Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας."

Transcript

1 ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ο πυκνωτής Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. Η απλούστερη μορφή πυκνωτή είναι ο επίπεδος πυκνωτής, ο οποίος αποτελείται από δύο παράλληλες μεταλλικές πλάκες, του ίδιου σχήματος, που βρίσκονται σε μικρή απόσταση μεταξύ τους και διαχωρίζονται από μονωτικό υλικό. Οι δύο μεταλλικές πλάκες ονομάζονται οπλισμοί του πυκνωτή. α. Το φορτίο και η τάση του πυκνωτή Όταν ο πυκνωτής φορτίζεται, οι οπλισμοί του αποκτούν ίσα κατά μέτρο ετερώνυμα ηλεκτρικά φορτία +q και q. Ως φορτίο q c του πυκνωτή θεωρείται το φορτίο του θετικού οπλισμού του πυκνωτή. Τάση V c του πυκνωτή ονομάζεται η διαφορά δυναμικού μεταξύ των οπλισμών του πυκνωτή, δηλαδή: V c = V (+) V ( ) όπου V (+) το δυναμικό του θετικά φορτισμένου και V ( ) το δυναμικό του αρνητικά φορτισμένου οπλισμού. β. Η χωρητικότητα του πυκνωτή Το φυσικό μέγεθος που εκφράζει τη δυνατότητα του πυκνωτή να αποθηκεύει ηλεκτρικό φορτίο και ηλεκτρική ενέργεια ονομάζεται χωρητικότητα. Χωρητικότητα ενός πυκνωτή ονομάζεται το σταθερό πηλίκο του φορτίου q c του πυκνωτή προς τη διαφορά δυναμικού (τόση) V c μεταξύ των οπλισμών του πυκνωτή, δηλαδή: Μονάδα χωρητικότητας στο S.. είναι το Farad (F). qc V c Η χωρητικότητα ενός πυκνωτή δεν εξαρτάται από το φορτίο που είναι αποθηκευμένο στους οπλισμούς του πυκνωτή και από τη διαφορά δυναμικού μεταξύ των οπλισμών του. Εξαρτάται μόνο από τα γεωμετρικά χαρακτηριστικά του πυκνωτή, από τη σχετική τους θέση και από το μονωτικό υλικό (διηλεκτρικό) που υπάρχει μεταξύ των οπλισμών του. Για παράδειγμα, η χωρητικότητα ενός επίπεδου πυκνωτή είναι ανάλογη του εμβαδού Α των οπλισμών του και αντιστρόφως ανάλογη της απόστασης l μεταξύ τους. ΔΟΥΚΑΤΖΗΣ ΒΑΣΙΛΗΣ ΦΥΣΙΚΟΣ 697 7, W..

2 γ. Η ενέργεια του ηλεκτρικού πεδίου του πυκνωτή. Η ηλεκτρική ενέργεια που είναι αποθηκευμένη σε έναν πυκνωτή χωρητικότητας, ο οποίος είναι φορτισμένος με φορτίο q c και η διαφορά δυναμικού μεταξύ των οπλισμών του είναι V c δίνεται από τη σχέση: = qc Vc qc ή, με αντικατάσταση από τον ορισμό της χωρητικότητας =, έχουμε: V c q = και = V. (αυτούς τους δύο τύπους χρησιμοποιούμε συνήθως) Το πηνίο Το πηνίο είναι μια διάταξη η οποία, όταν βρίσκεται σε ένα κύκλωμα, "αντιστέκεται" στη μεταβολή της έντασης του ρεύματος που το διαρρέει, τείνοντας να αναιρέσει τη μεταβολή αυτή. Η ιδιότητα αυτή του πηνίου ονομάζεται φαινόμενο αυτεπαγωγής. α. Το φαινόμενο της αυτεπαγωγής. Έστω ένα κύκλωμα το οποίο περιλαμβάνει πηγή (Ε,r), αντιστάτη αντίστασης R και R διακόπτη. Όταν μεταφέρουμε το μεταγωγό στη θέση (), η ένταση του ρεύματος () αποκτά ακαριαία την τιμή: R r σύμφωνα με το νόμο του Ohm. Ε, r () Αν όμως στο κύκλωμα περιλαμβάνεται και πηνίο, παρατηρούμε ότι όταν + - R μεταφέρουμε το μεταγωγό στη θέση (), η ένταση του ρεύματος δεν αποκτά () ακαριαία τη μέγιστη τιμή της R, αλλά αυξάνεται σταδιακά και Ε, r () μεγιστοποιείται μετά από ένα μικρό χρονικό διάστημα. Το φαινόμενο αυτό, που ονομάζεται φαινόμενο αυτεπαγωγής, ερμηνεύεται ως εξής: Αρχικά το κύκλωμα δεν διαρρέεται από ρεύμα. Όταν μεταφέρουμε το μεταγωγό στη θέση (), μεταβάλλεται η ένταση του ρεύματος που διαρρέει το πηνίο, άρα μεταβάλλεται και η ένταση του μαγνητικού πεδίου στο εσωτερικό του πηνίου, επομένως μεταβάλλεται και η μαγνητική ροή που διέρχεται από τις σπείρες του. Η μεταβολή της μαγνητικής ροής έχει ως αποτέλεσμα τη δημιουργία ΔΟΥΚΑΤΖΗΣ ΒΑΣΙΛΗΣ ΦΥΣΙΚΟΣ 697 7, W..

3 ΗΕΔ από επαγωγή στο πηνίο, η οποία, σύμφωνα με το νόμο του enz, έχει τέτοια πολικότητα ώστε να «αντιστέκεται» στο αίτιο που την προκαλεί, το οποίο στην προκειμένη περίπτωση είναι η μεταβολή της έντασης του ρεύματος. Επειδή η ΗΕΔ από επαγωγή που αναπτύσσεται στο πηνίο οφείλεται στο μαγνητικό πεδίο, το οποίο δημιουργείται από το ρεύμα που διαρρέει το ίδιο το πηνίο, ονομάζεται ΗΕΔ από αυτεπαγωγή. Η πολικότητά της είναι αυτή που φαίνεται στο σχήμα αφού "αντιστέκεται" στην αύξηση της έντασης του ρεύματος, "τείνοντας" να δημιουργήσει ρεύμα αντίθετης φοράς από αυτό που διαρρέει το κύκλωμα. Η ΗΕΔ από αυτεπαγωγή υπολογίζεται από τη σχέση: d = όπου αυτ d ο ρυθμός μεταβολής της έντασης του ρεύματος στο κύκλωμα και ο συντελεστής αυτεπαγωγής του πηνίου. Αντίθετα, αν θέσουμε την πηγή εκτός κυκλώματος μεταφέροντας το μεταγωγό - + R στη θέση (), το ρεύμα μηδενίζεται ακαριαία αν δεν υπάρχει πηνίο, ενώ η () ύπαρξη του πηνίου προκαλεί καθυστέρηση στο μηδενισμό της έντασης, αφού η Ε, r () ΗΕΔ από αυτεπαγωγή που αναπτύσσεται στα άκρα του έχει πλέον τέτοια πολικότητά ώστε να "αντιστέκεται" στη μείωση της έντασης του ρεύματος, "τείνοντας" να δημιουργήσει ρεύμα ίδιας φοράς με αυτό που διαρρέει το κύκλωμα. β. Ο συντελεστής αυτεπαγωγής του πηνίου Ο συντελεστής αυτεπαγωγής του πηνίου εκφράζει την αδράνεια ("αντίσταση") του πηνίου στη μεταβολή του ρεύματος που το διαρρέει και εξαρτάται από τα γεωμετρική χαρακτηριστικό του πηνίου (αριθμός σπειρών Ν, μήκος l, εμβαδόν σπειρών Α) και από τη μαγνητική διαπερατότητα μ του πυρήνα γύρω από τον οποίο είναι τυλιγμένες οι σπείρες του πηνίου. Η μονάδα του συντελεστή αυτεπαγωγής στο S.. είναι το Henry (Η). ΔΟΥΚΑΤΖΗΣ ΒΑΣΙΛΗΣ ΦΥΣΙΚΟΣ 697 7, W.. 3

4 γ. Η ενέργεια του μαγνητικού πεδίου του πηνίου Η ενέργεια του μαγνητικού πεδίου ενός πηνίου με συντελεστή αυτεπαγωγής, το οποίο διαρρέεται από ρεύμα έντασης Ι, δίνεται από τη σχέση: = ΙΔΑΝΙΚΟ ΚΥΚΛΩΜΑ. Ηλεκτρική ταλάντωση Διαθέτουμε ένα κύκλωμα το οποίο αποτελείται από ένα ιδανικό πηνίο με συντελεστή αυτεπαγωγής, πυκνωτή χωρητικότητας και έναν ανοικτό διακόπτη. Αν θεωρήσουμε όλες τις ωμικές αντιστάσεις αμελητέες, το κύκλωμα αυτό αποτελεί ένα ιδανικό Κύκλωμα (κύκλωμα homson). Συνδέουμε τον πυκνωτή με πηγή συνεχούς τάσης V, οπότε το φορτίο που αποθηκεύεται στον πυκνωτή και η ενέργεια του ηλεκτρικού του πεδίου υπολογίζονται από τις σχέσεις: Q V Q Στη συνέχεια αποσυνδέουμε την πηγή και τη χρονική στιγμή t 0 = 0 κλείνουμε το διακόπτη. Ο πυκνωτής αρχίζει να εκφορτίζεται και το κύκλωμα να διαρρέεται από ρεύμα. Λόγω της μεταβολής της έντασης του ρεύματος αναπτύσσεται στο πηνίο ΗΕΔ από αυτεπαγωγή, η οποία, σύμφωνα με το νόμο του enz, "αντιστέκεται" στην αύξηση της έντασης του ρεύματος, με αποτέλεσμα η ένταση του ρεύματος να αυξάνεται σταδιακά. Η ΗΕΔ από αυτεπαγωγή είναι σε κάθε στιγμή ίση με την τάση στα άκρα του πυκνωτή. Έτσι, τη χρονική στιγμή t 0 = 0 η τάση V c στα άκρα του πυκνωτή και η ΗΕΔ από αυτεπαγωγή έχουν μέγιστη τιμή. Καθώς ο πυκνωτής εκφορτίζεται, η τάση στα άκρα του και η ΗΕΔ από αυτεπαγωγή μειώνονται, ενώ η ένταση του ρεύματος αυξάνεται σταδιακά και γίνεται μέγιστη τη στιγμή που ο πυκνωτής εκφορτίζεται πλήρως. Στη συνέχεια, το ρεύμα αρχίζει να μειώνεται σταδιακά, χωρίς να αλλάξει φορά, λόγω της ΗΕΔ από αυτεπαγωγή που αναπτύσσεται στο πηνίο, η οποία έχει αντίθετη πολικότητά από την προηγούμενη και "αντιστέκεται" στη μείωση της έντασης του ρεύματος. Καθώς το ρεύμα συνεχίζει να ρέει, φορτίζει τον πυκνωτή με αντίθετη πολικότητά της αρχικής. ΔΟΥΚΑΤΖΗΣ ΒΑΣΙΛΗΣ ΦΥΣΙΚΟΣ 697 7, W..

5 Όταν το ρεύμα μηδενιστεί, ο πυκνωτής θα έχει αποκτήσει πάλι φορτίο Q, με αντίθετη από την αρχική πολικότητα. Στη συνέχεια ο πυκνωτής αρχίζει να εκφορτίζεται και πάλι, ενώ τώρα το ρεύμα έχει αντίθετη φορά από την προηγούμενη. Η διαδικασία πλέον επαναλαμβάνεται αντίστροφα και το κύκλωμα επανέρχεται στην κατάσταση στην οποία βρισκόταν τη χρονική στιγμή t 0 = 0. Θεωρώντας ότι στο κύκλωμα δεν υπάρχουν απώλειες ενέργειας (υπό μορφή θερμότητας, ηλεκτρομαγνητικής ακτινοβολίας κ.λπ.), η προηγούμενη διαδικασία θα επαναλαμβάνεται συνέχεια. Η διαδικασία αυτή ονομάζεται ηλεκτρική ταλάντωση. Το χρονικό διάστημα στο οποίο επαναλαμβάνεται πλήρως η διαδικασία που περιγράψαμε ονομάζεται περίοδος Τ της ταλάντωσης. Στο σχήμα φαίνεται η διαδικασία που περιγράφεται παραπάνω. 0 < t < t = 0, t = = 0 +q -q +Q -Q +q -q 3 < t < t = q = 0 < t < = 0 -q +q t = -Q +Q < t < -q +q 3 t = 0, t = q = Q = 0 0 t q μειώνεται αυξάνεται Ο πυκνωτής δίνει ενέργεια στο κύκλωμα t q = 0 = t q αυξάνεται μειώνεται Το πηνίο δίνει ενέργεια στο κύκλωμα t q = Q = 0 3 t q μειώνεται αυξάνεται Ο πυκνωτής δίνει ενέργεια στο κύκλωμα 3 t q = 0 = t = 3 q = 0 3 t q αυξάνεται μειώνεται Το πηνίο δίνει ενέργεια στο κύκλωμα ΔΟΥΚΑΤΖΗΣ ΒΑΣΙΛΗΣ ΦΥΣΙΚΟΣ 697 7, W.. 5

6 Παρατήρηση. Όταν το ρεύμα κατευθύνεται από τον αρνητικά φορτισμένο οπλισμό του πυκνωτή στον θετικά φορτισμένο οπλισμό τότε το φορτίο αυξάνεται και ο πυκνωτής φορτίζεται και αντίστροφα. Διευκρίνιση για το φορτίο του πυκνωτή Όταν μιλάμε για φορτίο του πυκνωτή, εννοούμε την απόλυτη τιμή του φορτίου ενός οπλισμού του, άρα δεν έχει νόημα να μιλάμε για αρνητικό φορτίο, όπως και δεν έχει νόημα να μιλάμε και για αρνητική τάση. Στις ηλεκτρικές ταλαντώσεις θα συναντήσουμε και αρνητικό φορτίο και έχει το εξής νόημα. Στις ηλεκτρικές ταλαντώσεις το ρεύμα είναι εναλλασσόμενο. Έτσι λοιπόν αν μία χρονική στιγμή κάποιος οπλισμός είναι θετικά φορτισμένος, την επόμενη χρονική στιγμή θα είναι αρνητικά και αντίστροφα. Συνεπώς, όταν μιλάμε για φορτίο πυκνωτή, στην ουσία μιλάμε για το φορτίο κάποιου συγκεκριμένου οπλισμού, γιατί, όπως είπαμε και πιο πάνω, ο πυκνωτής έχει πάντα θετικό φορτίο. Οι χρονικές εξισώσεις του φορτίου q = f(t) και της έντασης του ρεύματος = f(t) σε ένα ιδανικό κύκλωμα ηλεκτρικών ταλαντώσεων; Θεωρώντας ως t = 0 τη χρονική στιγμή την οποία το φορτίο στον πυκνωτή έχει τη μέγιστη τιμή του (q = + Q) αποδεικνύεται ότι το φορτίο του πυκνωτή κάθε χρονική στιγμή υπολογίζεται από τη σχέση: q = Qσυνωt dq Η ένταση του ρεύματος ορίζεται από τη σχέση και προκύπτει: = ημωt όπου Ι = ωq η μέγιστη τιμή της έντασης του ρεύματος. Οι γραφικές παραστάσεις q = f(t) και = f(t) φαίνονται στο διπλανό σχήμα. q Q Q 3 3 t (s) t Η διαφορά φάσης μεταξύ του φορτίου q του πυκνωτή και της έντασης του ρεύματος σε ιδανικό κύκλωμα. ΔΟΥΚΑΤΖΗΣ ΒΑΣΙΛΗΣ ΦΥΣΙΚΟΣ 697 7, W.. 6

7 Είναι q = Qσυνωt και t ( t ). Από τις δύο αυτές εξισώσεις προκύπτει ότι η ένταση του ρεύματος προηγείται του φορτίου του πυκνωτή κατά π/ rad. Πως υπολογίζουμε τη γωνιακή συχνότητα και την περίοδο ταλάντωσης ενός ιδανικού κυκλώματος ; Η γωνιακή συχνότητα ω και η περίοδος Τ της ταλάντωσης ενός ιδανικού κυκλώματος εξαρτώνται μόνο από τη χωρητικότητα του πυκνωτή και από το συντελεστή αυτεπαγωγής του πηνίου. Υπολογίζονται από τους τύπους: και ω= Με τι ισούται η ενέργεια της ταλάντωσης σε ένα ιδανικό κύκλωμα Η αρχική ενέργεια του κυκλώματος ισούται με την ενέργεια του ηλεκτρικού πεδίου που έχει αποθηκευτεί στον πυκνωτή. Η ενέργεια αυτή έχει αρχικά τη μέγιστη τιμή της, η οποία ισούται με:,max Q = Αμέσως μετά τη χρονική στιγμή t = 0 που κλείνουμε το διακόπτη και αρχίζει η εκφόρτιση του πυκνωτή, η ενέργεια του ηλεκτρικού πεδίου του πυκνωτή αρχίζει να ελαττώνεται και μετατρέπεται σταδιακά σε ενέργεια μαγνητικού πεδίου στο πηνίο. Η ενέργεια του ηλεκτρικού πεδίου του πυκνωτή ( Ε ) και η ενέργεια του μαγνητικού πεδίου του πηνίου ( ), κάθε χρονική στιγμή, υπολογίζονται από τις σχέσεις: q = και = Τη στιγμή που ο πυκνωτής έχει εκφορτιστεί πλήρως, όλη η ενέργεια του ηλεκτρικού πεδίου έχει μετατραπεί σε ενέργεια του μαγνητικού πεδίου του πηνίου. Η ενέργεια του μαγνητικού πεδίου του πηνίου έχει τώρα τη μέγιστη τιμή της: ΔΟΥΚΑΤΖΗΣ ΒΑΣΙΛΗΣ ΦΥΣΙΚΟΣ 697 7, W.. 7

8 ,max = Στη συνέχεια η διαδικασία πραγματοποιείται αντίστροφα. Δηλαδή, καθώς το ρεύμα ελαττώνεται, η ενέργεια του μαγνητικού πεδίου ελαττώνεται, ενώ αυξάνεται η ενέργεια του ηλεκτρικού πεδίου. Έτσι, τη στιγμή που ο πυκνωτής έχει φορτιστεί ξανά με αντίθετη πολικότητα από την αρχική (q = Q ), η ενέργεια του ηλεκτρικού πεδίου έχει αποκτήσει και πάλι τη μέγιστη τιμή της, ενώ η ενέργεια του μαγνητικού πεδίου είναι ίση με μηδέν. Η παραπάνω διαδικασία επαναλαμβάνεται και στη συνέχεια, όπου το ρεύμα αλλάζει φορά. Από τα παραπάνω διαπιστώνουμε ότι στο κύκλωμα συμβαίνει ταλάντωση ενέργειας, δηλαδή μια περιοδική μεταβολή της ενέργειας του μαγνητικού και του ηλεκτρικού πεδίου, κάτι ανάλογο με την περιοδική μεταβολή της δυναμικής και της κινητικής ενέργειας που συμβαίνει σε ένα μηχανικό σύστημα, στο ιδανικό κύκλωμα δεν υπάρχουν απώλειες ενέργειας. Συνεπώς η ολική ενέργεια της ταλάντωσης παραμένει σταθερή και είναι ίση με το άθροισμα της ενέργειας του ηλεκτρικού πεδίου και της ενέργειας του μαγνητικού πεδίου κάθε χρονική στιγμή. Δηλαδή ισχύει: = + =,max =,max ή q Q = + = = Οι χρονικές εξισώσεις της ενέργειας του ηλεκτρικού πεδίου του πυκνωτή και της ενέργειας του μαγνητικού πεδίου του πηνίου σε ένα ιδανικό κύκλωμα Η ενέργεια του ηλεκτρικού πεδίου του πυκνωτή και η ενέργεια του μαγνητικού πεδίου του πηνίου υπολογίζονται από τις σχέσεις: q Q t t = συν ωt και Β = ημ ωt.,, 0 3 t Οι γραφικές παραστάσεις των σχέσεων αυτών φαίνονται στο σχήμα. ΔΟΥΚΑΤΖΗΣ ΒΑΣΙΛΗΣ ΦΥΣΙΚΟΣ 697 7, W.. 8

9 Οι γραφικές παραστάσεις των ενεργειών σε σχέση με το φορτίο και την ένταση του ηλεκτρικού ρεύματος Οι ενέργειες του ηλεκτρικού και του μαγνητικού πεδίου σε συνάρτηση με το φορτίο του πυκνωτή Η ενέργεια του ηλεκτρικού πεδίου σε συνάρτηση με το φορτίο q του πυκνωτή υπολογίζεται από την εξίσωση: q. Η σχέση αυτή είναι της μορφής y = αχ. Επομένως η γραφική παράσταση = f(q) είναι μια f(x )=0.5 * x ^ παραβολή η οποία στρέφει τα κοίλα πάνω. f(x )=8-0.5 * x ^ Για να εκφράσουμε την ενέργεια f(x του )=8 μαγνητικού πεδίου σε συνάρτηση Q Q q Q Q με το φορτίο q, εφαρμόζουμε την αρχή διατήρησης της ενέργειας. Είναι: = + = q. Η σχέση αυτή είναι της μορφής y = β αχ. Επομένως η γραφική παράσταση Β = f(q) είναι μια παραβολή η οποία στρέφει τα κοίλα κάτω. Τα σημεία τομής είναι: Q q Q Q q = ± = ± Οι ενέργειες του ηλεκτρικού και του μαγνητικού πεδίου σε συνάρτηση με την ένταση του ρεύματος. Η ενέργεια του μαγνητικού πεδίου σε συνάρτηση με την ένταση του ρεύματος υπολογίζεται από την εξίσωση:. Η σχέση αυτή είναι της μορφής y = αx. Επομένως η γραφική παράσταση Β = f() είναι f(x )=0.5 * x ^ μια παραβολή η οποία στρέφει τα κοίλα f(x πάνω. )=8-0.5 * x ^ f(x )=8 Για να εκφράσουμε την ενέργεια του ηλεκτρικού πεδίου σε συνάρτηση με την ένταση του ρεύματος, εφαρμόζουμε την αρχή διατήρησης της ενέργειας. Είναι: = + = Τα σημεία τομής είναι: = ± = ± ΔΟΥΚΑΤΖΗΣ ΒΑΣΙΛΗΣ ΦΥΣΙΚΟΣ 697 7, W.. 9

10 Πού οφείλονται οι απώλειες ενέργειας σε πραγματικό κύκλωμα ; Οι δύο βασικοί λόγοι για τους οποίους η ενέργεια της ταλάντωσης ελαττώνεται σ' ένα πραγματικό κύκλωμα είναι: α. η θερμότητα που εκλύεται λόγω φαινομένου Joule από τις αντιστάσεις του κυκλώματος, β. η ενέργεια που εκπέμπεται με τη μορφή ηλεκτρομαγνητικής ακτινοβολίας κατά τη λειτουργία του κυκλώματος. Τα υπόλοιπα μεγέθη που εμφανίζονται στις ηλεκτρικές ταλαντώσεις Η τάση στα άκρα του πυκνωτή Η τάση στα άκρα του πυκνωτή μπορεί να υπολογιστεί από τη σχέση q q Q t Vc Vc V c V c = Vmaxσυνωt με V max Q = Κάθε στιγμή στο κύκλωμα ισχύει V = V c δηλαδή η εξίσωση της τάσης στα άκρα του πυκνωτή είναι ίδια με την εξίσωση της τάσης στα άκρα του πυκνωτή Σημείωση: Όπως αναφέρθηκε και παραπάνω όταν λέμε τάση στα άκρα του V c πυκνωτή στην ουσία εννοούμε την τάση του οπλισμού που την t = 0, ήταν θετικά φορτισμένος (V c = V (+) V ( ) ). V max 3 t Η γραφική παράσταση φαίνεται στο σχήμα. V max Για την τάση γενικά ενός πηνίου ισχύει: V R, επειδή όμως το πηνίο είναι ιδανικό R = 0. Άρα ισχύει V = αυτ Ο ρυθμός μεταβολής της έντασης του ηλεκτρικού ρεύματος q d q d q Όπως είδαμε παραπάνω ισχύει V Vc d =-ωq και η χρονοεξίσωση αυτού είναι φαίνονται παρακάτω. d =-ω Qσυνωt οι γραφικές παραστάσεις των δύο αυτών σχέσεων ΔΟΥΚΑΤΖΗΣ ΒΑΣΙΛΗΣ ΦΥΣΙΚΟΣ 697 7, W.. 0

11 Q d ω Q ω Q Q q d ω Q ω Q 3 t Ο ρυθμός μεταβολής της τάσης στα άκρα του πυκνωτή Έχουμε q d( ) dvc dq dvc = και η χρονοεξίσωση αυτού είναι dvc = ημωt Ρυθμός μεταβολής της ενέργειας στο ηλεκτρικό πεδίο του πυκνωτή d V c q d q = Ο ρυθμός μεταβολής της ενέργειας είναι η ισχύς P = V Ποια είναι όμως η μέγιστη του τιμή; d q Q Q P V t t t d Q = ημωt άρα d max Q = (χρησιμοποιούμε την τριγωνομετρική ταυτότητα ημα = ημα συνα) Ρυθμός μεταβολής της ενέργειας στο μαγνητικό πεδίο του πηνίου d d q και η μέγιστη τιμή είναι: d q Q P V V t t d Q = ημωt άρα d max Q = Η σχέση μεταξύ των μέγιστων τιμών έντασης ρεύματος Ι και φορτίου Q Η ολική ενέργεια της ταλάντωσης σε ένα ιδανικό κύκλωμα το οποίο εκτελεί ηλεκτρικές ταλαντώσεις παραμένει σταθερή. Επομένως: Q,max,max Q Και επειδή ισχύει έχουμε τελικά: =ωq ΔΟΥΚΑΤΖΗΣ ΒΑΣΙΛΗΣ ΦΥΣΙΚΟΣ 697 7, W..

12 Μία χρήσιμη σχέση είναι αυτή μεταξύ μέγιστου ρεύματος και μέγιστης τάσης που δεν υπάρχει στο σχολικό βιβλίο και χρειάζεται απόδειξη: V = V max max max,max Εφαρμογές της αρχής διατήρησης της ενέργειας σε ένα ιδανικό κύκλωμα Όταν γνωρίζουμε το φορτίο του πυκνωτή σε κάποια χρονική στιγμή και θέλουμε να υπολογίσουμε την ένταση του ρεύματος την ίδια χρονική στιγμή ή το αντίστροφο, εφαρμόζουμε την αρχή διατήρησης της ενέργειας. Για παράδειγμα, όταν: α. δίνεται το φορτίο q και ζητείται η ένταση : Q q Q q Q q =±ω Q - q β. δίνεται η ένταση και ζητείται το φορτίο q: q q q q = ± - ω γ. δίνονται δύο τυχαίες χρονικές στιγμές και ζητείται το μέγιστο φορτίο ή το μέγιστο ρεύμα: q q q q q q q q - ω= και αφού βρούμε την κυκλική συχνότητα q - q ξαναγυρίζουμε στην Α.Δ.Ε. και βρίσκουμε το μέγιστο φορτίο ή το μέγιστο ρεύμα. (όπως πιο πάνω q ή Q q ). ΔΟΥΚΑΤΖΗΣ ΒΑΣΙΛΗΣ ΦΥΣΙΚΟΣ 697 7, W..

13 Εφαρμογή της αρχής διατήρησης της ενέργειας όταν δίνεται μια σχέση μεταξύ ενέργειας ηλεκτρικού πεδίου και ενέργειας μαγνητικού πεδίου και ζητείται το φορτίο q ή η ένταση του ρεύματος. Για να υπολογίσουμε το φορτίο q ή την ένταση του ρεύματος σε μια χρονική στιγμή, για την οποία δίνεται μια σχέση μεταξύ ενέργειας ηλεκτρικού και ενέργειας μαγνητικού πεδίου, εργαζόμαστε ως εξής: α. Γράφουμε τη σχέση που δίνεται, π.χ. = 3. β. Αν ζητείται το φορτίο q, εφαρμόζουμε την αρχή διατήρησης της ενέργειας στη δοθείσα σχέση για να "απαλλαγούμε" από την και στη συνέχεια δουλεύουμε όπως και στις μηχανικές ταλαντώσεις. Οπότε: q Q 3 3( ) 3 3 q Q γ. Αν ζητείται η ένταση του ρεύματος, εφαρμόζουμε την αρχή διατήρησης της ενέργειας στη δοθείσα σχέση, επιλύουμε ως προς την ενέργεια του ηλεκτρικού πεδίου και αντικαθιστούμε: 3 3 Οι αντιστοιχίες μεγεθών μεταξύ του συστήματος μάζα - ελατήριο (m-k) και του ιδανικού κυκλώματος Ελατήριο μάζα Κύκλωμα Απομάκρυνση x: Φορτίο q Ταχύτητα υ Ένταση ρεύματος Δυναμική ενέργεια ταλάντωσης Dx Ενέργεια ηλεκτρικού πεδίου του πυκνωτή q Κινητική ενέργεια του σώματος K m Ενέργεια μαγνητικού πεδίου του πηνίου Σταθερά του ελατηρίου k Αντίστροφο της χωρητικότητας Μάζα του σώματος m Συντελεστής αυτεπαγωγής του ιδανικού πηνίου ΔΟΥΚΑΤΖΗΣ ΒΑΣΙΛΗΣ ΦΥΣΙΚΟΣ 697 7, W.. 3

αυτ = dt dt = dt dt C dt C Ε = = = L du du du du + = = dt dt dt dt

αυτ = dt dt = dt dt C dt C Ε = = = L du du du du + = = dt dt dt dt ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΤΥΠΟΛΟΓΙΟ Q=CV U E =1/2 2 /C U B =1/2Li 2 E 0 =1/2Q 2 /C=1/2LI 2 E 0 =1/2 2 /C+1/2Li 2 T=2π LC =Q συνωt i=-i ημωt ω=1/ LC E di L αυτ = ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ d Φορτίου: i = Τάσης: Ρεύματος:

Διαβάστε περισσότερα

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις)

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ΘΕΜΑ 1 ο Στις παρακάτω ερωτήσεις 1 4 επιλέξτε τη σωστή πρόταση 1. Ένα σώμα μάζας

Διαβάστε περισσότερα

U I = U I = Q D 1 C. m L

U I = U I = Q D 1 C. m L Από την αντιστοιχία της µάζας που εκτελεί γ.α.τ. µε περίοδο Τ και της εκφόρτισης πυκνωτή µέσω πηνίου L, µπορούµε να ανακεφαλαιώσουµε τις αντιστοιχίες των µεγεθών τους. Έχουµε: ΜΑΖΑ ΠΟΥ ΕΚΤΕΛΕΙ γ.α.τ..

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α

Διαβάστε περισσότερα

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της 1. Ένα σώμα μάζας m =, kg εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση

Διαβάστε περισσότερα

( ) Στοιχεία που αποθηκεύουν ενέργεια Ψ = N Φ. διαφορικές εξισώσεις. Πηνίο. μαγνητικό πεδίο. του πηνίου (κάθε. ένα πηνίο Ν σπειρών:

( ) Στοιχεία που αποθηκεύουν ενέργεια Ψ = N Φ. διαφορικές εξισώσεις. Πηνίο. μαγνητικό πεδίο. του πηνίου (κάθε. ένα πηνίο Ν σπειρών: Στοιχεία που αποθηκεύουν ενέργεια Λέγονται επίσης και δυναμικά στοιχεία Οι v- χαρακτηριστικές τους δεν είναι αλγεβρικές, αλλά ολοκληρο- διαφορικές εξισώσεις. Πηνίο: Ουσιαστικά πρόκειται για έναν περιεστραμμένο

Διαβάστε περισσότερα

Ένα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα και αφεθεί στη συνέχεια ελεύθερο να

Ένα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα και αφεθεί στη συνέχεια ελεύθερο να ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Α. Εξαναγκασμένες μηχανικές ταλαντώσεις Ελεύθερη - αμείωτη ταλάντωση και ποια η συχνότητα και η περίοδος της. Ένα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα

Διαβάστε περισσότερα

Διάρκεια 90 min. Στις ερωτήσεις 1-4 να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση:

Διάρκεια 90 min. Στις ερωτήσεις 1-4 να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση: 2ο ΓΕΛ ΠΕΙΡΑΙΑ Α Οµάδα ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Ονοµατεπώνυµο: Τµήµα: Ηµεροµηνία: 2/2/200 Διάρκεια 90 min Ζήτηµα ο Στις ερωτήσεις -4 να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΘΕΜΑ 1 Α. Ερωτήσεις πολλαπλής επιλογής 1. Σώμα εκτελεί Α.Α.Τ με περίοδο Τ και πλάτος Α. Αν διπλασιάσουμε το πλάτος της ταλάντωσης τότε η περίοδος της θα : α. παραμείνει

Διαβάστε περισσότερα

Μονάδες 4. 3. Δίνεται ότι το πλάτος μιας εξαναγκασμένης μηχανικής ταλάντωσης με απόσβεση υπό την επίδραση μιάς εξωτερικής περιοδικής δύναμης

Μονάδες 4. 3. Δίνεται ότι το πλάτος μιας εξαναγκασμένης μηχανικής ταλάντωσης με απόσβεση υπό την επίδραση μιάς εξωτερικής περιοδικής δύναμης ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 10 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) : ΦΥΣΙΚΗ ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Το μηδέν και το τετράγωνο.

Το μηδέν και το τετράγωνο. Το μηδέν και το τετράγωνο. Στο κύκλωµα του σχήµατος, ο διακόπτης (δ ) είναι κλειστός ενώ ο (δ ) ανοικτός. Θεωρούµε γνωστές τις τιµές της ΗΕ της πηγής Ε, των αντιστάσεων,, του συντελεστή αυτεπαγωγής του

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΡΩΤΗΣΗ 1 Ένα σώμα εκτελεί κίνηση που οφείλεται στη σύνθεση δύο απλών αρμονικών ταλαντώσεων ίδιας διεύθυνσης, που γίνονται γύρω από το ίδιο σημείο, με το ίδιο πλάτος A και συχνότητες

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 6-0- ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2001 ΘΕΜΑΤΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 29 ΜΑΪΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ ΘΕΜΑ 1 ο

Διαβάστε περισσότερα

Κυκλώµατα µε αντίσταση και πυκνωτή ή αντίσταση και πηνίο σε σειρά και πηγή συνεχούς τάσης

Κυκλώµατα µε αντίσταση και πυκνωτή ή αντίσταση και πηνίο σε σειρά και πηγή συνεχούς τάσης Κυκλώµατα µε αντίσταση και πυκνωτή ή αντίσταση και πηνίο σε σειρά και πηγή συνεχούς τάσης Το κύριο χαρακτηριστικό των κυκλωµάτων αυτών είναι ότι ο χρόνος στον οποίο η τάση, ή η ένταση παίρνει ορισµένη

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Θέμα 1: ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ 11 -- ΠΕΙΡΑΙΑΣ -- 18532 -- ΤΗΛ. 210-4224752, 4223687 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΤΑΛΑΝΤΩΣΕΙΣ Α. Στις παρακάτω ερωτήσεις να επιλέξετε την

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΤΑΛΑΝΤΩΣΕΙΣ Θέµα ο ) Ενώ ακούµε ένα ραδιοφωνικό σταθµό που εκπέµπει σε συχνότητα 00MHz, θέλουµε να ακούσουµε το σταθµό που εκπέµπει σε 00,4MHz.

Διαβάστε περισσότερα

ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ 1 ΠΥΚΝΩΤΗ :

ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ 1 ΠΥΚΝΩΤΗ : ΤΕΙ ΧΑΛΚΙΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Α/Α ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ : ΑΣΚΗΣΗ 5 η Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΧΩΡΗΤΙΚΟΤΗΤΑΣ ΜΕ ΑΜΕΣΕΣ ΚΑΙ ΕΜΜΕΣΕΣ ΜΕΘΟΔΟΥΣ Θεωρητική Ανάλυση Πυκνωτής

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 16/10/2011

ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 16/10/2011 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 6/0/0 ΘΕΜΑ 0 Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής - 5, να γράψετε στο

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ Ηλεκτρικό κύκλωμα ονομάζεται μια διάταξη που αποτελείται από ένα σύνολο ηλεκτρικών στοιχείων στα οποία κυκλοφορεί ηλεκτρικό ρεύμα. Τα βασικά ηλεκτρικά στοιχεία είναι οι γεννήτριες,

Διαβάστε περισσότερα

Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες

Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες ΦΘΙΝΟΥΣΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Φθίνουσες μηχανικές ταλαντώσεις Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες ταλαντώσεις. Η ελάττωση του πλάτους (απόσβεση)

Διαβάστε περισσότερα

, τότε η αρχική φάση της ταλάντωσης είναι π / 2 rad.

, τότε η αρχική φάση της ταλάντωσης είναι π / 2 rad. ... Όταν τη στιγμή t 0 = η επιτάχυνση ενός απλού αρμονικού ταλαντωτή είναι a = + amax, τότε η αρχική φάση της ταλάντωσης είναι π / rad.... Σώμα δεμένο σε κατακόρυφο ελατήριο σταθεράς k, εκτελεί με την

Διαβάστε περισσότερα

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ΘΕΜΑ 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις 1-4 να βρείτε τη σωστή απάντηση. Α1. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β' ΛΥΚΕΙΟΥ 2004

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β' ΛΥΚΕΙΟΥ 2004 ΦΥΙΚΗ ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Β' ΛΥΚΕΙΟΥ 004 ΕΚΦΩΝΗΕΙ ΘΕΜΑ ο Για τις ερωτήσεις - 4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Μια

Διαβάστε περισσότερα

Μαγνητικό Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ

Μαγνητικό Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Μαγνητικό Πεδίο Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Προτεινόμενη βιβλιογραφία: SERWAY, Physics for scientists and engineers YOUNG H.D., University

Διαβάστε περισσότερα

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά:

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά: Η στιγμιαία ηλεκτρική ισχύς σε οποιοδήποτε σημείο ενός κυκλώματος υπολογίζεται ως το γινόμενο της στιγμιαίας τάσης επί το στιγμιαίο ρεύμα: Σε ένα εναλλασσόμενο σύστημα τάσεων και ρευμάτων θα έχουμε όμως:

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑΤΑ ΚΑΙ ΛΥΕΙ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΕΩΝ 004 ΦΥΙΚΗ ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ ΘΕΜΑ ο Για τις ερωτήσεις -4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

(α) Σχ. 5/30 Σύμβολα πυκνωτή (α) με πολικότητα, (β) χωρίς πολικότητα

(α) Σχ. 5/30 Σύμβολα πυκνωτή (α) με πολικότητα, (β) χωρίς πολικότητα 5. ΗΛΕΚΤΡΟΝΙΚΑ ΕΞΑΡΤΗΜΑΤΑ Ι ( ΠΥΚΝΩΤΕΣ) Πυκνωτές O πυκνωτής είναι ένα ηλεκτρικό εξάρτημα το οποίο έχει την ιδιότητα να απορροφά και να αποθηκεύει ηλεκτρική ενέργεια και να την απελευθερώνει, σε προκαθορισμένο

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ & ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΜΗΧΑΝΙΚΕΣ & ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΕΣ & ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέμα ο Να δώσετε την σωστή απάντηση στις παρακάτω ερωτήσεις.. Σε μια απλή αρμονική ταλάντωση η χρονική διάρκεια της κίνησης μεταξύ των ακραίων θέσεων είναι 0. s. Η ταλάντωση

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα Φυσική Γ Λυκείου Κατεύθυνσης Προτεινόμενα Θέματα Θέμα ο Ένα σώμα εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Η φάση της ταλάντωσης μεταβάλλεται με το χρόνο όπως δείχνει το παρακάτω σχήμα : φ(rad) 2π π 6

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9ο ΓΕΛ ΠΕΙΡΑΙΑ Διάρκεια 90 min ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Ονοµατεπώνυµο: Τµήµα: Γ θετ Ηµεροµηνία: 0//0 Ζήτηµα ο Σώµα Σ µε µάζα m είναι συνδεδεµένο στο ένα άκρο ιδανικού ελατηρίου σταθεράς κ,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2Η ΕΝΟΤΗΤΑ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Τι είναι ; Ηλεκτρικό ρεύμα ονομάζεται η προσανατολισμένη κίνηση των ηλεκτρονίων ή γενικότερα των φορτισμένων σωματιδίων Που μπορεί να

Διαβάστε περισσότερα

4ο ΓΕΛ Κοζάνης. Στεφάνου Μ. Φυσικός

4ο ΓΕΛ Κοζάνης. Στεφάνου Μ. Φυσικός 4ο ΓΕΛ Κοζάνης 1 ΜΑΘΕ.ΚΑΙ ΜΗΝ ΞΕΧΝΆΣ!!! 1. Όταν το φορτίο του πυκνωτή μειώνεται,ο πυκνωτής εκφορτίζεται, η ένταση του ρεύματος αυξάνεται κατά απόλυτη τιμή, η ενέργεια του πυκνωτή ελαττώνεται και αυξάνεται

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. B κύματος. Γνωρίζουμε ότι το σημείο Α έχει μικρότερη φάση από το x x σημείο Β. Συνεπώς το σημείο Γ του

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. B κύματος. Γνωρίζουμε ότι το σημείο Α έχει μικρότερη φάση από το x x σημείο Β. Συνεπώς το σημείο Γ του ΑΡΧΗ ης ΣΕΛΙΔΑΣ Προτεινόμενο Τελικό Διαγώνισμα Στη Φυσική Θετικής και Τεχνολογικής Κατεύθυσης Γ Λυκείου Διάρκεια: 3ώρες ΘΕΜΑ A Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

γ. Για την απώλεια της ενέργειας αφαιρούμε την ενέργεια που είχε το σώμα τη χρονική στιγμή t 1, αυτή της

γ. Για την απώλεια της ενέργειας αφαιρούμε την ενέργεια που είχε το σώμα τη χρονική στιγμή t 1, αυτή της Βασικές ασκήσεις στις φθίνουσες ταλαντώσεις.. Μικρό σώμα εκτελεί φθίνουσα ταλάντωση με πλάτος που μειώνεται με το χρόνο σύμφωνα με τη σχέση =,8e,t (S.I.). Να υπολογίσετε: α. το πλάτος της ταλάντωσης τη

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΜΑΪΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 5 η ΓΕΝΝΗΤΡΙΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΜΠΥΛΕΣ

ΑΣΚΗΣΗ 5 η ΓΕΝΝΗΤΡΙΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΜΠΥΛΕΣ ΑΣΚΗΣΗ 5 η ΓΕΝΝΗΤΡΙΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΜΠΥΛΕΣ Σκοπός της Άσκησης: Σκοπός της εργαστηριακής άσκησης είναι α) η κατανόηση της λειτουργίας της γεννήτριας συνεχούς ρεύματος

Διαβάστε περισσότερα

α. Σύνδεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας και ίδιας διεύθυνσης, οι οποίες

α. Σύνδεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας και ίδιας διεύθυνσης, οι οποίες ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ α. Σύνδεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας και ίδιας διεύθυνσης, οι οποίες εξελίσσονται γύρω από την ίδια δέση ισορροπίας Έστω ότι ένα σώμα εκτελεί ταυτόχρονα δύο απλές

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘEMA A: ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Αντιστάτης με αντίσταση R συνδέεται με ηλεκτρική πηγή, συνεχούς τάσης V

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 2 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 2 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 2 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα

Διαβάστε περισσότερα

Τα θετικά και τα αρνητικά.

Τα θετικά και τα αρνητικά. Τα θετικά και τα αρνητικά. Μια Καλοκαιρινή βόλτα ακολουθώντας ένα μονοπάτι Με 3 σκαλοπάτια! Ας μιλήσουμε σήμερα για θετικά και αρνητικά μεγέθη, χωρίς να ασχοληθούμε με διανυσματικά φυσικά μεγέθη. Εκεί

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) 2007 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α

ΗΛΕΚΤΡΟΛΟΓΙΑ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) 2007 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α ΗΛΕΚΤΡΟΛΟΓΙΑ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) 2007 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις παρακάτω προτάσεις, Α.. έως και Α.4., να γράψετε στο τετράδιό σας τον αριθµό της πρότασης

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚ. ΘΕΤ/ΤΕΧΝ ΣΤΟ ΚΕΦ. 1 ΘΕΜΑ Α Α.1

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚ. ΘΕΤ/ΤΕΧΝ ΣΤΟ ΚΕΦ. 1 ΘΕΜΑ Α Α.1 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚ. ΘΕΤ/ΤΕΧΝ ΣΤΟ ΚΕΦ. 1 ΘΕΜΑ Α Για τις ερωτήσεις Α.1 έως και Α.4 να γράψετε τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή πρόταση. Α1) Ένα σώμα κάνει α.α.τ.

Διαβάστε περισσότερα

Q=Ne. Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου. Q ολ(πριν) = Q ολ(μετά) Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.

Q=Ne. Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου. Q ολ(πριν) = Q ολ(μετά) Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno. Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου Κβάντωση ηλεκτρικού φορτίου ( q ) Q=Ne Ολικό

Διαβάστε περισσότερα

5 σειρά ασκήσεων. 1. Να υπολογισθεί το μαγνητικό πεδίο που δημιουργεί ευθύγραμμος αγωγός με άπειρο μήκος, που διαρρέεται από ρεύμα σταθερής έντασης.

5 σειρά ασκήσεων. 1. Να υπολογισθεί το μαγνητικό πεδίο που δημιουργεί ευθύγραμμος αγωγός με άπειρο μήκος, που διαρρέεται από ρεύμα σταθερής έντασης. η 5 σειρά ασκήσεων Σε όλα τα πιο κάτω προβλήματα δίνεται ότι μ o = 4πx10-7 Τm/Α 1. Να υπολογισθεί το μαγνητικό πεδίο που δημιουργεί ευθύγραμμος αγωγός με άπειρο μήκος, που διαρρέεται από ρεύμα σταθερής

Διαβάστε περισσότερα

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει:

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο 1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 10 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: (α)

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 2 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 2 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 2 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Θέμα 1 ο ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Στα ερωτήματα 1 5 του πρώτου θέματος, να μεταφέρετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα της απάντησης που θεωρείτε

Διαβάστε περισσότερα

Κεφάλαιο 6: Δυναμικός Ηλεκτρισμός

Κεφάλαιο 6: Δυναμικός Ηλεκτρισμός Κεφάλαιο 6: Δυναμικός Ηλεκτρισμός Ηλεκτρική Αγωγιμότητα ονομάζουμε την ευκολία με την οποία το ηλεκτρικό ρεύμα περνά μέσα από τα διάφορα σώματα. Τα στερεά σώματα παρουσιάζουν διαφορετική ηλεκτρική αγωγιμότητα.

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

γ. υ = χ 0 ωσυνωt δ. υ = -χ 0 ωσυνωt. Μονάδες 5

γ. υ = χ 0 ωσυνωt δ. υ = -χ 0 ωσυνωt. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 29 ΜΑΪΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1ο Στις ερωτήσεις

Διαβάστε περισσότερα

Μαγνητικό Πεδίο. μαγνητικό πεδίο. πηνίο (αγωγός. περιστραμμένος σε σπείρες), επάγει τάση στα άκρα του πηνίου (Μετασχηματιστής) (Κινητήρας)

Μαγνητικό Πεδίο. μαγνητικό πεδίο. πηνίο (αγωγός. περιστραμμένος σε σπείρες), επάγει τάση στα άκρα του πηνίου (Μετασχηματιστής) (Κινητήρας) Ένας ρευματοφόρος αγωγός παράγει γύρω του μαγνητικό πεδίο Ένα χρονικά μεταβαλλόμενο μαγνητικό πεδίο, του οποίου οι δυναμικές γραμμές διέρχονται μέσα από ένα πηνίο (αγωγός περιστραμμένος σε σπείρες), επάγει

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 03-01-11 ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

Το πλάτος της ταλάντωσης του σημείου Σ, μετά τη συμβολή των δυο. α. 0 β. Α γ. 2Α δ. Μονάδες 5

Το πλάτος της ταλάντωσης του σημείου Σ, μετά τη συμβολή των δυο. α. 0 β. Α γ. 2Α δ. Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 04-01-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ-ΠΟΥΛΗ Κ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

Κύκλωμα RLC σε σειρά. 1. Σκοπός. 2. Γενικά. Εργαστήριο Φυσικής IΙ - Κύκλωμα RLC σε σειρά

Κύκλωμα RLC σε σειρά. 1. Σκοπός. 2. Γενικά. Εργαστήριο Φυσικής IΙ - Κύκλωμα RLC σε σειρά Κύκλωμα RLC σε σειρά. Σκοπός Σκοπός της άσκησης είναι η εξοικείωση των σπουδαστών με τη συμπεριφορά ενός κυκλώματος RLC συνδεδεμένο σε σειρά όταν τροφοδοτείται από εναλλασσόμενη τάση. Συγκεκριμένα, επιδιώκεται

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 23 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 23 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 23 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

2o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ

2o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ 2o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Θέμα 1 ο Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΙΑΓΩΝΙΣΜΑ 1 Ηµεροµηνία: Τετάρτη 7 Ιανουαρίου 015 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση B' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΖΗΤΗΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 03-01-11 ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ 1ο ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Η αντίσταση ενός µεταλλικού αγωγού που

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΟ ΕΠΑΓΩΓΗΣ ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ

ΦΑΙΝΟΜΕΝΟ ΕΠΑΓΩΓΗΣ ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΦΑΙΝΟΜΕΝΟ ΕΠΑΓΩΓΗΣ ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ Α. ΣΤΟΧΟΙ Η κατασκευή απλών ηλεκτρικών κυκλωμάτων με πηνίο, τροφοδοτικό, διακόπτη, ροοστάτη, λαμπάκια, γαλβανόμετρο,

Διαβάστε περισσότερα

(μονάδες 5) A1.2 Κύκλωμα RLC σε σειρά τροφοδοτείται από εναλλασσόμενη τάση V=V 0 ημ ωt + και διαρρέεται. +. Τότε:

(μονάδες 5) A1.2 Κύκλωμα RLC σε σειρά τροφοδοτείται από εναλλασσόμενη τάση V=V 0 ημ ωt + και διαρρέεται. +. Τότε: ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 23 ΜΑÏΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Κάθε αντίτυπο φέρει την υπογραφή του συγγραφέα

Κάθε αντίτυπο φέρει την υπογραφή του συγγραφέα ΦΥΣΙΚΗ Κάθε αντίτυπο φέρει την υπογραφή του συγγραφέα Σειρά: Γενικό Λύκειο Θετικές Επιστήμες Φυσική Γ Λυκείου Θετική Τεχνολογική Κατεύθυνση Αναστασία Αγιαννιωτάκη Μάρκος Άρχων Υπεύθυνος Έκδοσης: Θεόδωρος

Διαβάστε περισσότερα

0 Φυσική Γενικής Παιδείας Β Λυκείου Συνεχές ηλεκτρικό ρεύμα - 3.2. Συνεχές ηλεκτρικό ρεύμα. Κώστας Παρασύρης - Φυσικός

0 Φυσική Γενικής Παιδείας Β Λυκείου Συνεχές ηλεκτρικό ρεύμα - 3.2. Συνεχές ηλεκτρικό ρεύμα. Κώστας Παρασύρης - Φυσικός 0 Φυσική Γενικής Παιδείας Β Λυκείου Συνεχές ηλεκτρικό ρεύμα - 3. Συνεχές ηλεκτρικό ρεύμα Φυσική Γενικής Παιδείας Β Λυκείου Συνεχές ηλεκτρικό ρεύμα -. Ηλεκτρική πηγή Ηλεκτρικό ρεύμα Ο ρόλος της ηλεκτρικής

Διαβάστε περισσότερα

Επαναληπτικά Θέματα στις Ταλαντώσεις

Επαναληπτικά Θέματα στις Ταλαντώσεις Επαναληπτικά Θέματα στις Ταλαντώσεις 1 A. Ερωτήσεις Πολλαπλής Επιλογής: Επαναληπτικά Θέματα στην Α.Α.Τ. 1. Η σχέση που συνδέει την περίοδο Τ και τη γωνιακή συχνότητα ω σε ένα περιοδικό φαινόμενο, είναι:

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘEMA 1 ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση A1.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία συμπληρώνει σωστά την

Διαβάστε περισσότερα

ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ Ο ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΟΙ ΕΚ ΟΧΕΣ ΤΟΥ

ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ Ο ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΟΙ ΕΚ ΟΧΕΣ ΤΟΥ η ΠΕΡΙΠΤΩΣΗ ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ Ο ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΟΙ ΕΚ ΟΧΕΣ ΤΟΥ ΣΥΝΤΟΝΙΣΜΟΣ ΣΕ ΚΥΚΛΩΜΑ -L-C ΣΕ ΣΕΙΡΑ Κύκλωµα που αποτελείται από ωµική αντίσταση,ιδανικό πηνίο µε συντελεστή αυτεπαγωγής L

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 3.3 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Οι μαγνητικοί πόλοι υπάρχουν πάντοτε σε ζευγάρια. ΔΕΝ ΥΠΑΡΧΟΥΝ ΜΑΓΝΗΤΙΚΑ ΜΟΝΟΠΟΛΑ. Οι ομώνυμοι πόλοι απωθούνται, ενώ οι

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την:

ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την: Σκοπός της Άσκησης: ΑΣΚΗΣΗ η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την: α. Κατασκευή μετασχηματιστών. β. Αρχή λειτουργίας μετασχηματιστών.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΜΑΪΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά µεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη µονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό.

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά µεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη µονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 5 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 014 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί.

2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί. ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων Β' τάξη Γενικού Λυκείου Κεφάλαιο 1 Κινητική θεωρία αερίων Κεφάλαιο 1 Κινητική θεωρία αερίων Χιωτέλης Ιωάννης Γενικό Λύκειο Πελοπίου 1.1 Ποιο από τα παρακάτω διαγράμματα αντιστοιχεί σε ισοβαρή μεταβολή;

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

Ι < Ι. Οπότε ο λαμπτήρας θα φωτοβολεί περισσότερο. Ο λαμπτήρα λειτουργεί κανονικά. συνεπώς το ρεύμα που τον διαρρέει είναι 1 Α.

Ι < Ι. Οπότε ο λαμπτήρας θα φωτοβολεί περισσότερο. Ο λαμπτήρα λειτουργεί κανονικά. συνεπώς το ρεύμα που τον διαρρέει είναι 1 Α. ΘΕΜΑ Α. Σωστή απάντηση είναι η α. Πριν το κλείσιμο του διακόπτη η αντίσταση του κυκλώματος είναι: λ, = Λ +. Μετά το κλείσιμο του διακόπτη η ολική αντίσταση είναι: λ, = Λ. Έτσι,,,, Ι < Ι. Οπότε ο λαμπτήρας

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 έως Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ Θέµα Α ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β ΜΑΪΟΥ 03 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση, η οποία συµπληρώνει

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ ΒΙΒΛΙΟ: ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΙΣ: ΤΣΙΤΣΑΣ ΓΡΗΓΟΡΗΣ- ΠΑΠΑΤΣΑΚΩΝΑΣ ΗΜΗΤΡΗΣ ΘΕΜΑ 1 ο Επιλέξτε τη σωστή απάντηση

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ ΜΑΪΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ)

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΑΣΚΗΣΗ 13 ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ 1.1. Εσωτερική ενέργεια Γνωρίζουμε ότι τα μόρια των αερίων κινούνται άτακτα και προς όλες τις διευθύνσεις με ταχύτητες,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ MM505 ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΒΙΟΜΗΧΑΝΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ Εργαστήριο ο - Θεωρητικό Μέρος Βασικές ηλεκτρικές μετρήσεις σε συνεχές και εναλλασσόμενο

Διαβάστε περισσότερα

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5)

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 30/1/11 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω

Διαβάστε περισσότερα

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2.

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2. Τάξη Μάθημα : Γ ΛΥΚΕΙΟΥ : Φυσική Εξεταστέα Ύλη : ΚΕΦΑΛΑΙΟ 1 ΚΑΙ 2 Καθηγητής : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ Ημερομηνία : 11-11 -2012 ΘΕΜΑ 1ο 1) Η ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση μεταβάλλεται,

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ ΣΤΟΙΧΕΙΑ & ΚΥΚΛΩΜΑΤΑ Δρ. ΕΥΘΥΜΙΟΣ ΜΠΑΚΑΡΕΖΟΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΤΕΧΝΙΑ

ΗΛΕΚΤΡΟΝΙΚΑ ΣΤΟΙΧΕΙΑ & ΚΥΚΛΩΜΑΤΑ Δρ. ΕΥΘΥΜΙΟΣ ΜΠΑΚΑΡΕΖΟΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΗΛΕΚΤΡΟΝΙΚΑ ΣΤΟΙΧΕΙΑ & ΚΥΚΛΩΜΑΤΑ Δρ. ΕΥΘΥΜΙΟΣ ΜΠΑΚΑΡΕΖΟΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΜΟΝΑΔΕΣ ΜΕΓΕΘΟΣ ΣΥΜΒΟΛΟ ΜΟΝΑΔΕΣ S.. Φορτίο, q oulomb, Ηλεκτρικό ρεύμα, i Ampére, A Ηλεκτρικό δυναμικό olt, Ενέργεια

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΦΥΣΙΚΗΣ Γ ΤΑΞΗΣ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΦΥΣΙΚΗΣ Γ ΤΑΞΗΣ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΦΥΣΙΚΗΣ Γ ΤΑΞΗΣ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ (4ΩΡΟ) 1 1 ΤΑΛΑΝΤΩΣΕΙΣ (32 π) Οι μαθητές και μαθήτριες να: 1.1 Ελαστικότητα. 1.1.1 Υπολογίζουν την ελαστική δυναμική ενέργεια. 1. Η ελαστική δυναμική

Διαβάστε περισσότερα

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Τι είναι αυτό που προϋποθέτει την ύπαρξη μιας συνεχούς προσανατολισμένης ροής ηλεκτρονίων; Με την επίδραση διαφοράς δυναμικού ασκείται δύναμη στα ελεύθερα ηλεκτρόνια του μεταλλικού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο

ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο Βασίλης Γαργανουράκης Φυσική ήγ Γυμνασίου Εισαγωγή Στο προηγούμενο κεφάλαιο μελετήσαμε τις αλληλεπιδράσεις των στατικών (ακίνητων) ηλεκτρικών φορτίων. Σε αυτό το κεφάλαιο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ-ΗΛΕΚΤΡΟΛΟΓΙΑ Γ ΛΥΚΕΙΟΥ- ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ-ΗΛΕΚΤΡΟΛΟΓΙΑ Γ ΛΥΚΕΙΟΥ- ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Π.Π.Λ. ΕΥΑΓΓΕΛΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Σελ. 1 Επιμέλεια Π.Π.Λ. ΕΥΑΓΓΕΛΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Σελ. 2 Επιμέλεια Π.Π.Λ. ΕΥΑΓΓΕΛΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Σελ. 3 Επιμέλεια Π.Π.Λ. ΕΥΑΓΓΕΛΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Σελ. 4 Επιμέλεια

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤ-ΤΕΧΝ ΚΑΤΕΥΘΥΝΣΗΣ

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤ-ΤΕΧΝ ΚΑΤΕΥΘΥΝΣΗΣ ΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕ-ΕΧΝ ΚΑΕΥΘΥΝΣΗΣ Κινητική θεωρία των ιδανικών αερίων. Νόμος του Boyle (ισόθερμη μεταβή).σταθ. για σταθ.. Νόμος του hales (ισόχωρη μεταβή) p σταθ. για σταθ. 3. Νόμος του Gay-Lussac

Διαβάστε περισσότερα