HAPE-ALUS TASAKAAL. Teema nr 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "HAPE-ALUS TASAKAAL. Teema nr 2"

Transcript

1 PE-LUS TSL Teema nr

2 Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused on negatiivsed

3 Nõrgad happed apped, mis dissotsieeruvad lahuses osaliselt Nt C COO, fenool ja paljud teised Nt äädikhappe lahuses on nii äädikhappe molekulid kui ka atsetaatioonid Fenooli lahuses on nii fenooli molekulid kui ka fenolaatioonid jne p a väärtused 0 -. C COO C COO ape appega konjugeeritud alus

4 p a ja p b Äädikhappe dissotsiatsiooni C COO a C COO CCOO CCOO a sõnast acid (ing k) tsetaatiooni, kui aluse, reaktsioonile veega kirjeldab dissotsatsioonikonstant: C COO O C vastab konstant: C COO O C COO b COO O b sõnast base (ing k)

5 nalüütiline ja tasakaaluline kontsantratsioon Mingi aine analüütiline kontsentratsioon lahuses näitab, milline kogus seda ainet on lahusele lisatud või muul moel sinna jõudnud) ga aine ei pruugi seal olla sellel kujul, nagu ta lisati Tähitsame tähega c Mingi osakese tasakaaluline kontsentratsioon lahuses väljendab selle konkreetse osakese sisaldust selles lahuses Tähistame [osake] Näide: Lisades veele C COO ta osaliselt jääb C COO kujule ja osaliselt ioniseerub andes C COO c(c COO) = [C COO] + [C COO - ]

6 p p log Tugevate hapete puhul On kasutuses ka mõiste c Cl Cl log logccl p po log O p po lahusti _ p auto Vesikeskkonnas p po 4 NB! Selles kursuses me tegeleme lahjade lahustega ning eeldame, et γ

7 Nõrga happe lahuse p Vaatleme äädikhappe näitel C COO C C COO COO a CCOO una x mol äädikhappe dissotsiatsioonil tekib x mol atsetaati ja x mol prootoneid, siis: C COO () Äädikhappe analüütilise kontsentratsiooni saab siduda tasakaaluliste kontsentratsioonidega cc COO C COO C COO C COO C COO cc COO () sendades () ja () dissotsiatsioonikonstandi avaldisse: C COO a C COO cc COO cc COO a Jääb ruutvõrrandi lahendamine

8 Nõrga aluse lahuse p Vaatleme ammoniaagi näitel N O N O 4 N 4 O b N una x mol ammoniaaki reageerib veega tekib x mol ammoonium ioone ja x mol hüdroksiidioone, siis: O N 4 Äädikhappe analüütilise kontsentratsiooni saab siduda tasakaaluliste kontsentratsioonidega cn N N 4 N O N cn O sendades () ja () dissotsiatsioonikonstandi avaldisse: N 4 O O O b N cn O b cn O O O... po... p 4 po

9 eskkonna dissotsiatsioon Vesi on protoonne solvent, seega võivad ka tema autoprotolüüsist tekivad prootonid mõjutada lahuses olevat prootonite üldhulka O O Vee autoprotolüüsi pole tarvis arvestada kui happe _ dissotsatsioonist vee _ autoprotolüüsist Seejuures kummagi prootonite allika suurusjärku on võimalik hinnata: happe _ dissotsatsioonist c hape a / vee _ autoprotolüüsist w /

10 Soolade hüdrolüüs C COO O C COO O C COO O b C COO Naatrium atsetaat dissotseerub täielikult ning atsetaatioonid hüdrolüüsuvad osaliselt: C COO C COO c sool üdrolüüsil tekkiva äädikhappe ja hürdroksiidioonide hulk on võrdne C COO O Tehes vastavad asendused b valemisse saame: C COO O O b C COO csool O Jääb lahendada ruutvõrrand

11 Dissotsatsiooniaste Ühealuselise happe jaoks: c ahealuselise happe jaoks: c c

12 rvuliselt saame leida 0 c c c

13 Puhverlahused Lahused, mille on võime p-d säilitada hapete-aluste lisamisel Nõrga happe ja tema soola lahus Nõrga aluse ja tema soola lahus Puhverdusala on p vahemikus: pa±

14 Näiteks Oletame, et meil on atsetaatpuhver: Lahuses on C COO ja C COO - appe lisamisel: C COO C COO luse lisamisel: C COO O C COO O

15 Puhverlahuse p arvutamine Lähtume dissotsatsioonikonstandi avaldisest: C COO a C COO Miinuslogaritmimisel saame: C COO log a log log C COO p a c p log c p p a c log c sool hape sool hape Viimast nimetatakse puhvarlahuse valemiks

16

gaas-tahke Lahustumisprotsess:

gaas-tahke Lahustumisprotsess: 5. LAHUSED Lahus on kahest või enamast komponendist (lahustunud ained, lahusti) koosnev homogeenne süsteem. Ainete agregaatolekute baasil saab eristada järgmisi lahuseid: gaas-gaas gaas-vedelik gaas-tahke

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58

Διαβάστε περισσότερα

Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a.

Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a. Keemia lahtise võistluse ülesannete lahendused oorem rühm (9. ja 0. klass) 6. november 2002. a.. ) 2a + 2 = a 2 2 2) 2a + a 2 2 = 2a 2 ) 2a + I 2 = 2aI 4) 2aI + Cl 2 = 2aCl + I 2 5) 2aCl = 2a + Cl 2 (sulatatud

Διαβάστε περισσότερα

3. Solvendiefektide mõju ainete omadustele ja keemilistele protsessidele. 3.1 Solvendiefektid happe-aluse protsessidele. Tasakaal ja kiirus

3. Solvendiefektide mõju ainete omadustele ja keemilistele protsessidele. 3.1 Solvendiefektid happe-aluse protsessidele. Tasakaal ja kiirus 3. olvendiefektide mõju ainete omadustele ja keemilistele protsessidele Põhiallikas: Tasakaal ja kiirus Lahusti mõju tasakaalule ilmneb seeläbi, et erinevad lahustid solvateerivad erineva intensiivsusega

Διαβάστε περισσότερα

Kompleksarvu algebraline kuju

Kompleksarvu algebraline kuju Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa

Διαβάστε περισσότερα

Ruumilise jõusüsteemi taandamine lihtsaimale kujule

Ruumilise jõusüsteemi taandamine lihtsaimale kujule Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D

Διαβάστε περισσότερα

Funktsiooni diferentsiaal

Funktsiooni diferentsiaal Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral

Διαβάστε περισσότερα

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1 laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad

Διαβάστε περισσότερα

Kontekstivabad keeled

Kontekstivabad keeled Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,

Διαβάστε περισσότερα

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika

Διαβάστε περισσότερα

b) Täpne arvutus (aktiivsete kontsentratsioonide kaudu) ph arvutused I tugevad happed ja alused

b) Täpne arvutus (aktiivsete kontsentratsioonide kaudu) ph arvutused I tugevad happed ja alused ph arvutused I tugevad happed ja alused Tugevad happed: HCl, HBr, HI, (NB! HF on nõrk hape) HNO 3, H 2SO 4, H 2SeO 4, HClO 4, HClO 3, HBrO 4, HBrO 3, HMnO 4, H 2MnO 4 Tugevad alused: NaOH, OH, LiOH, Ba(OH)

Διαβάστε περισσότερα

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem

Διαβάστε περισσότερα

I. Keemiline termodünaamika. II. Keemiline kineetika ja tasakaal

I. Keemiline termodünaamika. II. Keemiline kineetika ja tasakaal I. Keemiline termdünaamika I. Keemiline termdünaamika 1. Arvutage etüüni tekke-entalpia ΔH f lähtudes ainete põlemisentalpiatest: ΔH c [C(gr)] = -394 kj/ml; ΔH c [H 2 (g)] = -286 kj/ml; ΔH c [C 2 H 2 (g)]

Διαβάστε περισσότερα

Keemiliste elementide perioodilisustabel

Keemiliste elementide perioodilisustabel Anorgaanilised ained Lihtained Liitained Metallid Mittemetallid Happed Alused Oksiidid Soolad (Na, Cu, Au) (O 2, Si, H 2 ) (HCl) (KOH) (Na 2 SO 4 ) Happelised oksiidid Aluselised oksiidid (SO 2, CO 2,

Διαβάστε περισσότερα

2013/2014 õ.a keemiaolümpiaadi lõppvooru ülesanded 9. klass

2013/2014 õ.a keemiaolümpiaadi lõppvooru ülesanded 9. klass 2013/2014 õ.a keemiaolümpiaadi lõppvooru ülesanded 9. klass 1. Ained A on oksiidid. Tuntud metalli X võib saada vedelal kujul, kui süüdata segu, mis koosneb metalli Y ja musta oksiidi A pulbritest, kõrvalsaadusena

Διαβάστε περισσότερα

Sirgete varraste vääne

Sirgete varraste vääne 1 Peatükk 8 Sirgete varraste vääne 8.1. Sissejuhatus ja lahendusmeetod 8-8.1 Sissejuhatus ja lahendusmeetod Käesoleva loengukonspekti alajaotuses.10. käsitleti väändepingete leidmist ümarvarrastes ja alajaotuses.10.3

Διαβάστε περισσότερα

( ) ( ) 2008/2009 õ.a. keemiaolümpiaadi lõppvooru ülesannete lahendused 9. klass

( ) ( ) 2008/2009 õ.a. keemiaolümpiaadi lõppvooru ülesannete lahendused 9. klass 008/009 õ.a. keemiaolümpiaadi lõppvooru ülesannete lahendused 9. klass. a) ρ ( A ) = 5,5 ρ( ) ( A ) = ( A ) = 5,5 ( ) = 5,5 g/mol = 7g/mol ( A) = = A, kloor / V 5,5 / V m m r 7/ 5,5 b) X Fe, raud A, kloor

Διαβάστε περισσότερα

Elastsusteooria tasandülesanne

Elastsusteooria tasandülesanne Peatükk 5 Eastsusteooria tasandüesanne 143 5.1. Tasandüesande mõiste 144 5.1 Tasandüesande mõiste Seeks, et iseoomustada pingust või deformatsiooni eastse keha punktis kasutatakse peapinge ja peadeformatsiooni

Διαβάστε περισσότερα

5. a) ρ (g/cm 3 ) = 0,119 = 11,9% 12% 2 p

5. a) ρ (g/cm 3 ) = 0,119 = 11,9% 12% 2 p 201/2014 õ.a keemiaolümpiaadi piirkonnavooru ülesanded 8. klass Ülesannete lahendused 1. a) Alumiinium 1 p b) Broom 1 p c) Füüsikalised nähtused: muna vahustamine; sahharoosi lahustumine; katseklaasi purunemine,

Διαβάστε περισσότερα

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008 Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub

Διαβάστε περισσότερα

ALGEBRA I. Kevad Lektor: Valdis Laan

ALGEBRA I. Kevad Lektor: Valdis Laan ALGEBRA I Kevad 2013 Lektor: Valdis Laan Sisukord 1 Maatriksid 5 1.1 Sissejuhatus....................................... 5 1.2 Maatriksi mõiste.................................... 6 1.3 Reaalarvudest ja

Διαβάστε περισσότερα

Ehitusmehaanika harjutus

Ehitusmehaanika harjutus Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative

Διαβάστε περισσότερα

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke

Διαβάστε περισσότερα

ETTEVALMISTUS KEEMIAOLÜMPIAADIKS II

ETTEVALMISTUS KEEMIAOLÜMPIAADIKS II ETTEVALMISTUS KEEMIALÜMPIAADIKS II ÜLESANDED VALEMITE MÄÄRAMISE KHTA III SÜSTEMAATILINE LÄHENEMINE LAHENDAMISELE Kõikvõimalikud lihtsustamised ja eeldused on eelkõige vajalikud aja säästmiseks Mõnikord

Διαβάστε περισσότερα

Halogeenid, VIIA Fluor, kloor, broom, jood, astaat

Halogeenid, VIIA Fluor, kloor, broom, jood, astaat Halogeenid, VIIA Fluor, kloor, broom, jood, astaat F Cl Br I At Z 9 17 35 53 85 A r 18.9984 35.4527 79.904 126.9045 [210] El. neg. 4.0 3.0 2.8 2.5 2.2 T s, C -219.6-101.5-7.3 113.7 302 T k, C -188.1-34.0

Διαβάστε περισσότερα

20. SIRGE VÕRRANDID. Joonis 20.1

20. SIRGE VÕRRANDID. Joonis 20.1 κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii

Διαβάστε περισσότερα

6.6 Ühtlaselt koormatud plaatide lihtsamad

6.6 Ühtlaselt koormatud plaatide lihtsamad 6.6. Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 263 6.6 Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 6.6.1 Silindriline paine Kui ristkülikuline plaat on pika ristküliku kujuline

Διαβάστε περισσότερα

PLASTSED DEFORMATSIOONID

PLASTSED DEFORMATSIOONID PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb

Διαβάστε περισσότερα

2004/2005 õa keemiaolümpiaadi lõppvooru ülesanded 10. klass

2004/2005 õa keemiaolümpiaadi lõppvooru ülesanded 10. klass 2004/2005 õa keemiaolümpiaadi lõppvooru ülesanded 10. klass 1. Andresele anti analüüsiks kolm tahket metalli, millest kaks olid väliselt väga sarnased, kolmas oli pisut tuhmim. Andres leidis, et antud

Διαβάστε περισσότερα

8. KEEVISLIITED. Sele 8.1. Kattekeevisliide. Arvutada kahepoolne otsõmblus terasplaatide (S235J2G3) ühendamiseks. F = 40 kn; δ = 5 mm.

8. KEEVISLIITED. Sele 8.1. Kattekeevisliide. Arvutada kahepoolne otsõmblus terasplaatide (S235J2G3) ühendamiseks. F = 40 kn; δ = 5 mm. TTÜ EHHATROONIKAINSTITUUT HE00 - ASINATEHNIKA -, 5AP/ECTS 5 - -0-- E, S 8. KEEVISLIITED NÄIDE δ > 4δ δ b k See 8.. Kattekeevisiide Arvutada kahepoone otsõmbus teraspaatide (S5JG) ühendamiseks. 40 kn; δ

Διαβάστε περισσότερα

T~oestatavalt korrektne transleerimine

T~oestatavalt korrektne transleerimine T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:

Διαβάστε περισσότερα

Deformeeruva keskkonna dünaamika

Deformeeruva keskkonna dünaamika Peatükk 4 Deformeeruva keskkonna dünaamika 1 Dünaamika on mehaanika osa, mis uurib materiaalsete keskkondade liikumist välismõjude (välisjõudude) toimel. Uuritavaks materiaalseks keskkonnaks võib olla

Διαβάστε περισσότερα

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil. 8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,

Διαβάστε περισσότερα

9. AM ja FM detektorid

9. AM ja FM detektorid 1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid

Διαβάστε περισσότερα

MATEMAATILISEST LOOGIKAST (Lausearvutus)

MATEMAATILISEST LOOGIKAST (Lausearvutus) TARTU ÜLIKOOL Teaduskool MATEMAATILISEST LOOGIKAST (Lausearvutus) Õppematerjal TÜ Teaduskooli õpilastele Koostanud E. Mitt TARTU 2003 1. LAUSE MÕISTE Matemaatilise loogika ühe osa - lausearvutuse - põhiliseks

Διαβάστε περισσότερα

Smith i diagramm. Peegeldustegur

Smith i diagramm. Peegeldustegur Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis 1939. aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes

Διαβάστε περισσότερα

Tuletis ja diferentsiaal

Tuletis ja diferentsiaal Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΑΒΒΑΤΟ 16/04/ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8)

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΑΒΒΑΤΟ 16/04/ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8) ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΑΒΒΑΤΟ 16/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1. έως Α5. να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ)

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 9 ΙΟΥΝΙΟΥ

Διαβάστε περισσότερα

Lahused ja lahustumisprotsess konserveerimises

Lahused ja lahustumisprotsess konserveerimises Lahused ja lahustumisprotsess konserveerimises Lektor: Heige Peets Ennistuskoda Kanut, 6 44 25 63 esemed@kanut.ee Tallinn-Tartu 2004 Loengu eesmärgiks on anda ülevaade ja lühike selgitus kõige üldisematest

Διαβάστε περισσότερα

Formaalsete keelte teooria. Mati Pentus

Formaalsete keelte teooria. Mati Pentus Formaalsete keelte teooria Mati Pentus http://lpcs.math.msu.su/~pentus/ftp/fkt/ 2009 13. november 2009. a. Formaalsete keelte teooria 2 Peatükk 1. Keeled ja grammatikad Definitsioon 1.1. Naturaalarvudeks

Διαβάστε περισσότερα

5. TUGEVUSARVUTUSED PAINDELE

5. TUGEVUSARVUTUSED PAINDELE TTÜ EHHTROONKNSTTUUT HE00 - SNTEHNK.5P/ETS 5 - -0-- E, S 5. TUGEVUSRVUTUSE PNELE Staatika üesandes (Toereaktsioonide eidmine) vaadatud näidete ause koostada taade sisejõuepüürid (põikjõud ja paindemoment)

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

p A...p D - gaasiliste ainete A...D osarõhud, atm K p ja K c vahel kehtib seos

p A...p D - gaasiliste ainete A...D osarõhud, atm K p ja K c vahel kehtib seos LABO RATOO RNE TÖÖ 3 Keemiline tasakaal ja reaktsioonikiirus Keemilised rotsessid võib jagada öörduvateks ja öördumatuteks. Pöördumatud rotsessid kulgevad ühes suunas raktiliselt lõuni. Selliste rotsesside

Διαβάστε περισσότερα

RF võimendite parameetrid

RF võimendite parameetrid RF võimendite parameetrid Raadiosageduslike võimendite võimendavaks elemendiks kasutatakse põhiliselt bipolaarvõi väljatransistori. Paraku on transistori võimendus sagedusest sõltuv, transistor on mittelineaarne

Διαβάστε περισσότερα

Energiabilanss netoenergiavajadus

Energiabilanss netoenergiavajadus Energiabilanss netoenergiajadus 1/26 Eelmisel loengul soojuskadude arvutus (võimsus) φ + + + tot = φ φ φ juht v inf φ sv Energia = tunnivõimsuste summa kwh Netoenergiajadus (ruumis), energiakasutus (tehnosüsteemis)

Διαβάστε περισσότερα

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα ΟΕΦΕ 2010 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΑΠΑΝΤΗΣΕΙΣ

Επαναληπτικά Θέµατα ΟΕΦΕ 2010 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΑΠΑΝΤΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 010 1 ΘΕΜΑ 1 ο 1.1. δ 1.. α 1.. γ 1.4. β 1.5. α. ΛΑΘΟΣ β. ΛΑΘΟΣ γ. ΣΩΣΤΟ δ. ΣΩΣΤΟ ε. ΛΑΘΟΣ ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΑΠΑΝΤΗΣΕΙΣ.1. α. Για το Α: 1s s p 6 s p 6

Διαβάστε περισσότερα

3. Κατά Arrhenius απαραίτητο διαλυτικό μέσο είναι το νερό ενώ η θεωρία των. β) 1. Η ηλεκτρολυτική διάσταση αναφέρεται στις ιοντικές ενώσεις και είναι

3. Κατά Arrhenius απαραίτητο διαλυτικό μέσο είναι το νερό ενώ η θεωρία των. β) 1. Η ηλεκτρολυτική διάσταση αναφέρεται στις ιοντικές ενώσεις και είναι ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ 01 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ Α. β Α. δ Α4. Β Α5. α) 1. Κατά Arrhenius μια βάση όταν διαλυθεί στο νερό μπορεί να δώσει λόγω διάστασης OH - ενώ κατά

Διαβάστε περισσότερα

KEΦΑΛΑΙΟ 3 ΟΞΕΑ - ΒΑΣΕΙΣ ΚΑΙ ΙΟΝΤΙΚΗ ΙΣΟΡΡΟΠΙΑ

KEΦΑΛΑΙΟ 3 ΟΞΕΑ - ΒΑΣΕΙΣ ΚΑΙ ΙΟΝΤΙΚΗ ΙΣΟΡΡΟΠΙΑ KEΦΑΛΑΙΟ 3 ΟΞΕΑ - ΒΑΣΕΙΣ ΚΑΙ ΙΟΝΤΙΚΗ ΙΣΟΡΡΟΠΙΑ 3.1. Ερωτήσεις πολλαπλής επιλογής Στις ερωτήσεις 1-46 βάλτε σε ένα κύκλο το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Ιοντισµός µιας µοριακής ένωσης ονοµάζεται:

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 2 ΜΑΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α 1. : β, Α 2.: α, Α. :δ, Α 4.: β, Α 5. α. Σ, β. Σ, γ. Λ, δ.

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ- Γ ΗΜΕΡΗΣΙΩΝ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΕΠΙΜΕΛΕΙΑ ΘΕΜΑΤΩΝ: ΚΑΛΑΜΑΡΑΣ ΓΙΑΝΝΗΣ.gr ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως Α5 να γράψετε τον αριθμό της

Διαβάστε περισσότερα

Suhteline salajasus. Peeter Laud. Tartu Ülikool. peeter TTÜ, p.1/27

Suhteline salajasus. Peeter Laud. Tartu Ülikool. peeter TTÜ, p.1/27 Suhteline salajasus Peeter Laud peeter l@ut.ee Tartu Ülikool TTÜ, 11.12.2003 p.1/27 Probleemi olemus salajased sisendid avalikud väljundid Program muud väljundid muud sisendid mittesalajased väljundid

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ. 1. Ο µέγιστος αριθµός ηλεκτρονίων σε µια στιβάδα µε κβαντικό αριθµό 4 είναι: i. 32 ii. 18 iii. 50 iv. 2

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ. 1. Ο µέγιστος αριθµός ηλεκτρονίων σε µια στιβάδα µε κβαντικό αριθµό 4 είναι: i. 32 ii. 18 iii. 50 iv. 2 ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Θέµα ο Ο µέγιστος αριθµός ηλεκτρονίων σε µια στιβάδα µε κβαντικό αριθµό είναι: i ii 8 iii 50 iv Κατά την προσθήκη Η Ο + σε διάλυµα που περιέχει δείκτη Η το χρώµα αντιστοιχεί: i Στο

Διαβάστε περισσότερα

Eesti koolinoorte 26. füüsika lahtine võistlus

Eesti koolinoorte 26. füüsika lahtine võistlus Eesti koolinoorte 6. füüsika lahtine võistlus 8. november 05. a. Vanema rühma ülesannete lahendused. (RONGIVILE) Tähistagu L veduri kaugust jaamaülemast hetkel, mil vedurijuht alustab vile laskmisega.

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 29/05/2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: XHMEIA ΘΕΜΑ Α A1. γ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ A2. β A3. δ A4. β A5. α. Πρέπει να γραφούν τρεις

Διαβάστε περισσότερα

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna

Διαβάστε περισσότερα

(Ενδεικτικές Απαντήσεις)

(Ενδεικτικές Απαντήσεις) Θέμα Α Α.1 γ Α. δ Α.3 γ Α. α Α.5 α. Σ β. Λ γ. Λ δ. Λ ε. Σ ΠΑΝΕΛΛΑΔΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΟΥ ΛΥΕΙΟΥ ΔΕΥΤΕΡΑ 30 ΜΑΪΟΥ 016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) (Ενδεικτικές

Διαβάστε περισσότερα

Ισχυροί και ασθενείς ηλεκτρολύτες μέτρα ισχύος οξέων και βάσεων νόμοι Ostwald

Ισχυροί και ασθενείς ηλεκτρολύτες μέτρα ισχύος οξέων και βάσεων νόμοι Ostwald Ισχυροί και ασθενείς ηλεκτρολύτες μέτρα ισχύος οξέων και βάσεων νόμοι Ostwald Ποιους θα ονομάζουμε «ισχυρούς ηλεκτρολύτες»; Τις χημικές ουσίες που όταν διαλύονται στο νερό, ένα μεγάλο ποσοστό των mole

Διαβάστε περισσότερα

STM A ++ A + A B C D E F G A B C D E F G. kw kw /2013

STM A ++ A + A B C D E F G A B C D E F G. kw kw /2013 Ι 47 d 11 11 10 kw kw kw d 2015 811/2013 Ι 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi 2010/30/ täiendavates määrustes () nr 811/2013,

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΣΤΗ ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. β. 5CH C H CH + 2KMnO + 3H SO 5CH C CH + 2MnSO + K SO + 8H O

ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΣΤΗ ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. β. 5CH C H CH + 2KMnO + 3H SO 5CH C CH + 2MnSO + K SO + 8H O ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΣΤΗ ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. γ Α. δ Α. γ Α. α Α5. α. Σωστό β. Λάθος γ. Λάθος δ. Λάθος ε. Σωστό ΘΕΜΑ Β Β1. α. + CuO Cu+ N + H O β. 5 C H + KMO + H SO 5 C + MSO + K SO + 8H

Διαβάστε περισσότερα

Kehade soojendamisel või jahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks.

Kehade soojendamisel või jahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks. KOOLIFÜÜSIKA: SOOJUS 3 (kaugõppele) 6. FAASISIIRDED Kehade sooendamisel või ahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks. Sooendamisel vaaminev

Διαβάστε περισσότερα

TÄIENDAVAID TEEMASID KOOLIKEEMIALE III

TÄIENDAVAID TEEMASID KOOLIKEEMIALE III TARTU ÜLIKOOL TEADUSKOOL TÄIENDAVAID TEEMASID KOOLIKEEMIALE III KEEMILINE TASAKAAL Vello Past Õppevahend TK õpilastele Tartu 007 KEEMILINE TASAKAAL 1. Keemilise tasakaalu mõiste. Tasakaalu mõiste on laialt

Διαβάστε περισσότερα

7 Kolmefaasiline vool

7 Kolmefaasiline vool 7 Komeaasiine voo 7 Komeaasiise voou saamine Tänapäeva töötavad eektrijaamad toodavad komeaasiist voou Komeaasiise voou peamiseks eeiseks on ihtne pööreva magnetväja saamise võimaus Pöörev magnetväi ehk

Διαβάστε περισσότερα

Eesti koolinoorte 26. füüsika lahtine võistlus

Eesti koolinoorte 26. füüsika lahtine võistlus Eesti koolinoorte 26. füüsika lahtine võistlus 28. november 2015. a. Noorema rühma ülesannete lahendused 1. (KLAAS VEEGA) Võtame klaasi põhja pindalaks S = π ( d tiheduseks ρ. Klaasile mõjuvad jõud: raskusjõud

Διαβάστε περισσότερα

1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD

1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD 1. Reaalarvud 1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD Arvu mõiste hakkas kujunema aastatuhandeid tagasi, täiustudes ja üldistudes koos inimkonna arenguga. Juba ürgühiskonnas tekkis vajadus teatavaid hulki

Διαβάστε περισσότερα

Α5. α. Σ β. Σ γ. Λ δ. Λ, ε. Σ

Α5. α. Σ β. Σ γ. Λ δ. Λ, ε. Σ ΘΕΜΑ Α Α1. β Α2. α Α3. δ Α4.β Α5. α. Σ β. Σ γ. Λ δ. Λ, ε. Σ ΘΕΜΑ Β Β1. α. 12 Mg 2+ : 1s 2 2s 2 2p 6 15P: 1s 2 2s 2 2p 6 3s 2 3p 3 19K: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 26Fe 2+ : 1s 2 2s 2 2p 6 3s 2 3p 6 3d

Διαβάστε περισσότερα

F l 12. TRANSPORDINÄHTUSED JA BIOENERGEETIKA ALUSED

F l 12. TRANSPORDINÄHTUSED JA BIOENERGEETIKA ALUSED 1. TRANSPORDINÄHTUSED JA BIOENERGEETIKA ALUSED Eluks on vajalik pidev aine ja energia transport (e suunatud liikumine) läbi biosfääri ja konkreetselt bioloogilise aine. Biosfäär ehk elukeskkond on Maa

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΟΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΑΠΟ ΤΟΥΣ ΚΑΘΗΓΗΤΕΣ κύριο ΚΕΦΑΛΛΩΝΙΤΗ ΓΙΑΝΝΗ κύριο ΤΡΙΓΚΑ ΓΕΩΡΓΙΟ του ΦΡΟΝΤΙΣΤΗΡΙΟΥ www.orion.edu.gr

Διαβάστε περισσότερα

Χημεία Θετικής Κατεύθυνσης

Χημεία Θετικής Κατεύθυνσης Θέμα Α Α1. γ Α. β Α. δ Α. β Α5. α) 1: βάσεις κατά Arrhenius : βάσεις κατά Bronsted-Lowry Χημεία Θετικής Κατεύθυνσης 9-5-01 1) Στην πρώτη θεωρία οι βάσεις είναι ενώσεις που όταν διαλυθούν στο νερό δίνουν

Διαβάστε περισσότερα

Avaliku võtmega krüptograafia

Avaliku võtmega krüptograafia Avaliku võtmega krüptograafia Ahto Buldas Motiivid Salajase võtme vahetus on tülikas! Kas ei oleks võimalik salajases võtmes kokku leppida üle avaliku kanali? 2 Probleem piiramatu vastasega! Kui vastane

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÙÑÇÔÉÊÏ ÊÅÍÔÑÏ ÁÈÇÍÁÓ - ÐÁÔÇÓÉÁ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÙÑÇÔÉÊÏ ÊÅÍÔÑÏ ÁÈÇÍÁÓ - ÐÁÔÇÓÉÁ ΘΕΜΑ 1ο ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 009 ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις 1.1 1. να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Από τα παρακάτω

Διαβάστε περισσότερα

Vektor. Joone võrrand. Analüütiline geomeetria.

Vektor. Joone võrrand. Analüütiline geomeetria. Vektor. Joone võrrand. Analüütiline geomeetria. Hele Kiisel, Hugo Treffneri Gümnaasium Analüütilise geomeetria teemad on gümnaasiumi matemaatikakursuses jaotatud kaheks osaks: analüütiline geomeetria tasandil,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΙΙ ΑΚΑΔ. ΕΤΟΣ: 2013-14 ΤΜΗΜAΤΑ TΡΙΤΗΣ ΚΑΙ ΤΕΤΑΡΤΗΣ

ΜΑΘΗΜΑ: ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΙΙ ΑΚΑΔ. ΕΤΟΣ: 2013-14 ΤΜΗΜAΤΑ TΡΙΤΗΣ ΚΑΙ ΤΕΤΑΡΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΤΟΜΕΑΣ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΠΕΙΡΑΜΑ 4 ΧΗΜΙΚΗΣ ΚΙΝΗΤΙΚΗΣ (ΧΚ4) ΜΑΘΗΜΑ: ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΙΙ ΑΚΑΔ. ΕΤΟΣ: 2013-14 ΤΜΗΜAΤΑ TΡΙΤΗΣ ΚΑΙ ΤΕΤΑΡΤΗΣ Τίτλος Πειράματος: ΚΙΝΗΤΙΚΗ

Διαβάστε περισσότερα

1 Entroopia ja informatsioon

1 Entroopia ja informatsioon Kirjadus: T.M. Cover, J.A. Thomas "Elemets of iformatio theory", Wiley, 99 ja 2006. Yeug, Raymod W. "A first course of iformatio theory", Kluwer, 2002. Mackay, D. "Iformatio theory, iferece ad learig algorithms",

Διαβάστε περισσότερα

1 MTMM Kõrgem matemaatika, eksamiteemad 2014

1 MTMM Kõrgem matemaatika, eksamiteemad 2014 1 MTMM.00.188 Kõrgem matemaatika, eksamiteemad 2014 Eksamitöö annab kokku 80 punkti ja ülesanded jagunevad järgmisse kuude gruppi: P1 ( 10p ) - ülesanded I kontrolltöö põhiteemade peale; P2 ( 10p ) - ülesanded

Διαβάστε περισσότερα

Ερωηήζεις Πολλαπλής Επιλογής

Ερωηήζεις Πολλαπλής Επιλογής Ερωηήζεις Θεωρίας 1. Ππθλφηεηα: α) δηαηχπσζε νξηζκνχ, β) ηχπνο, γ) είλαη ζεκειηψδεο ή παξάγσγν κέγεζνο;, δ) πνηα ε κνλάδα κέηξεζήο ηεο ζην Γηεζλέο Σχζηεκα (S.I.); ε) πνηα ε ρξεζηκφηεηά ηεο; 2. Γηαιπηφηεηα:

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 27 ΜΑΪΟΥ 2009 ΕΚΦΩΝΗΣΕΙΣ

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 27 ΜΑΪΟΥ 2009 ΕΚΦΩΝΗΣΕΙΣ ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7 ΜΑΪΟΥ 009 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο Για τις ερωτήσεις 1.1 1. να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD

Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD 1 Nõudmised krüptoräsidele (Hash-funktsionidele) Krüptoräsiks nimetatakse ühesuunaline funktsioon

Διαβάστε περισσότερα

PORTATIIVNE KÄSIVINTS

PORTATIIVNE KÄSIVINTS MEHHATROONIKAINSTITUUT MASINAELEMENTIDE JA PEENMEHAANIKA ÕPPETOOL PORTATIIVNE KÄSIVINTS MHX0020- PÕHIÕPPE PROJEKT Üliõpilane: Kood: Juhendaja:....... prof. Maido Ajaots Tallinn 2006 2 Sisukord Eessõna....lk...

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ

ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ & ΕΠΑΛ (ΟΜΑΔΑ Β ) ΗΜΕΡΟΜΗΝΙΑ ΕΞΕΤΑΣΗΣ: 30/05/2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: XHMEIA παλαιό σύστηµα ΘΕΜΑ Α A1. β A2. α A3. γ A4. δ A5. δ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

Διαβάστε περισσότερα

προσθέτουµε 500ml ΗΝΟ ( ) ) . Επίσης, θ = 25 C

προσθέτουµε 500ml ΗΝΟ ( ) ) . Επίσης, θ = 25 C Θέµ ο ( ) ( ) προσθέτουµε 500ml ΗΝΟ ( ) ) Α ιθέτουµε διάλυµ όγκου 500ml που περιέχει τις σθενείς βάσεις Β κι Γ µε συγκεντρώσεις 0,4Μ γι την κάθε µί Στο διάλυµ διλύµτος συγκέντρωσης 0,8Μ κι προκύπτει διάλυµ

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 9 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 9 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 21/04/2017 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΕΑ (9) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α5 να γράψετε στο τετράδιό σας τον αριθμό

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής Κατεύθυνσης Χημεία Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΚΑΛΟΓΝΩΜΗΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής Κατεύθυνσης Χημεία Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΚΑΛΟΓΝΩΜΗΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής Κατεύθυνσης Χημεία Γ Λυκείου ΚΑΛΟΓΝΩΜΗΣ ΗΛΙΑΣΚΟΣ e-mail: info@iliaskosgr wwwiliaskosgr 0 2 7 1s 2s ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 2p 3s 14 2 2 6

Διαβάστε περισσότερα

ΧΗΜΕΙΑ-ΒΙΟΧΗΜΕΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΧΗΜΕΙΑ-ΒΙΟΧΗΜΕΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑ «ΘΕΣΜΟΣ» ΧΗΜΕΙΑ-ΒΙΟΧΗΜΕΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α1 και Α2 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1:γ Α2:β Α3:δ Α4:β Α5:α)διαφορές θεωρίας του Arrhenius- Brönsted

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 26/01/2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 26/01/2014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 26/01/2014 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α.1 έως Α.3 να γράψετε το γράμμα που αντιστοιχεί στη σωστή απάντηση δίπλα στον αριθμό

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

5. OPTIMEERIMISÜLESANDED MAJANDUSES

5. OPTIMEERIMISÜLESANDED MAJANDUSES 5. OPTIMEERIMISÜLESNDED MJNDUSES nts asma Sissejuhatus Majanduses, aga ka mitmete igapäevaste probleemide lahendamisel on piiratud võimalusi arvestades vaja leida võimalikult kasulik toimimisviis. Ettevõtete,

Διαβάστε περισσότερα

α i = m i /m o, m o κανονική Μοριακότητα (standard molality) 1 mol Kg -1.

α i = m i /m o, m o κανονική Μοριακότητα (standard molality) 1 mol Kg -1. Υ ΑΤΙΝΑ ΙΑΛΥΜΑΤΑ Μορικότητ κτ όγκο (molarity) c C/M r mol dm -,( C [g dm - (liter -1 )] ), M r Μορικό βάρος Μορικότητ κτά βάρος (molality) m i γρµµοµόριο g -1 νερό. Γι θερµοδυνµικούς λόγους µεττρέπετι

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÖÁÓÌÁ ÐÅÔÑÏÕÐÏËÇ ΧΗΜΕΙΑ ΘΕΜΑ Α ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ. Α1. γ. Α2. β. Α3. δ. Α4. β

ÖÑÏÍÔÉÓÔÇÑÉÏ ÖÁÓÌÁ ÐÅÔÑÏÕÐÏËÇ ΧΗΜΕΙΑ ΘΕΜΑ Α ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ. Α1. γ. Α2. β. Α3. δ. Α4. β ΘΕΜΑ Α Α. γ Α. β Α. δ Α4. β Α5. α) Θεώρηµα Arrhenius: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 9 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ ) Βάσεις είναι οι ενώσεις που όταν διαλυθούν στο νερό δίνουν ΟΗ ) Οι βάσεις είναι ουδέτερα

Διαβάστε περισσότερα

ΔΙΑΛΥΜΑΤΑ ΙΣΧΥΡΩΝ ΟΞΕΩΝ/ΒΑΣΕΩΝ

ΔΙΑΛΥΜΑΤΑ ΙΣΧΥΡΩΝ ΟΞΕΩΝ/ΒΑΣΕΩΝ Ασκήσεις σε διαλύματα ισχυρών ηλεκτρολυτών I.ΥΔΑΤΙΚΑ ΔΙΑΛΥΜΑΤΑ ΙΣΧΥΡΩΝ ΟΞΕΩΝ/ΒΑΣΕΩΝ 1. Υδατικό διάλυμα NaOH έχει ph=12. Να υπολογισθεί η %w/v περιεκτικότητα του διαλύματος. [ Απ. 0,04%] 2. Ένα διάλυμα

Διαβάστε περισσότερα

TÔ appleâï ÙÔÏfiÁÈÔ ÙË ÂÊÔÚ

TÔ appleâï ÙÔÏfiÁÈÔ ÙË ÂÊÔÚ B EK O H «ÈÛÙ ÂÈ» Ó Î Ù ÂÈ Ô Ú ÚÁ ÚÔ 8 AY OY TOY 2010 ñ ºY O 1.696 ñ appleâú Ô Ô B www.enet.gr 2 ú (EÎ ÔÛË ÌÂ appleúôûêôú 4 ú ) E. 46 13. ME ANEIKA KI A YPI TA E INE TO EP O KATA O O ETAIPEIøN KAI PO ø

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΤΑΒΑΣΗ

ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΤΑΒΑΣΗ ΘΕΜΑ Α Α. γ Α2. β Α. δ Α4. β Α5. α) Θεώρηµα Arrheius: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 20 ΑΠΑΝΤΗΣΕΙΣ ) Βάσεις είναι οι ενώσεις που όταν διαλυθούν στο νερό δίνουν ΟΗ 2) Οι βάσεις είναι ουδέτερα

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: τηλ 0-808560 ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ - ΣΧΕΔΙΟ: τηλ 0-808560 ΕΠΑ.Λ. - Τ.Ε.Ε.: τηλ 0-694 Κ.Ε.Κ. ERGOWAY: τηλ 0-64700 ERGOWAY ΠΛΗΡΟΦΟΡΙΚΗ: τηλ 0-64700 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ

Διαβάστε περισσότερα

TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots

TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots TARTU ÜLIKOOL Teaduskool STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Α1. Το στοιχείο

Διαβάστε περισσότερα

ΤΕΛΟΣ 2ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 2ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Για τις ερωτήσεις

Διαβάστε περισσότερα