Πρόγραµµα µητρωικής µελέτης κατασκευής gril3d

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πρόγραµµα µητρωικής µελέτης κατασκευής gril3d"

Transcript

1 Παράρτηµα ΣΤ Πρόγραµµα µητρωικής µελέτης κατασκευής gril3d Στο παράρτηµα αυτό περιλαµβάνεται ο πηγαίος κώδικας προγράµµατος επίλυσης κατασκευών στην ελαστική περιοχή, µε τη µητρωική µέθοδο (µέθοδο των µετατοπίσεων). Περιλαµβάνονται επίσης παραδείγµατα αρχείων εισόδου και αντίστοιχων αποτελεσµάτων το πρόγραµµα. Π-57

2 Πρόγραµµα µητρωικής µελέτης κατασκευής (gril3d) Π Linear Elastic Analysis of a 3-D Grillage using the Matrix Stiffness Method This program was developed by Dr. P.A. aridis Department of Naval Architecture and Marine Engineering, NTUA, Athens April Program gril3d.f can be used to analyse the response of a 3-D structure with up to 100 joints. This corresponds to a rectangular grillage having 8 beams in each direction. Array sizes have to be modified should larger structures be considered. - The properties of each beam are allowed to vary although the geometrical and material particulars are assumed constant between joints REAL IZ,IY,K,KMEM,KSS,KS,K11,K12,K21,K22,L,LX,LY,LZ, &LENXZ,LEN1,NU OMMON/real/R(3,3),T(100,12,12),TT(100,12,12),K(12,12 &),P(600),D(600),PJNT(100,6),PMG(100,12),KSS(600,600), &KS(600,600),XJ(100),YJ(100),X1(100),Y1(100),X2(100) &,Y2(100),K11(6,6),K12(6,6),K21(6,6),K22(6,6),ANG(100) &,L(100),PROD(12,12),RED(600,600),PML(100,12),BMOM(100 &,5),SX(100,5),X(5),DMG(100,12),DML(100,12),KMEM(100,1 &2,12),RML(100,12),RMG(100,12),PP(600),PJP(100,6),PFIX &(100,6),RS(600),DMEM(100,5),Z1(100),Z2(100),ZJ(100), &LX(100),LY(100),LZ(100),LENXZ(100),LEN1(100) OMMON/ints/MNO,JNO,ISSNO,ILNO,L,NUMSE,ID(100,6),J &N(100),J1(100),J2(100),ISE(100),IDLIN(600),JNUM(2),N &DOF,IOUT(100),IYLD(100,5),ISPA OMMON/mats/ E(100),NU(100),B(100),TP(100),HW(100),TW( &100),BF(100),TF(100),AREA(100),IZ(100),IY(100),TOR(1 &00),YZZ(100),RADZ(100),ZZ(100),YYY(100),RADY(100),ZY( &100),UDL(100),YS(100) OPEN(5, FILE='gril3.dat') OPEN(6, FILE='gril3.out') Initialisations

3 Π-59 Υπολογιστικές µέθοδοι και εφαρµογές σε λεπτότοιχες κατασκευές ALL INITL L e g e n d ISPA : =1 for space frame, =0 for plane frame MNO : No. of members in structure JNO : No. of joints in structure NUMSE : No. of section types NLOAD : No. of applied external loads ISUPNO : No. of suppressed degrees of freedom IOUT : No. of members for which output is produced XJ(I) : X coord of Ith joint YJ(I) : Y coord of Ith joint ZJ(I) : Z coord of Ith joint E(I),NU(I) : Young's Modulus, Poisson's ratio YS(I) : Yield stress for Ith member B(I),TP(I) : Effective breadth and thickness of plating HW(I),TW(I): Height and thickness of web BF(I),TF(I): Breadth and thickness of flange ISE(I) : Section type for Ith stiffener J1(I) : Joint number at end 1 for Ith member J2(I) : Joint number at end 2 for Ith member PJNT(I) : Load acting on Ith joint with J d.o.f. P(I,J) : Load vector for Ith member and Jth d.o.f. D(I,J) : Displacement vector for Ith joint with J d.o.f ID(I,J) : Identification array for active & suppressed d.o.f READ(5,*) ISPA,MNO,JNO,NUMSE READ(5,*) NLOAD,NUDL,ISUPNO,IOMAX READ(5,*) (I,XJ(I1),YJ(I1),ZJ(I1),I1=1,JNO) READ(5,*) (I,E(I1),NU(I1),YS(I1),B(I1),TP(I1),HW(I1), &TW(I1),BF(I1),TF(I1),I1=1,NUMSE) READ(5,*) (IMEM,ISE(I1),J1(I1),J2(I1), &ANG(I1),I1=1,MNO) IF(NLOAD.NE.0) READ(5,*) (JNT,IDOF,PJNT(JNT, &IDOF),LOD=1,NLOAD) IF(NUDL.NE.0) READ(5,*) (IMEM,UDL(IMEM),LOD=1,NUDL) DO 1 ISUP=1,ISUPNO READ(5,*) JNT,IDOF

4 Πρόγραµµα µητρωικής µελέτης κατασκευής (gril3d) Π-60 1 ID(JNT,IDOF)=1 DO 2 I=1,IOMAX READ(5,*) J 2 IOUT(J)=1 DO 3 IMEM=1,MNO DO 3 I=1,5 3 IYLD(IMEM,I)= Length and orientation angle of each member DO 4 I=1,MNO J=J1(I) X1(I)=XJ(J) Y1(I)=YJ(J) Z1(I)=ZJ(J) J=J2(I) X2(I)=XJ(J) Y2(I)=YJ(J) 4 Z2(I)=ZJ(J) DO 5 I=1,MNO LX(I)=X2(I)-X1(I) LY(I)=Y2(I)-Y1(I) LZ(I)=Z2(I)-Z1(I) XX=LX(I)*LX(I)+LY(I)*LY(I) XY=XX+LZ(I)*LZ(I) L(I)=SQRT(XY) XZ=LX(I)*LX(I)+LZ(I)*LZ(I) LENXZ(I)=SQRT(XZ) LEN1(I)=L(I)*LENXZ(I) IF(ISPA.EQ.1) GO TO 5 RATIO=LY(I)/L(I) ANG(I)=ASIN(RATIO) 5 ONTINUE NDOF=6*JNO Geometrical properties of all sections ALL PROPS Echo of input data ALL INPUT

5 Π-61 Υπολογιστικές µέθοδοι και εφαρµογές σε λεπτότοιχες κατασκευές Assemble member stiffness matrices DO 20 IMEM=1,MNO ALL STIF(IMEM,ISE,E,NU,AREA,L,IZ,IY,TOR,K) WRITE(6,39) IMEM WRITE(6,42) (K(I,J),I=1,12),J=1,12) Member transformation matrix ALL ROT(IMEM,ISPA,ANG,R,T,TT,L,LX,LY,LZ,LEN1,LENXZ) Obtain particular solution with clamped joints for distributed loads IF(UDL(IMEM).EQ.0.0) GO TO 10 ALL PARSOL(IMEM) Reactions at joints due to UDLs a) from member local to member global coords DO 7 J=1,12 PMG(IMEM,J)=0.0 DO 7 I=1,12 7 PMG(IMEM,J)=PMG(IMEM,J)+TT(IMEM,I,J)*PML(IMEM,I) b) from member global to joint global loads due to UDLs JNT1=J1(IMEM) JNT2=J2(IMEM) DO 8 IDOF=1,6 PJP(JNT1,IDOF)=PJP(JNT1,IDOF)+PMG(IMEM,IDOF) PJP(JNT2,IDOF)=PJP(JNT2,IDOF)+PMG(IMEM,IDOF+6) IF(ID(JNT1,IDOF).EQ.1) PFIX(JNT1,IDOF)=PJP(JNT1,IDOF) IF(ID(JNT2,IDOF).EQ.1) PFIX(JNT2,IDOF)=PJP(JNT2,IDOF) IF(ID(JNT1,IDOF).EQ.1) PJP(JNT1,IDOF)=0.0 8 IF(ID(JNT2,IDOF).EQ.1) PJP(JNT2,IDOF)=0.0 olumn load vector containing reactions to UD loads DO 9 JNT=1,JNO DO 9 IDOF=1,6 INOD=6*(JNT-1) 9 PP(INOD+IDOF)=PJP(JNT,IDOF) 10 ONTINUE

6 Πρόγραµµα µητρωικής µελέτης κατασκευής (gril3d) Π-62 Structural load vector including member UDL loads and joint loads DO 11 JNT=1,JNO DO 11 IDOF=1,6 INOD=6*(JNT-1) 11 P(INOD+IDOF)=PJNT(JNT,IDOF)-PP(INOD+IDOF) DO 12 J=1,12 DO 12 I=1,12 12 KMEM(IMEM,I,J)=K(I,J) Transform member stiffness matrix to global coordinate system ALL STIFGL(IMEM) DO 13 JNT=1,JNO DO 13 IDOF=1,6 INOD=6*(JNT-1) 13 IDLIN(INOD+IDOF)=ID(JNT,IDOF) Partition member stiffness matrix DO 14 J=1,6 DO 14 I=1,6 K11(I,J)=K(I,J) K12(I,J)=K(I+6,J) K21(I,J)=K(I,J+6) 14 K22(I,J)=K(I+6,J+6) WRITE(*,101)IMEM PRINT *,IMEM IF(IOUT(IMEM).EQ.0) GO TO 15 WRITE(6,45) IMEM WRITE(6,44) ((R(I,J),I=1,3),J=1,3) WRITE(6,46) IMEM WRITE(6,42) ((T(IMEM,I,J),I=1,12),J=1,12) WRITE(6,47) IMEM WRITE(6,42) ((TT(IMEM,I,J),I=1,12),J=1,12) WRITE(6,34) IMEM WRITE(6,42) ((K(I,J),I=1,12),J=1,12) WRITE(6,35) IMEM WRITE(6,43) ((K11(I,J),I=1,6),J=1,6) WRITE(6,36) IMEM WRITE(6,43) ((K12(I,J),I=1,6),J=1,6) WRITE(6,37) IMEM WRITE(6,43) ((K21(I,J),I=1,6),J=1,6) WRITE(6,38) IMEM

7 Π-63 Υπολογιστικές µέθοδοι και εφαρµογές σε λεπτότοιχες κατασκευές WRITE(6,43) ((K22(I,J),I=1,6),J=1,6) Form structural stiffness matrix {K} using the direct stiffness method 15 JNUM1=J1(IMEM) JF=1+6*(JNUM1-1) IF=JF DO 16 J=JF,JF+5 JEL=J-JF+1 DO 16 I=IF,IF+5 IEL=I-IF+1 16 KS(I,J)=KS(I,J)+K11(IEL,JEL) JNUM2=J2(IMEM) IF=1+6*(JNUM2-1) JF=1+6*(JNUM1-1) DO 17 J=1,6 DO 17 I=1,6 IS=IF-1+I JS=JF-1+J 17 KS(IS,JS)=KS(IS,JS)+K12(I,J) IF=1+6*(JNUM1-1) JF=1+6*(JNUM2-1) DO 18 J=1,6 DO 18 I=1,6 IS=IF-1+I JS=JF-1+J 18 KS(IS,JS)=KS(IS,JS)+K21(I,J) IF=1+6*(JNUM2-1) JF=1+6*(JNUM2-1) DO 19 J=1,6 DO 19 I=1,6 IS=IF-1+I JS=JF-1+J 19 KS(IS,JS)=KS(IS,JS)+K22(I,J) 20 ONTINUE WRITE(*,102) DO 21 J=1,NDOF DO 21 I=1,NDOF 21 KSS(I,J)=KS(I,J) Obtain reduced structural stiffness matrix DO 22 J=1,NDOF DO 22 I=1,NDOF IF((IDLIN(J).EQ.1).AND.(I.EQ.J)) KS(I,J)= IF((IDLIN(J).EQ.1).AND.(I.NE.J)) KS(I,J)=0.0

8 Πρόγραµµα µητρωικής µελέτης κατασκευής (gril3d) Π-64 DO 23 I=1,NDOF DO 23 J=1,NDOF 23 IF((KS(I,I).EQ.0.0).AND.(J.NE.I)) KS(I,J)=0.0 DO 24 J=1,NDOF DO 24 I=1,NDOF 24 RED(I,J)=KS(I,J) DO 25 I=1,NDOF 25 IF(IDLIN(J).EQ.1) P(J)=0.0 WRITE(*,103) Solve reduced system of equations using Gauss elimination a) Stiffness matrix DO 26 I=1,NDOF-1 DO 26 J=1,NDOF IF(J.LE.I) GO TO 26 IF(KS(I,J).EQ.0.0) GO TO 26 FATOR=KS(I,J)/KS(I,I) KS(I,J)=KS(I,J)-FATOR*KS(I,I) DO 27 M=I+1,NDOF 27 KS(M,J)=KS(M,J)-FATOR*KS(M,I) b) Load vector P(J)=P(J)-FATOR*P(I) 26 ONTINUE WRITE(*,104) heck ill-conditioning of stiffness matrix IONT=1 DO 28 I=1,NDOF IF(KS(I,I).LT.0.0) WRITE(*,40) I,KS(I,I) IF(KS(I,I).EQ.0.0) IONT=0 28 IF(KS(I,I).EQ.0.0) WRITE(*,41) I IF(IONT.EQ.0) GO TO 100 Back-substitute to obtain displacement vector DO 29 JJ=1,NDOF J=NDOF-JJ+1 SUM=0.0 DO 30 I=J+1,NDOF 30 SUM=SUM+KS(I,J)*D(I) 29 D(J)=(P(J)-SUM)/KS(J,J) WRITE(*,105)

9 Π-65 Υπολογιστικές µέθοδοι και εφαρµογές σε λεπτότοιχες κατασκευές Structure load vector {R} (incl. reactions at supports) DO 31 J=1,NDOF RS(J)=0.0 DO 31 I=1,NDOF 31 RS(J)=RS(J)+KSS(I,J)*D(I) Structure load vector {R} including reactions due to UD loads DO 32 I=1,NDOF 32 RS(I)=RS(I)+PP(I) DO 33 JNT=1,JNO DO 33 IDOF=1,6 INOD=6*(JNT-1) 33 RS(INOD+IDOF)=RS(INOD+IDOF)+PFIX(JNT,IDOF) Obtain member load vectors in local coordinates ALL LOAD Output WRITE(*,106) ALL OUT GO TO FORMAT(3(10X,G12.5)) 39 FORMAT(//,25X,'Member No. ',I2,' - Stiffness matrix &{k}',//) 45 FORMAT(//,25X,'Member No. ',I2,' - Rotation matrix &{Ro}',//) 46 FORMAT(//,25X,'Member No. ',I2,' - Transformation &matrix {T}',//) 47 FORMAT(//,25X,'Member No. ',I2,' - Transpose of &Transformation matrix {Tt}',//) 34 FORMAT(//,25X,'Member No. ',I2, &' - Stiffness matrix {k',1h','} (={Tt}{k}{T})',//) 35 FORMAT(//,25X,'Member No. ',I2, &' - Partitioned stiffness matrix {k11',1h','}',//) 36 FORMAT(//,25X,'Member No. ',I2, &' - Partitioned stiffness matrix {k12',1h','}',//) 37 FORMAT(//,25X,'Member No. ',I2, &' - Partitioned stiffness matrix {k21',1h','}',//) 38 FORMAT(//,25X,'Member No. ',I2, &' - Partitioned stiffness matrix {k22',1h','}',//) 40 FORMAT(//,5X,'*** WARNING - Negative Diagonal Term &I = ',I2,5X,'KS = ',G12.5,//) 41 FORMAT(//,5X,'*** WARNING - I = ',I2,5X, &'Stiffness Matrix Found Indeterminate', &//,25X,'PROGRAM ABORTS',/)

10 Πρόγραµµα µητρωικής µελέτης κατασκευής (gril3d) Π FORMAT(12(2X,G9.2)) 43 FORMAT(6(5X,G12.5)) 101 FORMAT(/,5X,'Member stiffness matrix {k} no',i3,' &partitioned',/) 102 FORMAT(/,5X,'Structural stiffness matrix {K} &assembled',//) 103 FORMAT(5X,'Reduction of {K} accomplished',//) 104 FORMAT(5X,'Upper triangular form of {K} obtained',//) 105 FORMAT(5X,'Displacements at all joints obtained',//) 106 FORMAT(5X,'Reactions at all joints obtained &Solution completed',//) 200 FORMAT(5X,'I = ',I2,2X,'M = ',I2,2X,'J = ',I2,2X,'KS &',G12.5) 203 FORMAT(' I = ',I2,' IDOF= ',I2,' RS = ',G12.5) 100 ALL OUT 34 ONTINUE STOP END

11 Π-67 Υπολογιστικές µέθοδοι και εφαρµογές σε λεπτότοιχες κατασκευές SUBROUTINE INITL OMMON/real/ VAR1( ) OMMON/mats/ VAR3(2000) OMMON/ints/ IVAR(2210) Initialisations DO 1 I=1, VAR1(I)=0.0 DO 3 I=1, VAR3(I)=0.0 DO 5 I=1, IVAR(I)=0 RETURN END SUBROUTINE PROPS REAL IY,IZ,NU OMMON/mats/ E(100),NU(100),B(100),TP(100),HW(100), &TW(100),BF(100),TF(100),AREA(100),IZ(100),IY(100),TOR &(100),YZZ(100),RADZ(100),ZZ(100),YYY(100),RADY(100), &ZY(100),UDL(100),YS(100) OMMON/ints/MNO,JNO,ISSNO,ILNO,L,NUMSE,ID(100,6),J &N(100),J1(100),J2(100),ISE(100),IDLIN(600),JNUM(2),N &DOF,IOUT(100),IYLD(100,5),ISPA Section properties for flat plating and attached stiffeners DO 1 I=1,NUMSE AP=B(I)*TP(I) AW=HW(I)*TW(I) AF=BF(I)*TF(I) AREA(I)=AP+AW+AF IF(BF(I).EQ.0.0) TF(I)=0.0 IF(TF(I).EQ.0.0) BF(I)=0.0 Flatbar stiffener IF(BF(I).NE.0.0) GO TO 2 YZZ(I)=(AP*TP(I)/2.0+AW*(TP(I)+HW(I)/2.0))/AREA(I) GF1=B(I)/2.0 YYY(I)=(AP+AW)*GF1/AREA(I) IZ(I)=(B(I)*(TP(I)**3.0)+(HW(I)**3.0)*TW(I))/12.0+ &(HW(I)/2.0+TP(I)-YZZ(I))**2.0+HW(I)*TW(I)+ &B(I)*TP(I)*(YZZ(I)-TP(I)/2.0)**2.0 IY(I)=(AP*B(I)*B(I)+AW*TW(I)*TW(I))/12.0+ &AREA(I)*(B(I)-YYY(I))*(B(I)-YYY(I))

12 Πρόγραµµα µητρωικής µελέτης κατασκευής (gril3d) Π-68 GO TO 3 b) T-bar or angle-bar stiffener 2 YZZ(I)=(B(I)*(TP(I)**2.0)/2.0+(HW(I)**2.0)* &TW(I)/2.0+HW(I)*TP(I)*TW(I)+BF(I)*TF(I)*HW(I)+ &BF(I)*TF(I)*TP(I)+BF(I)*(TF(I)**2.0)/2. &0)/(B(I)*TP(I)+HW(I)*TW(I)+BF(I)*TF(I)) GF1=B(I)/2.0 GF2=GF1 IANG=0 IF(IANG.EQ.1) GF2=GF2+BF(I)/2.0 YYY(I)=((AP+AW)*GF1+AF*GF2)/AREA(I) IZ(I)=(B(I)*(TP(I)**3.0)+TW(I)*(HW(I)**3.0)+ &BF(I)*(TF(I)**3.0))/12.0+B(I)*TP(I)*(YZZ(I)- &TP(I)/2.0)**2.0+HW(I)*TW(I)*(HW(I)/2.0+TP(I) &-YZZ(I))**2.0+BF(I)*TF(I)*(HW(I)+TP(I)+TF(I)/2.0 &-YZZ(I))**2. IY(I)=(AP*B(I)*B(I)+AW*TW(I)*TW(I)+AF*BF(I)* &BF(I))/12.0+AREA(I)*(B(I)-YYY(I))*(B(I)-YYY(I)) 3 ONTINUE RADZ(I)=SQRT(IZ(I)/AREA(I)) RADY(I)=SQRT(IY(I)/AREA(I)) ZZ(I)=IZ(I)/YZZ(I) ZY(I)=IY(I)/YYY(I) TOR1=0.0 TOR(I)=AP*TP(I)*TP(I)+AW*TW(I)*TW(I)+AF*TF(I)*TF(I) TOR(I)=TOR(I)/3.0 1 ONTINUE RETURN END

13 Π-69 Υπολογιστικές µέθοδοι και εφαρµογές σε λεπτότοιχες κατασκευές SUBROUTINE PARSOL(IMEM) REAL IZ,IY,K,KMEM,KSS,KS,K11,K12,K21,K22,L,LX,LY,LZ, &LENXZ,LEN1,NU OMMON/real/R(3,3),T(100,12,12),TT(100,12,12),K(12,12 &),P(600),D(600),PJNT(100,6),PMG(100,12),KSS(600,600), &KS(600,600),XJ(100),YJ(100),X1(100),Y1(100),X2(100) &,Y2(100),K11(6,6),K12(6,6),K21(6,6),K22(6,6),ANG(100) &,L(100),PROD(12,12),RED(600,600),PML(100,12),BMOM(100 &,5),SX(100,5),X(5),DMG(100,12),DML(100,12),KMEM(100,1 &2,12),RML(100,12),RMG(100,12),PP(600),PJP(100,6),PFIX &(100,6),RS(600),DMEM(100,5),Z1(100),Z2(100),ZJ(100), &LX(100),LY(100),LZ(100),LENXZ(100),LEN1(100) OMMON/ints/MNO,JNO,ISSNO,ILNO,L,NUMSE,ID(100,6),J &N(100),J1(100),J2(100),ISE(100),IDLIN(600),JNUM(2),N &DOF,IOUT(100),IYLD(100,5),ISPA OMMON/mats/ E(100),NU(100),B(100),TP(100),HW(100),TW &(100),BF(100),TF(100),AREA(100),IZ(100),IY(100),TOR( &100),YZZ(100),RADZ(100),ZZ(100),YYY(100),RADY(100),ZY &(100),UDL(100),YS(100) Reactions pz1, pz2 and moments mz1, mz2 on loaded mem ber PML(IMEM,3)=-UDL(IMEM)*L(IMEM)/2.0 PML(IMEM,9)=PML(IMEM,3) PML(IMEM,5)=-UDL(IMEM)*L(IMEM)*L(IMEM)/12.0 PML(IMEM,11)=-PML(IMEM,5) RETURN END

14 Πρόγραµµα µητρωικής µελέτης κατασκευής (gril3d) Π-70 SUBROUTINE STIF(I,ISE,E,NU,AREA,L,IZ,IY,TOR,K) REAL IY,IZ,K,L,L1,L2,L3,NU DIMENSION E(100),NU(100),AREA(100),IZ(100),IY(100), &TOR(100),K(12,12),L(100),ISE(100) IS=ISE(I) L1=1.0/L(IS) L2=1.0/(L(IS)*L(IS)) L3=1.0/(L(IS)*L(IS)*L(IS)) TORQ=TOR(IS)/(2.0*L(IS)*(1.0+NU(IS))) DO 1 J1=1,12 DO 1 J2=1,12 1 K(J1,J2)=0.0 Non-zero upper triangular elements of member stiffness matrix {k} K(1,1) =+AREA(IS)*L1 K(7,1) =-AREA(IS)*L1 K(2,2) =+12.0*IZ(IS)*L3 K(6,2) =+6.0*IZ(IS)*L2 K(8,2) =-12.0*IZ(IS)*L3 K(12,2) =+6.0*IZ(IS)*L2 K(3,3) =+12.0*IY(IS)*L3 K(5,3) =-6.0*IY(IS)*L2 K(9,3) =-12.0*IY(IS)*L3 K(11,3) =-6.0*IY(IS)*L2 K(4,4) =+TORQ K(10,4) =-TORQ K(5,5) =+4.0*IY(IS)*L1 K(9,5) =+6.0*IY(IS)*L2 K(11,5) =+2.0*IY(IS)*L1 K(6,6) =+4.0*IZ(IS)*L1 K(8,6) =-6.0*IZ(IS)*L2 K(12,6) =+2.0*IZ(IS)*L1 K(7,7) =+AREA(IS)*L1 K(8,8) =+12.0*IZ(IS)*L3 K(12,8) =-6.0*IZ(IS)*L2 K(9,9) =+12.0*IY(IS)*L3 K(11,9) =+6.0*IY(IS)*L2 K(10,10)=+TORQ K(11,11)=+4.0*IY(IS)*L1 K(12,12)=+4.0*IZ(IS)*L1 Symmetry about leading diagonal DO 2 J1=1,12 DO 2 I1=1,12

15 Π-71 Υπολογιστικές µέθοδοι και εφαρµογές σε λεπτότοιχες κατασκευές K(I1,J1)=E(IS)*K(I1,J1) 2 IF(J1.GT.I1) K(I1,J1)=K(J1,I1) RETURN END SUBROUTINE ROT(I,ISPA,ANG,R,T,TT,L,LX,LY,LZ, LEN1,LENXZ) REAL L,LX,LY,LZ,LEN1,LENXZ DIMENSION T(100,12,12),TT(100,12,12),R(3,3),ANG(100), &L(100),LX(100),LY(100),LZ(100),LEN1(100),LENXZ(100) Rotation Matrix {Ro} SS=SIN(ANG(I)) S=OS(ANG(I)) ABSS=ABS(SS) ABS=ABS(S) IF(ABSS.LT.0.10E-02) SS=0.0 IF(ABS.LT.0.10E-02) S=0.0 IF(ISPA.EQ.1) GO TO 1 R(1,1)=S R(2,1)=SS R(1,2)=-SS R(2,2)=S R(3,3)=1.0 GO TO 2 1 R(1,1)=LX(I)/L(I) R(2,1)=LY(I)/L(I) R(3,1)=LZ(I)/L(I) R(1,2)=-LX(I)*LY(I)*S R(1,2)=R(1,2)-L(I)*LZ(I)*SS R(1,2)=R(1,2)/LEN1(I) R(2,2)=LENXZ(I)*S/L(I) R(3,2)=-LY(I)*LZ(I)*S R(3,2)=R(3,2)+L(I)*LX(I)*SS R(3,2)=R(3,2)/LEN1(I) R(1,3)=LX(I)*LY(I)*SS R(1,3)=R(1,3)-L(I)*LZ(I)*S R(1,3)=R(1,3)/LEN1(I) R(2,3)=-LENXZ(I)*SS/L(I) R(3,3)=LY(I)*LZ(I)*SS R(3,3)=R(3,3)+L(I)*LX(I)*S R(3,3)=R(3,3)/LEN1(I) ISET=0 IF((LX(I).EQ.0.0).AND.(LZ(I).EQ.0.0)) ISET=1 IF(ISET.EQ.0) GO TO 3 R(1,2)=1.0 R(3,2)=1.0

16 Πρόγραµµα µητρωικής µελέτης κατασκευής (gril3d) Π-72 R(1,3)=1.0 R(3,3)=1.0 3 ONTINUE Transformation Matrix {T} 2 T(I,1,1)=R(1,1) T(I,2,1)=R(2,1) T(I,1,2)=R(1,2) T(I,2,2)=R(2,2) T(I,3,3)=R(3,3) T(I,4,4)=R(1,1) T(I,5,4)=R(2,1) T(I,4,5)=R(1,2) T(I,5,5)=R(2,2) T(I,6,6)=R(3,3) T(I,7,7)=R(1,1) T(I,8,7)=R(2,1) T(I,7,8)=R(1,2) T(I,8,8)=R(2,2) T(I,9,9)=R(3,3) T(I,10,10)=R(1,1) T(I,11,10)=R(2,1) T(I,10,11)=R(1,2) T(I,11,11)=R(2,2) T(I,12,12)=R(3,3) Transpose of transformation matrix {Tt} DO 4 J=1,12 DO 4 I1=1,12 4 TT(I,I1,J)=T(I,J,I1) RETURN END

17 Π-73 Υπολογιστικές µέθοδοι και εφαρµογές σε λεπτότοιχες κατασκευές SUBROUTINE STIFGL(IMEM) REAL K,KMEM,KSS,KS,K11,K12,K21,K22,L,LX,LY,LZ &,LENXZ,LEN1 OMMON/real/R(3,3),T(100,12,12),TT(100,12,12),K(12,12 &),P(600),D(600),PJNT(100,6),PMG(100,12),KSS(600,600), &KS(600,600),XJ(100),YJ(100),X1(100),Y1(100),X2(100) &,Y2(100),K11(6,6),K12(6,6),K21(6,6),K22(6,6),ANG(100) &,L(100),PROD(12,12),RED(600,600),PML(100,12),BMOM(100 &,5),SX(100,5),X(5),DMG(100,12),DML(100,12),KMEM(100,1 &2,12),RML(100,12),RMG(100,12),PP(600),PJP(100,6),PFIX &(100,6),RS(600),DMEM(100,5),Z1(100),Z2(100),ZJ(100), &LX(100),LY(100),LZ(100),LENXZ(100),LEN1(100) Member stiffness matrix in global coordinates {k'} DO 1 J=1,12 DO 1 I=1,12 SUM=0.0 DO 2 M=1,12 2 SUM=SUM+K(M,J)*T(IMEM,I,M) PROD(I,J)=SUM 1 ONTINUE DO 3 J=1,12 DO 3 I=1,12 SUM=0.0 DO 4 M=1,12 4 SUM=SUM+TT(IMEM,M,J)*PROD(I,M) K(I,J)=SUM 3 ONTINUE RETURN END

18 Πρόγραµµα µητρωικής µελέτης κατασκευής (gril3d) Π-74 SUBROUTINE LOAD REAL IZ,IY,K,KMEM,KSS,KS,K11,K12,K21,K22,L,LX,LY,LZ, &LENXZ,LEN1,NU OMMON/real/R(3,3),T(100,12,12),TT(100,12,12),K(12,12 &),P(600),D(600),PJNT(100,6),PMG(100,12),KSS(600,600), &KS(600,600),XJ(100),YJ(100),X1(100),Y1(100),X2(100) &,Y2(100),K11(6,6),K12(6,6),K21(6,6),K22(6,6),ANG(100) &,L(100),PROD(12,12),RED(600,600),PML(100,12),BMOM(100 &,5),SX(100,5),X(5),DMG(100,12),DML(100,12),KMEM(100,1 &2,12),RML(100,12),RMG(100,12),PP(600),PJP(100,6),PFIX &(100,6),RS(600),DMEM(100,5),Z1(100),Z2(100),ZJ(100), &LX(100),LY(100),LZ(100),LENXZ(100),LEN1(100) OMMON/ints/MNO,JNO,ISSNO,ILNO,L,NUMSE,ID(100,6),J &N(100),J1(100),J2(100),ISE(100),IDLIN(600),JNUM(2),N &DOF,IOUT(100),IYLD(100,5),ISPA OMMON/mats/ E(100),NU(100),B(100),TP(100),HW(100),TW &(100),BF(100),TF(100),AREA(100),IZ(100),IY(100),TOR( &100),YZZ(100),RADZ(100),ZZ(100),YYY(100),RADY(100),ZY &(100),UDL(100),YS(100) DMG - member displacement vectors in global co-ordinates {r'} DO 8 IMEM=1,MNO X(1)=0.0 X(2)=L(IMEM)*0.25 X(3)=L(IMEM)*0.50 X(4)=L(IMEM)*0.75 X(5)=L(IMEM) JN1=J1(IMEM) JN2=J2(IMEM) DO 1 IDOF=1,6 JF=6*(JN1-1) 1 DMG(IMEM,IDOF)=D(JF+IDOF) DO 2 IDOF=1,6 JF=6*(JN2-1) 2 DMG(IMEM,6+IDOF)=D(JF+IDOF) DML - member displacement vectors in local coordinates {r}={t}{r'} DO 3 J=1,12 DML(IMEM,J)=0.0 DO 3 I=1,12 3 DML(IMEM,J)=DML(IMEM,J)+T(IMEM,I,J)*DMG(IMEM,I) ISNO=ISE(IMEM)

19 Π-75 Υπολογιστικές µέθοδοι και εφαρµογές σε λεπτότοιχες κατασκευές DENOM=24.0*E(ISNO)*IZ(ISNO) UDL1=UDL(IMEM)/DENOM DO 4 I=1,5 1=X(I)-L(IMEM) 2=1*1 3=X(I)*X(I) DMEM(IMEM,I)=UDL1*3*2 4=X(I)/L(IMEM) 5=DML(IMEM,9)-DML(IMEM,3) 6=DML(IMEM,3)+5*4 4 DMEM(IMEM,I)=DMEM(IMEM,I)+6 RML - member load vectors in local coords {p}={k}{r} DO 5 J=1,12 RML(IMEM,J)=0.0 DO 5 I=1,12 5 RML(IMEM,J)=RML(IMEM,J)+KMEM(IMEM,I,J)*DML(IMEM,I) RMG - member load vectors in global coords {p'}={tt}{p} DO 9 J=1,12 RMG(IMEM,J)=0.0 DO 9 I=1,12 9 RMG(IMEM,J)=RMG(IMEM,J)+TT(IMEM,I,J)*RML(IMEM,J) Bending Moments in each member (at x=0, L/4, L/2, 3L/4, L) L6 =L(IMEM)/6.0 UDL2=UDL(IMEM)/12.0 DO 6 I=1,5 1=X(I)-L(IMEM) 2=6.0*X(I)*1 3=L(IMEM)*L(IMEM) 4=2+3 BMOM(IMEM,I)=UDL2*4 5=RML(IMEM,11)+RML(IMEM,5) 6=X(I)/L(IMEM) 7=5*6 8=RML(IMEM,5)-7 BMOM(IMEM,I)=BMOM(IMEM,I)+8 6 WRITE(*,13) IMEM,I,BMOM,8,7,6,5,4,3,2,1 13 FORMAT(2(2X,I2),9(2X,G10.3)) Maximum total stresses in each member at each location YMAX=HW(ISNO)+TP(ISNO)+TF(ISNO)-YZZ(ISNO) IF(YMAX.LT.YZZ(ISNO)) YMAX=YZZ(ISNO)

20 Πρόγραµµα µητρωικής µελέτης κατασκευής (gril3d) Π-76 ZMIN=IZ(ISNO)/YMAX SX=PML(IMEM,1)/AREA(ISNO) DO 7 I=1,5 SXB=BMOM(IMEM,I)/ZMIN SX(IMEM,I)=SXB+SX Design criterion STRES=1.2*ABS(SX(IMEM,I)) IF(STRES.GT.YS(ISNO)) IYLD(IMEM,I)=1 7 ONTINUE 8 ONTINUE RETURN END

21 Π-77 Υπολογιστικές µέθοδοι και εφαρµογές σε λεπτότοιχες κατασκευές SUBROUTINE INPUT REAL IZ,IY,K,KMEM,KSS,KS,K11,K12,K21,K22,L,LX,LY,LZ, &LENXZ,LEN1,NU OMMON/real/R(3,3),T(100,12,12),TT(100,12,12),K(12,12 &),P(600),D(600),PJNT(100,6),PMG(100,12),KSS(600,600), &KS(600,600),XJ(100),YJ(100),X1(100),Y1(100),X2(100) &,Y2(100),K11(6,6),K12(6,6),K21(6,6),K22(6,6),ANG(100) &,L(100),PROD(12,12),RED(600,600),PML(100,12),BMOM(100 &,5),SX(100,5),X(5),DMG(100,12),DML(100,12),KMEM(100,1 &2,12),RML(100,12),RMG(100,12),PP(600),PJP(100,6),PFIX &(100,6),RS(600),DMEM(100,5),Z1(100),Z2(100),ZJ(100), &LX(100),LY(100),LZ(100),LENXZ(100),LEN1(100) OMMON/ints/MNO,JNO,ISSNO,ILNO,L,NUMSE,ID(100,6),J &N(100),J1(100),J2(100),ISE(100),IDLIN(600),JNUM(2),N &DOF,IOUT(100),IYLD(100,5),ISPA OMMON/mats/ E(100),NU(100),B(100),TP(100),HW(100),TW &(100),BF(100),TF(100),AREA(100),IZ(100),IY(100),TOR( &100),YZZ(100),RADZ(100),ZZ(100),YYY(100),RADY(100),ZY &(100),UDL(100),YS(100) 90 FORMAT(20(/),30X,25('. ')) 91 FORMAT(30X, &'. Linear Elastic Analysis of a 3-D Grillage.') 92 FORMAT(30X, &'. using the Matrix Stiffness Method.') 93 FORMAT(30X,25('. '),35(/)) 94 FORMAT(30X,'.',47X,'.') 10 FORMAT(6X,'No of members',2x,i3,6x,'no of &joints',2x,i3,6x,'no of section types',2x,i2,//) 11 FORMAT(/,6X,'Joint No.',16X,'X oord',20x,'y o &ord',20x,'z oord',//) 12 FORMAT(/,6X,'Member No',4X,'Jnt No. at end 1',4X, &'Jnt No at end 2',4X,'Section No.',5X,'Length',14X, &'Angle',//) 88 FORMAT(//,2X,'Sect No',6X,'E',10X,'nu',12X,'ys',12X, &'bp',13x,'tp',12x,'hw',12x,'tw',12x,'bf',12x,'tf' &,/,13X,'N/mm2',20X,'N/mm2',12X,'mm',12X,'mm', &12X,'mm',12X,'mm',12X,'mm',12X,'mm2',//) 95 FORMAT(//,2X,'Sect No',4X,'Yzz',11X,'Izz',11X,'Zzz', &11X,'Rzz',11X,'Yyy',12X,'Iyy',10X,'Zyy',11X,'Ryy', &15X,'J',/,12X,' mm',12x,'mm4',11x,'mm3',11x,'mm',12x, &'mm',12x,'mm4',10x,'mm3',11x,'mm',14x,'mm4',//) 89 FORMAT(5X,I2,10(2X,G12.5)) 14 FORMAT(25X,'Joint Loads',//,15X,'Joint &No.',10X,'Degree of freedom no. ',10X,'Load',//) 37 FORMAT(//,25X,'Uniformly Distributed Loads', &//,15X,'Member No.',21X,'Load',//) 15 FORMAT(34X,'Suppressions',//28X,'Joint No.',10X, &'d.o.f.',//) 23 FORMAT(//,6X,'Member No. d.o.f. Applied

22 Πρόγραµµα µητρωικής µελέτης κατασκευής (gril3d) Π-78 &load',//) 21 FORMAT(/,22X,'Member No ',I2,12X,'Uniformly distrib &uted load = ',G12.5,' N/mm') 26 FORMAT(8X,I3,19X,F8.2,19X,F8.2,19X,F8.2) 27 FORMAT(10X,I2,15X,I2,18X,I2,14X,I2,9X,F9.3,9X,F9.3) 28 FORMAT(5X,I3,6(4X,G12.5)) 29 FORMAT(//) 35 FORMAT(32X,I2,15X,I2) 36 FORMAT(18X,I2,23X,I2,18X,G12.5) 38 FORMAT(18X,I2,23X,F8.3) Screen output WRITE(*,29) WRITE(*,10) MNO,JNO,NUMSE WRITE(*,11) WRITE(*,26) (I,XJ(I),YJ(I),ZJ(I),I=1,JNO) WRITE(*,29) WRITE(*,12) WRITE(*,27) (I,J1(I),J2(I),ISE(I),L(I), &ANG(I),I=1,MNO) WRITE(*,29) WRITE(*,88) DO 5 I=1,NUMSE 5 WRITE(*,89) I,E(I),NU(I),YS(I),B(I),TP(I), &HW(I),TW(I),BF(I),TF(I) WRITE(*,95) DO 6 I=1,NUMSE 6 WRITE(*,89) I,YZZ(I),IZ(I),ZZ(I),RADZ(I),YYY(I),IY(I), &ZY(I),RADY(I),TOR(I) WRITE(*,29) WRITE(*,14) DO 1 JNT=1,JNO DO 1 IDOF=1,6 1 IF(PJNT(JNT,IDOF).NE.0.0) WRITE(*,36) JNT,IDOF, &PJNT(JNT,IDOF) WRITE(*,29) WRITE(*,15) DO 2 JNT=1,JNO DO 2 IDOF=1,6 2 IF(ID(JNT,IDOF).EQ.1) WRITE(*,35) JNT,IDOF File output WRITE(6,90) WRITE(6,94) WRITE(6,94) WRITE(6,91) WRITE(6,94)

23 Π-79 Υπολογιστικές µέθοδοι και εφαρµογές σε λεπτότοιχες κατασκευές WRITE(6,94) WRITE(6,92) WRITE(6,94) WRITE(6,94) WRITE(6,93) WRITE(6,29) WRITE(6,10) MNO,JNO,NUMSE WRITE(6,11) WRITE(6,26) (I,XJ(I),YJ(I),ZJ(I),I=1,JNO) WRITE(6,29) WRITE(6,12) WRITE(6,27) (I,J1(I),J2(I),ISE(I),L(I), &ANG(I),I=1,MNO) WRITE(6,29) WRITE(6,88) DO 8 I=1,NUMSE 8 WRITE(6,89) I,E(I),NU(I),YS(I),B(I),TP(I),HW(I),TW(I), &BF(I),TF(I) WRITE(6,95) DO 9 I=1,NUMSE 9 WRITE(6,89) I,YZZ(I),IZ(I),ZZ(I),RADZ(I),YYY(I),IY(I), &ZY(I),RADY(I),TOR(I) WRITE(6,29) WRITE(6,14) DO 3 JNT=1,JNO DO 3 IDOF=1,6 3 IF(PJNT(JNT,IDOF).NE.0.0) WRITE(6,36) JNT,IDOF, &PJNT(JNT,IDOF) WRITE(6,37) DO 7 IMEM=1,MNO 7 IF(UDL(IMEM).NE.0.0) WRITE(6,38) IMEM,UDL(IMEM) WRITE(6,29) WRITE(6,15) DO 4 JNT=1,JNO DO 4 IDOF=1,6 4 IF(ID(JNT,IDOF).EQ.1) WRITE(6,35) JNT,IDOF RETURN END

24 Πρόγραµµα µητρωικής µελέτης κατασκευής (gril3d) Π-80 SUBROUTINE OUT REAL IZ,IY,K,KMEM,KSS,KS,K11,K12,K21,K22,L,LX,LY,LZ, &LENXZ,LEN1,NU OMMON/real/R(3,3),T(100,12,12),TT(100,12,12),K(12,12 &),P(600),D(600),PJNT(100,6),PMG(100,12),KSS(600,600), &KS(600,600),XJ(100),YJ(100),X1(100),Y1(100),X2(100) &,Y2(100),K11(6,6),K12(6,6),K21(6,6),K22(6,6),ANG(100) &,L(100),PROD(12,12),RED(600,600),PML(100,12),BMOM(100 &,5),SX(100,5),X(5),DMG(100,12),DML(100,12),KMEM(100,1 &2,12),RML(100,12),RMG(100,12),PP(600),PJP(100,6),PFIX &(100,6),RS(600),DMEM(100,5),Z1(100),Z2(100),ZJ(100), &LX(100),LY(100),LZ(100),LENXZ(100),LEN1(100) OMMON/ints/MNO,JNO,ISSNO,ILNO,L,NUMSE,ID(100,6),J &N(100),J1(100),J2(100),ISE(100),IDLIN(600),JNUM(2),N &DOF,IOUT(100),IYLD(100,5),ISPA OMMON/mats/ E(100),NU(100),B(100),TP(100),HW(100),TW &(100),BF(100),TF(100),AREA(100),IZ(100),IY(100),TOR( &100),YZZ(100),RADZ(100),ZZ(100),YYY(100),RADY(100),ZY& (100),UDL(100),YS(100) 10 FORMAT(//,25X,'Structural stiffness matrix {K} &(={Tt}{k}{T}',//) 11 FORMAT(//,25X,'Reduced structural stiffness matrix &{K}',//) 12 FORMAT(//,25X,'Upper triangular form of the reduced' &'structural stiffness matrix {K}',//) 20 FORMAT(/,5X,'Member No.',I2,6X,'{r',2H'},11X, &'{p',2h'},11x,'{r}',11x,'{p}',/) 13 FORMAT(//,18X,'Displacements and support reactions &(global coords)',//,33x,'{d}',12x,'{p}',//) 16 FORMAT(//,8X,'Member No. ',25X,'Bending Mo &ments',//,23x,'o',13x,'l/4',12x,'l/2',12x, &'3L/4',11X,'L',/) 17 FORMAT(//,8X,'Member No.',20X,'Max total stresses &{s}',//,23x,'0',12x,'l/4',12x,'l/2',12x, &'3L/4',11X,'L',/) 23 FORMAT(//,8X,'Member No.',20X,'Deflections along mem &ber length',//,23x,'0',12x,'l/4',12x,'l/2',12x, &'3L/4',11X,'L',/) 24 FORMAT(//,8X,'Member No.',20X,'Member loads &{p',2h'},//,23x,'3',13x,'4',13x,'5',13x,'9', &13X,'10',12X,'11',/) 21 FORMAT(/,11X,'Yielding is occurring in the following &members',//,10x,'no.',10x,'member No.',11X, &'Longl bend. stress',/) 14 FORMAT(7(2X,G12.5)) 15 FORMAT(15X,I3,10X,2(2X,G12.5)) 16 FORMAT(12(2X,G9.2)) 19 FORMAT(15X,I2,5(2X,G12.5))

25 Π-81 Υπολογιστικές µέθοδοι και εφαρµογές σε λεπτότοιχες κατασκευές 24 FORMAT(9X,I3,13X,I3,14X,G12.5) 26 FORMAT(15X,I2,6(2X,G12.5)) WRITE(6,10) WRITE(6,16) ((KSS(I,J),I=1,12),J=1,NDOF) WRITE(6,10) WRITE(6,16) ((KSS(I,J),I=13,24),J=1,NDOF) WRITE(6,11) WRITE(6,16) ((RED(I,J),I=1,12),J=1,NDOF) WRITE(6,11) WRITE(6,16) ((RED(I,J),I=13,24),J=1,NDOF) WRITE(6,12) WRITE(6,16) ((KS(I,J),I=1,12),J=1,NDOF) WRITE(6,12) WRITE(6,16) ((KS(I,J),I=13,24),J=1,NDOF) WRITE(6,13) DO 3 J=1,NDOF 3 WRITE(6,15) J,D(J),RS(J) DO 4 IMEM=1,MNO IF(IOUT(IMEM).EQ.0) GO TO 4 WRITE(6,20) IMEM DO 5 IDOF=1,12 WRITE(6,19) IDOF,DMG(IMEM,IDOF),RMG(IMEM,IDOF), &DML(IMEM,IDOF),RML(IMEM,IDOF) 4 ONTINUE WRITE(6,17) DO 7 IMEM=1,MNO 7 WRITE(6,19) IMEM,(BMOM(IMEM,I),I=1,5) WRITE(6,18) DO 6 IMEM=1,MNO 6 WRITE(6,19) IMEM,(SX(IMEM,I),I=1,5) WRITE(6,23) DO 8 IMEM=1,MNO 8 WRITE(6,19) IMEM,(DMEM(IMEM,I),I=1,5) WRITE(6,25) DO 21 IMEM=1,MNO 22 WRITE(6,26) IMEM,RMG(IMEM,3),RMG(IMEM,4), &RMG(IMEM,5),RMG(IMEM,9),RMG(IMEM,10),RMG(IMEM,11) KOUNT=0 WRITE(6,22) DO 9 IMEM=1,MNO DO 9 I=1,5 IF(IYLD(IMEM,I).EQ.1) KOUNT=KOUNT+1 9 IF(IYLD(IMEM,I).EQ.1) WRITE(6,24) KOUNT,IMEM, &SX(IMEM,I) RETURN END

Λύση της εξίσωσης δοκού-κολόνας µε τη µέθοδο της δυναµικής χαλάρωσης

Λύση της εξίσωσης δοκού-κολόνας µε τη µέθοδο της δυναµικής χαλάρωσης Παράρτηµα Ε Λύση της εξίσωσης δοκού-κολόνας µε τη µέθοδο της δυναµικής χαλάρωσης Στο παράρτηµα αυτό περιλαµβάνεται ο πηγαίος κώδικας προγράµµατος επίλυσης της εξίσωσης δοκού-κολόνας στην ελαστική περιοχή,

Διαβάστε περισσότερα

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships

Διαβάστε περισσότερα

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/ Page: 10 CONTENTS Contents... 10 General Data... 10 Structural Data des... 10 erials... 10 Sections... 10 ents... 11 Supports... 11 Loads General Data... 12 LC 1 - Vollast 120 km/h 0,694 kn/qm... 12 LC,

Διαβάστε περισσότερα

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/ Page: 1 CONTENTS Contents... 1 General Data... 1 Structural Data des... 1 erials... 1 Sections... 1 ents... 2 Supports... 2 Loads General Data... 3 LC 1 - Vollast 90 km/h 0,39 kn/qm... 3 LC, LG Results

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ Νικόλαος Αντωνίου Πολιτικός Μηχανικός Τµήµα Πολιτικών Μηχανικών, Α.Π.Θ.,

Διαβάστε περισσότερα

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά Γενικές πληροφορίες μαθήματος: Τίτλος μαθήματος: ΣΤΑΤΙΚΗ ΙΙΙ Κωδικός μαθήματος:

Διαβάστε περισσότερα

5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών 5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Σύγχρονες μέθοδοι ανάλυσης κατασκευών

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

3o/B Mάθημα: Δικτύωμα / 2D-Truss in Batch

3o/B Mάθημα: Δικτύωμα / 2D-Truss in Batch ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ 3o/B Mάθημα: Δικτύωμα / 2D-Truss in Batch Λεωνίδας Αλεξόπουλος, Επ. Καθηγητής Τομέας ΜΚ&ΑΕ leo@mail.ntua.gr, τηλ: 772-1666 Βοηθοί διδασκαλίας: Κανακάρης Γιώργος, Διδακτορικός

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. Ανάπτυξη Προγράμματος Ανάλυσης Επίπεδων Δικτυωμάτων

ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. Ανάπτυξη Προγράμματος Ανάλυσης Επίπεδων Δικτυωμάτων ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα, 2017 Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα ΠΠΜ 221: Ανάλυση Κατασκευών

Διαβάστε περισσότερα

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ ΦΟΙΤΗΤΡΙΑ: Γ.ΦΕΒΡΑΝΟΓΛΟΥ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Χ.ΓΑΝΤΕΣ ΑΘΗΝΑ, ΟΚΤΩΒΡΙΟΣ 2000

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τοµέας οµοστατικής ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΑΣΤΟΧΙΑΣ ΑΠΟ ΛΥΓΙΣΜΟ ΚΑΙ ΠΛΑΣΤΙΚΟΠΟΙΗΣΗ ΣΕ ΜΕΤΑΛΛΙΚΑ ΠΛΑΙΣΙΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τοµέας οµοστατικής ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΑΣΤΟΧΙΑΣ ΑΠΟ ΛΥΓΙΣΜΟ ΚΑΙ ΠΛΑΣΤΙΚΟΠΟΙΗΣΗ ΣΕ ΜΕΤΑΛΛΙΚΑ ΠΛΑΙΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τοµέας οµοστατικής ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΑΣΤΟΧΙΑΣ ΑΠΟ ΛΥΓΙΣΜΟ ΚΑΙ ΠΛΑΣΤΙΚΟΠΟΙΗΣΗ ΣΕ ΜΕΤΑΛΛΙΚΑ ΠΛΑΙΣΙΑ ιπλωµατική εργασία: Λεµονάρη Μαρίνα Επιβλέπων καθηγητής:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΑΕΙΦΟΡΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Δημήτριος Πάντζαλης Πτυχιούχος Γεωπόνος Α.Π.Θ.

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ 3o/B Mάθημα: Δικτύωμα / 2D-Truss in Batch Λεωνίδας Αλεξόπουλος Βοηθοί διδασκαλίας: Κανακάρης Γιώργος, Καβαλόπουλος Νίκος Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΛΥΣΕΩΝ ΚΑΝΟΝΙΣΤΙΚΩΝ ΙΑΤΑΞΕΩΝ ΚΑΙ

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES Customer: PDI, 4200 Oakleys Court, Richmond, VA 23223 Date: 5/31/2017 A. PALMA e n g i n e e r i n g Tag: Seismic Restraint Suspended Bus System Supports Building Code: 2012 IBC/2013 CBC&ASCE7-10 STRUCTURAL

Διαβάστε περισσότερα

Modern Greek Extension

Modern Greek Extension Centre Number 2017 HIGHER SCHOOL CERTIFICATE EXAMINATION Student Number Modern Greek Extension Written Examination General Instructions Reading time 10 minutes Working time 1 hour and 50 minutes Write

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Electronic Supplementary Information:

Electronic Supplementary Information: Electronic Supplementary Information: 2 6 5 7 2 N S 3 9 6 7 5 2 S N 3 9 Scheme S. Atom numbering for thione and thiol tautomers of thioacetamide 3 0.6 0. absorbance 0.2 0.0 0.5 0.0 0.05 0.00 N 2 Ar km/mol

Διαβάστε περισσότερα

Cross sectional area, square inches or square millimeters

Cross sectional area, square inches or square millimeters Symbols A E Cross sectional area, square inches or square millimeters of Elasticity, 29,000 kips per square inch or 200 000 Newtons per square millimeter (N/mm 2 ) I Moment of inertia (X & Y axis), inches

Διαβάστε περισσότερα

ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. 2 η Πρόοδος. 9:00-10:10 μ.μ. (70 λεπτά) Πέμπτη, 30 Μαρτίου, 2017

ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. 2 η Πρόοδος. 9:00-10:10 μ.μ. (70 λεπτά) Πέμπτη, 30 Μαρτίου, 2017 ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα, 2017-2 η Πρόοδος Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Ακαδημαϊκό Έτος

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 2008

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 2008 Πρόβλημα 1: Ανάστροφος Αραιού Πίνακα (20 Μονάδες) Πίνακας m επί n διαστάσεων είναι μια ορθογώνια διάταξη με m γραμμές και n στήλες. Για παράδειγμα, ο πίνακας είναι διαστάσεων 4 επί 3 και αποτελείται από

Διαβάστε περισσότερα

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8% 91 500 201 0/11 Aluminum raming Linear Motion and Assembly Technologies 1 Section : Engineering Data and Speciications Technical Data or Proiles Metric U.S. Equivalent Material designation according to

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

*2354431106* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009

*2354431106* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009 UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *2354431106* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009 1 hour 30 minutes

Διαβάστε περισσότερα

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in ME 10W E. Evans Stresses in a Plane Some parts eperience normal stresses in two directions. hese tpes of problems are called Plane Stress or Biaial Stress Cross Section thru Bod z angent and normal to

Διαβάστε περισσότερα

Operational Programme Education and Lifelong Learning. Continuing Education Programme for updating Knowledge of University Graduates:

Operational Programme Education and Lifelong Learning. Continuing Education Programme for updating Knowledge of University Graduates: Operational Programme Education and Lifelong Learning Continuing Education Programme for updating Knowledge of University Graduates: Modern Development in Offshore Structures 1 - SECTION 8.2 - GDM George

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΤΟΞΩΝ ΑΠΟ ΧΑΛΥΒΑ

ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΤΟΞΩΝ ΑΠΟ ΧΑΛΥΒΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΤΟΞΩΝ ΑΠΟ ΧΑΛΥΒΑ ΦΟΙΤΗΤΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Π. Α ΑΜΑΚΟΣ ΕΠΙΒΛΕΠΟΝΤΕΣ

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ 7o Mάθημα: 3Δ Έμβολο Λεωνίδας Αλεξόπουλος Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο του Έργου των Ανοικτών

Διαβάστε περισσότερα

ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ

ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τοµέας οµοστατικής Εργαστήριο Μεταλλικών Κατασκευών ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ιπλωµατική Εργασία Ιωάννη Σ. Προµπονά

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

CONSULTING Engineering Calculation Sheet

CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Structure Design - EQ Load Definition and EQ Effects v20 EQ Response Spectra in Direction X, Y, Z X-Dir Y-Dir Z-Dir Fundamental period of building, T 1 5.00

Διαβάστε περισσότερα

ΚΑΝΑΛΙ CHANNEL MTL. Κατάλογος - Catalogue. Eνδοδαπέδια Κανάλια & Κουτιά Παροχών - Διακλαδώσεων Underfloor Channels & Boxes and Juction Boxes

ΚΑΝΑΛΙ CHANNEL MTL. Κατάλογος - Catalogue. Eνδοδαπέδια Κανάλια & Κουτιά Παροχών - Διακλαδώσεων Underfloor Channels & Boxes and Juction Boxes ΚΑΝΑΛΙ CHANNEL MTL Μήκος 2,5 μέτρα, από λαμαρίνα γαλβανισμένη κατά ΕΝ 10142, 2 χωρισμάτων ΠΛΕΟΝΕΚΤΗΜΑΤΑ και 3 χωρισμάτων. Πάχος ελάσματος καλύμματος και βάσης 1,5mm Standard length 2,5 m, sheet steel galvanized

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο ΚΕΦΑΛΑΙΟ 2 Περιγραφή της Κίνησης Στο κεφάλαιο αυτό θα δείξουμε πώς να προγραμματίσουμε απλές εξισώσεις τροχιάς ενός σωματιδίου και πώς να κάνουμε βασική ανάλυση των αριθμητικών αποτελεσμάτων. Χρησιμοποιούμε

Διαβάστε περισσότερα

5. Εισαγωγή στο Πρόγραμμα Ανάλυσης GT-Strudl

5. Εισαγωγή στο Πρόγραμμα Ανάλυσης GT-Strudl ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 5. Εισαγωγή στο Πρόγραμμα Ανάλυσης GT-Strudl Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Μηχανική ανάλυση με χρήση θεωρίας επαφής: Συναρμογή σύσφιξης και εξόλκευση πείρου

Μηχανική ανάλυση με χρήση θεωρίας επαφής: Συναρμογή σύσφιξης και εξόλκευση πείρου Μηχανική ανάλυση με χρήση θεωρίας επαφής: Συναρμογή σύσφιξης και εξόλκευση πείρου Περιγραφή προβλήματος Στη συνέχεια θα πραγματοποιηθεί η μηχανική ανάλυση ενός ατσάλινου πείρου που έρχεται σε επαφή με

Διαβάστε περισσότερα

Aerodynamics & Aeroelasticity: Beam Theory

Aerodynamics & Aeroelasticity: Beam Theory Εθνικό Μετσόβιο Πολυτεχνείο National Technical Universit of thens erodnamics & eroelasticit: Beam Theor Σπύρος Βουτσινάς / Spros Voutsinas Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

2. Ανασκόπηση - Πρόγραμμα GT-Strudl

2. Ανασκόπηση - Πρόγραμμα GT-Strudl ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 2. Ανασκόπηση - Πρόγραμμα GT-Strudl Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Γενική Περιγραφή GT- Strudl

Διαβάστε περισσότερα

MS SERIES MS DESK TOP ENCLOSURE APPLICATION EXAMPLE FEATURE. Measuring instruments. Power supply equipments

MS SERIES MS DESK TOP ENCLOSURE APPLICATION EXAMPLE FEATURE. Measuring instruments. Power supply equipments MS SERIES MS DESK TOP ENCLOSURE FEATURE Available in 176 sizes. Screws are not appeared on the surface. Usable as rack mount case with optinal mounting bracket. There are no ventilation hole for cover

Διαβάστε περισσότερα

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Α.Σ.ΠΑΙ.Τ.Ε.) «Αρχιμήδης ΙΙΙ Ενίσχυση Ερευνητικών ομάδων στην Α.Σ.ΠΑΙ.Τ.Ε.» Υποέργο: 8 Τίτλος: «Εκκεντρότητες αντισεισμικού σχεδιασμού ασύμμετρων

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΟΛΟΚΛΗΡΩΜΕΝΗ ΑΝΑΠΤΥΞΗ & ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΑΓΡΟΤΙΚΟΥ ΧΩΡΟΥ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Οικονομετρική διερεύνηση

Διαβάστε περισσότερα

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example: UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα

Εφαρµογή µεθόδων δυναµικής ανάλυσης σε κατασκευές µε γραµµική και µη γραµµική συµπεριφορά

Εφαρµογή µεθόδων δυναµικής ανάλυσης σε κατασκευές µε γραµµική και µη γραµµική συµπεριφορά ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΟΜΟΣΤΑΤΙΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ Εφαρµογή µεθόδων δυναµικής ανάλυσης σε κατασκευές µε γραµµική

Διαβάστε περισσότερα

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Introduction to Theory of. Elasticity. Kengo Nakajima Summer Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor

Διαβάστε περισσότερα

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10) Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ιπλωµατική Εργασία «ΙΕΡΕΥΝΗΣΗ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΚΑΘΟΛΙΚΟΥ ΚΑΙ ΤΟΠΙΚΟΥ ΑΝΕΛΑΣΤΙΚΟΥ ΛΥΓΙΣΜΟΥ ΜΕ ΤΗ ΜΕΘΟ

Διαβάστε περισσότερα

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ:ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

8.5 Structural Optimization

8.5 Structural Optimization Operational Programme Education and Lifelong Learning Continuing Education Programme for updating Knowledge of University Graduates: Modern Development in Offshore Structures AUTh TUC 8.5 Structural Optimization

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

CORDIC Background (4A)

CORDIC Background (4A) CORDIC Background (4A Copyright (c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *2517291414* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2013 1 hour 30 minutes

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ. 6o Mάθημα: 2Δ Έλασμα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ. 6o Mάθημα: 2Δ Έλασμα ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ 6o Mάθημα: 2Δ Έλασμα 1 Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο του Έργου των Ανοικτών Ακαδημαϊκών Μαθημάτων

Διαβάστε περισσότερα

Struct4u b.v. Calculation number : Revision : 0 Page 1 of 8 Project number : Date - time : :25 Project description : Part :

Struct4u b.v. Calculation number : Revision : 0 Page 1 of 8 Project number : Date - time : :25 Project description : Part : Calculation number : Revision : 0 Page 1 of 8 GENERAL File: document1.xcol Applied standards: Consequence class Structural Class : NEN-EN 1992-1-1 + C2:2011/NB:2011 (nl) : NEN-EN 1992-1-2 + C1:2011/NB:2011

Διαβάστε περισσότερα

5.0 DESIGN CALCULATIONS

5.0 DESIGN CALCULATIONS 5.0 DESIGN CALCULATIONS Load Data Reference Drawing No. 2-87-010-80926 Foundation loading for steel chimney 1-00-281-53214 Boiler foundation plan sketch : Figure 1 Quantity Unit Dia of Stack, d 6.00 m

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Αλληλεπίδραση Ανωδοµής-Βάθρων-Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα

Αλληλεπίδραση Ανωδοµής-Βάθρων-Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Αλληλεπίδραση Ανωδοµής-Βάθρων- Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα ΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

VBA ΣΤΟ WORD. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!!

VBA ΣΤΟ WORD. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!! VBA ΣΤΟ WORD Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!! Μου παρουσιάστηκαν δύο θέματα. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Εγραφα σε ένα αρχείο του Word τις

Διαβάστε περισσότερα

BUCKLING BEHAVIOR OF COMPOSITE FERROCEMENT PLATES

BUCKLING BEHAVIOR OF COMPOSITE FERROCEMENT PLATES BUCKLING BEHAVIOR OF COMPOSITE FERROCEMENT PLATES Apostolos Koukouselis Civil Engineer, M.Sc., Doctoral Candidate Laboratory of Structural Analysis and Design, Department of Civil Engineering, University

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE) EPL 603 TOPICS IN SOFTWARE ENGINEERING Lab 5: Component Adaptation Environment (COPE) Performing Static Analysis 1 Class Name: The fully qualified name of the specific class Type: The type of the class

Διαβάστε περισσότερα

Lecture 6 Mohr s Circle for Plane Stress

Lecture 6 Mohr s Circle for Plane Stress P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 6 Mohr s Circle for Plane Stress Transformation equations for plane stress. Procedure for constructing Mohr s circle. Stresses on an inclined element.

Διαβάστε περισσότερα

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις επίσημες θέσεις των εξεταστών. i ΠΡΟΛΟΓΟΣ ΕΥΧΑΡΙΣΤΙΕΣ Η παρούσα

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

ΠANEΠIΣTHMIO ΠATPΩN TMHMA MHXANOΛOΓΩN ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ MHXANIKΩN

ΠANEΠIΣTHMIO ΠATPΩN TMHMA MHXANOΛOΓΩN ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ MHXANIKΩN ΠANEΠIΣTHMIO ΠATPΩN TMHMA MHXANOΛOΓΩN ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ MHXANIKΩN Εργαστήριο Συστημάτων Παραγωγής και Αυτοματισμού Διδάσκων: Αναπλ. Καθηγητής Δ. Μούρτζης ΑΡΙΘΜΗΤΙΚΟΣ ΕΛΕΓΧΟΣ ΕΡΓΑΛΕΙΟΜΗΧΑΝΩΝ CNC Εργαστηριακή

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων

ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων Ένα δυσδιάστατο παράδειγμα με το λογισμικό MATLAB Θεωρούμε το εξής Π.Σ.Τ.: Να βρεθεί η u(x, y) έτσι ώστε όπου f (x, y) = 1. u u f ( x, y), x ( 1,1) ( 1,1) x

Διαβάστε περισσότερα

3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information

3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information MI Girder 90/120 Materia Specifications 1 15 / 16 " (50) Materia Gavanizing Ordering Information Description S235 JRG2 DIN 10025, (ASTM A283 (D) 34 ksi) Hot-dip gavanized 3 mis (75 μm) DIN EN ISO 1461,

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ Εργαστήριο Μεταλλικών Κατασκευών ιπλωµ ατική εργασία «Α Ν Α Λ Υ Τ Ι Κ Η Κ Α Ι Α Ρ Ι Θ Μ Η Τ Ι Κ Η Ι Ε Ρ Ε Υ Ν Η Σ Η Π Ρ Ο Β Λ Η

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ» I ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΝΟΜΙΚΗ

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΛΥΓΙΣΜΟΣ ΠΛΑΚΩΝ ΚΑΙ Η ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΤΗΝ ΚΑΤΑΤΑΞΗ ΤΩΝ ΙΑΤΟΜΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΛΥΓΙΣΜΟΣ ΠΛΑΚΩΝ ΚΑΙ Η ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΤΗΝ ΚΑΤΑΤΑΞΗ ΤΩΝ ΙΑΤΟΜΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ Εργαστήριο Μεταλλικών Κατασκευών ΛΥΓΙΣΜΟΣ ΠΛΑΚΩΝ ΚΑΙ Η ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΤΗΝ ΚΑΤΑΤΑΞΗ ΤΩΝ ΙΑΤΟΜΩΝ ιπλωµατική Εργασία Μαρία Μ. Βίλλη

Διαβάστε περισσότερα

Εισαγωγή στη Fortran. Μάθημα 3 ο. Ελευθερία Λιούκα

Εισαγωγή στη Fortran. Μάθημα 3 ο. Ελευθερία Λιούκα Εισαγωγή στη Fortran Μάθημα 3 ο Ελευθερία Λιούκα liouka.eleftheria@gmail.com Περιεχόμενα Loops External Functions Subroutines Arrays Common mistakes Loops Ανάγκη να εκτελέσουμε τις ίδιες εντολές πολλές

Διαβάστε περισσότερα

A, B. Before installation of the foam parts (A,B,C,D) into the chambers we put silicone around. We insert the foam parts in depth shown on diagram.

A, B. Before installation of the foam parts (A,B,C,D) into the chambers we put silicone around. We insert the foam parts in depth shown on diagram. Corner Joints Machining, Frame edge sealing. Page ID: frame01 D D C A, B A C B C A 20 60 Before installation of the foam parts (A,B,C,D) into the chambers we put silicone around. We insert the foam parts

Διαβάστε περισσότερα