הגישה המתמטית לחישוב אורך חיים כלכלי שם כותב המאמר אחיקם ביתן

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "הגישה המתמטית לחישוב אורך חיים כלכלי שם כותב המאמר אחיקם ביתן"

Transcript

1 הגישה המתמטית לחישוב אורך חיים כלכלי שם כותב המאמר אחיקם ביתן 1. מבוא: חייו הכלכליים של נכס מקרקעין life( )Ecoomic מוגדר בספרות המקצועית כ-"אורך הזמן" בו ההשבחות תורמות לשוויו הכולל של הנכס. ( "The time over which improvemets to real estate cotribute to property value ", The ppraisal of real estate, Teth eitio, p. 344). תקופת חיים זו היא קריטית במקרים רבים של שומת נכסים בנויים למטרות שונות בכלל ולהיטלי השבחה בפרט. שיטת הניבוי של אורך החיים הכלכלי מורכבת הואיל, כפי שאסביר בהמשך, פועלים כוחות הן מנוגדים והן משלימים המשפיעים על התוצאה. אחת הדרכים הנפוצות כיום לאמידת פרק זמן זה היא שיטת "הניחוש המלומד". ב"שיטה" זו נקבע אורך זמן זה ע"י "תחושת בטן מלומדה" של עורך התחשיב. בדרך כלל קשה להתווכח עם אומדן שכזה כי כשמו כן הוא "ניחוש" ואפילו "ניחוש מלומד". עקרונית יש לבצע בדיקה, בזמן אפס, כדי לקבל תשובה לאחת משתי השאלות: א. או, ב. האם נותרו להשבחות, בזמן הבדיקה )כיום(, חיים כלכליים? תשובה: כן / לא? האם ההשבחות סיימו )כיום( את חייהן הכלכליים? תשובה: כן / לא? תשובות לשאלות הללו מצריכות עריכת תחשיב שהתשובות עליו הן כן או לא; האם נותרו או לא נותרו חיים כלכליים למבנה. על עקרונות תחשיב זה אדון בהמשך הואיל והם שלב א' בפיתוח הגישה המתמטית לאומדן. מאמר זה בא לעולם עקב הביקורת השוררת בין אנשי המקצוע על שיטת "הניחוש המלומד" והרצון לרדת לרזולוציה גבוהה יותר ע"י בידוד וחישוב כל אחד מגורמי ההשפעה בהתאם לחישובים פרטניים הדורשים הסבר וניתנים לבדיקה. במילים אחרות, "כלל אצבע" ישמש, אם בכלל, רק במקרים נדירים. עבודה עפ"י הנוסחה אליה הגעתי דורשת מעורך החישוב לערוך כמה חישובי ביניים, להסבירם וע"י כך ניתן לבדוק ולבקר ו/או להשוותם למקרים דומים. בשיטת "הניחוש המלומד" ניתן להשתמש רק אם אין כל אפשרות להגיע לנתונים הנדרשים עפ"י הנוסחא שלהלן.

2 פחת 2.1 פחת והחוק השני של התרמו-דינאמיקה החוק השני של התרמו-דינאמיקה מודד גודל פיזיקאלי בשם אנטרופיה.)Etropy( מדד זה )כמות האנטרופיה( במערכת נתונה כמדד המשמש לבדיקת חוסר הסדר שבה. החוק טוען כי במערכת סגורה אי הסדר לעולם אינו פוחת עם הזמן. המדען סטיבן ו. הוקינג באחת מהרצאותיו )"התיאוריה של הכול", סטיבן ו. הוקינג, מאנגלית אורי שגיא, הוצאת אופוס, 22 ע. 1( מביא כדוגמה כי "ניסיון החיים מלמד אותנו שאי סדר נוטה לגדול אם לא מתערבים במצב; צריך רק להניח בית לנפשו ולהימנע מהתיקונים הנחוצים כדי להבחין בזה. אפשר ליצור סדר מתוך אי הסדר לדוגמא, אפשר לצבוע את הבית. אולם לשם כך דרושה הוצאה של אנרגיה )כסף א.ב.( וכך קטנה כמות האנרגיה )כסף א.ב.( המסודרת הזמינה לנו". נמצאנו למדים מכך כי ככול שקצב גדילת האנטרופיה חיובי ימשיך המבנה או ההשבחות הפיזיות לצבור פחת לאורך ציר הזמן. במודל שאציג אדון במקרה של אי התערבות חיצונית במצבן הפיזי של ההשבחות כי לשם כך דרושה השקעה כספית )אנרגיה( דבר שמחד מאריך בד"כ את החיים הכלכליים אולם מאידך דורש מאיתנו משאבים כספיים לשם כך. 2.2 סוגי הפחתים ושיטות לחישובם קיימים שלושה סוגי פחתים עיקריים: א. פחת פיזי ב. פחת פונקציונאלי ג. פחת כלכלי / סביבתי כל אחד מפחתים אלה תורם, בדרכו, לקיצור חייו הממשיים והכלכליים של נכס מקרקעין. קיימות כמה שיטות חישוב של פחתים אלה. אחת השיטות הבסיסיות, השיטה החשבונאית, מייחסת אחוז קבוע וזהה של פחת לכל שנת חיים, המסתכם ב- 22% בסוף חייו הפיזיים של הנכס. לדוגמא אם אורך החיים הפיזי החזוי הוא 2 שנים הרי הפחת השנתי הממוצע יהיה %

3 - 3 - לאמץ כל שיטת חישוב פחת אחרת. זאת ועוד באחוז הפחת השנתי יכללו כל שלושת סוגי הפחתים שלעיל גם יחד. עורך התחשיב, רשאי, עפ"י הבנתו לקבוע את שעור הפחת המתאים לסוג ההשבחות אותן הוא בודק. מכל מקום ברור כי שעור הפחת של המרכיב הפיזי בלבד הוא המינימאלי ועליו יש להוסיף את שעור שני הפחתים האחרים. במילים אחרות, אם נניח כי הפחת הפיזי הוא.% לשנה בממוצע, פחת פונקציונאלי 2.% לשנה בממוצע ופחת סביבת / כלכלי הוא 2.% לשנה בממוצע; הרי הפחת הכולל הוא.1% שללא כל גורם משפיע אחר מביא את חייו הכלכליים של נכס מקרקעין זה לכדי 5 שנים. כפי שאסביר בהמשך, אורך החיים הכלכלי של נכס מקרקעין יתקצר כתוצאה מגורם אחר חיצוני 1% % 2 שנה 5 שנים במאמרי זה אשתמש לשם פשטות ההצגה במודל פחת חשבונאי. בשינויים מזעריים אפשר עלית שווי הקרקע. 1.8% ( 1% ) שנה שאינו קשור כלל ועיקר לאחד משלושת הפחתים האמורים: גורם זה הינו 3. שווי הקרקע כריקה כשם שלפחת כמה סוגים וכמה דרכים לחישוב כך גם לשווי כמה סוגים ודרכים לחישובו. שניים מסוגי השווי ישמשו אותי במאמר זה: א. השווי בשימוש value( )Use ( נסמן " "Vu ) )כולל את שווי הקרקע שבשימוש והבניה( ב. השווי הכולל value( )Overall ( נסמן " Vt " ) )כולל את שווי הקרקע המלא והבניה( ההפרש בין השווי הכולל ( " Vt " ) לבין השווי בשימוש ( " Vu " ) מהווה את יתרת השווי הבלתי מנוצל ואסמנו ב " ". הפרש שווי זה יכול לנבוע משתי סיבות עיקריות : א. בזמן הבניה לא נוצלו מלוא הזכויות הקיימות. ב. לאחר הבניה נוספו זכויות בניה מסוגים שונים

4 - 4 - קיימים שיקולים רבים שלא לנצל את מלוא זכויות הבניה המותרות בזמן הבניה. הסיבות יכולות להיות סובייקטיביות ואובייקטיביות כאחת. במאמר זה לא אכנס לשאלה זו ורק אניח את ההנחה הבאה: אם קיימת יתרת זכויות בניה שלא נוצלה ביום הבניה והשלמת בניה זו אינה דורשת השקעה עודפת )התאמות מיוחדות או עודפות למשל( היא תתווסף לשווי שבשימוש במודל. אסביר. נניח שאפשר היה לבנות בזמן הבניה 2% בקומה אחת ונבנו %, עוד נניח כי תוספת מאוחרת יותר של חמשת האחוזים הנותרים לבניה תעלה בעלות כספית כחלק היחסי מבנית השלם, או אז השווי בשימוש יכלול גם את שווי זה. לעומת זאת אם בזמן הבניה מותר היה לבנות 2% בשתי קומות ונבנתה רק קומה אחת עם גג רעפים ותקרת רביץ בשיעור של 2% הרי תוספת השווי לקומה השנייה, הדורשת הוצאה עודפת יחסית גבוהה, לא תיכלל בשווי שבשימוש. למרות האמור לעיל יוכל עורך התחשיב לבצע הנחות אחרות, בתנאי שתהיינה הגיוניות ועולות בקנה אחד עם המציאות ולקבוע ערך אחר לשווי שבשימוש וממילא ערך אחר ליתרת הזכויות הבלתי מנוצלות. תוספת שווי של זכויות בניה שהוקנו לאחר הבניה יכולות לנבוע רק ועליהם כידוע חלה חובת תשלום היטל השבחה. נתון זה ישמש אותי כגורם המאריך את תקופת החיים הכלכליים. משינויי תכנון מאוחרים בהמשך בפיתוח הנוסחה - 4 -

5 חיים כלכליים של מבנה עפ"י ההגדרה החיים הכלכליים של נכס מקרקעין נמדדים עפ"י אורך התקופה בה המבנה תורם לשווי הכולל. במילים אחרות אם שווי השוק של הקרקע כריקה ופנויה זהה לשווי הנכס הבנוי עפ"י השווי בשימוש הרי שהמבנה סיים את חייו הכלכליים. עובדת הריסת מבנה בשלב מסוים של "חייו" אינה מעידה עדין כי המבנה סיים את חייו הכלכליים. הריסה של מבנים רבים בתקופת זמן דומה פחות או יותר מיום הבניה יכולה להצביע על התופעה אולם עדיין קיים בה הגורם הסובייקטיבי. 4.1 מנגד קיומו של מבנה שנים רבות אחרי הקמתו אינה מעידה כלל ועיקר כי הוא נמצא בתוך חייו הכלכליים. הסיבות להשארתו על תילו יכולות לנבוע מסיבות סובייקטיביות כגון קשר רגשי, מגורי הורים מבוגרים וכו'. מהאמור לעיל נובע כי קיים צורך לקבוע בזמן נתון, קריטריונים אובייקטיביים. את אורך החיים של המבנה עפ"י מלבד הפחתים החלים על המבנה לאורך ציר הזמן )החוק השני של התרמו-דינאמיקה( המקצרים את חייו הכלכליים פועל כוח נוסף, באותו כיוון של קיצור חייו הכלכליים והוא עליית שווי הקרקע כריקה. במקרה הפרטי בו נוצלו כל זכויות הבניה, אין בזמן הבדיקה זכויות נוספות ואף אין צפי לכך יקבע אורך החיים הכלכלי רק עפ"י שעורי הפחת. 4.2 מאידך, במקרה היותר שכיח קיימות לנכס זכויות בניה נוספות, חלקן קיימות וחלקן כאלה אשר הוענקו לאחר בנייתו. במקרה זה שווי זכויות אלה יפעל בכיוון אחד עם הפחתים לקיצור חייו הכלכליים של המבנה

6 פיתוח נוסחת אמידת חיים כלכליים של מבנה 5.1 סימונים: יתרת חיים כלכליים : = מועד הבדיקה : )היום( שווי המבנה : o )שווי פיזי עדכני ליום הבדיקה במצבו( שעור פחת כולל : )הנחת עבודה: פחת בקו ישר הכולל את שלושת הפחתים( שווי הקרקע בשימוש : Lo שווי יתרת זכויות : o ( נובע מתוספת זכויות חדשות וזכויות קיימות שאינן ניתנות לניצול( שיעור העלייה של שווי הקרקע : a )הנחת עבודה: עליה בקו ישר. הנחה נוספת: עליה ריאלית מעל מדד( גובה היטל ההשבחה : Po )מחושב על בסיס קרקע ריקה ומעודכן ליום הבדיקה(. 5.2 הצבה בנוסחאות: Vu L שווי הנכס עפ"י הניצול הקיים 1% L L שווי הקרקע כריקה )בניכוי היטל השבחה( P Vt L P שווי הנכס בשלמות 1% - 6 -

7 - 7 - הדרישה לגמר חיים כלכליים: Vu L או L L P ולאחר צמצום Lo נקבל P P זו הבדיקה הראשונית שיש לערוך בזמן =. אם מתי יתאפסו החיים הכלכליים. יש להמשיך ולבדוק לאחר שנים ( 1 ) (1 a ) P הערה: הואיל והן a והן מייצגים שינויים ריאליים )בניכוי מדד( אין מקום לעדכון היטל ההשבחה למדד. פיתוח הנוסחה יעשה למצב של שוויון כי בדיוק בנקודה זו מסתיימים החיים הכלכליים של המבנה

8 דדמ ייוניש לעמ םילאיר םייוניש,הנש / םיזוחאב םה a -ו םיזוחאל היצמרופסנרט תויורשפא :החסונה לש :תיפוסה החסונב o,o יכרע )'וכו $,ח"ש( עבטמ יחנומב םה Po -ו.םיזוחאב הלא םיכרע תעיבקל וננוצרכ היצמרופסנרט םהב ךורעל ןתינ תישעמ.הכרע לע רומשת החסונה,םיזוחאה בושיחל הנכמה היהי המ הנשמ אל תישעמ :םיאבהמ א"כ תויהל לוכי ירשפא ינויגה הנכמ.א L Β Vu שומישב סכנה יווש :.ב L Β אלמה סכנה יווש : Vt.ג P L Β החבשה לטיה יוכינב אלמה סכנה יווש : o,o יכרעב ןיגוריסל שמתשא הז רמאמב.ליעל רומאכ םיזוחאב וא םילקשב Po-ו P a a P ) ( a P a P a P

9 דוגמה מספרית )( o = 4% = 25% o )% יתרת זכויות לא חייבות בהיטל ו- 2% חייבות( שנה/ 3% = a שנה/ 2% = Po = 8% הנחות: לכן, שנים כ- 5.4 דוגמה מספרית )( השנה ( = o ) שווי קרקע למ"ר -,222 ש"ח שווי למ"ר מבונה - 5,522 ש"ח שטח מגרש 22 מ"ר בניה קיימת 1% בשתי קומות )עיקרי( שנת בניה 111. סה"כ בנוי 2 מ"ר. לפי כל התכניות מותר בזמן הבדיקה: 2% בשתי קומות = X 22 מ"ר 1 מ"ר 2 מ"ר חלל גג = 2.1 X 2 מ"ר ברכת שחיה = 2. X מ"ר 12 מ"ר 2 מ"ר מרתף = 2. X 2 מ"ר סה"כ - 9 -

10 - 1 - אין מקדם לקרקע כי צפיפות בניה דומה אין מקדם לממ"ד בשני המצבים שטח אקוויוולנטי קודם 1 מ"ר. שטח אקוויוולנטי חדש 2 מ"ר היטל השבחה ל- 22 כקרקע ריקה 2,222 ש"ח )לכל התכניות( עלות בניה 2 מ"ר 1,222 X ש"ח )כולל מע"מ( = 52% X 112,222 ש"ח = o 726, ש"ח = 6,6 o = (32-192) X 1,267, ש"ח = 6,6 Vu = 192 X 97, ש"ח = o שווי תוספת הבניה : שווי קרקע בשימוש : עלות בניה : 2,237, ש"ח שווי בשימוש = Vu > שווי קרקע ריקה ( 2,, ש"ח( מסקנה: למבנה יתרת חיים כלכליים ) 97, / 2,237, =( % = o ) 726, / 2,237, =( % = o ) 15, / 2,237, =( 5.1% = Po a= 3% =3.5% עליית שווי ריאלית פחת ריאלי - 1 -

11 שנים המסקנה: יתרת חיים כלכליים 1 שנים חיים ממשיים שנים סה"כ חיים כלכליים 2 שנים מיום הבניה )111( - -

12 הצגה גרפית בסעיף. לעיל רשומות שתי נוסחאות עליהן אחזור בשנית: Β Β (1- ) א. שווי המבנה לאחר שנים בניכוי פחת : ב. שווי תוספות הבניה לאחר שנים בניכוי היטל ההשבחה : 1 a ) ( P Β Β Β נפתח סוגריים נוסחאות אלה ונקבל : א. ( P) a ב

13 - 3 - נעביר נוסחאות אלה למערכת צירים; הציר האופקי "שנים" והציר האנכי "אחוזים". % אחוזים o % o(1+a*)-po (o Po) a % =o(1-*) o - o + Po o* + o*a 1 שנים 1 מהגרף נמצאנו למדים: כאשר o= בהגדרה גם Po= ולכן חיים כלכליים. P החיים הכלכליים יסתיימו בהתאם לנוסחה בחיתוך הגרפים. כאשר בדוגמה המספרית שבסעיף. אם o= הרי 1 שנים = P הרי שיתרת החיים הכלכליים היא 1 שנים בלבד. כאשר

14 סיכום במאמרי זה הצגתי את הגישה המתמטית לחישוב אורך חיים כללי של מבנה. השימוש בנוסחה אינו מחייב העברת הערכים לאחוזים אלא ניתן לעבוד בשקלים לכל ערכי השווי. את שיעור הפחת ועלית שווי הקרקע חייבים להציג בשבר עשרוני. 7.1 הנוסחה, שאינה משקרת, משקללת את מערכת יחסי "הכוחות" בין: o שווי עלות המבנה ביום הבדיקה o שווי יתרת זכויות הבניה ביום הבדיקה Po גובה היטל ההשבחה ליום הבדיקה ככל שההפרש ביניהם (o-o+po) נמוך יותר תתקצר תקופת החיים הכלכליים. הנוסחאות כפי שפותחו לעיל אינן מסובכות כלל ועיקר ובעבודה מעשית ניתן בזמן קצר להציב את הערכים בנוסחא )בערכים כספיים או באחוזים( ולקבל תוצאה של אורך החיים הכלכלי בנקל. 7.2 להלן טבלת עזר להמחשה: )ערכי בטבלה( a==2% Po=1% o o מהאמור נובע כי כאשר o=4% ואילו o=3% ועל בסיס הנתונים שלעיל, יתרת החיים הכלכליים הנותרים הם שנים. תודות: לאדיר קניזו וגלעד ניר על עזרתם הרבה בבניית המודל, עיצובו ועריכתו

15 - 5 - נספח א': מקרי קיצון.1=a אין עלית שווי של הקרקע כריקה. לכן הנוסחא תראה : במקרה זה אורך החיים יתקצר עקב שווי עודף לשווי שבשימוש לפי שעורם ביום הבדיקה. o. o > המשמעות היא שהמבנים סיימו את חייהם הכלכליים. =. o אין תוספת שווי עקב זכויות לא מנוצלות. 1 הנוסחא תהיה:. כאשר a שלילי יש גריעה בשווי עודף הזכויות. a 1. תקופת אורך החיים הכלכלי יתארך עקב הקטנת המכנה כדלקמן: a - 5 -

16 - 6 - נספח ב' : אמידת עלית שווי הקרקע )a ) עקב הלכת פמיני הצטבר הרבה מאוד מידע על רמות המחירים לאורך תקופות זמן יחסית ארוכות. אחת הדרכים היא להתייחס לנקודות אלה על ציר הזמן ובעזרת רגרסיה עם משתנה אחד למצוא ניבוי לשיעור עליה זה. הנושא אינו מורכב כלל ועיקר ויכול לספק תשובה סבירה לשיעור העלייה. קיימת אפשרות של מתן הסתברויות לשיעורי עליה שונים ואז לחשב תוחלת של שיעור העלייה )ממוצע משוקלל לפי ההסתברויות(. גם דרך זו מתאימה. נספח ג' שאלת היטל ההשבחה שבנוסחה היטל ההשבחה )Po( משול להוספת "אנרגיה" חיצונית = כסף למערכת הסגורה. משמעות הדבר היא כי כדי לזכות בתוספת שווי לקרקע o )בשלמות או חלק ממנו( יש להזרים למערכת המשוואות השקעה כספית. יוצא איפה מצב שבו ( P f ( וגם f ( P). כלומר ו- Po משפיעים הדדית זה על זה. יש כמה פתרונות למצב זה. אני בחרתי בפשוט שבהם והוא חישוב Po כך שיהיה מרבי דהיינו מבלי להביא בחשבון קיום המבנה על הקרקע. במילים אחרות היטל ההשבחה )Po( יחושב, לפחות לתכנית האחרונה )הלכת "פמיני"(, בהנחה כי הקרקע ריקה ופנויה. המשמעות היא כי הערך יהיה המרבי. אם עורך החישוב ירצה לדייק יותר בחישוב הוא יוכל לערוך החישוב בשנית לאחר התאמת Po ליתרת תקופת החיים הכלכליים. תודות: גלעד ניר אדיר קניזו על עזרתם הרבה בחשיבה ובעריכת המאמר

חורף תש''ע פתרון בחינה סופית מועד א'

חורף תש''ע פתרון בחינה סופית מועד א' מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר

Διαβάστε περισσότερα

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( ) פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e

Διαβάστε περισσότερα

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת

Διαβάστε περισσότερα

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b

Διαβάστε περισσότερα

גבול ורציפות של פונקציה סקלרית שאלות נוספות

גבול ורציפות של פונקציה סקלרית שאלות נוספות 08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

שאלה 1 V AB פתרון AB 30 R3 20 R

שאלה 1 V AB פתרון AB 30 R3 20 R תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A

Διαβάστε περισσότερα

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin( א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π

Διαβάστε περισσότερα

Logic and Set Theory for Comp. Sci.

Logic and Set Theory for Comp. Sci. 234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשעב זהויות טריגונומטריות תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשעו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים: לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1

Διαβάστε περισσότερα

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p

Διαβάστε περισσότερα

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות

Διαβάστε περισσότερα

תרגיל 7 פונקציות טריגונומטריות הערות

תרגיל 7 פונקציות טריגונומטריות הערות תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =

Διαβάστε περισσότερα

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים ( תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע

Διαβάστε περισσότερα

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

{ : Halts on every input}

{ : Halts on every input} אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

דינמיקה כוחות. N = kg m s 2 מתאפסת.

דינמיקה כוחות. N = kg m s 2 מתאפסת. דינמיקה כאשר אנו מנתחים תנועה של גוף במושגים של מיקום, מהירות ותאוצה כפי שעשינו עד כה, אנו מדלגים על ניתוח הכוחות הפועלים על הגוף. כוחות אלו ומסתו של הגוף הם אשר קובעים את תאוצתו. על מנת לקבל קשר בין הכוחות

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 2

אלגברה ליניארית 1 א' פתרון 2 אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

x = r m r f y = r i r f

x = r m r f y = r i r f דירוג קרנות נאמנות - מדד אלפא מול מדד שארפ. )נספחים( נספח א': חישוב מדד אלפא. מדד אלפא לדירוג קרנות נאמנות מוגדר באמצעות המשוואה הבאה: כאשר: (1) r i r f = + β * (r m - r f ) r i r f β - התשואה החודשית

Διαβάστε περισσότερα

אלגברה מודרנית פתרון שיעורי בית 6

אלגברה מודרנית פתרון שיעורי בית 6 אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:

Διαβάστε περισσότερα

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה

Διαβάστε περισσότερα

The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן

The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן .. The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן 03.01.16 . Factor Models.i = 1,..., n,r i נכסים, תשואות (משתנים מקריים) n.e[f j ] נניח = 0.j = 1,..., d,f j

Διαβάστε περισσότερα

תרגול מס' 6 פתרון מערכת משוואות ליניארית

תרגול מס' 6 פתרון מערכת משוואות ליניארית אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית

Διαβάστε περισσότερα

התפלגות χ: Analyze. Non parametric test

התפלגות χ: Analyze. Non parametric test מבחני חי בריבוע לבדיקת טיב התאמה דוגמא: זורקים קוביה 300 פעמים. להלן התוצאות שהתקבלו: 6 5 4 3 2 1 תוצאה 41 66 45 56 49 43 שכיחות 2 התפלגות χ: 0.15 התפלגות חי בריבוע עבור דרגות חופש שונות 0.12 0.09 0.06

Διαβάστε περισσότερα

3-9 - a < x < a, a < x < a

3-9 - a < x < a, a < x < a 1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.

Διαβάστε περισσότερα

גמישויות. x p Δ p x נקודתית. 1,1

גמישויות. x p Δ p x נקודתית. 1,1 גמישויות הגמישות מודדת את רגישות הכמות המבוקשת ממצרך כלשהוא לשינויים במחירו, במחירי מצרכים אחרים ובהכנסה על-מנת לנטרל את השפעת יחידות המדידה, נשתמש באחוזים על-מנת למדוד את מידת השינויים בדרך כלל הגמישות

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 2

מתמטיקה בדידה תרגול מס' 2 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: כמתים והצרנות. משתנים קשורים וחופשיים. 1 כמתים והצרנות בתרגול הקודם עסקנו בתחשיב הפסוקים, שבו הנוסחאות שלנו היו מורכבות מפסוקים יסודיים (אשר קיבלו ערך T או F) וקשרים.

Διαβάστε περισσότερα

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח.

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח. החשמלי השדה הקדמה: מושג השדה חשמלי נוצר, כאשר הפיזיקאי מיכאל פרדיי, ניסה לתת הסבר אינטואיטיבי לעובדה שמטענים מפעילים זה על זה כוחות ללא מגע ביניהם. לטענתו, כל עצם בעל מטען חשמלי יוצר מסביבו שדה המשתרע

Διαβάστε περισσότερα

EMC by Design Proprietary

EMC by Design Proprietary ערן פליישר אייל רוטברט הנדסה וניהול בע"מ eranf@rotbart-eng.com 13.3.15 בית ספר אלחריזי הגבלת החשיפה לקרינה של שדה מגנטי תכנון מיגון הקרינה תוכן העניינים כלליותכולה... 2 1. נתונים... 3 2. נתונימיקוםומידות...

Διαβάστε περισσότερα

קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד

קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד גמישות המחיר ביחס לכמות= X/ Px * Px /X גמישות קשתית= X(1)+X(2) X/ Px * Px(1)+Px(2)/ מקרים מיוחדים של גמישות אם X שווה ל- 0 הגמישות גם כן שווה ל- 0. זהו מצב של ביקוש בלתי גמיש לחלוטין או ביקוש קשיח לחלוטין.

Διαβάστε περισσότερα

אלגברה לינארית (1) - פתרון תרגיל 11

אלגברה לינארית (1) - פתרון תרגיל 11 אלגברה לינארית ( - פתרון תרגיל דרגו את המטריצות הבאות לפי אלגוריתם הדירוג של גאוס (א R R4 R R4 R=R+R R 3=R 3+R R=R+R R 3=R 3+R 9 4 3 7 (ב 9 4 3 7 7 4 3 9 4 3 4 R 3 R R3=R3 R R 4=R 4 R 7 4 3 9 7 4 3 8 6

Διαβάστε περισσότερα

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V ) הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 12

מתמטיקה בדידה תרגול מס' 12 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע

Διαβάστε περισσότερα

אוסף שאלות מס. 3 פתרונות

אוסף שאלות מס. 3 פתרונות אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,

Διαβάστε περισσότερα

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי

Διαβάστε περισσότερα

קיום ויחידות פתרונות למשוואות דיפרנציאליות

קיום ויחידות פתרונות למשוואות דיפרנציאליות קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית

Διαβάστε περισσότερα

PDF created with pdffactory trial version

PDF created with pdffactory trial version הקשר בין שדה חשמלי לפוטנציאל חשמלי E נחקור את הקשר, עבור מקרה פרטי, בו יש לנו שדה חשמלי קבוע. נתון שדה חשמלי הקבוע במרחב שגודלו שווה ל. E נסמן שתי נקודות לאורך קו שדה ו המרחק בין הנקודות שווה ל x. המתח

Διαβάστε περισσότερα

דיאגמת פאזת ברזל פחמן

דיאגמת פאזת ברזל פחמן דיאגמת פאזת ברזל פחמן הריכוז האוטקטי הריכוז האוטקטוידי גבול המסיסות של פריט היווצרות פרליט מיקרו-מבנה של החומר בפלדה היפר-אוטקטואידית והיפו-אוטקטוידית. ככל שמתקרבים יותר לריכוז האוטקטואידי, מקבלים מבנה

Διαβάστε περισσότερα

Domain Relational Calculus דוגמאות. {<bn> dn(<dn, bn> likes dn = Yossi )}

Domain Relational Calculus דוגמאות. {<bn> dn(<dn, bn> likes dn = Yossi )} כללים ליצירת נוסחאות DRC תחשיב רלציוני על תחומים Domain Relational Calculus DRC הואהצהרתי, כמוSQL : מבטאיםבורקמהרוציםשתהיההתוצאה, ולא איךלחשבאותה. כלשאילתהב- DRC היאמהצורה )} i,{ F(x 1,x

Διαβάστε περισσότερα

בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד

בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד סמסטר: א' מועד: א' תאריך: יום ה' 0100004 שעה: 04:00 משך הבחינה: שלוש שעות חומר עזר: אין בבחינה שני פרקים בפרק הראשון 8 שאלות אמריקאיות ולכל אחת מהן מוצעות

Διαβάστε περισσότερα

T 1. T 3 x T 3 בזווית, N ( ) ( ) ( ) התלוי. N mg שמאלה (כיוון

T 1. T 3 x T 3 בזווית, N ( ) ( ) ( ) התלוי. N mg שמאלה (כיוון קיץ 006 f T א. כיוון שמשקל גדול יותר של m יוביל בסופו של דבר למתיחות גדולה יותר בצידה הימני, m עלינו להביט על המצב בו פועל כוח החיכוך המקס', ז"א של : m הכוחות על הגוף במנוחה (ז"א התמדה), לכן בכל ציר הכוחות

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשעא, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי

Διαβάστε περισσότερα

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת

Διαβάστε περισσότερα

השאלות..h(k) = k mod m

השאלות..h(k) = k mod m מבני נתונים פתרונות לסט שאלות דומה לשאלות מתרגיל 5 השאלות 2. נתונה טבלת ערבול שבה התנגשויות נפתרות בשיטת.Open Addressing הכניסו לטבלה את המפתחות הבאים: 59 88, 17, 28, 15, 4, 31, 22, 10, (מימין לשמאל),

Διαβάστε περισσότερα

מבוא ללוגיקה מתמטית 80423

מבוא ללוגיקה מתמטית 80423 מבוא ללוגיקה מתמטית 80423 24 במרץ 2012 איני לוקחת אחריות על מה שכתוב כאן, so tread lightly אין המרצה או המתרגל קשורים לסיכום זה בשום דרך. הערות יתקבלו בברכה.noga.rotman@gmail.com אהבתם? יש עוד! www.cs.huji.ac.il/

Διαβάστε περισσότερα

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

קשר-חם : לקידום שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת

Διαβάστε περισσότερα

הגדרה: מצבים k -בני-הפרדה

הגדרה: מצבים k -בני-הפרדה פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון

Διαβάστε περισσότερα

אלגברה לינארית מטריצות מטריצות הפיכות

אלגברה לינארית מטריצות מטריצות הפיכות מטריצות + [( αij+ β ij ] m λ [ λα ij ] m λ [ αijλ ] m + + ( + +C + ( + C i C m q m q ( + C C + C C( + C + C λ( ( λ λ( ( λ (C (C ( ( λ ( + + ( λi ( ( ( k k i חיבור מכפלה בסקלר מכפלה בסקלר קומוטטיב אסוציאטיב

Διαβάστε περισσότερα

א הקיטסי ' טטסל אובמ רלדנ הינור בג '

א הקיטסי ' טטסל אובמ רלדנ הינור בג ' מבוא לסטטיסטיקה א' נדלר רוניה גב' מדדי פיזור Varablty Measures of עד עתה עסקנו במדדים מרכזיים. אולם, אחת התכונות החשובות של ההתפלגות, מלבד מיקום מרכזי, הוא מידת הפיזור של ההתפלגות. יכולות להיות מספר התפלגויות

Διαβάστε περισσότερα

x a x n D f (iii) x n a ,Cauchy

x a x n D f (iii) x n a ,Cauchy גבולות ורציפות גבול של פונקציה בנקודה הגדרה: קבוצה אשר מכילה קטע פתוח שמכיל את a תקרא סביבה של a. קבוצה אשר מכילה קטע פתוח שמכיל את a אך לא מכילה את a עצמו תקרא סביבה מנוקבת של a. יהו a R ו f פונקציה מוגדרת

Διαβάστε περισσότερα

תרגול #14 תורת היחסות הפרטית

תרגול #14 תורת היחסות הפרטית תרגול #14 תורת היחסות הפרטית 27 ביוני 2013 עקרונות יסוד 1. עקרון היחסות חוקי הפיסיקה אינם משתנים כאשר עוברים ממערכת ייחוס אינרציאלית (מע' ייחוס שאינה מאיצה) אחת למערכת ייחוס אינרציאלית אחרת. 2. אינווריאנטיות

Διαβάστε περισσότερα

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה. בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית

Διαβάστε περισσότερα

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.

Διαβάστε περισσότερα

שאלה 1 נתון: (AB = AC) ABC שאלה 2 ( ) נתון. באמצעות r ו-. α שאלה 3 הוכח:. AE + BE = CE שאלה 4 האלכסון (AB CD) ABCD תשובה: 14 ס"מ = CD.

שאלה 1 נתון: (AB = AC) ABC שאלה 2 ( ) נתון. באמצעות r ו-. α שאלה 3 הוכח:. AE + BE = CE שאלה 4 האלכסון (AB CD) ABCD תשובה: 14 סמ = CD. טריגונומטריה במישור 5 יח"ל טריגונומטריה במישור 5 יח"ל 010 שאלונים 006 ו- 806 10 השאלות 1- מתאימות למיקוד קיץ = β ( = ) שאלה 1 במשולש שווה-שוקיים הוכח את הזהות נתון: sin β = sinβ cosβ r r שאלה נתון מעגל

Διαβάστε περισσότερα

(ספר לימוד שאלון )

(ספר לימוד שאלון ) - 40700 - פתרון מבחן מס' 7 (ספר לימוד שאלון 035804) 09-05-2017 _ ' i d _ i ' d 20 _ i _ i /: ' רדיוס המעגל הגדול: רדיוס המעגל הקטן:, לכן שטח העיגול הגדול: / d, לכן שטח העיגול הקטן: ' d 20 4 D 80 Dd 4 /:

Διαβάστε περισσότερα

מבוא לרשתות - תרגול מס 5 תורת התורים

מבוא לרשתות - תרגול מס 5 תורת התורים מ( מבוא לרשתות - תרגול מס 5 תורת התורים M / M / תאור המערכת: תור שרת שירות פואסוני הגעה פואסונית הערות: במערכת M/M/ יש חוצץ אינסופי ולכן יכולים להיות בה אינסוף לקוחות, כאשר מקבל שירות והשאר ממתינים. קצב

Διαβάστε περισσότερα

מבוא לרשתות - תרגול מס 5 תורת התורים

מבוא לרשתות - תרגול מס 5 תורת התורים מבוא לרשתות - תרגול מס 5 תורת התורים תאור המערכת: תור / M M / ( ) שרת שירות פואסוני הגעה פואסונית הערות: במערכת M/M/ יש חוצץ אינסופי ולכן יכולים להיות בה אינסוף לקוחות, כאשר מקבל שירות והשאר ממתינים. זמן

Διαβάστε περισσότερα

( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת

( )( ) ( ) f : B C היא פונקציה חחע ועל מכיוון שהיא מוגדרת עי. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חחע אז ועל פי הגדרת הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (

Διαβάστε περισσότερα

יווקיינ לש תוביציה ןוירטירק

יווקיינ לש תוביציה ןוירטירק יציבות מגבר שרת הוא מגבר משוב. בכל מערכת משוב קיימת בעיית יציבות מהבחינה הדינמית (ולא מבחינה נקודת העבודה). חשוב לוודא שהמגבר יציב על-מנת שלא יהיו נדנודים. קריטריון היציבות של נייקוויסט: נתונה נערכת המשוב

Διαβάστε περισσότερα

f ( x, y) 1 5y axy x xy ye dxdy לדוגמה: axy + + = a ay e 3 2 a e a y ( ) במישור. xy ואז dxdy למישור.xy שבסיסם dxdy וגבהם y) f( x, איור 25.

f ( x, y) 1 5y axy x xy ye dxdy לדוגמה: axy + + = a ay e 3 2 a e a y ( ) במישור. xy ואז dxdy למישור.xy שבסיסם dxdy וגבהם y) f( x, איור 25. ( + 5 ) 5. אנטגרלים כפולים., f ( המוגדרת במלבן הבא במישור (,) (ראה באיור ). נתונה פונקציה ( β α f(, ) נגדיר את הסמל הבא dd e dd 5 + e ( ) β β איור α 5. α 5 + + = e d d = 5 ( ) e + = e e β α β α f (, )

Διαβάστε περισσότερα

פתרון תרגיל דוגמא מרחב המדגם הוא כל הקומבינציות של 20 חודשי הולדת. לכל ילד 12 אפשרויות,לכן. לכן -

פתרון תרגיל דוגמא מרחב המדגם הוא כל הקומבינציות של 20 חודשי הולדת. לכל ילד 12 אפשרויות,לכן. לכן - פתרון תרגיל דוגמא מרחב המדגם הוא כל הקומבינציות של 0 חודשי הולדת לכל ילד אפשרויות,לכן לכן - 0 A 0 מספר קומבינציות שלא מכילות את חודש תשרי הוא A) המאורע המשלים ל- B הוא "אף תלמיד לא נולד באחד מהחודשים אב/אלול",

Διαβάστε περισσότερα

פתרון 4. a = Δv Δt = = 2.5 m s 10 0 = 25. y = y v = 15.33m s = 40 2 = 20 m s. v = = 30m x = t. x = x 0.

פתרון 4. a = Δv Δt = = 2.5 m s 10 0 = 25. y = y v = 15.33m s = 40 2 = 20 m s. v = = 30m x = t. x = x 0. בוחן לדוגמא בפיזיקה - פתרון חומר עזר: מחשבון ודף נוסחאות מצורף זמן הבחינה: שלוש שעות יש להקפיד על כתיבת יחידות חלק א יש לבחור 5 מתוך 6 השאלות 1. רכב נוסע במהירות. 5 m s לפתע הנהג לוחץ על דוושת הבלם והרכב

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 7

אלגברה ליניארית 1 א' פתרון 7 אלגברה ליניארית 1 א' פתרון 7 2 1 1 1 0 1 1 0 1 0 2 1 1 0 1 0 2 1 2 1 1 0 2 1 0 1 1 3 1 2 3 1 2 0 1 5 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 4 0 0 0.1 עבור :A לכן = 3.rkA עבור B: נבצע פעולות עמודה אלמנטריות

Διαβάστε περισσότερα

הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל-

הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל- מ'' ל'' Deprmen of Applied Mhemics Holon Acdemic Insiue of Technology PROBABILITY AND STATISTICS Eugene Knzieper All righs reserved 4/5 חומר לימוד בקורס "הסתברות וסטטיסטיקה" מאת יוג'ין קנציפר כל הזכויות

Διαβάστε περισσότερα

אלגוריתמים ללכסון מטריצות ואופרטורים

אלגוריתמים ללכסון מטריצות ואופרטורים אלגוריתמים ללכסון מטריצות ואופרטורים לכסון מטריצות יהי F שדה ו N n נאמר שמטריצה (F) A M n היא לכסינה אם היא דומה למטריצה אלכסונית כלומר, אם קיימת מטריצה הפיכה (F) P M n כך ש D P AP = כאשר λ λ 2 D = λ n

Διαβάστε περισσότερα

s ק"מ קמ"ש מ - A A מ - מ - 5 p vp v=

s קמ קמש מ - A A מ - מ - 5 p vp v= את זמני הליכת הולכי הרגל עד הפגישות שלהם עם רוכב האופניים (שעות). בגרות ע מאי 0 מועד קיץ מבוטל שאלון 5006 מהירות - v קמ"ש t, א. () נסמן ב- p נכניס את הנתונים לטבלה מתאימה: רוכב אופניים עד הפגישה זמן -

Διαβάστε περισσότερα

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה

Διαβάστε περισσότερα

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח.

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח. 1 תשע'א תירגול 8 אלגברה לינארית 1 טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של וקטור אם הוכחה: חד חד ערכית ויהי כך ש מכיוון שגם נקבל מחד חד הערכיות כי בהכרח

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר

לוגיקה ותורת הקבוצות מבחן סופי אביב תשעב (2012) דפי עזר לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת

Διαβάστε περισσότερα

בסל A רמת התועלת היא: ) - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות. P x P y. U y P y A: 10>6 B: 9>7 A: 5>3 B: 4>3 C: 3=3 C: 8=8 תנאי שני : מגבלת התקציב

בסל A רמת התועלת היא: ) - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות. P x P y. U y P y A: 10>6 B: 9>7 A: 5>3 B: 4>3 C: 3=3 C: 8=8 תנאי שני : מגבלת התקציב תנאי ראשון - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות 1) MRS = = שיווי המשקל של הצרכן - מציאת הסל האופטימלי = (, בסל רמת התועלת היא: ) = התועלת השולית של השקעת שקל (תועלת שולית של הכסף) שווה בין המוצרים

Διαβάστε περισσότερα

גליון 1 גליון 2 = = ( x) ( x)

גליון 1 גליון 2 = = ( x) ( x) 475 פיסיקה ממ, פתרונות לתרגילי בית, עמוד מתוך 6 גליון מה שוקל יותר: קילו נוצות או סבתא תחשבו לבד גליון Q in E k, q ρ ( ) v Qin ρ ( ) v v 4π Qin ρ ( ) 4π v העקרונות המנחים בגיליון זה: פתרון לשאלה L ( x)

Διαβάστε περισσότερα

סדרות - תרגילים הכנה לבגרות 5 יח"ל

סדרות - תרגילים הכנה לבגרות 5 יחל סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר

Διαβάστε περισσότερα

לדוגמא : dy dx. xdx = x. cos 1. cos. x dx 2. dx = 2xdx לסיכום: 5 sin 5 1 = + ( ) הוכחה: [ ] ( ) ( )

לדוגמא : dy dx. xdx = x. cos 1. cos. x dx 2. dx = 2xdx לסיכום: 5 sin 5 1 = + ( ) הוכחה: [ ] ( ) ( ) 9. חשבון אינטגרלי. עד כה עסקנו בבעיות של מציאת הנגזרת של פונקציה נתונה. נשאלת השאלה בהינתן נגזרת האם נוכל למצוא את הפונקציה המקורית (הפונקציה שנגזרתה נתונה)? זוהי שאלה קשה יותר, חשבון אינטגרלי דן בבעיה

Διαβάστε περισσότερα

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1 1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n

Διαβάστε περισσότερα

קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים.

קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל לוח יש את אותה כמות מטען, אך הסימנים הם הפוכים. קבל קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים. על לוח אחד מטען Q ועל לוח שני מטען Q. הפוטנציאל על כל לוח הוא

Διαβάστε περισσότερα

תרגול 6 חיכוך ותנועה מעגלית

תרגול 6 חיכוך ותנועה מעגלית נכתב ע"י עומר גולדברג תרגול 6 חיכוך ותנועה מעגלית Physics1B_2017A חיכוך כוח הנובע ממגע בין שני משטחים. אם יש כוח חיצוני הפועל על גוף בניסיון לייצר תנועה, ייווצר כוח בכיוון ההפוך כתוצאה מחיכוך. אם אין תנועה

Διαβάστε περισσότερα

דוגמאות. W = mg. = N mg f sinθ = 0 N = sin20 = 59.26N. F y. m * = N 9.8 = = 6.04kg. m * = ma x. F x. = 30cos20 = 5.

דוגמאות. W = mg. = N mg f sinθ = 0 N = sin20 = 59.26N. F y. m * = N 9.8 = = 6.04kg. m * = ma x. F x. = 30cos20 = 5. דוגמאות 1. ארגז שמסתו 5kg נמצא על משטח אופקי. על הארגז פועל כוח שגודלו 30 וכיוונו! 20 מתחת לציר האופקי. y x א. שרטטו דיאגרמת כוחות על הארגז. f W = mg ב. מהו גודלו וכיוונו של הכוח הנורמלי הפועל על הארגז?

Διαβάστε περισσότερα

פרק - 8 יחידות זיכרון ) Flop Flip דלגלג (

פרק - 8 יחידות זיכרון ) Flop Flip דלגלג ( פרק - 8 יחידות זיכרון ) Flop Flip דלגלג ( עד כה עסקנו במערכות צירופיות בהן ערכי המוצא נקבעים לפי ערכי המבוא הנוכחיים בלבד. במערכות אלו אסורים מסלולים מעגליים. כעת נרחיב את הדיון למערכות עם מעגלים. למשל

Διαβάστε περισσότερα

הסתברות שבתחנה יש 0 מוניות ו- 0 נוסעים. הסתברות שבתחנה יש k-t נוסעים ו- 0 מוניות. λ λ λ λ λ λ λ λ P...

הסתברות שבתחנה יש 0 מוניות ו- 0 נוסעים. הסתברות שבתחנה יש k-t נוסעים ו- 0 מוניות. λ λ λ λ λ λ λ λ P... שאלה תורת התורים קצב הגעת נוסעים לתחנת מוניות מפולג פואסונית עם פרמטר λ. קצב הגעת המוניות מפולג פואסונית עם פרמטר µ. אם נוסע מגיע לתחנה כשיש בה מוניות, הוא מייד נוסע במונית. אם מונית מגיעה לתחנה כשיש בתחנה

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

הרצאה 7 טרנזיסטור ביפולרי BJT

הרצאה 7 טרנזיסטור ביפולרי BJT הרצאה 7 טרנזיסטור ביפולרי JT תוכן עניינים: 1. טרנזיסטור ביפולרי :JT מבנה, זרם, תחומי הפעולה..2 מודל: S MOLL (אברסמול). 3. תחומי הפעולה של הטרנזיסטור..1 טרנזיסטור ביפולרי.JT מבנה: PNP NPN P N N P P N PNP

Διαβάστε περισσότερα

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך

Διαβάστε περισσότερα

תרגול #5 כוחות (נורמל, חיכוך ומתיחות)

תרגול #5 כוחות (נורמל, חיכוך ומתיחות) תרגול #5 כוחות נורמל, חיכוך ומתיחות) 19 בנובמבר 013 רקע תיאורטי כח הוא מידה של אינטרקציה בין כל שני גופים. היחידות הפיסיקליות של כח הן ניוטון.[F ] = N חוקי ניוטון 1. חוק הפעולה והתגובה כאשר סך הכוחות כח

Διαβάστε περισσότερα

אלקטרומגנטיות אנליטית תירגול #2 סטטיקה

אלקטרומגנטיות אנליטית תירגול #2 סטטיקה Analytical Electromagnetism Fall Semester 202-3 אלקטרומגנטיות אנליטית תירגול #2 סטטיקה צפיפויות מטען וזרם צפיפות מטען נפחית ρ מוגדרת כך שאינטגרל נפחי עליה נותן את המטען הכולל Q dv ρ היחידות של ρ הן מטען

Διαβάστε περισσότερα

םיאלמ תונורתפ 20,19,18,17,16 םינחבמל 1 להי רחש ןולאש הקיטמתמב סוקופ

םיאלמ תונורתפ 20,19,18,17,16 םינחבמל 1 להי רחש ןולאש הקיטמתמב סוקופ פתרונות מלאים למבחנים 0,9,8,7,6 פוקוס במתמטיקה שאלון 3580 שחר יהל העתקה ו/או צילום מספר זה הם מעשה לא חינוכי, המהווה עברה פלילית. פתרון מבחן מתכונת מס' 6 פתרון שאלה א. נקודות A ו- B נמצאות על הפונקציה

Διαβάστε περισσότερα

גוּל, בּ ש ב יל הת רגוּל... סטודנטים יקרים לפניכם ספר עזר לשימוש במחשבון פיננסי מסוג -.FC-100V/FC-200V

גוּל, בּ ש ב יל הת רגוּל... סטודנטים יקרים לפניכם ספר עזר לשימוש במחשבון פיננסי מסוג -.FC-100V/FC-200V עמוד 1 מתוך 21 סטודנטים יקרים לפניכם ספר עזר לשימוש במחשבון פיננסי מסוג -.FC-100V/FC-200V ספר זה נכתב בשקידה רבה ע"מ לשמש לכם לעזר כדי להכיר מקרוב יותר את השימוש במחשבון הפיננסי בצורה ידידותית למשתמש.

Διαβάστε περισσότερα