτητα συνδέεται με την ανύψωση του γραμμοσκιασμένου ρευστού μάζας dm από το ύψος y του επιπέδου εισαγωγής του ρευστού σε ύψος y στο επίπεδο εξόδου. W g = - dm g (y y ) = - ρ g dv (y y ) Το έργο είναι αρνητικό αφού η κάθετη μετατόπιση («προς τα πάνω») έχει αντίθετη κατεύθυνση από το βάρος («προς τα κάτω»). Δηλ. παράγεται έργο από το σύστημα ενάντια στη δύναμη βαρύτητας.. Έργο που παράγει πάνω στο σύστημα η δύναμη πίεσης p A (στο άκρο εισόδου) για να σπρώξει το υγρό στο σωλήνα και έργο που παράγει πάνω στο σύστημα η δύναμη πιέσεως p A (στο άκρο εξόδου) Γενικά: Το έργο που παράγεται από μια δύναμη F που κινεί ρευστό κατά απόσταση dx μέσα σε σωλήνα διατομής S, είναι: F dx = (p Α) dx = p (Α dx) = p dv Υποθέτουμε για το σχήμα: p > p (ροή από αριστερά προς τα δεξιά) - Στο άκρο εισόδου: Έργο θετικό, δύναμη-ροή ίδια κατεύθυνση +p dv - Στο άκρο εξόδου: Έργο αρνητικό, δύναμη-ροή αντίθετη κατεύθυνση -p dv (αρνητικό σημαίνει ότι θετικό έργο παράγεται από το σύστημα για να σπρώξει το υγρό προς τα εμπρός.

29 dv = σταθ. ασυμπίεστο ρευστό W p = - p dv + p dv = - (p p ) dv W = W g + W p = ΔΚ - ρ g dv (y y ) - (p p ) dv = ½ ρ dv (υ - υ ) p gy p gy p ρ ρgy. - H πίεση p ονομάζεται στατική, είναι εκείνη που θα μετρηθεί με μανόμετρο τοποθετημένο στη φλέβα, και συνδέεται με τις δυνάμεις που προκαλούν τη ροή του ρευστού. Μπορεί να λεχθεί ότι η στατική πίεση είναι, στην περίπτωση αυτή, το έργο που παράγεται από τις δυνάμεις αυτές σε κάθε μονάδα όγκου του ρευστού. - H πίεση /ρυ ονομάζεται δυναμική και συνδέεται με την κινητική ενέργεια του ρευστού, είναι δηλαδή η κινητική ενέργεια ανά μονάδα όγκου. - O όρος ρgh είναι η υδροστατική πίεση που συνδέεται με τη δυναμική ενέργεια, δηλαδή απεικονίζει την επίδραση του πεδίου βαρύτητας στην κίνηση του ρευστού. Επομένως ο νόμος του Bernoulli εκφράζει ότι κατά τη ροή ιδανικού ρευστού το άθροισμα της στατικής πίεσης p, της υδροστατικής ρgh και της δυναμικής /ρυ, κατά μήκος μιας φλέβας παραμένει σταθερό.

30 ΔΙΕΡΕΥΝΗΣΗ p ρ ρgh. Aν το ρευστό είναι ακίνητο υ = 0, οπότε η δυναμική πίεση είναι επίσης 0, ο νόμος του Bernoulli εκφυλίζεται στη θεμελιώδη εξίσωση της στατικής των ρευστών. Aν αντίθετα η κίνηση του υγρού γίνεται σε οριζόντιο σωλήνα, οπότε h=0 και η υδροστατική πίεση μηδενίζεται, ο νόμος του Bernoulli γίνεται: p ρ. Όταν λοιπόν η διατομή του σωλήνα δεν είναι σταθερή, στα σημεία στα οποία η ταχύτητα είναι μικρότερη, είναι μεγαλύτερη η πίεση και αντίστροφα. Εάν η ταχύτητα ενός σωματιδίου ρευστού αυξάνει καθώς ταξιδεύει σε μια ρευματική γραμμή, η πίεση του ρευστού ελαττώνεται και αντίστροφα. ΑΛΛΙΩΣ: Εκεί που οι ρευματικές γραμμές είναι σχετικά πυκνές (επομένως η ταχύτητα είναι σχετικά μεγάλη) η πίεση είναι σχετικά μικρή και αντίστροφα. Εξ. Συνέχειας: S υ τότε εξ. Bernoulli: p

31 ΕΡΩΤΗΣΗ Πολ. Επιλ. Ποια από τις ακόλουθες προτάσεις είναι λάθος για το ανεύρυσμα (περιοχή με εξασθενισμένο αρτηριακό τοίχωμα) που παριστάνεται στο ακόλουθο σχήμα; (α) Ο ρυθμός ροής (παροχή) στο Α είναι ίδιος με αυτόν στο Β (β) Η ταχύτητα στο Β είναι μικρότερη από αυτήν στο Α (γ) Η πίεση στο Β είναι μικρότερη από αυτήν στο Α (δ) Η πυκνότητα στο Β είναι η ίδια με αυτήν στο Α

32 ΑΣΚΗΣΗ 5 Υπολογίστε τη μεταβολή της πίεσης υγρού στην περίπτωση που αυτό ρέει σε οριζόντια φλέβα η ακτίνα της οποίας υποτριπλασιάζεται. Υποθέστε ότι η ταχύτητα της ροής του υγρού στην περιοχή όπου δεν υπάρχει στένωση είναι 50 cm/s. Η πυκνότητα του υγρού είναι 050 kg/m 3. Οριζόντια φλέβα h = h Άρα εξ. Bernoulli: p + ½ ρυ = p + ½ ρυ Δp = p - p = ½ ρ (υ υ ) () Εξ. Συνέχειας: Α υ = Α υ π r υ = π r υ υ = (r /r ) υ () (), () και αφού r = 3r Δp = -½ ρ ((r /r ) 4 υ υ ) = ½ 80 ρ υ = 0500 Pa

33 ΑΣΚΗΣΗ Υποθέστε ότι ο άνεμος φυσά με ταχύτητα 0 m/s πάνω από τη σκεπή του σπιτιού σας. (α) Βρείτε πόσο χαμηλότερα από την τιμή της ατμοσφαιρικής πίεσης απουσία κάθε ανέμου έχει μειωθεί η πίεση πάνω από τη σκεπή. (β) Εάν το εμβαδόν της σκεπής είναι 300 m, βρείτε την ολική δύναμη που ασκείται πάνω της. (Η πίεση στο εσωτερικό του σπιτιού είναι ίση με την ατμοσφαιρική και θεωρείστε ότι η εσωτερική και η εξωτερική πλευρά της σκεπής βρίσκονται στο ίδιο ύψος h)

34 Θεώρημα Torricelli 'Eστω ότι στο κατώτερο σημείο δοχείου που είναι γεμάτο με κάποιο υγρό υπάρχει ένα μικρό άνοιγμα εκροής. Eφαρμογή του νόμου του Bernoulli* στο σημείο της ελεύθερης επιφάνειας και στο σημείο εκροής δίνει: p gh p

35 p ΔΙΕΡΕΥΝΗΣΗ gh p () i) ΑΝΟΙΚΤΗ ΔΕΞΑΜΕΝΗ (στο σημείο () p = p atm ) - Πώμα κλειστό στη θέση (): τότε υ = υ ( ακίνητο ρευστό ) p = p atm και p = p atm + ρgh (θεμ. εξ. Υδροστατικής) - Πώμα ανοικτό στη θέση (): τότε υ υ (ροή) p = p atm και αφού δεξαμενή ανοικτή και στις δύο περιοχές () και () p = p = p atm και η σχέση () απλοποιείται και γίνεται: ρ ρgh ρ από την οποία προκύπτει: gh Συμπεραίνουμε ότι η ταχύτητα εκροής του υγρού είναι ίδια με εκείνη που θα είχε ένα σώμα που θα εκτελούσε ελεύθερη πτώση από το ίδιο ύψος h, με αρχική ταχύτητα υ. Tο συμπέρασμα αυτό είναι γνωστό ως θεώρημα του Torricelli. Επειδή η Α είναι πολύ μικρότερη από την Α, η υ είναι πολύ μικρότερη από την υ και μπορεί να παραληφθεί (Γιατί; Έλεγξε την εξ. συνέχειας). Έτσι η σχέση για την ταχύτητα εκροής μπορεί να απλοποιηθεί ακόμα περισσότερο και να γίνει: Η παροχή στο () θα δίνεται τότε ως: dv dt A gh gh

36 p ΔΙΕΡΕΥΝΗΣΗ gh p () ii) ΚΛΕΙΣΤΗ ΔΕΞΑΜΕΝΗ (στο σημείο (). Πίεση στο () ίση με p ) - Πώμα κλειστό στη θέση (): τότε υ = υ ( ακίνητο ρευστό ) p = p + ρgh (θεμ. εξ. Υδροστατικής) - Πώμα ανοικτό στη θέση (): τότε υ υ (ροή) Η δεξαμενή ανοικτή στο () και κλειστή στο () p p και από τη σχέση () p p gh Επειδή η Α είναι πολύ μικρότερη από την Α, η υ είναι πολύ μικρότερη από την υ και μπορεί να παραληφθεί και η σχέση για την ταχύτητα εκροής γίνεται: p p gh Η ταχύτητα εκροής εξαρτάται από τη διαφορά πίεσης p p και από το ύψος h της στάθμης του υγρού στη δεξαμενή.

37 ΑΣΚΗΣΗ 9 Στην πλευρική επιφάνεια μεγάλης δεξαμενής νερού υπάρχει κυκλική τρύπα με διάμετρο cm, 6 m κάτω από την ελεύθερη επιφάνεια του νερού στη δεξαμενή. Η οροφή της δεξαμενής είναι ανοιχτή στον αέρα. Βρείτε α) την ταχύτητα εκροής και β) τον όγκο που εκρέει ανά μονάδα χρόνου. (ή το χρόνο που απαιτείται για να γεμίσει δοχείο όγκου 500 ml) ΛΥΣΗ ρ ρgh ρ από την οποία προκύπτει: gh Μεγάλη δεξαμενή σημαίνει ότι η Α είναι πολύ μικρότερη από την Α, η υ είναι πολύ μικρότερη από την υ και μπορεί να παραληφθεί και επομένως η ταχύτητα εκροής είναι: gh Η παροχή θα δίνεται τότε ως: dv dt A gh

38 Φαινόμενο Venturi Αφού Α > Α τότε και p > p. Εξ. Συνέχειας: Α υ = Α υ (Α > Α ) Εξ. Bernoulli: p ρu ρgh p ρu ρgh για h h : p ρu p ρu και αντικαθιστώντας από την εξ. συνέχειας: p p ( A A A Όταν το ρευστό εισέρχεται στην περιοχή 3, επιβραδύνεται εξαιτίας της υψηλότερης πίεσης και αποκτά την αρχική του ταχύτητα (της περιοχής ). ) Η μείωση της πίεσης που συνοδεύεται από αύξηση της ταχύτητας του ρευστού ονομάζεται φαινόμενο Venturi από τον Ιταλό ερευνητή που πρώτος το μελέτησε (79).

39 ΕΦΑΡΜΟΓΕΣ Basic mechanics of bird flight - Lift - Gliding - Flapping - Drag

40 Παλια Θέματα Εξετάσεων ) Ένα αυτοκίνητο φεύγει από την πορεία του, πέφτει στην θάλασσα και βυθίζεται σε βάθος 6 m. Ο οδηγός αρχικά επιχειρεί να ανοίξει την πόρτα αλλά διαπιστώνει ότι αυτό είναι αδύνατο. α) Η δύναμη που πρέπει να εξασκήσει στην πόρτα είναι ισοδύναμη με το βάρος πόσων ελεφάντων; (η πόρτα έχει εμβαδόν m και ένας ελέφαντας έχει μάζα 6 τόνων). Θεωρήστε ότι η πίεση του αέρα στο εσωτερικό αυτοκινήτου είναι ιση με την πίεση στην επιφάνεια. Απάντηση: περίπου ος ελέφαντα β) Ο οδηγός αποφασίζει να ανοίξει λίγο το παράθυρο ώστε να μπει νερό στο εσωτερικό του αυτοκινήτου (όγκου 5 m 3 ) και αφού γεμίσει, να επιχειρήσει να ανοίξει την πόρτα. Αν το άνοιγμα στο παράθυρο έχει επιφάνεια 0 cm, σε πόσο χρόνο θα γεμίσει το αυτοκίνητο με νερό; Απάντηση: 450 sec ) α) Για ποιο λόγο η πορτοκαλάδα ανεβαίνει στο στόμα μας όταν την ρουφάμε με καλαμάκι; β) Αν πίνετε μέσα σε 0 sec, ένα ποτήρι νερού, όγκου 00 ml, μέσα από καλαμάκι μήκους 30 cm και διατομής 0 mm με σταθερή παροχή, υπολογίστε την ταχύτητα κίνησης του νερού. Ποια πρέπει να είναι η ελάχιστη μείωση Δp της πίεσης στο εσωτερικό του στόματος σας; Θεωρήστε ότι το καλαμάκι είναι κατακόρυφο, μόλις που αγγίζει την επιφάνεια νερού στο ποτήρι και ότι βρισκόμαστε στην επιφάνεια της θάλασσας. Απάντηση: v=0,5 m/sec, Δp=0,03 atm γ) Ποιο είναι το πιο μακρύ καλαμάκι που μπορεί να λειτουργεί; Απάντηση: περίπου 0 m

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: ρέουν Υγρά Αέρια

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: ρέουν Υγρά Αέρια ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: Υλικά που δεν έχουν καθορισμένο σχήμα (ρέουν), αλλά παίρνουν εκείνο του δοχείου μέσα στο οποίο βρίσκονται. Υγρά (έχουν καθορισμένο όγκο) Αέρια (καταλαμβάνουν ολόκληρο τον όγκο που

Διαβάστε περισσότερα

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: ρέουν Υγρά Αέρια

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: ρέουν Υγρά Αέρια ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: Υλικά που δεν έχουν καθορισμένο σχήμα (ρέουν), αλλά παίρνουν εκείνο του δοχείου μέσα στο οποίο βρίσκονται. Υγρά (έχουν καθορισμένο όγκο) Αέρια (καταλαμβάνουν ολόκληρο τον όγκο που

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου - Κεφάλαιο 4: Πίεση ΚΕΦΑΛΑΙΟ 4: ΠΙΕΣΗ. Φυσική Β Γυμνασίου

Φυσική Β Γυμνασίου - Κεφάλαιο 4: Πίεση ΚΕΦΑΛΑΙΟ 4: ΠΙΕΣΗ. Φυσική Β Γυμνασίου ΚΕΦΑΛΑΙΟ 4: ΠΙΕΣΗ Φυσική Β Γυμνασίου Δύναμη και Πίεση Κρατάς μία πινέζα μεταξύ του δείκτη και του αντίχειρα σου, με δύναμη 10 Ν. Η μύτη της πινέζας έχει διάμετρο 0,1mm ενώ η κεφαλή της έχει διάμετρο 10mm.

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ Εισαγωγικές έννοιες ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ - Pοή ονομάζεται η κίνηση ρευστού σε περιοχή του χώρου - Η περιοχή αυτή ονομάζεται πεδίο ροής - H τροχιά την οποία διαγράφει στοιχειώδης όγκος του ρευστού («σωματίδιο»

Διαβάστε περισσότερα

Εύρεση της πυκνότητας στερεών και υγρών.

Εύρεση της πυκνότητας στερεών και υγρών. Μ4 Εύρεση της πυκνότητας στερεών και υγρών. 1 Σκοπός Στην άσκηση αυτή προσδιορίζεται πειραματικά η πυκνότητα του υλικού ενός στερεού σώματος. Το στερεό αυτό σώμα βυθίζεται ή επιπλέει σε υγρό γνωστής πυκνότητας

Διαβάστε περισσότερα

κάθετη δύναμη εμβαδόν επιφάνειας Σύμβολο μεγέθους Ορισμός μεγέθους Μονάδα στο S.I.

κάθετη δύναμη εμβαδόν επιφάνειας Σύμβολο μεγέθους Ορισμός μεγέθους Μονάδα στο S.I. 4.1 Η πίεση ονομάζουμε το μονόμετρο φυσικό μέγεθος που ορίζεται ως το πηλίκο του μέτρου της συνολικής δύναμης που ασκείται κάθετα σε μια επιφάνεια προς το εμβαδόν της επιφάνειας αυτής. πίεση = κάθετη δύναμη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

Πίεση ονομάζουμε το πηλικό της δύναμης που ασκείται κάθετα σε μία επιφάνεια προς το εμβαδόν της επιφάνειας αυτής.

Πίεση ονομάζουμε το πηλικό της δύναμης που ασκείται κάθετα σε μία επιφάνεια προς το εμβαδόν της επιφάνειας αυτής. ΚΕΦΑΛΑΙΟ 4 ο ΠΙΕΣΗ 4.1 Πίεση Είναι γνωστό ότι οι χιονοδρόμοι φορούν ειδικά φαρδιά χιονοπέδιλα ώστε να μπορούν να βαδίζουν στο χιόνι χωρίς να βουλιάζουν. Θα έχετε επίσης παρατηρήσει ότι τα μεγάλα και βαριά

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ- Η ΠΑΓΚΥΠΡΙΑΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ- ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 0 Μαΐου 05 Ώρα : 0:0 - :00 ΘΕΜΑ 0 (µονάδες

Διαβάστε περισσότερα

Παραδείγµατα καθηµερινότητας ΣΚΙΕΡΣ

Παραδείγµατα καθηµερινότητας ΣΚΙΕΡΣ 1 2 Παραδείγµατα καθηµερινότητας ΣΚΙΕΡΣ Σκιέρ : Ελαστικά τρακτέρ-φορτηγών : Καρφιά: Συµπεράσµατα: Εξάρτηση της πίεσης (P) από : I. Επιφάνεια επαφής (S-> αντιστρόφως ανάλογη) II. Μέγεθος της δύναµης (F->

Διαβάστε περισσότερα

Προσδιορισμός της πυκνότητας με τη μέθοδο της άνωσης

Προσδιορισμός της πυκνότητας με τη μέθοδο της άνωσης Άσκηση 8 Προσδιορισμός της πυκνότητας με τη μέθοδο της άνωσης 1.Σκοπός Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός της πυκνότητας στερεών και υγρών με τη μέθοδο της άνωσης. Βασικές Θεωρητικές

Διαβάστε περισσότερα

Εισαγωγή Διάκριση των ρευστών

Εισαγωγή Διάκριση των ρευστών ΥΔΡΑΥΛΙΚΗ Εισαγωγή στην Υδραυλική Αντικείμενο Πυκνότητα και ειδικό βάρος σωμάτων Συστήματα μονάδων Ιξώδες ρευστού, επιφανειακή τάση, τριχοειδή φαινόμενα Υδροστατική πίεση Εισαγωγή Ρευστομηχανική = Μηχανικές

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1 H θέση ενός κινητού που κινείται σε ένα επίπεδο, προσδιορίζεται κάθε στιγμή αν: Είναι γνωστές οι συντεταγμένες του κινητού (x,y) ως συναρτήσεις του χρόνου Είναι γνωστό

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Environmental Fluid Mechanics Laboratory University of Cyprus Department Of Civil & Environmental Engineering ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ HM 134 ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Εγχειρίδιο

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

Τι χρειάζεσαι: Ένα πλαστικό μπουκάλι (ή ένα στενόμακρο ποτήρι), ένα μολύβι, ένα κομμάτι μονόκλωνο καλώδιο ή σύρμα, νερό, οινόπνευμα, λάδι, αλάτι.

Τι χρειάζεσαι: Ένα πλαστικό μπουκάλι (ή ένα στενόμακρο ποτήρι), ένα μολύβι, ένα κομμάτι μονόκλωνο καλώδιο ή σύρμα, νερό, οινόπνευμα, λάδι, αλάτι. ΑΝΩΣΗ Πείραμα 1: Το αυγό που κολυμπάει. Τι χρειάζεσαι: ένα βρασμένο αυγό, ένα πλατύ ποτήρι ή ένα πλαστικό μπουκάλι, ένα μαχαίρι, νερό, αλάτι, ένα κουταλάκι. Τι θα κάνεις: Αν δεν είναι εύκολο να έχεις ένα

Διαβάστε περισσότερα

Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης.

Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης. Σε οριζόντιο επίπεδο βρίσκεται ακίνητο ένα μήλο μάζας Μ = 200 g. Ένα μικρό βέλος μάζας m = 40 g κινείται οριζόντια με ταχύτητα μέτρου, υ 1 = 10 m / s, χτυπά το μήλο με αποτέλεσμα να το διαπεράσει. Αν γνωρίζετε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Στο κεφάλαιο των κινήσεων ασχοληθήκαμε με τη μελέτη της κίνησης χωρίς να μας απασχολούν τα αίτια που προκαλούν την κίνηση

Διαβάστε περισσότερα

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 8 αυτοκίνητα σταθμευμένα ένα μετά το άλλο κάτω από μια οριζόντια πλατφόρμα. Το κάθε αυτοκίνητο έχει μήκος d = 3 m και ύψος h = 1,2 m. Τo

Διαβάστε περισσότερα

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΑ ΦΥΣΙΚΗΣ ΠΑΡΟΥΣΙΑΣΗ ΜΑΘΗΤΩΝ ΤΗΣ Β ΤΑΞΗΣ ΣΤΗΝ ΕΚΔΗΛΩΣΗ ΤΟΥ ΕΚΦΕ ΤΡΙΚΑΛΩΝ

ΠΕΙΡΑΜΑΤΑ ΦΥΣΙΚΗΣ ΠΑΡΟΥΣΙΑΣΗ ΜΑΘΗΤΩΝ ΤΗΣ Β ΤΑΞΗΣ ΣΤΗΝ ΕΚΔΗΛΩΣΗ ΤΟΥ ΕΚΦΕ ΤΡΙΚΑΛΩΝ ΠΕΙΡΑΜΑΤΑ ΦΥΣΙΚΗΣ ΠΑΡΟΥΣΙΑΣΗ ΜΑΘΗΤΩΝ ΤΗΣ Β ΤΑΞΗΣ ΣΤΗΝ ΕΚΔΗΛΩΣΗ ΤΟΥ ΕΚΦΕ ΤΡΙΚΑΛΩΝ Υπεύθυνη Καθηγήτρια: Μαυρομμάτη Ειρήνη 3ο Γ/σιο Τρικάλων Σχ. Έτος 2012-13 1o ΠΕΙΡΑΜΑ: ΤΟ ΜΠΟΥΚΑΛΙ ΠΟΥ ΔΕΝ ΑΔΕΙΑΖΕΙ Ατμοσφαιρική

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

ΠΙΕΣΗ. Παραδείγµατα καθηµερινότητας Νόµος Πίεσης Υδροστατική πίεση Ατµοσφαιρική Πίεση. Σκιέρ : Ελαστικά τρακτέρ-φορτηγών : Καρφιά: Συµπεράσµατα:

ΠΙΕΣΗ. Παραδείγµατα καθηµερινότητας Νόµος Πίεσης Υδροστατική πίεση Ατµοσφαιρική Πίεση. Σκιέρ : Ελαστικά τρακτέρ-φορτηγών : Καρφιά: Συµπεράσµατα: ΠΙΕΣΗ Παραδείγµατα καθηµερινότητας Νόµος Πίεσης Υδροστατική πίεση Ατµοσφαιρική Πίεση 1 2 Παραδείγµατα καθηµερινότητας Σκιέρ : Ελαστικά τρακτέρ-φορτηγών : Καρφιά: Συµπεράσµατα: Εξάρτηση της πίεσης (P) από

Διαβάστε περισσότερα

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΗ ΥΔΡΑΥΛΙΚΗ. Τμήμα Μηχανικών Περιβάλλοντος Γ εξάμηνο

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΗ ΥΔΡΑΥΛΙΚΗ. Τμήμα Μηχανικών Περιβάλλοντος Γ εξάμηνο ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΗ ΥΔΡΑΥΛΙΚΗ Τμήμα Μηχανικών Περιβάλλοντος Γ εξάμηνο ΜΟΥΤΣΟΠΟΥΛΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΛΕΚΤΟΡΑΣ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΟΛΙΤΙΚΟΣ ΜΗΧΑΝΙΚΟΣ -Ειδικότητα Υδραυλική Πανεπιστήμιο

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

Το μισό του μήκους του σωλήνα, αρκετά μεγάλη απώλεια ύψους.

Το μισό του μήκους του σωλήνα, αρκετά μεγάλη απώλεια ύψους. Πρόβλημα Λάδι πυκνότητας 900 kg / και κινηματικού ιξώδους 0.000 / s ρέει διαμέσου ενός κεκλιμένου σωλήνα στην κατεύθυνση αυξανομένου υψομέτρου, όπως φαίνεται στο παρακάτω Σχήμα. Η πίεση και το υψόμετρο

Διαβάστε περισσότερα

Κεφάλαιο 4 Πίεση. Φυσική Β Γυμνασίου

Κεφάλαιο 4 Πίεση. Φυσική Β Γυμνασίου Κεφάλαιο 4 Πίεση Φυσική Β Γυμνασίου Απαντήσεις ερωτήσεων σχολικού βιβλίου σχ. βιβλίο (σ.σ. 82-86) Γυμνάσιο: 9.000 μαθήματα με βίντεο-διδασκαλία για όλο το σχολικό έτος μόνο με 150 ευρώ! Μελέτη όπου, όποτε

Διαβάστε περισσότερα

ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ

ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ Σε όλες τις κινήσεις που μελετούσαμε μέχρι τώρα, προκειμένου να απλοποιηθεί η μελέτη τους, θεωρούσαμε τα σώματα ως υλικά σημεία. Το υλικό σημείο ορίζεται ως σώμα που έχει

Διαβάστε περισσότερα

Αντιμετώπιση προβλημάτων που αλλάζουν την στροφική τους κατάσταση, εξαιτίας εξωτερικών ροπών

Αντιμετώπιση προβλημάτων που αλλάζουν την στροφική τους κατάσταση, εξαιτίας εξωτερικών ροπών Αντιμετώπιση προβλημάτων που αλλάζουν την τους κατάσταση, εξαιτίας εξωτερικών ροπών Σ' ένα πρόβλημα, παρατηρώ αλλαγή στη κατάσταση ενός στερεού (ή συστήματος στερεών), καθώς αυτό δέχεται εξωτερικές ροπές.

Διαβάστε περισσότερα

Β Γυμνασίου 22/6/2015. Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής

Β Γυμνασίου 22/6/2015. Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής Β Γυμνασίου /6/05 Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής Β Γυμνασίου /6/05 Δείκτες Επιτυχίας (Γνώσεις και υπό έμφαση ικανότητες) Παρεμφερείς Ικανότητες (προϋπάρχουσες

Διαβάστε περισσότερα

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος παίρνει καθορισμένη τιμή. Ηλεκτρικό πεδίο Ηλεκτρικό πεδίο ονομάζεται ο χώρος, που σε κάθε σημείο

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Θέμα 1o A Λυκείου 22 Μαρτίου 28 Στις ερωτήσεις Α,Β,Γ,Δ,E μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ Υποθέστε ότι έχουμε μερικά ακίνητα φορτισμένα σώματα (σχ.). Τα σώματα αυτά δημιουργούν γύρω τους ηλεκτρικό πεδίο. Αν σε κάποιο σημείο Α του ηλεκτρικού πεδίου τοποθετήσουμε ένα

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

ΠΑΡΑ ΟΤΕΟ ΥΠΟΕΡΓΟΥ 04. " Εκπαίδευση Υποστήριξη - Πιλοτική Λειτουργία "

ΠΑΡΑ ΟΤΕΟ ΥΠΟΕΡΓΟΥ 04.  Εκπαίδευση Υποστήριξη - Πιλοτική Λειτουργία ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΑΒΑΛΑΣ Επιχειρησιακό Πρόγραµµα "Ψηφιακή Σύγκλιση" Πράξη: "Εικονικά Μηχανολογικά Εργαστήρια", Κωδικός ΟΠΣ: 304282, ΣΑΕ 3458 «Η Πράξη συγχρηµατοδοτείται από το Ευρωπαϊκό

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Φυσική Α Λυκείου Στο παρών παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 2 ο, 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις

Διαβάστε περισσότερα

Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση

Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση 1. Mόλις τεθεί σε κίνηση µε σταθερή ταχύτητα, ο µάζας 1000 kg ανελκυστήρας Α ανεβαίνει µε ρυθµό έναν όροφο (3 m) το δευτερόλεπτο.

Διαβάστε περισσότερα

Μονάδες 5 1.3 β. Μονάδες 5 1.4 Μονάδες 5

Μονάδες 5 1.3 β. Μονάδες 5 1.4 Μονάδες 5 ΘΕΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 29 ΜΑΪΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) Για τις ημιτελείς

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Απριλίου, 2014 Ώρα: 10:00-13:00 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση. Γενικές οδηγίες: 1.

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Β Γυμνασίου >> Αρχική σελίδα ΔΥΝΑΜΗ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμ εε ααππααννττήή σσεει ιςς (σελ. 1) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. 5) ΙΑΒΑΣΕ

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 15 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 1 Μαΐου 15 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ - 1 - 1. ΔΥΝΑΜΕΙΣ. (6 π) Οι μαθητές και μαθήτριες να: 1.1 Η δύναμη ως διάνυσμα. 1.1.1 Ορίζουν τη δύναμη από τα αποτελέσματά της. 1.1.1.1 Μια δύναμη μπορεί να προκαλέσει:

Διαβάστε περισσότερα

Δύναμη είναι η αιτία που μπορεί να προκαλέσει μεταβολή στην ταχύτητα ενός σώματος ή που μπορεί να το παραμορφώσει.

Δύναμη είναι η αιτία που μπορεί να προκαλέσει μεταβολή στην ταχύτητα ενός σώματος ή που μπορεί να το παραμορφώσει. ΚΕΦΑΛΑΙΟ 3 ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης 1. Τι είναι δύναμη; Δύναμη είναι η αιτία που μπορεί να προκαλέσει μεταβολή στην ταχύτητα ενός σώματος ή που μπορεί να το παραμορφώσει. 2. Ποια είναι τα χαρακτηριστικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο

ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο Φυσική Β Γυμνασίου Βασίλης Γαργανουράκης http://users.sch.gr/vgargan Εισαγωγή Στο προηγούμενο κεφάλαιο μελετήσαμε τις κινήσεις των σωμάτων. Το επόμενο βήμα είναι να αναζητήσουμε

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Β Γυμνασίου >> Αρχική σελίδα ΕΝΕΡΓΕΙΙΑ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμ εε ααππααννττήή σσεει ιςς (σελ. 1 ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. 4 ΙΑΒΑΣΕ

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα

ΘΕΜΑ Β. διπλανό διάγραμμα. Αν t 2 =2 t 1 και t 3 =3 t 1 τότε -F

ΘΕΜΑ Β. διπλανό διάγραμμα. Αν t 2 =2 t 1 και t 3 =3 t 1 τότε -F ΘΕΜΑ Β Β 1. Ένας μικρός μεταλλικός κύβος βρίσκεται αρχικά ακίνητος σε λείο οριζόντιο δάπεδο. Στον κύβο ασκείται την χρονική στιγμή t= 0 s οριζόντια δύναμη της οποίας η τιμή σε συνάρτηση με το χρόνο παριστάνεται

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

Κεφάλαιο 8 Διατήρηση της Ενέργειας

Κεφάλαιο 8 Διατήρηση της Ενέργειας Κεφάλαιο 8 Διατήρηση της Ενέργειας ΔΥΝΑΜΗ ΕΡΓΟ ΕΝΕΡΓΕΙΑ µηχανική, χηµική, θερµότητα, βαρυτική, ηλεκτρική, µαγνητική, πυρηνική, ραδιοενέργεια, τριβής, κινητική, δυναµική Περιεχόµενα Κεφαλαίου 8 Συντηρητικές

Διαβάστε περισσότερα

24ο Μάθημα ΑΤΜΟΣΦΑΙΡΙΚΗ ΠΙΕΣΗ

24ο Μάθημα ΑΤΜΟΣΦΑΙΡΙΚΗ ΠΙΕΣΗ 24ο Μάθημα ΑΤΜΟΣΦΑΙΡΙΚΗ ΠΙΕΣΗ Ο αέρας, όπως και κάθε αέριο, ασκεί δυνάμεις, ασκεί πιέσεις Μέχρι τώρα διαπιστώσαμε ότι πιέσεις μπορεί να ασκηθούν στην επιφάνεια στερεών και υγρών σώματων. Τι συμβαίνει στην

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Μοντελοποίηση Ηλεκτρικών και Υδραυλικών Συστημάτων

Δυναμική Μηχανών I. Μοντελοποίηση Ηλεκτρικών και Υδραυλικών Συστημάτων Δυναμική Μηχανών I Μοντελοποίηση Ηλεκτρικών και Υδραυλικών Συστημάτων Χειμερινό Εξάμηνο 2014 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δημήτριος Τζεράνης, Ph.D. Περιεχόμενα Μοντελοποίηση Ηλεκτρικών Συστημάτων Μεταβλητές

Διαβάστε περισσότερα

Β1) Ένα σώμα κινείται σε οριζόντιο δάπεδο με σταθερή ταχύτητα μέτρου 4 m/s με την επίδραση οριζόντιας σταθερής δύναμης μέτρου ίσου με 40 N.

Β1) Ένα σώμα κινείται σε οριζόντιο δάπεδο με σταθερή ταχύτητα μέτρου 4 m/s με την επίδραση οριζόντιας σταθερής δύναμης μέτρου ίσου με 40 N. ΘΕΜΑ Β Β1) Ένα σώμα κινείται σε οριζόντιο δάπεδο με σταθερή ταχύτητα μέτρου 4 m/s με την επίδραση οριζόντιας σταθερής δύναμης μέτρου ίσου με 40 N. Α) Να επιλέξετε τη σωστή πρόταση. Ο ρυθμός με τον οποίο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΗ ΛΥΕΙΟΥ ΘΕΤΙΗΣ Ι ΤΕΧ/ΗΣ ΤΕΥΘΥΝΣΗΣ ΘΕΜ : Στις ερωτήσεις - να γράψετε στο φύλλο απαντήσεων τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Στις ερωτήσεις -5 να γράψετε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ ΘΕΜΑ 1 ο 17/4/2015 Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Φυσικά μεγέθη

Κεφάλαιο 1 ο. Φυσικά μεγέθη Κεφάλαιο 1 ο Φυσικά μεγέθη 1.1. Μέγεθος Μέγεθος είναι κάθε ποσότητα η οποία μπορεί να μετρηθεί. 1.2. Μέτρηση Είναι η διαδικασία που χρησιμοποιούμε για να συγκρίνουμε όμοια μεγέθη. 1.. Φυσικά μεγέθη Ονομάζονται

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:...

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:... ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: Φυσική ΤΑΞΗ: Α ΗΜΕΡΟΜΗΝΊΑ: 27 Μαίου 2011 ΧΡΟΝΟΣ: 2 ώρες ΩΡΑ: 11.00 1.00 ΒΑΘΜΟΣ: Αριθμητικά:... Ολογράφως:...

Διαβάστε περισσότερα

Να σχεδιάσετε και να υπολογίσετε τη συνισταμένη δύναμη στις πιο κάτω περιπτώσεις.

Να σχεδιάσετε και να υπολογίσετε τη συνισταμένη δύναμη στις πιο κάτω περιπτώσεις. ΔΥΝΑΜΕΙΣ ΝΟΜΟΙ ΤΟΥ ΝΕΥΤΩΝΑ ΓΙΑ ΤΗΝ ΚΙΝΗΣΗ Να σχεδιάσετε και να υπολογίσετε τη συνισταμένη δύναμη στις πιο κάτω περιπτώσεις. F 2=2N F 1=6N F 3=3N F 4=5N (α) (β) F 5=4N F 6=1N F 7=3N (γ) Να σχεδιάσετε και

Διαβάστε περισσότερα

Ρευστά. Πίνακας 1 : Πυκνότητες κοινών υλικών στους 0 o C και υπό πίεση 1 atm

Ρευστά. Πίνακας 1 : Πυκνότητες κοινών υλικών στους 0 o C και υπό πίεση 1 atm Ρευστά Ρευστά ονομάζονται τα υγρά και τα αέρια που έχουν την ικανότητα να ρέουν. Στα ρευστά τα μόρια κατανέμονται στον χώρο με τυχαίο τρόπο και συνδέονται μεταξύ τους με ασθενείς ελκτικές δυνάμεις Η ειδική

Διαβάστε περισσότερα

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1 ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Όταν ένα σώμα μεταφερθεί στη Σελήνη θα αλλάξει: 1. Ο όγκος του 2. Το χρώμα του 3. Η μάζα του 4. Το βάρος του 2. Το αλουμίνο έχει μικρότερη πυκνότητα απο το χαλκό, οπότε

Διαβάστε περισσότερα

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Στι ερωτήσει - 4 να γράψετε στο τετράδιό σα τον αριθµό των ερώτηση και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τροχό κυλίεται πάνω σε οριζόντιο

Διαβάστε περισσότερα

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α)

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) Α. ΝΟΜΟΙ ΑΕΡΙΩΝ 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) P = σταθ. V P 2) Ισόχωρη µεταβολή β) = σταθ. 3) Ισοβαρής µεταβολή γ) V

Διαβάστε περισσότερα

Χειμερινό εξάμηνο 2007 1

Χειμερινό εξάμηνο 2007 1 Εξαναγκασμένη Συναγωγή Εσωτερική Ροή Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 Ροή σε Σωλήνες (ie and tube flw) Σε αυτή την διάλεξη θα ασχοληθούμε με τους συντελεστές

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Φυσική Κατεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ κ ΙΑΓΩΝΙΣΜΑ Β Θέµα ο Να επιλέξετε τη σωστή απάντηση σε κάθε µία από τις παρακάτω ερωτήσεις: Σε ισόχωρη αντιστρεπτή θέρµανση ιδανικού αερίου, η

Διαβάστε περισσότερα

ΔΙΑΚΡΟΤΗΜΑ - Τα Καλύτερα Φροντιστήρια της Πόλης!

ΔΙΑΚΡΟΤΗΜΑ - Τα Καλύτερα Φροντιστήρια της Πόλης! ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΗΝΙΩΝ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΗΜΕΡΟΜΗΝΙΑ:... /... / 01, ΤΜΗΜΑ :... ΒΑΘΜΟΣ:... ΘΕΜΑ 1 Να επιλέξετε τη σωστή απάντηση στις παρακάτω

Διαβάστε περισσότερα

(ΙΙ) τα πάνω με σταθερή επιτάχυνση μέτρου α = 2g, όπου g η επιτάχυνση της βαρύτητας.

(ΙΙ) τα πάνω με σταθερή επιτάχυνση μέτρου α = 2g, όπου g η επιτάχυνση της βαρύτητας. ΘΕΜΑ Β Β 1. Μικρή σφαίρα αφήνεται να πέσει από αρχικό μικρό ύψος H, πάνω από το έδαφος και εκτελώντας ελεύθερη πτώση πέφτει στο έδαφος. K (Ι) K (ΙΙ) K (ΙΙΙ) 0 Η y 0 H y 0 H y Α) Να επιλέξετε την σωστή

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΑΓΩΓΗ () Νυμφοδώρα Παπασιώπη Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας

Διαβάστε περισσότερα

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΦΡΟΝΤΙΣΤΗΡΙΟ ΓΝΩΣΗ ΘΕΜΑ 1 1. Σε μια ελαστική κρούση δύο σωμάτων διατηρείται: α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ ο ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ου ΓΕΛ ΠΕΤΡΟΥΠΟΛΗΣ ΔΕΥΤΕΡΑ 3 ΜΑΪΟΥ 200 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ () Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

β) το αυτοκίνητο τη χρονική στιγμή t = 2 s έχει ταχύτητα μέτρου υ 4. s γ) στο αυτοκίνητο ασκείται σταθερή συνισταμένη δύναμη μέτρου 1 Ν.

β) το αυτοκίνητο τη χρονική στιγμή t = 2 s έχει ταχύτητα μέτρου υ 4. s γ) στο αυτοκίνητο ασκείται σταθερή συνισταμένη δύναμη μέτρου 1 Ν. ΘΕΜΑ Β Β 1. Ένα παιγνίδι - αυτοκινητάκι μάζας 1 Kg είναι ακίνητο στη θέση x = 0 m. Την χρονική στιγμή t = 0 s ξεκινά να κινείται ευθύγραμμα. Στον παρακάτω πίνακα φαίνονται οι τιμές της θέσης του αυτοκινήτου

Διαβάστε περισσότερα

Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. 29 5 2015

Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. 29 5 2015 Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. 9 5 015 ΘΕΜΑ Α: Α1. α Α. β Α. α Α4. δ Α5. α) Λ β) Σ γ) Σ δ) Λ ε) Σ ΘΕΜΑ Β: B1. Σωστό το iii. Αιτιολόγηση: Οι εξωτερικές δυνάμεις

Διαβάστε περισσότερα

1. Μηχανικές ιδιότητες των στερεών 1.1 Καταπονήσεις και είδη παραµορφώσεων των στερεών

1. Μηχανικές ιδιότητες των στερεών 1.1 Καταπονήσεις και είδη παραµορφώσεων των στερεών . Μηχανικές ιδιότητες των στερεών. Καταπονήσεις και είδη παραµορφώσεων των στερεών Όπως αναφέραµε στην παράγραφο., µεταξύ των ατόµων, ή µορίων των στερεών ασκούνται συγχρόνως τόσο ελκτικές όσο και απωστικές

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της Ερωτήσεις ανάπτυξης. ** Η συνάρτηση είναι παραγωγίσιµη στο R και η ευθεία (ε) είναι εφαπτοµένη της C στο σηµείο (0, (0)). Μετακινούµε τη C παράλληλα προς τους άξονες, όπως φαίνεται στο σχήµα, και ονοµάζουµε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ μονόμετρα. διανυσματικά Η μάζα ενός σώματος αποτελεί το μέτρο της αδράνειάς του, πυκνότητα ενός υλικού d = m/v

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ μονόμετρα. διανυσματικά Η μάζα ενός σώματος αποτελεί το μέτρο της αδράνειάς του, πυκνότητα ενός υλικού d = m/v ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ Υπάρχουν φυσικά μεγέθη που ορίζονται πλήρως, όταν δοθεί η αριθμητική τιμή τους και λέγονται μονόμετρα.. Μονόμετρα μεγέθη είναι ο χρόνος, η μάζα, η θερμοκρασία, η πυκνότητα, η ενέργεια,

Διαβάστε περισσότερα

Πρόχειρες Σημειώσεις

Πρόχειρες Σημειώσεις Πρόχειρες Σημειώσεις ΛΕΠΤΟΤΟΙΧΑ ΔΟΧΕΙΑ ΠΙΕΣΗΣ Τα λεπτότοιχα δοχεία πίεσης μπορεί να είναι κυλινδρικά, σφαιρικά ή κωνικά και υπόκεινται σε εσωτερική ή εξωτερική πίεση από αέριο ή υγρό. Θα ασχοληθούμε μόνο

Διαβάστε περισσότερα

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ΘΕΜΑ 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ: ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ

ΕΠΙΜΕΛΕΙΑ: ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί η σωστή απάντηση 1. Δίσκος κυλίεται χωρίς να ολισθαίνει με την επίδραση σταθερής οριζόντιας

Διαβάστε περισσότερα

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος

Διαβάστε περισσότερα

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Ο Να επιλέξετε τη σωστή απάντηση σε κάθε μία από τις ερωτήσεις - που ακολουθούν: Η ενεργός ταχύτητα των μορίων ορισμένης ποσότητας

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ Φυσική Β Γυμνασίου Εισαγωγή Τα πάντα γύρω μας κινούνται. Στο διάστημα όλα τα ουράνια σώματα κινούνται. Στο μικρόκοσμο συμβαίνουν κινήσεις που δεν μπορούμε να τις αντιληφθούμε άμεσα.

Διαβάστε περισσότερα

μηχανικη στερεου σωματοσ

μηχανικη στερεου σωματοσ μηχανικη στερεου σωματοσ 4 Ροπή δύναμης 112 Ισορροπία στερεού 115 Ροπή αδράνειας 116 Στροφορμή 122 Κινητική ενέργεια λόγω περιστροφής 126 Σύνοψη 131 Ασκήσεις 132 4-1 ΕΙΣΑΓΩΓΗ Στην προσπάθειά μας να απλοποιήσουμε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ Ε.Ε.Φ. ΠΑΡΑΡΤΗΜΑΤΟΣ Κ.& Δ. ΜΑΚΕΔΟΝΙΑΣ ΘΕΜΑΤΑ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ

ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ Ε.Ε.Φ. ΠΑΡΑΡΤΗΜΑΤΟΣ Κ.& Δ. ΜΑΚΕΔΟΝΙΑΣ ΘΕΜΑΤΑ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ Ε.Ε.Φ. ΠΑΡΑΡΤΗΜΑΤΟΣ Κ.& Δ. ΜΑΚΕΔΟΝΙΑΣ ΘΕΜΑΤΑ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ 1. Αυτοκίνητο ξεκινάει από τη Θεσσαλονίκη στις 13: 00 η ώρα ακριβώς και κινούμενο με μέση ταχύτητα 90 Km/h περνά από την

Διαβάστε περισσότερα

Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες

Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες ΦΘΙΝΟΥΣΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Φθίνουσες μηχανικές ταλαντώσεις Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες ταλαντώσεις. Η ελάττωση του πλάτους (απόσβεση)

Διαβάστε περισσότερα

Παραδείγµατα δυνάµεων

Παραδείγµατα δυνάµεων ΥΝΑΜΕΙΣ Παραδείγµατα Ορισµός της δύναµης Χαρακτηριστικά της δύναµης Μάζα - Βάρος Μέτρηση δύναµης ράση - αντίδραση Μέτρηση δύναµης Σύνθεση - ανάλυση δυνάµεων Ισορροπία δυνάµεων 1 Ανύψωση βαρών Παραδείγµατα

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2013 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2013 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος B Γυμνασίου 20 Απριλίου 2013 Θέμα 1 ο Στις ερωτήσεις A, B, Γ, Δ και Ε μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά)

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά) ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 31/05/2010 ΤΑΞΗ: Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΧΡΟΝΟΣ: 07:30 10:00 π.μ. ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΤΜΗΜΑ:...

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ Ο Ρ Ο Σ Η Μ Ο. Για το κενό ή αέρα στο SI: N m. , Μονάδα στο S.I. 1. Πως βρίσκουμε τη συνισταμένη δύο ή περισσοτέρων δυνάμεων:

ΤΥΠΟΛΟΓΙΟ Ο Ρ Ο Σ Η Μ Ο. Για το κενό ή αέρα στο SI: N m. , Μονάδα στο S.I. 1. Πως βρίσκουμε τη συνισταμένη δύο ή περισσοτέρων δυνάμεων: ΤΥΠΟΛΟΓΙΟ Φυσική της Λυκείου Γενικής Παιδείας Στατικός Ηλεκτρισμός Τύποι που ισχύουν Νόμος του Coulomb Πως βρίσκουμε τη συνισταμένη δύο ή περισσοτέρων δυνάμεων: α. Χρησιμοποιούμε τη μέθοδο του παραλλογράμμου

Διαβάστε περισσότερα