CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2017 Clasa a V-a

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2017 Clasa a V-a"

Transcript

1 CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2017 Clasa a V-a 1. Fiind dat un număr natural nenul n, vom nota prin n! produsul n (de exemplu, 4! = ). Determinați numerele naturale abc cu a, b, c 0, având proprietatea că abc = a!+b!+c!. 2. Literele A, B, C, D, E, F, G, H și I notează numerele naturale de la 1 la 9 într-o anumită ordine. Dacă A+B +C = C +D +E = E +F +G = G+H +I și suma acestor patru numere egale este cea mai mare posibilă, aflați valoarea lui E. 3. Alin are o ascunzătoare secretă ıîn care a strâns 35 monede, 38 cartonașe cu fotbaliști și39 bomboane. Fratele lui mai mic, Cosmin, are propria ascunzătoare secretă ıîn care strânge monede, cartonașe cu fotbaliști și bomboane, dar asta nu îl ıîmpiedică să împrumute și din lucrurile lui Alin. De fiecare dată, Cosmin ia de la Alin două obiecte de tipuri diferite (așa încât numărul lor să nu scadă prea repede și fratele său să observe) și pune ıînapoi un obiect de al treilea tip. După o vreme, Alin își vizitează ascunzătoarea și constată că toate obiectele care se mai află acolo sunt de același tip. Ce fel de obiecte i-au mai rămas? 4. Din șirul numerelor naturale 0, 1, 2, 3, 4, 5,... se elimină toate numerele care conțin cifrele 3, 6 sau 9. Pe ce poziție în șirul rămas se va afla 2017? 1

2 Clasa a VI-a 1. Mulțimea numerelor naturale pozitive se împarte în grupe astfel: 1; 2, 3; 4, 5, 6; 7, 8, 9, 10; 11, 12, 13, 14, 15; 16, 17, 18, 19, 20, 21;... (prima grupă conține primul număr, a doua grupă conține următoarele două numere, a treia grupă conține următoarele trei numere, ș.a.m.d.). Scriind numerele din fiecare grupă în ordine, unul după altul și fără spații libere între ele, se obține șirul de numere: 1, 23, 456, 78910, , ,... a) Cu ce cifră se termină cel de-al 100-lea număr din șir? b) Care este numărul din șir în care apare pentru prima oară secvența 2017? De exemplu, secvența 121 apare pentru prima oară în al cincilea număr: Spunem că un număr natural n este superdivizibil dacă se divide cu fiecare din cifrele sale. De exemplu, 936 este superdivizibil. Notăm cu M mulțimea numerelor superdivizibile de 6 cifre, care au ultima cifră egală cu 3. a) Aflați cel mai mic și cel mai mare număr din mulțimea M. b) Câte cifre distincte poate avea un număr din M? De exemplu, un număr din M poate avea două cifre distincte, deoarece numărul aparține mulțimii M și are două cifre distincte. 3. Fie A mulțimea numerelor de trei cifre abc cu următoarea proprietatea: cifra a este egală cu numărul divizorilor de o cifră ai numărului abc, cifra b este egală cu numărul divizorilor de două cifre ai numărului abc, iar cifra c este egală cu numărul divizorilor de trei cifre ai numărului abc. De exemplu, 202 A, deoarece divizorii numărului 202 sunt: 1, 2, 101, 202. a) Câte numere prime conține mulțimea A? b) Baronul Münchhausen afirmă că în mulțimea A există numere cu toate cifrele impare. Decideți (cu justificare) dacă baronul are sau nu dreptate. c) Aflați numerele din mulțimea A care au toate cifrele pare. 4. Considerăm triunghiul ABC în care m( ABC) = 30 și m( ACB) = 45. Mediatoarea laturii [BC] intersectează bisectoarea unghiului ABC în P și latura [AB] în Q. Demonstrați că: a) [CP este bisectoarea unghiului BCQ. b) [BP] [AC]. 2

3 Clasa a VII-a 1. Arătați, fără a extrage radicalii, că: a) {7 3} > 3 25 ; b) {3 7} > ; c) = Fie p un număr prim și x un număr întreg astfel încât p (x 12 +x 9 +x 6 +x 3 +1). Demonstrați că cel puțin unul dintre numerele x 4 +x 3 +x 2 +x+1 și x 10 +x 5 +1 este divizibil cu p. 3. Fie ABC un triunghi având lungimile laturilor AB = 4, BC = 20, AC = 17. Notăm cu D piciorul bisectoarei unghiului BAC, cu E mijlocul segmentului (AD), cu F intersecția dreptelor AC și BE. Calculați lungimile segmentelor (BD) și (AF). 4. a) Considerăm un triunghi ABC și fie D un punct pe latura (BC). Se formează astfel 3 triunghiuri: ABC, ABD și ACD. Demonstrați că dacă cele 3 triunghiuri sunt asemenea între ele, atunci unghiul BAC este drept și AD BC. b) Considerăm un patrulater ABCD și fie O intersecția diagonalelor sale. Demonstrați că dacă 7 dintre cele 8 triunghiuri formate sunt asemenea între ele, atunci toate cele 8 triunghiuri sunt asemenea între ele. 3

4 Clasa a VIII-a 1. Fie M și N mijloacele muchiilor [BB ], respectiv [CD] ale cubului ABCDA B C D. a) Arătați că dreptele A M și C N sunt perpendiculare. b) Dacă PQ, cu P A M și Q C N, este perpendiculara comună a dreptelor A M și C N, aflați valoarea raportului A P PM. 2. a) Rezolvați ecuația: x x+1 x+2 x+3 x+4 x = b) Determinați mulțimea valorilor pe care le ia expresia x x+1 x+2 x+3 x+4 x , când x Pe muchiile laterale ale cubului ABCDA B C D cu latura de 2 m se consideră punctele P 1, P 5,..., P 97 [AA ], P 2, P 6,..., P 98 [BB ], P 3, P 7,..., P 99 [CC ] și P 4, P 8,..., P 100 [DD ] astfel încât d(p k, (ABCD)) = k cm, oricare ar fi k {1, 2,..., 100}. Câte plane distincte determină cele 100 de puncte? 4. Pentru x, y, z [1, 3] notăm E(x, y, z) = xyz +(4 x)(4 y)(4 z). a) Demonstrați că (x 2)(y 2) 1 x y, x, y [1, 3]. b) Folosind eventual subpunctul anterior, determinați maximul expresiei E(x, y, z). c) Arătați că E(x, y, z) min{e(x, y, 1), E(x, y, 3)}, x, y, z [1, 3]. d) Demonstrați că E(x, y, z) 12, x, y, z [1, 3]. Când are loc inegalitatea? 4

5 Clasa a IX-a 1. Un număr de becuri sunt conectate la comutatoare, astfel încât comutatorul cu numărul i este conectat la becul cu numărul j dacă și numai dacă i j. Prin acționarea unui comutator se schimbă starea tuturor becurilor conectate la acesta. Presupunem că inițial toate becurile sunt stinse. a) Dacă sunt acționate toate comutatoarele într-o anumită ordine, fiecare o singură dată, arătați că starea finală a fiecărui bec este independentă de ordinea în care sunt acționate comutatoarele. b) Care becuri rămân aprinse după acționarea tuturor comutatoarelor câte o singură dată? Câte sunt aceste becuri? 2. Fie ABC un triunghi ascuțitunghic, [AA 1 ], [BB 1 ] și [CC 1 ] înălțimile sale, iar M, N și respectiv P mijloacele segmentelor [B 1 C 1 ], [C 1 A 1 ], respectiv [A 1 B 1 ]. Arătați că dreptele AM, BN și CP sunt concurente. 3. Fie a, b, c > 0 cu proprietatea că a+b+c = 1. Arătați că: 9abc ab+bc+ca a 3 +b 3 +c 3 +6abc a 2 +b 2 +c a) Fie ABC un triunghi, O centrul cercului său circumscris, R raza cercului circumscris, iar r raza cercului înscris în triunghiul ABC. Arătați că: ε A d(o, BC)+ε B d(o, CA)+ε C d(o, AB) = R+r, unde ε X = sgn(90 m( X)). b) Fie ABCD un patrulater inscriptibil, iar r A, r B, r C, r D razele cercurilor înscrise în triunghiurile BCD, CDA, DAB, respectiv ABC. Arătați că: r A +r C = r B +r D. c) Formulați o generalizare a proprietății de la b) pentru poligoane inscriptibile oarecare. 5

6 Clasa a X-a 1. Fie n 2 un număr natural fixat. Comparați numerele A(n) și B(n), unde A(n) = 2 log log n log 2 3 n 1 și B(n) = 3 log log n log n n Fie n un număr natural fixat. Aflați partea întreagă a numărului N(n), unde N(n) = n [ ( log k) 2 k]. k k=0 3. Fie M = {(z 1, z 2 ) C C z 1 +z 2 = z1 2 +z2 2 = 2}. Determinați min z1 3 +z3 2. (z 1,z 2 ) M ( n ) 4. Determinați toate funcțiile f : N N cu f(0) = 0 și f(n) = f +1, n N

7 Clasa a XI-a 1. Fie f, g : R R două funcții astfel încât g este continuă și pentru orice x R avem f(x) Q f(g(x)) / Q. Arătați că funcția f are cel puțin un punct de discontinuitate. 2. a) Fie λ > 1 un număr real și (x n ) n 0 un șir de numere reale cu proprietatea că șirul (λx n+1 x n ) n 0 este convergent. Arătați că șirul (x n ) n 0 este de asemenea convergent. b) Fie (y n ) n 0 un șir de numere reale cu proprietatea că șirul (6y n+1 5y n+1 +y n ) n 0 este convergent. Arătați că șirul (y n ) n 0 este de asemenea convergent. 3. Fie A M 4,2 (R), B M 2,4 (R) două matrice cu proprietatea că AB = a) Arătați că (AB) 2 = 2AB și că rang(ab) = 2. b) Arătați că BA = 2I a) Arătați că nu există numere întregi a, b, c astfel încât n 3 +an 2 +bn+c este pătrat perfect pentru orice număr natural n. b) Fie a, b, c numere întregi, a 0, astfel încât an 2 +bn+c este pătrat perfect pentru orice număr natural nenul n, adică există un șir de numere naturale (x n ) n 1 cu proprietatea că an 2 +bn+c = x 2 n, pentru orice n N. (i) Arătați că șirul (x n+1 x n ) n 1 este convergent și determinați limita acestui șir. (ii) Arătați că există numerele întregi u, v astfel încât a = u 2, b = 2uv și c = v 2. 7

8 Clasa a XII-a 1. Dacă f : [0, 1] R este continuă și 1 două rădăcini distincte în intervalul (0, 1). 0 f(x)dx = 2. Se consideră funcția f : [0, 1] R definită prin: [ 1 1 1, x f(x) = 2 2k+1, 0, în rest Arătați că f este integrabilă pe [0, 1] și calculați 3. Fie (G, ) un grup finit cu elementul neutru e k 1 0 xf(x)dx = 0, atunci f are cel puțin ], k N f(x)dx. a) Arătați că există un număr impar de elemente x G astfel încât x 3 = e. b) Arătați că există un număr par de elemente x G astfel încât x 2 e. 4. a) Arătați că toate grupurile cu trei elemente sunt izomorfe între ele. b) Demonstrați că grupul (Q +, ) nu este izomorf cu grupul (Q, +).. 8

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 998 Clasa a V-a. La gara Timișoara se eliberează trei bilete de tren: unul pentru Arad, altul pentru Deva și al treilea pentru Reșița. Cel pentru Deva

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a X-a, MAI 2010 CLASA A IV-A

CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a X-a, MAI 2010 CLASA A IV-A Ediţia a X-a, 4 5 MAI 00 CLASA A IV-A I. Suma a două numere naturale este 75. Dacă adunăm de patru ori primul număr cu de trei ori al doilea număr obţinem 40. Aflaţi numărul cel mai mare. Eugenia Miron

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Subiecte Clasa a VI-a

Subiecte Clasa a VI-a Clasa a VI Lumina Math Intrebari (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

BACALAUREAT 2007 SESIUNEA IULIE M1-1

BACALAUREAT 2007 SESIUNEA IULIE M1-1 BACALAUREAT 2007 SESIUNEA IULIE M1-1 Filiera teoretică, specializarea matematică - informatică. Filiera vocaţională, profil Militar, specializarea matematică - informatică. a) Să se calculeze modulul vectorului

Διαβάστε περισσότερα

Concursul de matematica Arhimede Editia a IV-a. Etapa I-a 25 noiembrie Subiecte clasa a III-a

Concursul de matematica Arhimede Editia a IV-a. Etapa I-a 25 noiembrie Subiecte clasa a III-a Editia a IV-a. Etapa I-a 5 noiembrie 006. Subiecte clasa a III-a I. Aflati cea mai mica suma de forma în care s-au folosit doar cifrele 0,,, 4, 5, 6 o singura data. Aratati variantele posibile. II. a)

Διαβάστε περισσότερα

Probleme pentru clasa a XI-a

Probleme pentru clasa a XI-a Probleme pentru clasa a XI-a 1 ( ) 01. Fie A si B doua matrici de ordin n cu elemente numere reale, care satisfac relatia AB = A + B. a) Sa se arate ca det(a 2 + B 2 ) 0. b) Sa se arate ca rang A + B =

Διαβάστε περισσότερα

Subiecte Clasa a V-a

Subiecte Clasa a V-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB = Elemente de geometrie analiticã. Segmente. DistanŃa dintre douã puncte A(, ), B(, ): AB = ) + ( ) (. Panta dreptei AB: m AB = +. Coordonatele (,) ale mijlocului segmentului AB: =, =. Coordonatele punctului

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

3. Locuri geometrice Locuri geometrice uzuale

3. Locuri geometrice Locuri geometrice uzuale 3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile

Διαβάστε περισσότερα

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete

Διαβάστε περισσότερα

Concursul Gazeta Matematică şi ViitoriOlimpici.Ro Etapa finală Câmpulung Muscel, august 2015 Soluţii şi baremuri Clasa a IV-a

Concursul Gazeta Matematică şi ViitoriOlimpici.Ro Etapa finală Câmpulung Muscel, august 2015 Soluţii şi baremuri Clasa a IV-a Concursul Gazeta Matematică şi ViitoriOlimpici.Ro Etapa finală Câmpulung Muscel, 17-22 august 2015 Soluţii şi baremuri Clasa a IV-a Problema 1. Câte numere naturale de cinci cifre trebuie să scriem pentru

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate.

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate. Copyright c 009 ONG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 15 iunie

Διαβάστε περισσότερα

CLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea

CLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea EDIŢIA A IV-A 4 6 MAI 004 CLASA a V-a I. Să se determie abcd cu proprietatea abcd - abc - ab -a = 004 Gheorghe Loboţ II Comparaţi umerele A B ude A = 00 00 004 004 şi B = 00 004 004 00. Vasile Şerdea III.

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Vectori liberi-seminar 1

Vectori liberi-seminar 1 Vectori liberi-seminar ) Determinati α R astfel incat vectorii ā = m+ n si b = m+α n sa fie coliniari, unde m, n sunt necoliniari. ) Demonstrati ca urmatorii trei vectori liberi sunt coplanari: ā = ī j

Διαβάστε περισσότερα

GEOMETRIE PENTRU GIMNAZIU Partea I (cls. a V a, a VI a, a VII a) Geometrie pentru pregătirea Evaluării Naționale la Matematică

GEOMETRIE PENTRU GIMNAZIU Partea I (cls. a V a, a VI a, a VII a) Geometrie pentru pregătirea Evaluării Naționale la Matematică Geometrie pentru pregătirea Evaluării Naționale la Matematică (Cls. a V a, a VI a, a VII a) UNITĂȚI DE MĂSURĂ Lungime rie Volum Capacitate DE REȚINUT! Masă 1hm 1ha 1dam 1ar 1dm 1l 1q 1kg 1t 1kg 1v 1kg

Διαβάστε περισσότερα

VARIANTE PENTRU BACALAUREAT, M1-1, 2007

VARIANTE PENTRU BACALAUREAT, M1-1, 2007 VARIANTE PENTRU BACALAUREAT, M-, 27 VARIANTA SUBIECTUL I. a) Să se determine ecuația dreptei care trece prin punctul A(2; 5;3) și este paralelă cu dreapta x = y 2 4 6 = z +3 9. b) Să se determine valoarea

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

Dreapta in plan. = y y 0

Dreapta in plan. = y y 0 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului

Διαβάστε περισσότερα

Soluţiile problemelor propuse în nr. 2/2011

Soluţiile problemelor propuse în nr. 2/2011 Soluţiile problemelor propuse în nr. /11 Clasele primare P.6. Fie numerele a = 1 + şi b = 9. Înlocuiţi cercul şi pătratul cu cifre corespunzătoare astfel încât a + b = 15. (Clasa I) Amalia Munteanu, elevă,

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri Generarea şi ordonarea permutărilor. Principiul porumbeilor. Principiul incluziunii si excluziunii Recapitulare din cursul trecut Presupunem că A este o mulţime cu n elemente. Recapitulare din cursul trecut

Διαβάστε περισσότερα

GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE. Gabriel POPA, Paul GEORGESCU c August 20, 2009, Iaşi

GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE. Gabriel POPA, Paul GEORGESCU c August 20, 2009, Iaşi GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE Gabriel POPA, Paul GEORGESCU c August 0, 009, Iaşi Cuprins 1 SPAŢIUL VECTORILOR LIBERI. STRUCTURA AFINĂ 4 SPAŢIUL VECTORILOR LIBERI.

Διαβάστε περισσότερα

cercului circumscris triunghiului ABE.

cercului circumscris triunghiului ABE. Concursul Gazeta Matematică și ViitoriOlimpici.ro Ediția a IV-a 2012-2013 Problema 1. Rezolvaţi în mulţimea numerelor reale ecuaţia (x 2 + y 2 ) 3 = (x 3 y 3 ) 2. Soluţie. Ecuaţia se scrie echivalent x

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =.

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =. Copyright c ONG TCV Scoala Virtuala a Tanarului Matematician Ministerul Educatiei al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 4 iunie Profilul real Timp

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

Soluţiile problemelor pentru pregătirea concursurilor propuse în nr. 2/2015

Soluţiile problemelor pentru pregătirea concursurilor propuse în nr. 2/2015 kp p Am folosit kp faptul că lim n p (q) q kp p + +... + π n P p [ k ] q q 6 ; ca urmare, kp p π k 6 π 6 π. Soluţiile problemelor pentru pregătirea concursurilor propuse în nr. /05 ( ) p p A. Nivel gimnazial

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Concursul interjudețean DISCIPOLII LUI LAZĂR. Matematică - Ediția a VII-a 8 mai Clasa a IV-a

Concursul interjudețean DISCIPOLII LUI LAZĂR. Matematică - Ediția a VII-a 8 mai Clasa a IV-a Clasa a IV-a I. Aflați cifra a ştiind că : 101 + 202 + 303 +... + a0a = 3636 Gazeta Matematică Determinați numărul natural de trei cifre abc, scris în baza 10, ştiind că, dacă adăugăm cifra 8 la dreapta

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

BISECTOAREI GLISANTE

BISECTOAREI GLISANTE ÎN LEGĂTURĂ CU TEOREMA BISECTOAREI GLISANTE de ANDREI ECKSTEIN, TIMIŞOARA În aceast articol ne propunem să reunim diverse proprietăţi cunoscute, legate de teorema bisectoarei glisante şi de bogatul ei

Διαβάστε περισσότερα

29 Iunie Aplicaţii ale numerelor complexe în Geometrie. Absolvent: Haliţă Diana-Florina. Coordonator ştiinţific: Prof. Dr.

29 Iunie Aplicaţii ale numerelor complexe în Geometrie. Absolvent: Haliţă Diana-Florina. Coordonator ştiinţific: Prof. Dr. I UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Specializarea Matematică-Informatică, linia de studiu română 29 Iunie I 1 2 3 I 4 5 MATEM 6 MATEM 7 Bibliografie I Motivaţia:

Διαβάστε περισσότερα

Lectia VII Dreapta si planul

Lectia VII Dreapta si planul Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.

Διαβάστε περισσότερα

:: Test 1 Partea I Partea II

:: Test 1 Partea I Partea II :: Test 1 1. Numărul care este cu 1 mai mic decât 79 este.. Primele două zecimale exacte ale numărului 5 sunt.. Cel mai mic multiplu comun al numerelor 4 şi 6 este. 4. Rezultatul calculului : 9 5 1800

Διαβάστε περισσότερα

MATEMATICĂ. Clasa I. AlegeŃi răspunsul corect: 1. Vecinii lui 7 sunt: a)1 şi 3 ; b) 7 şi 9 ; c) 6şi 8 ; d) 6 şi 7 ; e) 8 şi 9.

MATEMATICĂ. Clasa I. AlegeŃi răspunsul corect: 1. Vecinii lui 7 sunt: a)1 şi 3 ; b) 7 şi 9 ; c) 6şi 8 ; d) 6 şi 7 ; e) 8 şi 9. MATEMATICĂ Clasa I AlegeŃi răspunsul corect: 1. Vecinii lui 7 sunt: a)1 şi ; b) 7 şi 9 ; c) 6şi 8 ; d) 6 şi 7 ; e) 8 şi 9.. Care dintre numerele următoare este un număr impar? a) 5 ; b) 8 ; c) 4 ; d) 1

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Lectia III Produsul scalar a doi vectori liberi

Lectia III Produsul scalar a doi vectori liberi Produsul scalar: denitie, proprietati Schimbari de repere ortonormate in plan Aplicatii Lectia III Produsul scalar a doi vectori liberi Oana Constantinescu Oana Constantinescu Lectia III Produsul scalar:

Διαβάστε περισσότερα

1 Serii numerice Definiţii. Exemple... 45

1 Serii numerice Definiţii. Exemple... 45 Analizǎ matematicǎ Chiş Codruţa 2 Cuprins 1 Serii numerice 5 1.1 Definiţii. Exemple....................... 5 1.2 Criterii de convergenţǎ pentru serii cu termeni pozitivi... 8 1.3 Criterii de convergenţǎ

Διαβάστε περισσότερα

Subiectul III (30 de puncte) - Varianta 001

Subiectul III (30 de puncte) - Varianta 001 (30 de puncte) - Varianta 001 1. Utilizând metoda backtracking se generează în ordine lexicografică cuvintele de câte patru litere din mulţimea A={a,b,c,d,e}, cuvinte care nu conţin două vocale alăturate.

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

este egal cu Rezultatul calculului : 5 este egal cu. 1. Rezultatul calculului 9 3: 3 este egal cu.

este egal cu Rezultatul calculului : 5 este egal cu. 1. Rezultatul calculului 9 3: 3 este egal cu. Evaluare Nationala clasa a VIII-a matematica 010-017 010 model 1 Rezultatul calculului 64 :8 + 8 este egal cu 010 spec 1 Rezultatul calculului 64 :3 este egal cu 011 model 01 model 1 Rezultatul calculului

Διαβάστε περισσότερα

2. Circuite logice 2.2. Diagrame Karnaugh. Copyright Paul GASNER 1

2. Circuite logice 2.2. Diagrame Karnaugh. Copyright Paul GASNER 1 2. Circuite logice 2.2. Diagrame Karnaugh Copyright Paul GASNER Diagrame Karnaugh Tehnică de simplificare a unei expresii în sumă minimă de produse (minimal sum of products MSP): Există un număr minim

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

MODELE DE TESTE GRILĂ PENTRU ADMITEREA DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a)

MODELE DE TESTE GRILĂ PENTRU ADMITEREA DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a) Universitatea "Dunărea de Jos" din Galaţi MODELE DE TESTE GRILĂ PENTRU ADMITEREA 01 DISCIPLINA: ALGEBRĂ (cls. a IX-a, a X-a, a XI-a Testele sunt recomandate pentru următoarele domenii de licenţă şi facultăţi:

Διαβάστε περισσότερα

Capitolul II. Grupuri. II.1. Grupuri; subgrupuri; divizori normali; grupuri factor

Capitolul II. Grupuri. II.1. Grupuri; subgrupuri; divizori normali; grupuri factor Capitolul II Grupuri II.1. Grupuri; subgrupuri; divizori normali; grupuri factor Definiţia 1. Fie G o mulţime nevidă şi " " operaţie algebrică pe G. Cuplul (G, ) se numeşte grup, dacă sunt satisfăcute

Διαβάστε περισσότερα

2 Probleme propuse Clasele V-VI Clasele VII-VIIII Clasele IX-X... 18

2 Probleme propuse Clasele V-VI Clasele VII-VIIII Clasele IX-X... 18 Cuprins 1 O privire de ansamblu asupra metodei 1 1.1 Un joc cu jetoane colorate...................... 2 1.2 O problemă amuzantă........................ 3 1.3 Şcoala lui Pitagora şi numerele iraţionale.............

Διαβάστε περισσότερα

Numere complexe. a numerelor complexe z b b arg z.

Numere complexe. a numerelor complexe z b b arg z. Numere complexe Numere complexe Forma algebrcă a numărulu complex este a b unde a ş b sunt numere reale Numărul a se numeşte partea reală a numărulu complex ş se scre a Re ar numărul b se numeşte partea

Διαβάστε περισσότερα

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian. Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele

Διαβάστε περισσότερα

PROBLEME DE ELECTRICITATE

PROBLEME DE ELECTRICITATE PROBLEME DE ELECTRICITATE 1. Două becuri B 1 şi B 2 au fost construite pentru a funcţiona normal la o tensiune U = 100 V, iar un al treilea bec B 3 pentru a funcţiona normal la o tensiune U = 200 V. Puterile

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.

Διαβάστε περισσότερα

Soluţiile problemelor propuse în nr. 2 / 2006

Soluţiile problemelor propuse în nr. 2 / 2006 Soluţiile problemelor propuse în nr. / 6 Clasele primare P.. În piramida alăturată unelenumeres-auşters de-a lungul timpului. Putem să le punem la loc? (Clasa I ) Ionela Bărăgan, elevă, Iaşi Soluţie. =

Διαβάστε περισσότερα

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL 7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

Puncte de extrem pentru funcţii reale de mai multe variabile reale.

Puncte de extrem pentru funcţii reale de mai multe variabile reale. Puncte de extrem pentru funcţii reale de mai multe variabile reale. Definiţie. Fie f : A R n R. i) Un punct a A se numeşte punct de extrem local pentru f dacă diferenţa f(x) f păstrează semn constant pe

Διαβάστε περισσότερα

3. Vectori şi valori proprii

3. Vectori şi valori proprii Valori şi vectori proprii 7 Vectori şi valori proprii n Reamintim că dacă A este o matrice pătratică atunci un vector x R se numeşte vector propriu în raport cu A dacă x şi există un număr λ (real sau

Διαβάστε περισσότερα

Numere reale 1.Multimea numerelor reale R, impreuna cu doua operatii notate + si precum si cu o relatie notata

Numere reale 1.Multimea numerelor reale R, impreuna cu doua operatii notate + si precum si cu o relatie notata Numere reale 1.Multimea numerelor reale R, impreuna cu doua operatii notate + si precum si cu o relatie notata are urmatoarele proprietati, oricare ar fi x,y,z din R: 1) R este corp comutativ : a) (x+y)+z=x+(y+z)

Διαβάστε περισσότερα

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII

Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Modulul 1 MULŢIMI, RELAŢII, FUNCŢII Subiecte : 1. Proprietăţile mulţimilor. Mulţimi numerice importante. 2. Relaţii binare. Relaţii de ordine. Relaţii de echivalenţă. 3. Imagini directe şi imagini inverse

Διαβάστε περισσότερα

Probleme de la Olimpiadele Internationale de Matematica

Probleme de la Olimpiadele Internationale de Matematica Probleme de la Olimpiadele Internationale de Matematica Student Budescu Angela Grupa 13 1 Cuprins 1. Introducere...3. Scopul si durata...4 3. Obiective cadru (Competente generale)...5 4. Obiective specifice

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

Concursul interjudeńean de matematica REGALUL GENERAłIEI XXI,, 13.x.2007,clasa a IV-a PROPUNATOR TACEA MARIA NINITA AlegeŃi varianta corectă:

Concursul interjudeńean de matematica REGALUL GENERAłIEI XXI,, 13.x.2007,clasa a IV-a PROPUNATOR TACEA MARIA NINITA AlegeŃi varianta corectă: xioma supliment matematic-nr. oncursul interjudeńean de matematica REGLUL GENERłIEI XXI,, 3.x.007,clasa a IV-a PROPUNTOR TE MRI NINIT legeńi varianta corectă:. Într-un microbuz sunt 8 persoane. Microbuzul

Διαβάστε περισσότερα

Elemente de geometrie

Elemente de geometrie 6 Elemente de geometrie ercet=m [i descoperim 1 Puncte şi linii el mai înalt vîrf de pe Pămînt este vîrful Everest (homolungma) din unţii Himalaya. El se află la altitudinea de 8 848 m deasupra nivelului

Διαβάστε περισσότερα

CAPITOLUL 2 VECTORI LIBERI. 2.1 Segment orientat. Vector liber

CAPITOLUL 2 VECTORI LIBERI. 2.1 Segment orientat. Vector liber Algebră liniară CAPITOLUL VECTORI LIBERI. Segment orientat. Vector liber Acest capitol este dedicat în totalitate studierii spaţiului vectorilor liberi, spaţiu cu foarte multe aplicaţii în geometrie, fizică

Διαβάστε περισσότερα

Tema 8 DISTANTE IN SPATIU Prof. Gr. I PIRVU MIHAI Școala gimnazială nr. 43 Ferdinand Constanta

Tema 8 DISTANTE IN SPATIU Prof. Gr. I PIRVU MIHAI Școala gimnazială nr. 43 Ferdinand Constanta Lucrările Centrului Județean de Excelență la Matematică Constanța-015-016 https://015cjemctawikispacescom/home Tema 8 DISTANTE IN SPATIU 001016 Prof Gr I PIRVU MIHAI Școala gimnazială nr 4 Ferdinand Constanta

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIE. Dorel Fetcu

ELEMENTE DE GEOMETRIE. Dorel Fetcu ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială

Διαβάστε περισσότερα