פיזיקה שאלון חקר הוראות לנבחן

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "פיזיקה שאלון חקר הוראות לנבחן"

Transcript

1 מדינת ישראל סוג הבחינה: בגרות לבתי ספר על יסודיים משרד החינוך, התרבות והספורט מועד הבחינה: קיץ תשס"ו, 2006 סמל השאלון: , נספח: נתונים ונוסחאות בפיזיקה ל 5 יח"ל מקום למדבקת נבחן פיזיקה שאלון חקר לנבחנים ברמת 5 יחידות לימוד הוראות לנבחן משך הבחינה: שעתיים. א. מבנה השאלון ומפתח הערכה: בשאלון זה עשר שאלות. עליך לענות על כולן. ב. סה"כ 100 נקודות. חומר עזר מותר לשימוש: מחשבון, סרגל. ג. הוראות מיוחדות: ד. מותר להשתמש בעיפרון לסרטוטים בלבד. 1. עמודים משמשים לטיוטה. 2. שאלון זה משמש כמחברת בחינה, ויש להצמיד אותו לעטיפת המחברת. 3. הדבק מדבקת נבחן במקום המיועד לכך בדף זה ובעטיפת המחברת. 4. בשאלון זה 11 עמודים ונספח. ההנחיות בשאלון זה מנוסחות בלשון זכר, אך מכוונות לנבחנות ולנבחנים כאחד. בהצלחה!

2 - 2 - ניסוי: חקירת שבירה של אור בניסוי המתואר בהמשך יהיה עליך למצוא את מקדם השבירה של חומר פלסטי שקוף. רשימת הציוד שבו השתמשו לביצוע הניסוי סריג עקיפה 6 לוחיות פלסטיק זהות צרות ושקופות. 2 לוחיות פלסטיק רחבות ושקופות. על אחת מהן מודבק נייר מילימטרי. שני פנסי לייזר כדי לנתח את תוצאות הניסוי יהיה עליך לדעת את עוביה של לוחית אחת. 1. (8 נק') באיור 1 מסורטטים ארבעה חתכים של לוחיות צמודות (בקנה מידה 1:1). היעזר באיור וקבע בדרך המדויקת ביותר את העובי,, d של לוחית צרה אחת. * איור 1 d = mm הסבר כיצד קבעת זאת. * אם אין ברשותך סרגל, תוכל להיעזר בנייר המילימטרי שבעמוד 9. המשך בעמוד 3

3 - 3 - חומר רקע עקיפה בסריג עקיפה אם נכוון קרן אור חד צבעי מפנס לייזר אל סריג עקיפה, כך שקרן האור תפגע בסריג העקיפה במאונך, האור שיעבור דרך סריג העקיפה יתפצל לשלוש קרניים, כמתואר באיור 2: קרן האור המרכזית תצא במאונך לסריג העקיפה, ושתי הקרניים האחרות ייצרו זווית α עם הקרן המרכזית, המאונכת לסריג. איור 2 שבירת אור כאשר קרן אור עוברת מתווך לתווך, למשל מאוויר ללוחית פלסטיק שקופה, מתרחשת תופעה של שבירה, והכיוון של הקרן בכל אחד מן התווכים הוא שונה. באיור 3 א' מתוארת קרן אור הפוגעת בלוחית שקופה; ממנה היא יוצאת אל 2. (8 נק') חלל האוויר ואז פוגעת בלוחית שקופה נוספת. איור 3 א' סרטט באיור 3 א' באופן סכמתי את מהלך הקרן עד יציאתה מהלוחית השקופה העליונה. המשך בעמוד 4

4 - 4 - באיור 3 ב' מתוארת קרן אור הפוגעת בלוחית שקופה; לאחר מכן היא עוברת 3. (7 נק') דרך שלוש לוחיות שקופות נוספות ויוצאת לחלל האוויר. תיאור הניסוי איור 3 ב' סרטט באיור 3 ב' באופן סכמתי את מהלך הקרן עד יציאתה מהלוחית השקופה העליונה. סמן בסרטוטך את זווית השבירה בחומר השקוף ב. β מערך הניסוי מתואר באיור 4. בין שתי הלוחיות הרחבות הניחו כמה לוחיות צרות מהודקות זו לזו. שני פנסי לייזר כ וונו כך שקרן האור שיצאה מכל פנס פגעה במאונך לסריג העקיפה. הקרן מן הפנס העליון פגעה בלוחית הרחבה, עברה באוויר שבין הלוחיות הרחבות, וכתוצאה מכך נראו על הנייר המילימטרי, המודבק על הלוחית הרחבה הנגדית, שלושה כתמי אור. קרן האור של הפנס התחתון פגעה בלוחית הרחבה, עברה דרך הלוחיות הצרות שבין הלוחיות הרחבות, וכתוצאה מכך נראו על הנייר המילימטרי, המודבק על הלוחית הרחבה הנגדית, שלושה כתמי אור נוספים. נערכו מדידות נוספות במערכת המתוארת באיור, 4 כאשר בכל מדידה הניחו מספר שונה של לוחיות צרות בין שתי הלוחיות הרחבות. בטבלה 1 מופיע צילום הנייר המילימטרי שעליו נראו הכתמים שהתקבלו. (כתם האור המרכזי לא מופיע בטבלה.) נסמן ב n את מספר הלוחיות הצרות, ב x את העובי הכולל של הלוחיות הצרות (המרחק בין הלוחיות הרחבות), ב y 1 את המרחק בין הכתמים שנוצרו בעקבות מעבר קרן האור באוויר, וב y 2 את המרחק בין הכתמים שנוצרו אחרי מעבר קרן האור דרך הלוחיות הצרות. המשך בעמוד 5

5 - 5 - איור 4 טבלה 1 בחר בחמש מדידות (שורות) מתוך טבלה. 1 מדוד בכל שורה מן השורות 4. (20 נק') שבחרת את y 1 ו. y 2 רשום בטבלה 2 את מספר הלוחיות הצרות,, n את המרחק,, x בין הלוחיות הרחבות, את y 1 ואת. y 2 טבלה 2 מספר הלוחיות הצרות, n x (mm) y 1 (mm) y 2 (mm) המשך בעמוד 6

6 - 6 - סרטט על גבי הנייר המילימטרי שבעמוד זה שתי דיאגרמות פיזור (נקודות 5. (15 נק') במערכת צירים) המתארות את המרחקים y 1 ו y 2 כפונקציה של המרחק x בין שתי הלוחיות הרחבות. * * בעמוד 9 יש נייר מילימטרי נוסף, שתוכל להשתמש בו במקרה הצורך. אם אתה משתמש בגיליון אלקטרוני על פי הוראת הבוחן, הדבק את מדבקת הנבחן שלך גם על תדפיס המחשב, וצרף אותו לשאלון. המשך בעמוד 7

7 - 7 - הסבר מדוע צפוי ששני הגרפים שייבנו על בסיס דיאגרמת הפיזור ייפגשו 6. (8 נק') בנקודה אחת על גבי הציר. y ציין באיזו נקודה ייפגשו שני הגרפים. (10 נק') 7. סרטט בדיאגרמות את הישרים המתאימים להן ביותר. (10 נק') 8. חשב את השיפוע של כל אחד משני הישרים שסרטטת. ניתן להראות שכל אחד מן השיפועים שחישבת שווה לפעמיים טנגנס הזווית 9. (7 נק') שבין הקרן המתאימה ובין האנך ללוחיות. כאשר קרן פוגעת בזווית α במשטח של חומר שקוף הנמצא באוויר (α היא הזווית שבין הקרן לבין האנך למשטח באוויר), היא תישבר בתוך החומר השקוף בזווית β ) β היא הזווית שבין הקרן הנשברת ובין האנך למשטח בחומר).. n = sin α sinβ מקדם השבירה,, n של החומר השקוף נתון בביטוי חשב את מקדם השבירה של החומר שממנו עשויות הלוחיות. פרט את מהלך החישוב. המשך בעמוד 8

8 - 8 - האם מידת אי הוודאות היחסית במדידת y 1 ו y 2 עבור שתי לוחיות, היא 10. (7 נק') גדולה, קטנה או שווה למידת אי הוודאות היחסית במדידת y 1 ו y 2 עבור שש לוחיות? נמק את תשובתך. המשך בעמוד 9

9 - 9 - המשך בעמוד 10

10 טיוטה המשך בעמוד 11

11 טיוטה בהצלחה! זכות היוצרים שמורה למדינת ישראל. אין להעתיק או לפרסם אלא ברשות משרד החינוך, התרבות והספורט.

מערכות חשמל ג' שתי יחידות לימוד )השלמה לחמש יחידות לימוד( )כיתה י"א(

מערכות חשמל ג' שתי יחידות לימוד )השלמה לחמש יחידות לימוד( )כיתה יא( מדינת ישראל סוג הבחינה: בגרות לבתי ספר על יסודיים משרד החינוך מועד הבחינה: קיץ תשע"ה, 2015 סמל השאלון: 845201 א. משך הבחינה: שלוש שעות. נספח: נוסחאון במערכות חשמל מערכות חשמל ג' שתי יחידות לימוד )השלמה

Διαβάστε περισσότερα

מחשוב ובקרה ט' למתמחים במחשוב ובקרה במגמת הנדסת חשמל אלקטרוניקה (כיתה י"ג) הוראות לנבחן

מחשוב ובקרה ט' למתמחים במחשוב ובקרה במגמת הנדסת חשמל אלקטרוניקה (כיתה יג) הוראות לנבחן גמר לבתי ספר לטכנאים ולהנדסאים סוג הבחינה: מדינת ישראל אביב תשס"ו, 6 מועד הבחינה: משרד החינוך, התרבות והספורט 754 סמל השאלון: נספחים: א. נספח לשאלה ההנחיות בשאלון זה מנוסחות בלשון זכר, אך מכוונות לנבחנות

Διαβάστε περισσότερα

מערכות אלקטרוניות א' יחידת לימוד אחת )כיתה י"ב(

מערכות אלקטרוניות א' יחידת לימוד אחת )כיתה יב( מדינת ישראל סוג הבחינה: בגרות לבתי ספר על יסודיים משרד החינוך מועד הבחינה: קיץ תשע"ב, 01 סמל השאלון: 841101 א. משך הבחינה: שעתיים. מערכות אלקטרוניות א' יחידת לימוד אחת )כיתה י"ב( הוראות לנבחן ההנחיות בשאלון

Διαβάστε περισσότερα

מתמטיקה )שאלון שני לנבחנים בתכנית ניסוי, 5 יחידות לימוד( 1 מספרים מרוכבים 3#2 3 3

מתמטיקה )שאלון שני לנבחנים בתכנית ניסוי, 5 יחידות לימוד( 1 מספרים מרוכבים 3#2 3 3 סוג הבחינה: בגרות לבתי ספר על יסודיים מדינת ישראל מועד הבחינה: חורף תשע"ב, 202 משרד החינוך מספר השאלון: 035807 דפי נוסחאות ל 5 יחידות לימוד נספח: א. משך הבחינה: שעתיים. מתמטיקה 5 יחידות לימוד שאלון שני

Διαβάστε περισσότερα

מערכות אלקטרוניות א' יחידת לימוד אחת )כיתה י"ב(

מערכות אלקטרוניות א' יחידת לימוד אחת )כיתה יב( מדינת ישראל סוג הבחינה: בגרות לבתי ספר על יסודיים משרד החינוך מועד הבחינה: קיץ תש"ע, 010 סמל השאלון: 841101 א. משך הבחינה: שעתיים. מערכות אלקטרוניות א' יחידת לימוד אחת )כיתה י"ב( הוראות לנבחן נספח: נוסחאון

Διαβάστε περισσότερα

ב ה צ ל ח ה! /המשך מעבר לדף/

ב ה צ ל ח ה! /המשך מעבר לדף/ בגרות לבתי ספר על יסודיים סוג הבחינה: מדינת ישראל קיץ תשע"א, מועד ב מועד הבחינה: משרד החינוך 035804 מספר השאלון: דפי נוסחאות ל 4 יחידות לימוד נספח: מתמטיקה 4 יחידות לימוד שאלון ראשון תכנית ניסוי )שאלון

Διαβάστε περισσότερα

(להנדסאי מכונות) הוראות לנבחן פרק שני: בקרת תהליכים ומכשור לבקרה ולאלקטרוניקה תעשייתית 80 נקודות

(להנדסאי מכונות) הוראות לנבחן פרק שני: בקרת תהליכים ומכשור לבקרה ולאלקטרוניקה תעשייתית 80 נקודות גמר לבתי ספר לטכנאים ולהנדסאים סוג הבחינה: מדינת ישראל אביב תשס"ח, 2008 מועד הבחינה: משרד החינוך 710923 סמל השאלון: מערכות מכטרוניות ה' (להנדסאי מכונות) הוראות לנבחן א. משך הבחינה: ארבע שעות. ב. מבנה השאלון

Διαβάστε περισσότερα

מתמטיקה שאלון ו' נקודות. חשבון דיפרנציאלי ואינטגרלי, טריגונומטריה שימוש במחשבון גרפי או באפשרויות התכנות עלול לגרום לפסילת הבחינה.

מתמטיקה שאלון ו' נקודות. חשבון דיפרנציאלי ואינטגרלי, טריגונומטריה שימוש במחשבון גרפי או באפשרויות התכנות עלול לגרום לפסילת הבחינה. בגרות לבתי ספר על-יסודיים מועד הבחינה: תשס"ח, מספר השאלון: 05006 נספח:דפי נוסחאות ל- 4 ול- 5 יחידות לימוד מתמטיקה שאלון ו' הוראות לנבחן משך הבחינה: שעה ושלושה רבעים. מבנה השאלון ומפתח ההערכה: בשאלון זה

Διαβάστε περισσότερα

1 f. v 2. λ 1 = 1. θ 2 תמונה 2. במשולש sin

1 f. v 2. λ 1 = 1. θ 2 תמונה 2. במשולש sin "שולמן" ציוד לימודי רח' מקווה-ישראל 0 ת"ד 039 ת"א 6009 חוק השבירה של גלי אור (קרן אור) שם קובץ הניסוי: Seell`s Law.ds חוברת מס' כרך: גלים ואופטיקה מאת: משה גלבמן "שולמן" ציוד לימודי רח' מקווה-ישראל 0 ת"ד

Διαβάστε περισσότερα

מערכות חשמל ג' שתי יחידות לימוד )השלמה לחמש יחידות לימוד( )כיתה י"א( הוראות לנבחן

מערכות חשמל ג' שתי יחידות לימוד )השלמה לחמש יחידות לימוד( )כיתה יא( הוראות לנבחן מדינת ישראל סוג הבחינה: בגרות לבתי ספר על יסודיים משרד החינוך מועד הבחינה: קיץ תשס"ח, 2008 סמל השאלון: 845201 א. משך הבחינה: שלוש שעות. נספח: נוסחאון במערכות חשמל מערכות חשמל ג' שתי יחידות לימוד )השלמה

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר

Διαβάστε περισσότερα

פיזיקה 3 יחידות לימוד הוראות לנבחן

פיזיקה 3 יחידות לימוד הוראות לנבחן בגרות לבתי ספר על יסודיים א. סוג הבחינה: מדינת ישראל בגרות לנבחנים אקסטרניים ב. משרד החינוך קיץ תשע"ג, 2013 מועד הבחינה: 84 036001, מספר השאלון: נתונים ונוסחאות בפיזיקה ל 3 יח"ל נספח: א. משך הבחינה: שלוש

Διαβάστε περισσότερα

יתרואת עקר יאטל - וו וטופ את

יתרואת עקר יאטל - וו וטופ את מיקוד במעבדה בפיסיקה 9 רקע תאורתי קיטוב האור E אור מקוטב אור טבעי גל אלקרומגנטי הוא גל המורכב משדה חשמלי B ושדה מגנטי המאונכים זה לזה לכן.1 וקטור השדה החשמלי ווקטור ההתקדמות יוצרים מישור קבוע שנקרא מישור

Διαβάστε περισσότερα

18 במאי 2008 פיזיקה / י"ב נקודות; 3 33 = 100 נקודות. m 2 בהצלחה! שאלה 1

18 במאי 2008 פיזיקה / יב נקודות; 3 33 = 100 נקודות. m 2 בהצלחה! שאלה 1 שם התלמיד/ה : בית הספר: המורה בחמד"ע : 8 במאי 008 פיזיקה / י"ב מבחן בפיזיקה במתכונת מבחן בגרות חשמל הוראות לנבחן ההנחיות בשאלון זה מנוסחות בלשון זכר ומכוונות לנבחנות ולנבחנים כאחד א ב ג ד משך הבחינה: 05

Διαβάστε περισσότερα

3-9 - a < x < a, a < x < a

3-9 - a < x < a, a < x < a 1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.

Διαβάστε περισσότερα

פיזיקה מבחן מתכונת בחשמל ומגנטיות לתלמידי 5 יחידות לימוד הוראות לנבחן

פיזיקה מבחן מתכונת בחשמל ומגנטיות לתלמידי 5 יחידות לימוד הוראות לנבחן מאי 2011 קרית חינוך אורט קרית ביאליק פיזיקה מבחן מתכונת בחשמל ומגנטיות לתלמידי 5 יחידות לימוד הוראות לנבחן א. משך הבחינה: שעה ושלושה רבעים (105 דקות) ב. מבנה השאלון ומפתח ההערכה: בשאלון זה חמש שאלות, ומהן

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

שאלה 1 נתון: (AB = AC) ABC שאלה 2 ( ) נתון. באמצעות r ו-. α שאלה 3 הוכח:. AE + BE = CE שאלה 4 האלכסון (AB CD) ABCD תשובה: 14 ס"מ = CD.

שאלה 1 נתון: (AB = AC) ABC שאלה 2 ( ) נתון. באמצעות r ו-. α שאלה 3 הוכח:. AE + BE = CE שאלה 4 האלכסון (AB CD) ABCD תשובה: 14 סמ = CD. טריגונומטריה במישור 5 יח"ל טריגונומטריה במישור 5 יח"ל 010 שאלונים 006 ו- 806 10 השאלות 1- מתאימות למיקוד קיץ = β ( = ) שאלה 1 במשולש שווה-שוקיים הוכח את הזהות נתון: sin β = sinβ cosβ r r שאלה נתון מעגל

Διαβάστε περισσότερα

-אופטיקה גיאומטרית- אופטיקה גיאומטרית קרן אור, שבירה, החזרה, מקדם שבירה, מנסרה, קיטוב, חוק ברוסטר, מרכזת, עדשה מפזרת, מוקד העדשה, דיופטר.

-אופטיקה גיאומטרית- אופטיקה גיאומטרית קרן אור, שבירה, החזרה, מקדם שבירה, מנסרה, קיטוב, חוק ברוסטר, מרכזת, עדשה מפזרת, מוקד העדשה, דיופטר. אופטיקה גיאומטרית מילות מפתח: קרן אור, שבירה, החזרה, מקדם שבירה, מנסרה, קיטוב, חוק ברוסטר, מרכזת, עדשה מפזרת, מוקד העדשה, דיופטר. עדשה ציוד הדרוש: עדשות שונות )מרכזות ומפזרות(, מנורת ליבון, שקופית, מסך,

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

משרד החינוך המזכירות הפדגוגית אגף מדעים הפיקוח על הוראת המתמטיקה

משרד החינוך המזכירות הפדגוגית אגף מדעים הפיקוח על הוראת המתמטיקה משולשים חופפים, תיכון במשולש )41 שעות( ומשולש שווה שוקיים שתי צורות נקראות חופפות אם אפשר להניח אחת מהן על האחרת כך שתכסה אותה בדיוק )לשם כך ניתן להזיז, לסובב ולהפוך את הצורות(. בפרק זה נתמקד במשולשים

Διαβάστε περισσότερα

בקרה במכונות ד' 2 יחידות לימוד הוראות לנבחן

בקרה במכונות ד' 2 יחידות לימוד הוראות לנבחן בגרות לבתי ספר על יסודיים סוג הבחינה: מדינת ישראל קיץ תשס"ה, 2005 מועד הבחינה: משרד החינוך, התרבות והספורט 819203 סמל השאלון: א. משך הבחינה: שלוש שעות. נספחים: א' ד' בקרה במכונות ד' 2 יחידות לימוד הוראות

Διαβάστε περισσότερα

מישורית. 35 (2) 55 (3) 70 (4)

מישורית. 35 (2) 55 (3) 70 (4) שאלות, תרגילים ובעיות I. תרגילים מותאמים לסעיפי הפרק תרגילים 32-1 ממויינים על-פי סעיפי הפרק והם נועדו בעיקר לתרגול החומר המופיע באותם סעיפים. תרגילי סיכום אינטגרטיביים מופיעים אחרי תרגילים אלה. 2. חוקי

Διαβάστε περισσότερα

עבודת קיץ למואץ העולים לכיתה י' סדרות:

עבודת קיץ למואץ העולים לכיתה י' סדרות: ב( ג( א ) עבודת קיץ למואץ העולים לכיתה י' סדרות: תרגילי חימום.... בסדרה חשבונית האיבר השמיני גדול פי מהאיבר הרביעי. סכום אחד-אשר האיברים הראשונים בסדרה הוא. 0 ( מצאו את האיבר הראשון של הסדרה. ( מצאו את

Διαβάστε περισσότερα

תרשים 1 מבוא. I r B =

תרשים 1 מבוא. I r B = שדה מגנטי של תיל נושא זרם מבוא תרשים 1 השדה המגנטי בקרבת תיל ארוך מאד נושא זרם נתון על ידי: μ0 B = 2 π I r כאשר μ o היא פרמיאביליות הריק, I הזרם הזורם בתיל ו- r המרחק מהתיל. 111 בניסוי זה נשתמש בחיישן

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

סדרות - תרגילים הכנה לבגרות 5 יח"ל

סדרות - תרגילים הכנה לבגרות 5 יחל סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר

Διαβάστε περισσότερα

מבחן משווה בפיסיקה כיתה ט'

מבחן משווה בפיסיקה כיתה ט' מבחן משווה בפיסיקה כיתה ט' משך המבחן 0 דקות מבנה השאלון : שאלון זה כולל 4 שאלות. עליך לענות על כולן.כתוב את הפתרונות המפורטים בדפים נפרדים וצרף אותם בהגשה לטופס המבחן. חומרי עזר:.מחשבון. נספח הנוסחאות

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

בחינה לדוגמא בגלים אור ואופטיקה ( )

בחינה לדוגמא בגלים אור ואופטיקה ( ) בחינה לדוגמא בגלים אור ואופטיקה (0321.2102) מרצה: פרופ' רון ליפשיץ מתרגל: רן בר מבחן לדוגמא הוראות: לבחינה שני חלקים. בחלק א' יש לענות על שלוש מתוך ארבע השאלות. בחלק ב' יש לענות על שתיים מתוך שלוש השאלות.

Διαβάστε περισσότερα

לכיתה י"ד )8 עמודים( חוק סנל: [ ] 1 θ זווית הפגיעה. [ ] 2 θ זווית השבירה. m sec m. c מהירות האור בריק )באוויר( sec. [ ] a 2 θ זווית הקליטה

לכיתה יד )8 עמודים( חוק סנל: [ ] 1 θ זווית הפגיעה. [ ] 2 θ זווית השבירה. m sec m. c מהירות האור בריק )באוויר( sec. [ ] a 2 θ זווית הקליטה גמר לבתי ספר לטכנאים ולהנדסאים סוג הבחינה: מדינת ישראל אביב תשס"ט, 2009 מועד הבחינה: משרד החינוך 711913 נספח לשאלון: אין להעביר את הנוסחאון לנבחן אחר מקום למדבקת נבחן נוסחאון במערכות תקשורת ב' לכיתה י"ד

Διαβάστε περισσότερα

הכרת שיטות למדידת אורכי גל ומקדמי שבירה באמצעות האינטרפרומטר של מיכלסון ושל פברי - פרו. הכרת ספקטרומטר סריג ושימושו לאפיון מקורות אור.

הכרת שיטות למדידת אורכי גל ומקדמי שבירה באמצעות האינטרפרומטר של מיכלסון ושל פברי - פרו. הכרת ספקטרומטר סריג ושימושו לאפיון מקורות אור. 1 שם הניסוי: אינטרפרומטריה וספקטרומטריה 1. מטרת הניסוי: הכרת שיטות למדידת אורכי גל ומקדמי שבירה באמצעות האינטרפרומטר של מיכלסון ושל פברי - פרו. הכרת ספקטרומטר סריג ושימושו לאפיון מקורות אור. Optics, Hecht

Διαβάστε περισσότερα

ג. נוסחאון בתורת החשמל לכיתה י"ג ד. נוסחאון באלקטרוניקה א' לכיתה י"ג חשמל ואלקטרוניקה ט' מגמת הנדסת חשמל, בקרה ואנרגיה )כיתה י"ג( הוראות לנבחן

ג. נוסחאון בתורת החשמל לכיתה יג ד. נוסחאון באלקטרוניקה א' לכיתה יג חשמל ואלקטרוניקה ט' מגמת הנדסת חשמל, בקרה ואנרגיה )כיתה יג( הוראות לנבחן גמר לבתי ספר לטכנאים ולהנדסאים סוג הבחינה: מדינת ישראל אביב תשס"ט, 009 מועד הבחינה: משרד החינוך 733001 סמל השאלון: א. משך הבחינה: ארבע שעות. נספחים: א. נספח לשאלה 9 ב. נספח לשאלה 10 ג. נוסחאון בתורת החשמל

Διαβάστε περισσότερα

בגרות לבתי ספר על יסודיים א. סוג הבחינה: מדינת ישראל בגרות לנבחנים אקסטרניים ב. משרד החינוך קיץ תשע"ה, 2015 מועד הבחינה: 656 036201, מספר השאלון: נוסחאות ונתונים בפיזיקה ל 5 יח"ל נספח: א. משך הבחינה: שעתיים

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

שיעור 1. זוויות צמודות

שיעור 1. זוויות צמודות יחידה 11: זוגות של זוויות שיעור 1. זוויות צמודות נתבונן בתמרורים ובזוויות המופיעות בהם. V IV III II I הדסה מיינה את התמרורים כך: בקבוצה אחת שלושת התמרורים שמימין, ובקבוצה השנייה שני התמרורים שמשמאל. ש

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

ציור 147 המשווה! בשנת 1849.

ציור 147 המשווה! בשנת 1849. פרק 8. גלי אור 59 מהירות האור באופטיקה גיאומטרית חוקרים את הכיוונים בלבד של קרני האור. השאלה: כיצד מתרחש תהליך התפשטות האור בזמן? היא מחוץ למסגרתה של האופטיקה הגיאומטרית. תכונות האור והשפעתו על החומר נחקרים

Διαβάστε περισσότερα

המטרה השיטה תיאוריה כדורית.

המטרה השיטה תיאוריה כדורית. החזרת האור מראה מישורית ומראות גליליות שם קובץ הניסוי: Reflection.ds חוברת מס' 13 כרך: גלים ואופטיקה מאת: משה גלבמן החזרת האור מראה מישורית ומראות גליליות המטרה לבחון את כלל ההחזרה של האור ממראה מישורית,

Διαβάστε περισσότερα

שיעור.1 חופפים במשולש שווה שוקיים יחידה - 31 חופפים משולשים 311

שיעור.1 חופפים במשולש שווה שוקיים יחידה - 31 חופפים משולשים 311 יחידה :31חופפים משולשים נחפוף משולשים ונוכיח תכונות של אלכסוני משולשים שווה שוקיים ואלכסוני המלבן. שיעור.1חופפים במשולש שווה שוקיים נחקור ונוכיח תכונות של משולש שווה שוקיים נתון משולש שווה שוקיים שבו.

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 2

אלגברה ליניארית 1 א' פתרון 2 אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק

Διαβάστε περισσότερα

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b

Διαβάστε περισσότερα

אוסף שאלות מס. 3 פתרונות

אוסף שאלות מס. 3 פתרונות אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,

Διαβάστε περισσότερα

השפעת הטמפרטורה על ההתנגדות התנגדות המוליך

השפעת הטמפרטורה על ההתנגדות התנגדות המוליך בגרות לבתי ספר על יסודיים סוג הבחינה: מדינת ישראל קיץ תשע"ג, 013 מועד הבחינה: משרד החינוך נספח לשאלון: 84501 אין להעביר את הנוסחאון לנבחן אחר א. תורת החשמל נוסחאון במערכות חשמל )10 עמודים( )הגדלים בנוסחאון

Διαβάστε περισσότερα

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

קשר-חם : לקידום שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת

Διαβάστε περισσότερα

( a) ( a) ( ) ( ) ( ) ( ) ( ) ( ) ( μ μ E E = + θ kr. cos. θ = θ אופטיקה = = c t c V = = = c 3. k i. k r = 90 משוואות מקסוול. n sin.

( a) ( a) ( ) ( ) ( ) ( ) ( ) ( ) ( μ μ E E = + θ kr. cos. θ = θ אופטיקה = = c t c V = = = c 3. k i. k r = 90 משוואות מקסוול. n sin. o ( ω דף נוסחאות אופטיקה 4 מורן אסיף אביב תשס"ח משוואות מקסוול D 4π H J B D ε D 4πρ B B μh משוואות הגלים με με B B π λ, גל זה נקרא מישורי מפני ש- הוא פתרונן יהיה: ולכן עבור ליניארית שניתן לכתיבה היטל של

Διαβάστε περισσότερα

b2n-1 ב. נשתמש בנוסחת סכום סדרה הנדסית אינסופית יורדת כדי לרשום את הנתון: 1-q = 0.8 b 1-q 1=0.8(1+q) q= 1 4 פתרון לשאלה 2

b2n-1 ב. נשתמש בנוסחת סכום סדרה הנדסית אינסופית יורדת כדי לרשום את הנתון: 1-q = 0.8 b 1-q 1=0.8(1+q) q= 1 4 פתרון לשאלה 2 פתרון מבחן מס' פתרון לשאלה א. להוכיח כי סדרה c היא סדרה הנדסית משמע להוכיח כי היחס בין איברים סמוכים בסדרה הוא מספר n c n +n c מכיוון ש- q הוא מספר קבוע, סדרה = b n+ = bq n =q cn bn- bq n- :b n קבוע. אם

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תש"ע מועד ב', מיום 14/7/2010 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשע מועד ב', מיום 14/7/2010 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תש"ע מועד ב', מיום 14/7/2010 שאלון: 316, 035806 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 E נתון: 1 רוכב אופניים רכב מעיר A לעיר B

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשעא, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי

Διαβάστε περισσότερα

דו"ח מסכם בניסוי: אופטיקה חלק: א' הדו"ח מוגש על ידי: דוננהירש איתי קישון איתי ת.ז. שם משפחה שם פרטי ת.ז. שם משפחה שם פרטי 1 X 02

דוח מסכם בניסוי: אופטיקה חלק: א' הדוח מוגש על ידי: דוננהירש איתי קישון איתי ת.ז. שם משפחה שם פרטי ת.ז. שם משפחה שם פרטי 1 X 02 דו"ח מסכם בניסוי: אופטיקה חלק: א' סמסטר א' תש"ס שם הבודק : תאריך הבדיקה: I שם מדריך הניסוי (שם מלא): חזי ציון הדו"ח: II תאריך ביצוע הניסוי: 01/1/000 תאריך הגשת הדו"ח: 08/01/001 הדו"ח מוגש על ידי: II I

Διαβάστε περισσότερα

תוירטמורפרטניא תוטיש : סמ

תוירטמורפרטניא תוטיש : סמ ניסוי מס' 8: שיטות אינטרפרומטריות נכתב על ידי אלכס גוסרוב. הוסף במהדורה השביעית מטרות הניסוי הכרתתופעת ההתאבכות. מדידות תמונות התאבכות של גלי אור בשכבות דקות. יצירת מערכים אינטרפרומטרים למדידת זוויות טריז

Διαβάστε περισσότερα

קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים.

קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל לוח יש את אותה כמות מטען, אך הסימנים הם הפוכים. קבל קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים. על לוח אחד מטען Q ועל לוח שני מטען Q. הפוטנציאל על כל לוח הוא

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

אלגברה לינארית גיא סלומון. α β χ δ ε φ ϕ γ η ι κ λ µ ν ο π. σ ς τ υ ω ξ ψ ζ. לפתרון מלא בסרטון פלאש היכנסו ל- כתב ופתר גיא סלומון

אלגברה לינארית גיא סלומון. α β χ δ ε φ ϕ γ η ι κ λ µ ν ο π. σ ς τ υ ω ξ ψ ζ. לפתרון מלא בסרטון פלאש היכנסו ל-  כתב ופתר גיא סלומון 0 אלגברה לינארית α β χ δ ε φ ϕ γ η ι κ λ µ ν ο π ϖ θ ϑ ρ σ ς τ υ ω ξ ψ ζ גיא סלומון לפתרון מלא בסרטון פלאש היכנסו ל- wwwgoolcoil סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת

Διαβάστε περισσότερα

ושל (השטח המקווקו בציור) . g(x) = 4 2x. ו- t x = g(x) f(x) dx

ושל (השטח המקווקו בציור) . g(x) = 4 2x. ו- t x = g(x) f(x) dx פרק 9: חשבון דיפרנציאלי ואינטגרלי O 9 ושל בציור שלפניך מתוארים גרפים של הפרבולה f() = נמצאת על הנקודה המלבן CD מקיים: הישר = 6 C ו- D נמצאות הפרבולה, הנקודה נמצאת על הישר, הנקודות ( t > ) OD = t נתון:

Διαβάστε περισσότερα

מטרות אופרטיביות המתאימה.

מטרות אופרטיביות המתאימה. מתיאוריה למעשה פרויקט יישומי בנושא אופטיקה גיאומטרית חוברת למורה ולתלמיד 2 מתיאוריה למעשה פרויקט יישומי בנושא אופטיקה גיאומטרית חוברת למורה ותלמיד בחסות ובתמיכת אלביט מערכות אלקטרו אופטיקה אלאופ בע"מ פיתוח

Διαβάστε περισσότερα

דיאגמת פאזת ברזל פחמן

דיאגמת פאזת ברזל פחמן דיאגמת פאזת ברזל פחמן הריכוז האוטקטי הריכוז האוטקטוידי גבול המסיסות של פריט היווצרות פרליט מיקרו-מבנה של החומר בפלדה היפר-אוטקטואידית והיפו-אוטקטוידית. ככל שמתקרבים יותר לריכוז האוטקטואידי, מקבלים מבנה

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

33 = 16 2 נקודות. נקודות. נקודות. נקודות נקודות.

33 = 16 2 נקודות. נקודות. נקודות. נקודות נקודות. 1 מבחן מתכונת מס ' משך הבחינה: שלוש שעות וחצי. מבנה ה ומפתח הערכה: ב זה שלושה פרקים. פרק א': אלגברה והסתברות: נקודות. נקודות. נקודות. נקודות. 1 33 = 16 3 3 פרק ב': גיאומטריה וטריגונומטריה במישור: 1 33

Διαβάστε περισσότερα

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת

Διαβάστε περισσότερα

הקשור (נפחית, =P כאשר P קבוע. כלומר zˆ P. , ρ b ומשטחית,

הקשור (נפחית, =P כאשר P קבוע. כלומר zˆ P. , ρ b ומשטחית, אלקטרוסטטיקה בנוכחות חומרים התחום שבין מישור y למישור t ממולא בחומר בעל פולריזציה לא אחידה +α)ˆ P 1)P כאשר P ו - α קבועים. מצא את צפיפויות המטען הנתונה ע"י σ). חשב את סה"כ המטען הקשור בגליל (מהחומר ומשטחית

Διαβάστε περισσότερα

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח.

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח. החשמלי השדה הקדמה: מושג השדה חשמלי נוצר, כאשר הפיזיקאי מיכאל פרדיי, ניסה לתת הסבר אינטואיטיבי לעובדה שמטענים מפעילים זה על זה כוחות ללא מגע ביניהם. לטענתו, כל עצם בעל מטען חשמלי יוצר מסביבו שדה המשתרע

Διαβάστε περισσότερα

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.

Διαβάστε περισσότερα

דף תרגילים האפקט הפוטואלקטרי

דף תרגילים האפקט הפוטואלקטרי דף תרגילים שאלה מספר 1 בניסוי לחקירת משתמשים במקור אור =λ. 250 nm האלקטרודות של השפופרת שפולט אור בעל אורך גל עשויות ממתכת ניקל שפונקצית העבודה שלה. B= 5.2 ev המערכת מסודרת כך שכאשר המתח בין האלקטרודות

Διαβάστε περισσότερα

רואה תרות תירטמואיג הקיטפוא

רואה תרות תירטמואיג הקיטפוא פיזיקה תורת האור אופטיקה גיאומטרית מותאם לתוכנית הלמודים פעימ"ה של משרד החינוך תשע"ה - 2015 2 5 6 16 20 24 32 38 44 57 67 75 84 92 פרק א' פרק ב' פרק ג' פרק ד' פרק ה' פרק ו' פרק ז' פרק ח' פרק ט' פרק י'

Διαβάστε περισσότερα

גיאומטריה גיאומטריה מצולעים ניב רווח פסיכומטרי

גיאומטריה גיאומטריה מצולעים ניב רווח פסיכומטרי מצולע הוא צורה דו ממדית, עשויה קו "שבור" סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. אלכסון במצולע הוא הקו המחבר בין שני קדקודים שאינם סמוכים זה לזה. לדוגמה: בסרטוט שלפניכם EC אלכסון במצולע. ABCDE (

Διαβάστε περισσότερα

זיהוי פגמים במיתר באמצעות גלים עומדים

זיהוי פגמים במיתר באמצעות גלים עומדים מה חדש במעבדה? זיהוי פגמים במיתר באמצעות גלים עומדים מרק גלר, ישיבת בני עקיבא, נתניה אלכסנדר רובשטין, מכון דווידסון, רחובות מבוא גלים מכניים תופסים מקום חשוב בלימודי הפיזיקה בבית הספר. הנושא של גלים מכניים

Διαβάστε περισσότερα

תרגיל 3 שטף חשמלי ומשפט גאוס

תרגיל 3 שטף חשמלי ומשפט גאוס תרגיל שטף חשמלי ומשפט גאוס הערה: אינטגרלים חיוניים מוצגים בסוף הדף 1. כדור שמסתו.5 g ומטענו 1 6- C תלוי בחוט שאורכו 1 m ונמצא בשדה חשמלי של לוח אינסופי. החוט נפרש בזווית של 1 לכיוון הלוח. מה צפיפות המטען

Διαβάστε περισσότερα

א. חוקיות תשובות 1. א( קבוצות ספורט ב( עצים ג( שמות של בנות ד( אותיות שיש להן אות סופית ; ה( מדינות ערביות. 2. א( שמעון פרס חיים הרצוג. ב( לא.

א. חוקיות תשובות 1. א( קבוצות ספורט ב( עצים ג( שמות של בנות ד( אותיות שיש להן אות סופית ; ה( מדינות ערביות. 2. א( שמעון פרס חיים הרצוג. ב( לא. א. חוקיות. א( 1; ב( ; ג( השמיני; ד( ; ה( האיבר a שווה לפי - מיקומו בסדרה ; ו( = ;a ז( 9 = a ;.6 א( דוגמה: = a. +.7 א( =,1 + = 6 ;1 + ג( את המספר האחרון: הוא זה שמשתנה מתרגיל לתרגיל. 8. ב( 1 7 a, המספר

Διαβάστε περισσότερα

מכינות ריענון והשלמה בפיסיקה מבחן סוף מועד ב' בפיסיקה 1 עם המרצים : פרק ראשון- מכניקה: עליך לענות על 3 מתוך השאלות 1 4 )כל שאלה 19 נק'(.

מכינות ריענון והשלמה בפיסיקה מבחן סוף מועד ב' בפיסיקה 1 עם המרצים : פרק ראשון- מכניקה: עליך לענות על 3 מתוך השאלות 1 4 )כל שאלה 19 נק'(. מכינות ריענון והשלמה בפיסיקה מבחן סוף מועד ב' בפיסיקה 1 עם המרצים : משך הבחינה : 01 דקות חומר עזר מותר: מחשבון, דף נוסחאות מצורף לשאלון. הוראות לנבחן: * בשאלון זה 3 פרקים: פרק ראשון- מכניקה: עליך לענות

Διαβάστε περισσότερα

הפגיעה. באותו המישור. זוויתהפגיעהשווה לזוויתההחזרה - 1 -

הפגיעה. באותו המישור. זוויתהפגיעהשווה לזוויתההחזרה - 1 - אופטיקה גיאומטרית חלק ב החזרת אור מהו מהלך האור הפוגע במראה ומוחזר ממנה? נדמיין לעצמנו קרן אור הפוגעת במשטח מחזיר אור (מראה) ומוחזרת ממנו. נגדיר מספר מושגים לצורך הסבר: לזווית שבין הקרן הפוגעת לבין האנך

Διαβάστε περισσότερα

ךוכיח םדקמ 1 םישרת אובמ

ךוכיח םדקמ 1 םישרת אובמ מקדם חיכוך מבוא תרשים 1 כוח חיכוך הינו הכוח הפועל בין שני משטחים המחליקים או מנסים להחליק אחד על השני. עבור משטחים יבשים כוח החיכוך תלוי בסוג המשטחים ובכוח הנורמאלי הפועל ביניהם. f s כשהמשטחים נמצאים במנוחה

Διαβάστε περισσότερα

םיאלמ תונורתפ 20,19,18,17,16 םינחבמל 1 להי רחש ןולאש הקיטמתמב סוקופ

םיאלמ תונורתפ 20,19,18,17,16 םינחבמל 1 להי רחש ןולאש הקיטמתמב סוקופ פתרונות מלאים למבחנים 0,9,8,7,6 פוקוס במתמטיקה שאלון 3580 שחר יהל העתקה ו/או צילום מספר זה הם מעשה לא חינוכי, המהווה עברה פלילית. פתרון מבחן מתכונת מס' 6 פתרון שאלה א. נקודות A ו- B נמצאות על הפונקציה

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד.

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד. חידה לחימום ( M ש- N > (כך מספרים טבעיים Mו- N שappleי appleתוappleים בעלי אותה הזוגיות (שappleיהם זוגיים או שappleיהם אי - זוגיים). המספרים הטבעיים מ- Mעד Nמסודרים בשורה, ושappleי שחקappleים משחקים במשחק.

Διαβάστε περισσότερα

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה

Διαβάστε περισσότερα

יחידה - 7 זוויות חיצוניות

יחידה - 7 זוויות חיצוניות יחידה 7: זוויות חיצוניות שיעור 1. זווית חיצונית למצולע מה המשותף לכל הזוויות המסומנות ב-? נכיר זווית חיצונית למצולע, ונמצא תכונה של זווית חיצונית למשולש. זווית חיצונית למצולע 1 כל 1. הזוויות המסומנות במשימת

Διαβάστε περισσότερα

תשס"ז שאלות מהחוברת: שאלה 1: 3 ס"מ פתרון: = = F r 03.0 שאלה 2: R פתרון: F 2 = 1 10

תשסז שאלות מהחוברת: שאלה 1: 3 סמ פתרון: = = F r 03.0 שאלה 2: R פתרון: F 2 = 1 10 Q 0 חוק קולון: שאלות מהחוברת: שאלה : פיזיקה למדעי החיים פתרון תרגיל 5 חוק קולון,שדה חשמלי ופוטנציאל חשמלי ו- Q 5 0 Q Q 3 ס"מ חשב את הכוח החשמלי הפועל בין שני מטענים נקודתיים הנמצאים במרחק 3 ס"מ זה מזה.

Διαβάστε περισσότερα

דביר חדד י"ב 4 דו"חות מעבדה דביר חדד י"ב 4

דביר חדד יב 4 דוחות מעבדה דביר חדד יב 4 דו"חות מעבדה.2215.1 דביר חדד 9.58.553 י"ב 4 1 תוכן עניינים: )דו"חות למעבדות החובה לקראת הבגרות במעבדה 15.1( כ 2 א 2 מ, מתח הדקים והתנגדות פנימית 92222222222222222222222222222222222222222 עצם ודמותו בעדשה

Διαβάστε περισσότερα

אינפי - 1 תרגול בינואר 2012

אינפי - 1 תרגול בינואר 2012 אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 13

מתמטיקה בדידה תרגול מס' 13 מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.

Διαβάστε περισσότερα

ניסוי מקרי: ניסוי שיש לו מספר תוצאות אפשריות ואי-אפשר לדעת מראש באיזה תוצאה יסתיים הניסוי.

ניסוי מקרי: ניסוי שיש לו מספר תוצאות אפשריות ואי-אפשר לדעת מראש באיזה תוצאה יסתיים הניסוי. 1 תורת ההסתברות מהי? העולם שבו אנחנו חיים הוא עולם של אי-ודאות. מכיוון שאין לנו דרך לקבוע בוודאות את תוצאותיו של תהליך אקראי, אנו מנסים לצמצם את אלמנט אי-הודאות ולהעריך את הסיכויים של התוצאות האפשריות

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות אביבתשס ז מבחןסופי מועדב בהצלחה!

לוגיקה ותורת הקבוצות אביבתשס ז מבחןסופי מועדב בהצלחה! הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב 24/10/2007 מרצה: פרופ אורנה גרימברג מתרגלים: גבי סקלוסוב,קרן צנזור,רותם אושמן,אורלי יהלום לוגיקה ותורת הקבוצות 234293 אביבתשס ז מבחןסופי מועדב הנחיות: משךהבחינה:

Διαβάστε περισσότερα

מבני נתונים מבחן מועד ב' סמסטר חורף תשס"ו

מבני נתונים מבחן מועד ב' סמסטר חורף תשסו TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE הטכניון - מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצים: רן אל-יניב, נאדר בשותי מבני נתונים 234218-1 מבחן מועד ב' סמסטר חורף תשס"ו

Διαβάστε περισσότερα

PDF created with pdffactory trial version

PDF created with pdffactory trial version הקשר בין שדה חשמלי לפוטנציאל חשמלי E נחקור את הקשר, עבור מקרה פרטי, בו יש לנו שדה חשמלי קבוע. נתון שדה חשמלי הקבוע במרחב שגודלו שווה ל. E נסמן שתי נקודות לאורך קו שדה ו המרחק בין הנקודות שווה ל x. המתח

Διαβάστε περισσότερα

שם הניסוי: מיקרו-גלים

שם הניסוי: מיקרו-גלים שם הניסוי: מיקרו-גלים Ver 2. (21) 1. מטרת הניסוי הכרת ההתנהגות הגלית של קרינה אלקטרומגנטית בתחום אורכי הגל של סנטימטרים ושימוש בגלים אלו להדגמת תופעות באופטיקה פיסיקלית. ספרות: James Benford, John Swegle

Διαβάστε περισσότερα

עבודת קיץ לקראת כיתה ט' מצויינות מתמטיקה

עבודת קיץ לקראת כיתה ט' מצויינות מתמטיקה עבודת קיץ לקראת כיתה ט' מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם יודעים כיצד לפתור אותן. את העבודה יש להגיש במהלך השבוע

Διαβάστε περισσότερα

רחת 3 קרפ ( שוקיבה תמוקע)שוקיבה תיצקנופ

רחת 3 קרפ ( שוקיבה תמוקע)שוקיבה תיצקנופ - 41 - פרק ג' התנהגות צרכן פונקצית הביקוש(עקומת הביקוש ( - 42 - פרק 3: תחרות משוכללת: התנהגות צרכן מתארת את הקשר שבין כמות מבוקשת לבין מחיר השוק. שיפועה השלילי של עקומת הביקוש ממחיש את הקשר ההפוך הקיים

Διαβάστε περισσότερα

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE סמסטר אביב תשס"ו מס' סטודנט:

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE סמסטר אביב תשסו מס' סטודנט: TECHNION ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב מבני נתונים 234218 1 מבחן מועד ב ' סמסטר אביב תשס"ו מרצה: אהוד ריבלין מתרגלים: איתן

Διαβάστε περισσότερα

תורת הקבוצות תרגיל בית 2 פתרונות

תורת הקבוצות תרגיל בית 2 פתרונות תורת הקבוצות תרגיל בית 2 פתרונות חיים שרגא רוזנר כ"ה בניסן, תשע"ה תזכורות תקציר איזומורפיזם סדר, רישא, טרנזיטיביות, סודרים, השוואת סודרים, סודר עוקב, סודר גבולי. 1. טרנזיטיבות וסודרים קבוצה A היא טרנזיטיבית

Διαβάστε περισσότερα

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα

Refraction in Thin Lenses_2

Refraction in Thin Lenses_2 "שולמן" ציוד לימודי רח' מקווה-ישראל 0 ת"ד 039 ת"א 6009 שבירה דרך עדשה דקה עצם לא נקודתי עדשה כדורית שם קובץ הניסוי: Reraction in Thin Lenses_ חוברת מס' 5 כרך: גלים ואפטיקה מאת: משה גלבמן "שולמן" ציוד לימודי

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

בתמונה 1: S המנסרה (תמונה 1). התדירות

בתמונה 1: S המנסרה (תמונה 1). התדירות "שולמן" ציוד לימודי רח' מקווה-ישראל 0 ת"ד 039 ת"א 6009 התאבכות האור במנסרה כפולה של פרנל שיעור הדגמה שם קובץ הניסוי: Fresnel_Biprism חוברת מס' 8 כרך: גלים ואופטיקה מאת: משה גלבמן "שולמן" ציוד לימודי רח'

Διαβάστε περισσότερα

ניתן לקבל אוטומט עבור השפה המבוקשת ע "י שימוששאלה 6 בטכניקתשפה המכפלה שנייה כדי לבנות אוטומט לשפת החיתוך של שתי השפות:

ניתן לקבל אוטומט עבור השפה המבוקשת ע י שימוששאלה 6 בטכניקתשפה המכפלה שנייה כדי לבנות אוטומט לשפת החיתוך של שתי השפות: שאלה 1 בנה אוטומט המקבל את שפת כל המילים מעל הא"ב {,,} המכילות לפחות פעם אחת את הרצף ומיד אחרי כל אות מופיע הרצף. ניתן לפרק את השפה לשתי שפות בסיס מעל הא"ב :{,,} שפת כל המילים המכילות לפחות פעם אחת את

Διαβάστε περισσότερα

אוטומט סופי דטרמיניסטי מוגדר ע"י החמישייה:

אוטומט סופי דטרמיניסטי מוגדר עי החמישייה: 2 תרגול אוטומט סופי דטרמיניסטי אוטומטים ושפות פורמליות בר אילן תשעז 2017 עקיבא קליינרמן הגדרה אוטומט סופי דטרמיניסטי מוגדר ע"י החמישייה: (,, 0,, ) כאשר: א= "ב שפת הקלט = קבוצה סופית לא ריקה של מצבים מצב

Διαβάστε περισσότερα

פרק 5 טורי חזקות 5.5 טור לורן. (z z 0 ) m. c n = 1. 2πi γ (ξ z 0 ) n+1dξ, .a 1 = 1 f(z)dz בפרט,.a 2πi γ m וגם 0 0 < z z 0 < r בעיגול הנקוב z.

פרק 5 טורי חזקות 5.5 טור לורן. (z z 0 ) m. c n = 1. 2πi γ (ξ z 0 ) n+1dξ, .a 1 = 1 f(z)dz בפרט,.a 2πi γ m וגם 0 0 < z z 0 < r בעיגול הנקוב z. פרק 5 טורי חזקות 5.5 טור לורן הגדרה 5. טורלורןסביבקוטב z מסדרm שלפונקציה( f(z הואמהצורה n m a n(z z m. למשל,טורלורן שלהפונקציה e z /z 2 סביב הוא + 2./z 2 +/z+/2+/3!z+/4!z משפט 5. תהי f פונקציה אנליטית

Διαβάστε περισσότερα

מבחן פטור לדוגמא בפיזיקה הוראות לנבחן/ת: המבחן כולל שני חלקים. בכל חלק 3 שאלות עליך לענות על שתי שאלות מכל חלק סה"כ 4 1. שאלות. השאלות שוות בערכן.

מבחן פטור לדוגמא בפיזיקה הוראות לנבחן/ת: המבחן כולל שני חלקים. בכל חלק 3 שאלות עליך לענות על שתי שאלות מכל חלק סהכ 4 1. שאלות. השאלות שוות בערכן. מבחן פטור לדוגמא בפיזיקה הוראות לנבחן/ת: המבחן כולל שני חלקים. בכל חלק 3 שאלות עליך לענות על שתי שאלות מכל חלק סה"כ 4. שאלות. השאלות שוות בערכן.. כתוב/כתבי את הבחינה בכתב ברור ומסודר. 3. הסבר/י כל שלב

Διαβάστε περισσότερα