Determinantes. 1. Introdución. 2. Determinantes de orde dúas. 1. Introdución 2. Determinantes de orde dúas. 3.3 Determinantes de orde tres

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Determinantes. 1. Introdución. 2. Determinantes de orde dúas. 1. Introdución 2. Determinantes de orde dúas. 3.3 Determinantes de orde tres"

Transcript

1 Determnntes. Introducón. Determnntes de orde dús. Determnntes de orde tres. Menor complementro dun elemento. dxunto dun elemento. Determnntes de orde tres. Propeddes dos determnntes de orde tres. Rngo dun mtrz. Cálculo do rngo polo método de Guss. Cálculo do rngo por determnntes 6. Mtrz nvers por determnntes 6. Mtrz dxunt 6. Propeddes d mtrz trspost d dxunt 6. Cálculo d nvers. Introducón Pr resolver problems relcondos cos mtrces e precso clculr mtrces nverss. Nest undde estudremos mportnc dos determnntes, número socdo un mtrz cdrd, que nos ndcrá exstenc ou non d mtrz nvers. Tmén estudremos o rngo dun mtrz, sto é, o número de ls ou columns lnelmente ndependentes.. Determnntes de orde dús cd mtrz cdrd de orde dús cmdo determnnte de orde dús, d orm segunte: sócselle un número rel, O determnnte dun mtrz cdrd de orde dús é gul o produto dos elementos d dgonl prncpl, menos o produto dos elementos d dgonl secundr. o determnnte d mtrz smbolzrse por det() Not: Obsérvse que o número de sumndos dun determnnte de orde dús é dous, concde co vlor de!

2 Clcul o determnnte d mtrz det() ( ) 8 +. Determnntes de orde tres. Menor complementro dun elemento Dd un mtrz cdrd de orde tres, cámse menor complementro do elemento j, smbolzdo por M j, o determnnte d mtrz cdrd de orde dús, que result de suprmr en l e column j, ás que pertence o elemento j. Dd mtrz serán: os menores dos elementos e, M e M, M prmer column n mtrz. M column n mtrz., determnnte que se conseguu o suprmr segund l e, determnnte que se conseguu o suprmr tercer l e prmer Dd mtrz, clcul os menores e os dxuntos de e. M ( ) ( ) M ( ) ( ) 6 +

3 . dxunto dun elemento Cámse dxunto do elemento j, e represéntse por j, o menor complementro de j preceddo do sgno + ou, segundo que sum dos subíndces + j sex pr ou mpr, respectvmente. Pódese expresr d segunte orm: j ( ) +j M j Por exemplo, os dxuntos e dos elementos e serán: ( ) + M ( ) + ( ) + M ( ) + Dd mtrz, e clculr o vlor dos dxuntos de e ( ) + ( ) ( ) ( ) + ( ) ( ). Determnntes de orde tres cd mtrz cdrd de orde tres socáselle un número, cmdo determnnte de orde tres, d segunte orm: + + O determnnte dun mtrz cdrd de orde tres é gul á sum dos elementos dun l ou column multplcdos polos dxuntos correspondentes. N órmul nteror, o determnnte expresouse como produto d prmer l polos seus dxuntos; pódese comprobr que o vlor do determnnte é ndependente d l ou column que se elx pr o seu cálculo. S se oper sobre dencón nteror, prece expresón desenvolvd do determnnte de orde tres:

4 + + + ( ) ( ) + ( ) + + Ordénnse s sums e derenzs: + + Not: Os ses produtos nterores concden co número! 6 e obtéñense con snxelez mednte cmd Regr de Srrus: Produtos con sgno + Produtos con sgno Os produtos con sgno (+) órmnos os elementos d dgonl prncpl e os outros dous os prlelos el polos dos vértces opostos. Os produtos con sgno ( ) órmnos os elementos d dgonl secundr e os outros dous os prlelos el polos dos vértces opostos. Clculr o determnnte d mtrz mednte o desenvolvemento 6 polos elementos dun lñ e plcndo Regr de Srrus. ) Desenvólvese pol segund l: 6 ( ) ( ) ( ) + (6 6) + ( ) ( ) + 9.

5 b) Pol Regr de Srrus: Produtos con sgno más: Produtos con sgno menos: Propeddes dos determnntes de orde tres Neste prtdo desenvólvense lguns propeddes pr os determnntes de orde tres, que son válds pr os determnntes de clquer orde. Dts propeddes serven pr cltr o cálculo de determnntes.. O vlor do determnnte dun mtrz cdrd é gul o do seu trspost: det() det( t ) Sex ( ) clcul o seu determnnte e o d sú trspost. t Est propedde permte cer extensv s propeddes ds ls ás columns.. Se nun mtrz cdrd se permutn entre s dús ls, o seu determnnte cmb de sgno. Sex mtrz ( ) permut l prmer co segund e clcul o determnnte. e

6 . Se un mtrz cdrd ten dús ls gus, o determnnte socdo é cero. Pódese rzor, se se cmbsen entre s s dús ls gus, resultrí o mesmo determnnte e, pol propedde nteror, o vlor do determnnte serí un número que debe concdr co seu oposto e este é o cero. Sex mtrz ( ) clcul o seu determnnte.. Se un mtrz ten nulos os elementos dun l ou column o seu determnnte é cero. 7 Dd mtrz ( )clculemos o seu determnnte Se os elementos dun l ou column multplícnse por un número, o determnnte qued multplcdo polo devndto número. k kd kg b e c k d g b e c guldde compróbse o desenvolver os dous membros d guldde. 6. Se un mtrz ten dús ls proporcons, o determnnte socdo é cero. b c b c d e d b b e c c plcáronse s propeddes e. 6

7 7. Se todos os elementos dun l dun mtrz poden descompoñerse en sum de dous sumndos, o seu determnnte pode descompoñerse n sum de dous determnntes do modo segunte: b b c c d e g b c d e g + b c d e g guldde compróbse o desenvolver os dous membros d guldde. 8. Se un l dun mtrz é sum doutrs dús multplcds por números dstntos de cero, o determnnte socdo é cero. Tendo en cont s propeddes 7, e. d g d g e e d e d e + g g d g e 9. Se un l dun mtrz súmselle outr l multplcd por clquer número dstnto de cero, o determnnte d mtrz resultnte non vrí. Isto é: d g b e c d m g b e mb c mc plcr o segundo membro s propeddes 8 e 6. Est propedde plcrse pr nulr todos os elementos dun l menos un, e deste xeto cltr o cálculo do determnnte mednte o desenvolvemento polos elementos des l.. O determnnte do produto de dous mtrces cdrds é gul o produto dos determnntes dos mtrces ctores. det( B) det() det(b) Sexn s mtrces ( ) e B ( ) comprob propedde nteror. B B 7 8 7

8 . Rngo dun mtrz Nun sstem de ecucóns lnes con solucón, os termos ndependentes obtéñense mednte combncón lnel dos coecentes ds ncógnts; por exemplo, o sstem: x y 9 x 7y pódese escrbr en orm vectorl sí: 9 x + y 7 sú solucón x e y permte obter os termos ndependentes como combncón lnel dos coecentes ds ncógnts. Se se orm mtrz dos coecentes do sstem M e sú mpld cos 7 9 termos ndependentes, dse que column dos termos 7 ndependentes é combncón lnel ds columns que ormn os coecentes. Neste prtdo proundrse n dependenc e ndependenc lnel dos vectores ls e columns que ormn s mtrces; conceptos necesros pr determnr o rngo ds mtrces, que á sú vez será de undmentl pr o estudo dos sstems lnes que é o obxectvo undmentl do Álxebr Lnel. Vectores l e vectores column dun mtrz Un l (column) L dun mtrz é combncón lnel ou lnelmente dependente ds sús prlels L, L,..., L n, se exsten α, α,..., α n números res, cos que se obtén guldde: L α L + α L α n L n s ls (columns) non dependentes dnse lnelmente ndependentes. Dd mtrz Estud dependenc ou ndependenc ds Estudo ds sús ls: dse que e son lnelmente dependentes. e son lnelmente ndependentes. Estudo ds sús columns: tercer column é sum é un combncón de, c c + c lnelmnete depende. curt column pódese comprobr que é un combncón lnel d e column, c αc + βc lnelmnte dependente. Polo tnto o número de ls e columns lnelmente ndependentes d mtrz No concden; exemplo é nteror dous. o número de ls e 8

9 Teorem: En tod mtrz o número de ls e de columns lnelmente ndependentes concde. Estse en condcóns de denr o rngo dun mtrz, como o número ds sús ls ou ds sús columns lnelmente ndependentes. Se mtrz é de orde n e o seu rngo é, escríbese rngo() determncón do rngo dun mtrz é complcdo se se prtr d dencón de dependenc; por este motvo estudrnse dous métodos que cltn o seu cálculo e que combndos resultn summente ecces.. Cálculo do rngo polo método de Guss Consste en plcr á mtrz un sere de trnsormcóns elements, que dexn nvrnte o rngo, t consegur un mtrz reducd ou grdud n cl o rngo se determn de nmedto. Trnsormcóns que dexn nvrnte o rngo: Intercmbr s poscóns ds ls entre s. Multplcr un l por un número dstnto de cero. Sumr un l outr multplcd por un número dstnto de cero. O rngo dun mtrz polo método de Guss é o número de ls d sú mtrz reducd ou grdud non nuls. 7 Clcul o rngo d segunte mtrz ( 6 7 ( 6 7) 7 7) ( ) + 7 ( 6 ) O rngo d mtrz é dous rn(). Cálculo do rngo por determnntes Pr denr e determnr o rngo por determnntes é necesro dr lgúns conceptos novos. Menores dun mtrz Cámse menor de orde d mtrz de orde m x n o determnnte dun mtrz cdrd de orde ormd polos elementos de ls e columns d mtrz. Os menores de orde órmnse o suprmr de tods s orms posbles m ls e n columns n mtrz. Rngo dun mtrz por determnntes é orde do mor menor non nulo. 9

10 Dd mtrz lgúns dos seus menores son: De orde dús:, 7,,,..., 8 Os menores de orden serán:,, Todos nulos. O rngo dest mtrz será dous rn() 6. Mtrz nvers por determnntes Os determnntes serán un nov errment pr clculr mtrz nvers, como se verá contnucón. 6. Mtrz dxunt Dd un mtrz cdrd cámse mtrz dxunt de e represéntse por dx(), á mtrz que result de substtuír cd elemento j d mtrz polo seu dxunto correspondente j. Dd mtrz clculr sú mtrz dxunt. Clcúlnse todos os dxuntos e temos en cont os sgnos: + 6, 9, + 8, +, +,, + Polo tnto, mtrz dxunt de será: dx() 6 8 9

11 6. Propeddes d mtrz trspost d dxunt O produto dun mtrz pol trspost d sú dxunt é un mtrz esclr n que os elementos d dgonl prncpl concden co vlor do determnnte de. É dcr, no cso dun mtrz de orde tres: (dx()) t (dx()) t demostrcón dest propedde se prtr d dencón ds mtrces dxunt e trspost e s propeddes dos determnntes. 6. Cálculo d nvers Tendo en cont os resultdos obtdos prtr d propedde d mtrz trspost terse: (dx()) t I No cso de, e uncmente nest stucón, pódense dvdr os dos membros por e qued: dx t )) ( ( I Por últmo, tendo en cont dencón de mtrz nvers I, dentcndo s dús gulddes tense mtrz nvers por determnntes, terse: dx t )) ( ( Comprobr que se cumpre propedde nteror pr s mtrces do exemplo nteror. (dx()) t t

12 No desenvolvemento do cálculo d mtrz nvers obtvéronse os seguntes resultdos: Uncmente teñen nvers quels mtrces cuxo determnnte é dstnto de cero, é dcr, s mtrces regulres. nvers dun mtrz regulr é gul á trspost d sú dxunt, dvdd polo determnnte de. Comprobr se mtrz ten nvers e, en cso rmtvo, clcull. º clculmos o determnnte:. Como det(), mtrz ten nvers. º Clculmos mtrz dxunt: dx() º Clculmos trspost d dxunt: (dx()) t º dvdmos mtrz polo determnnte ( dx( )) t Propeddes d mtrz nvers ) O produto de dús mtrces nvertbles é nvertble e sú nvers é gul o produto d nvers do segundo ctor pol nvers do prmero ctor. ( B) B b) nvers d trspost é gul á trspost d nvers. ( t ) ( ) t

EXERCICIOS DE REFORZO: SISTEMAS DE ECUACIÓNS LINEAIS

EXERCICIOS DE REFORZO: SISTEMAS DE ECUACIÓNS LINEAIS EXERCICIOS DE REFORZO: SISTEMAS DE ECUACIÓNS LINEAIS. ) Clul os posiles vlores de,, pr que triz A verifique relión (A I), sendo I triz identidde de orde e triz nul de orde. ) Cl é soluión dun siste hooéneo

Διαβάστε περισσότερα

EXERCICIOS AUTOAVALIABLES: SISTEMAS DE ECUACIÓNS LINEAIS. 2. Dada a ecuación lineal 2x 3y + 4z = 2, comproba que as ternas (3, 2, 2

EXERCICIOS AUTOAVALIABLES: SISTEMAS DE ECUACIÓNS LINEAIS. 2. Dada a ecuación lineal 2x 3y + 4z = 2, comproba que as ternas (3, 2, 2 EXERCICIOS AUTOAVALIABLES: SISTEMAS DE ECUACIÓNS LINEAIS Dds s ecucións seguintes indic s que son lineis: ) + + b) + u c) + d) + Dd ecución linel + comprob que s terns ( ) e ( ) son lgunhs ds sús solucións

Διαβάστε περισσότερα

Introdución ao cálculo vectorial

Introdución ao cálculo vectorial Intoducón o cálculo ectol 1 Intoducón o cálculo ectol 1. MAGNITUDES ESCALARES E VECTORIAIS. Mgntude físc é todo qulo que se pode med. Mgntudes escles son quels que están detemnds po un lo numéco epesdo

Διαβάστε περισσότερα

EXERCICIOS DE REFORZO: RECTAS E PLANOS

EXERCICIOS DE REFORZO: RECTAS E PLANOS EXERCICIOS DE REFORZO RECTAS E PLANOS Dada a recta r z a) Determna a ecuacón mplícta do plano π que pasa polo punto P(,, ) e é perpendcular a r Calcula o punto de nterseccón de r a π b) Calcula o punto

Διαβάστε περισσότερα

Matrices. Chámase matriz de orde m x n a unha disposición en táboa rectangular de m x n números reais dispostos en m filas e n columnas

Matrices. Chámase matriz de orde m x n a unha disposición en táboa rectangular de m x n números reais dispostos en m filas e n columnas . Introdución. Mtrices: definición. Tipos de Mtrices. Opercións cos mtrices. Sum de mtrices. Diferenz de mtrices Mtrices. Produto dun número por unh mtriz. Produto de mtrices. Produto de mtrices cdrds.

Διαβάστε περισσότερα

EXERCICIOS DE REFORZO: DETERMINANTES., calcula a matriz X que verifica A X = A 1 B, sendo B =

EXERCICIOS DE REFORZO: DETERMINANTES., calcula a matriz X que verifica A X = A 1 B, sendo B = EXERCICIOS DE REORZO: DETERMINANTES Pr A, lul riz X que verifi AX A B, sendo B ) Define enor opleenrio e duno dun eleeno nunh riz drd ) Dd riz A : i Clul o rngo, segundo os vlores de λ, de A λi, sendo

Διαβάστε περισσότερα

Tema 3. Espazos métricos. Topoloxía Xeral,

Tema 3. Espazos métricos. Topoloxía Xeral, Tema 3. Espazos métricos Topoloxía Xeral, 2017-18 Índice Métricas en R n Métricas no espazo de funcións Bólas e relacións métricas Definición Unha métrica nun conxunto M é unha aplicación d con valores

Διαβάστε περισσότερα

EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O?

EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O? EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS Representa en R os puntos S(2, 2, 2) e T(,, ) 2 Debuxa os puntos M (, 0, 0), M 2 (0,, 0) e M (0, 0, ) e logo traza o vector OM sendo M(,, ) Cal é o vector de

Διαβάστε περισσότερα

XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo.

XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo. XEOMETRÍA NO ESPAZO Vectores fixos Dos puntos do espazo, A e B, determinan o vector fixo AB, sendo o punto A a orixe e o punto B o extremo, é dicir, un vector no espazo é calquera segmento orientado que

Διαβάστε περισσότερα

Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA

Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Tema: Enerxía 01/0/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nome: 1. Unha caixa de 150 kg descende dende o repouso por un plano inclinado por acción do seu peso. Se a compoñente tanxencial do peso é de 735

Διαβάστε περισσότερα

Procedementos operatorios de unións non soldadas

Procedementos operatorios de unións non soldadas Procedementos operatorios de unións non soldadas Técnicas de montaxe de instalacións Ciclo medio de montaxe e mantemento de instalacións frigoríficas 1 de 28 Técnicas de roscado Unha rosca é unha hélice

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Punuación máima dos eercicios de cada opción: eercicio 1= 3 punos, eercicio = 3 punos, eercicio 3 =

Διαβάστε περισσότερα

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016 Tema 1. Espazos topolóxicos Topoloxía Xeral, 2016 Topoloxía e Espazo topolóxico Índice Topoloxía e Espazo topolóxico Exemplos de topoloxías Conxuntos pechados Topoloxías definidas por conxuntos pechados:

Διαβάστε περισσότερα

MATEMÁTICAS I. Exercicio nº 1.- a) Clasifica os seguintes números segundo sexan naturais, enteiros, racionais ou reais: 3

MATEMÁTICAS I. Exercicio nº 1.- a) Clasifica os seguintes números segundo sexan naturais, enteiros, racionais ou reais: 3 MATEMÁTICAS I Eercicio nº.- ) Clsific os seguintes números segundo sen nturis, enteiros, rcionis ou reis: 5, 7,5 8 8 7 Indic se s seguintes firmcións son verddeirs ou flss, rzondo respost: Todos os números

Διαβάστε περισσότερα

TRIGONOMETRIA. hipotenusa L 2. hipotenusa

TRIGONOMETRIA. hipotenusa L 2. hipotenusa TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto

Διαβάστε περισσότερα

AB. Cando, pola contra, se toma B como orixe e A como extremo, o segmento

AB. Cando, pola contra, se toma B como orixe e A como extremo, o segmento VECTORES Índce. Vecores.... Operacóns con ecores en forma gráfca.... Combnacóns lneas de ecores..... Bases e coordenadas dun ecor... 4.. Operacóns con ecores expresados polas súas coordenadas... 5 4. Produo

Διαβάστε περισσότερα

NÚMEROS COMPLEXOS. Páxina 147 REFLEXIONA E RESOLVE. Extraer fóra da raíz. Potencias de. Como se manexa k 1? Saca fóra da raíz:

NÚMEROS COMPLEXOS. Páxina 147 REFLEXIONA E RESOLVE. Extraer fóra da raíz. Potencias de. Como se manexa k 1? Saca fóra da raíz: NÚMEROS COMPLEXOS Páxina 7 REFLEXIONA E RESOLVE Extraer fóra da raíz Saca fóra da raíz: a) b) 00 a) b) 00 0 Potencias de Calcula as sucesivas potencias de : a) ( ) ( ) ( ) b) ( ) c) ( ) 5 a) ( ) ( ) (

Διαβάστε περισσότερα

ln x, d) y = (3x 5 5x 2 + 7) 8 x

ln x, d) y = (3x 5 5x 2 + 7) 8 x EXERCICIOS AUTOAVALIABLES: CÁLCULO DIFERENCIAL. Deriva: a) y 7 6 + 5, b) y e, c) y e) y 7 ( 5 ), f) y ln, d) y ( 5 5 + 7) 8 n e ln, g) y, h) y n. Usando a derivada da función inversa, demostra que: a)

Διαβάστε περισσότερα

EXERCICIOS DE ÁLXEBRA. PAU GALICIA

EXERCICIOS DE ÁLXEBRA. PAU GALICIA Maemáicas II EXERCICIOS DE ÁLXEBRA PAU GALICIA a) (Xuño ) Propiedades do produo de marices (só enuncialas) b) (Xuño ) Sexan M e N M + I, onde I denoa a mariz idenidade de orde n, calcule N e M 3 Son M

Διαβάστε περισσότερα

Expresións alxébricas

Expresións alxébricas Expresións alxébricas Contidos 1. Expresións alxébricas Que son? Como as obtemos? Valor numérico 2. Monomios Que son? Sumar e restar Multiplicar 3. Polinomios Que son? Sumar e restar Multiplicar por un

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

Problemas resueltos del teorema de Bolzano

Problemas resueltos del teorema de Bolzano Problemas resueltos del teorema de Bolzano 1 S e a la fun ción: S e puede af irm a r que f (x) está acotada en el interva lo [1, 4 ]? P or no se r c ont i nua f (x ) e n x = 1, la f unció n no e s c ont

Διαβάστε περισσότερα

Expresións alxébricas

Expresións alxébricas 5 Expresións alxébricas Obxectivos Crear expresións alxébricas a partir dun enunciado. Atopar o valor numérico dunha expresión alxébrica. Clasificar unha expresión alxébrica como monomio, binomio,... polinomio.

Διαβάστε περισσότερα

I. MATRICES. 1.- Matriz de orden mxn. Igualdade de matrices. 2.- Tipos de matrices

I. MATRICES. 1.- Matriz de orden mxn. Igualdade de matrices. 2.- Tipos de matrices I. TRICES.- riz de orde mx. Iguldde de mrices U coxuo de m. elemeos du corpo K (e xerl úmeros reis, elemeos do corpo R) disposos e m fils e colums, chámse mriz de dimesiós m. ou mriz do ipo (m, ) O ermo

Διαβάστε περισσότερα

Números reais. Obxectivos. Antes de empezar. 1. Os números reais... páx. 4 Números irracionais. Números reais

Números reais. Obxectivos. Antes de empezar. 1. Os números reais... páx. 4 Números irracionais. Números reais Números reis Oectivos Nest quincen prenderás : Clsificr os números reis en rcionis e irrcionis. Aproimr números reis por truncmento e redondeo. Representr grficmente números reis. Comprr números reis.

Διαβάστε περισσότερα

MATRICES DE TRANSFORMACION DE COORDENADAS. 3D. ü INCLUDES. ü Cálculo de las componentes de la Matriz de rotación de tensiones (3-3)

MATRICES DE TRANSFORMACION DE COORDENADAS. 3D. ü INCLUDES. ü Cálculo de las componentes de la Matriz de rotación de tensiones (3-3) MATRICES DE TRANSFORMACION DE COORDENADAS. 3D ü INCLUDES In[298]:= In[301]:= In[302]:= In[303]:= Off@General::"spell"D; Off@General::"spell1"D; Off@Set::"wrsm"D; Needs@"LnearAlgebra`MatrxManpulaton`"D

Διαβάστε περισσότερα

Lógica Proposicional. Justificación de la validez del razonamiento?

Lógica Proposicional. Justificación de la validez del razonamiento? Proposicional educción Natural Proposicional - 1 Justificación de la validez del razonamiento? os maneras diferentes de justificar Justificar que la veracidad de las hipótesis implica la veracidad de la

Διαβάστε περισσότερα

TEORÍA DE XEOMETRÍA. 1º ESO

TEORÍA DE XEOMETRÍA. 1º ESO TEORÍA DE XEOMETRÍA. 1º ESO 1. CORPOS XEOMÉTRICOS No noso entorno observamos continuamente obxectos de diversas formas: pelotas, botes, caixas, pirámides, etc. Todos estes obxectos son corpos xeométricos.

Διαβάστε περισσότερα

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::... Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)

Διαβάστε περισσότερα

1. O ESPAZO VECTORIAL DOS VECTORES LIBRES 1.1. DEFINICIÓN DE VECTOR LIBRE

1. O ESPAZO VECTORIAL DOS VECTORES LIBRES 1.1. DEFINICIÓN DE VECTOR LIBRE O ESPAZO VECTORIAL DOS VECTORES LIBRES DEFINICIÓN DE VECTOR LIBRE MATEMÁTICA II 06 Exames e Textos de Matemática de Pepe Sacau ten unha licenza Creative Commons Atribución Compartir igual 40 Internacional

Διαβάστε περισσότερα

TEMA 1: FUNCIÓNS. LÍMITES E CONTINUIDADE

TEMA 1: FUNCIÓNS. LÍMITES E CONTINUIDADE TEMA 1: FUNCIÓNS. LÍMITES E CONTINUIDADE Conceptos preliminres Unh función é unh relción entre dús mgnitudes, de tl mneir que cd vlor d primeir lle sign un único vlor d segund. Se A e B son dous conuntos,

Διαβάστε περισσότερα

Lógica Proposicional

Lógica Proposicional Proposicional educción Natural Proposicional - 1 Justificación de la validez del razonamiento os maneras diferentes de justificar Justificar que la veracidad de las hipótesis implica la veracidad de la

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro 9 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

ESTRUTURA ATÓMICA E CLASIFICACIÓN PERIÓDICA DOS ELEMENTOS

ESTRUTURA ATÓMICA E CLASIFICACIÓN PERIÓDICA DOS ELEMENTOS Química P.A.U. ESTRUTURA ATÓMICA E CLASIFICACIÓN PERIÓDICA DOS ELEMENTOS ESTRUTURA ATÓMICA E CLASIFICACIÓN PERIÓDICA DOS ELEMENTOS CUESTIÓNS NÚMEROS CUÁNTICOS. a) Indique o significado dos números cuánticos

Διαβάστε περισσότερα

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCIÓN MÉTODO 1. En xeral: Debúxanse as forzas que actúan sobre o sistema. Calcúlase a resultante polo principio de superposición. Aplícase a 2ª lei

Διαβάστε περισσότερα

Tema 1 : TENSIONES. Problemas resueltos F 1 S. n S. O τ F 4 F 2. Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SAL.

Tema 1 : TENSIONES. Problemas resueltos F 1 S. n S. O τ F 4 F 2. Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SAL. Tea : TENSIONES S S u n S 4 O Probleas resuelos Prof: Jae Sano Dongo Sanllana EPS-Zaora (USL) - 8 -Las coponenes del esado de ensones en un puno son: N/ -5 N/ 8 N/ 4 N/ - N/ N/ Se pde deernar: ) Las ensones

Διαβάστε περισσότερα

Semellanza e trigonometría

Semellanza e trigonometría 7 Semellnz e trigonometrí Obxectivos Nest quincen prenderás : Recoñecer triángulos semellntes. Clculr distncis inccesibles, plicndo semellnz de triángulos. Nocións básics de trigonometrí. Clculr medid

Διαβάστε περισσότερα

A circunferencia e o círculo

A circunferencia e o círculo 10 A circunferencia e o círculo Obxectivos Nesta quincena aprenderás a: Identificar os diferentes elementos presentes na circunferencia e o círculo. Coñecer as posicións relativas de puntos, rectas e circunferencias.

Διαβάστε περισσότερα

PÁGINA 106 PÁGINA a) sen 30 = 1/2 b) cos 120 = 1/2. c) tg 135 = 1 d) cos 45 = PÁGINA 109

PÁGINA 106 PÁGINA a) sen 30 = 1/2 b) cos 120 = 1/2. c) tg 135 = 1 d) cos 45 = PÁGINA 109 PÁGINA 0. La altura del árbol es de 8,5 cm.. BC m. CA 70 m. a) x b) y PÁGINA 0. tg a 0, Con calculadora: sß 0,9 t{ ««}. cos a 0, Con calculadora: st,8 { \ \ } PÁGINA 05. cos a 0,78 tg a 0,79. sen a 0,5

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

VII. RECTAS E PLANOS NO ESPAZO

VII. RECTAS E PLANOS NO ESPAZO VII. RETS E PLNOS NO ESPZO.- Ecuacións da recta Unha recta r no espao queda determinada por un punto, punto base, e un vector v non nulo que se chama vector director ou direccional da recta; r, v é a determinación

Διαβάστε περισσότερα

ECUACIÓNS, INECUACIÓNS E SISTEMAS

ECUACIÓNS, INECUACIÓNS E SISTEMAS ECUACIÓNS, INECUACIÓNS E SISTEMAS Índice 1. Ecuacións de primeiro e segundo grao... 1 1.1. Ecuacións de primeiro grao... 1 1.. Ecuacións de segundo grao.... Outras ecuacións alébricas... 5.1. Ecuacións

Διαβάστε περισσότερα

Resistencia de Materiais. Tema 5. Relacións entre tensións e deformacións

Resistencia de Materiais. Tema 5. Relacións entre tensións e deformacións Resistencia de Materiais. Tema 5. Relacións entre tensións e deformacións ARTURO NORBERTO FONTÁN PÉREZ Fotografía. Ponte Coalbrookdale (Gran Bretaña, 779). Van principal: 30.5 m. Contido. Tema 5. Relacións

Διαβάστε περισσότερα

Filipenses 2:5-11. Filipenses

Filipenses 2:5-11. Filipenses Filipenses 2:5-11 Filipenses La ciudad de Filipos fue nombrada en honor de Felipe II de Macedonia, padre de Alejandro. Con una pequeña colonia judía aparentemente no tenía una sinagoga. El apóstol fundó

Διαβάστε περισσότερα

Ámbito científico tecnolóxico. Ecuacións de segundo grao e sistemas de ecuacións. Módulo 3 Unidade didáctica 8

Ámbito científico tecnolóxico. Ecuacións de segundo grao e sistemas de ecuacións. Módulo 3 Unidade didáctica 8 Educación secundaria para persoas adultas Ámbito científico tecnolóxico Módulo 3 Unidade didáctica 8 Ecuacións de segundo grao e sistemas de ecuacións Páxina 1 de 45 Índice 1. Programación da unidade...3

Διαβάστε περισσότερα

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα

5.1. Relaciones elementales. Dado el triángulo ABC, que se muestra en la figura

5.1. Relaciones elementales. Dado el triángulo ABC, que se muestra en la figura Cpítulo 5 Triángulos Hemos trbjdo on el triángulo retángulo en generl hor estudiremos un triángulo ulquier y sus reliones más importntes. 5.1. Reliones elementles Ddo el triángulo ABC, que se muestr en

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

Catálogodegrandespotencias

Catálogodegrandespotencias www.dimotor.com Catálogogranspotencias Índice Motores grans potencias 3 Motores asíncronos trifásicos Baja Tensión y Alta tensión.... 3 Serie Y2 Baja tensión 4 Motores asíncronos trifásicos Baja Tensión

Διαβάστε περισσότερα

Introdución á análise numérica. Erros no cálculo numérico

Introdución á análise numérica. Erros no cálculo numérico 1 Introdución á análise numérica. Erros no cálculo numérico Carmen Rodríguez Iglesias Departamento de Matemática Aplicada Facultade de Matemáticas Universidade de Santiago de Compostela, 2013 Esta obra

Διαβάστε περισσότερα

Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior.

Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior. ABAU CONVOCAT ORIA DE SET EMBRO Ano 2018 CRIT ERIOS DE AVALI ACIÓN FÍSICA (Cód. 23) Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas...

Διαβάστε περισσότερα

SOLUCIONES DE LAS ACTIVIDADES Págs. 101 a 119

SOLUCIONES DE LAS ACTIVIDADES Págs. 101 a 119 Página 0. a) b) π 4 π x 0 4 π π / 0 π / x 0º 0 x π π. 0 rad 0 π π rad 0 4 π 0 π rad 0 π 0 π / 4. rad 4º 4 π π 0 π / rad 0º π π 0 π / rad 0º π 4. De izquierda a derecha: 4 80 π rad π / rad 0 Página 0. tg

Διαβάστε περισσότερα

Métodos Matemáticos en Física L4F. CONDICIONES de CONTORNO+Fuerzas Externas (Cap. 3, libro APL)

Métodos Matemáticos en Física L4F. CONDICIONES de CONTORNO+Fuerzas Externas (Cap. 3, libro APL) L4F. CONDICIONES de CONTORNO+Fuerzas Externas (Cap. 3, libro Condiciones de contorno. Fuerzas externas aplicadas sobre una cuerda. condición que nos describe un extremo libre en una cuerda tensa. Ecuación

Διαβάστε περισσότερα

MATRICES. 1º- Dadas as matrices: Calcula: 2º- Sexan as matrices: . Existe unha matriz A que verifique. 3º- Atopa unha matriz X tal que C.

MATRICES. 1º- Dadas as matrices: Calcula: 2º- Sexan as matrices: . Existe unha matriz A que verifique. 3º- Atopa unha matriz X tal que C. Eriios d ris rlos dl Río Váqu Rfl Vidl Mijón MTRIES º- Dds s ris: 8 9, lul:,,,,, º- Sn s ris: Eis unh ri qu vrifiqu? º- op unh ri X l qu X, sndo: ) ) º- Rsolv o sis riil: Y X Y X sndo: º- opro o vlor dos

Διαβάστε περισσότερα

Caderno de traballo. Proxecto EDA 2009 Descartes na aula. Departamento de Matemáticas CPI A Xunqueira Fene

Caderno de traballo. Proxecto EDA 2009 Descartes na aula. Departamento de Matemáticas CPI A Xunqueira Fene Departamento de Matemáticas CPI A Xunqueira Fene Nome: 4º ESO Nº Páx. 1 de 36 FIGURAS SEMELLANTES 1. CONCEPTO DE SEMELLANZA Intuitivamente: Dúas figuras son SEMELLANTES se teñen a mesma forma pero distinto

Διαβάστε περισσότερα

Inmigración Estudiar. Estudiar - Universidad. Indicar que quieres matricularte. Indicar que quieres matricularte en una asignatura.

Inmigración Estudiar. Estudiar - Universidad. Indicar que quieres matricularte. Indicar que quieres matricularte en una asignatura. - Universidad Me gustaría matricularme en la universidad. Indicar que quieres matricularte Me quiero matricular. Indicar que quieres matricularte en una asignatura en un grado en un posgrado en un doctorado

Διαβάστε περισσότερα

PAU XUÑO 2012 MATEMÁTICAS II

PAU XUÑO 2012 MATEMÁTICAS II PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio

Διαβάστε περισσότερα

Resorte: estudio estático e dinámico.

Resorte: estudio estático e dinámico. ESTUDIO DO RESORTE (MÉTODOS ESTÁTICO E DINÁMICO ) 1 Resorte: estudio estático e dinámico. 1. INTRODUCCIÓN TEÓRICA. (No libro).. OBXECTIVOS. (No libro). 3. MATERIAL. (No libro). 4. PROCEDEMENTO. A. MÉTODO

Διαβάστε περισσότερα

Ventiladores helicoidales murales o tubulares, versión PL equipados con hélice de plástico y versión AL equipados con hélice de aluminio.

Ventiladores helicoidales murales o tubulares, versión PL equipados con hélice de plástico y versión AL equipados con hélice de aluminio. HCH HCT HCH HCT Ventiladores helicoidales murales o tubulares, de gran robustez Ventiladores helicoidales murales o tubulares, versión PL equipados con hélice de plástico y versión AL equipados con hélice

Διαβάστε περισσότερα

NÚMEROS REAIS. Páxina 27 REFLEXIONA E RESOLVE. O paso de Z a Q. O paso de Q a Á

NÚMEROS REAIS. Páxina 27 REFLEXIONA E RESOLVE. O paso de Z a Q. O paso de Q a Á NÚMEROS REAIS Páxina 7 REFLEXIONA E RESOLVE O paso de Z a Q Di cales das seguintes ecuacións se poden resolver en Z e para cales é necesario o conxunto dos números racionais, Q. a) x 0 b) 7x c) x + d)

Διαβάστε περισσότερα

LUGARES XEOMÉTRICOS. CÓNICAS

LUGARES XEOMÉTRICOS. CÓNICAS LUGARES XEOMÉTRICOS. CÓNICAS Páxina REFLEXIONA E RESOLVE Cónicas abertas: parábolas e hipérboles Completa a seguinte táboa, na que a é o ángulo que forman as xeratrices co eixe, e, da cónica e b o ángulo

Διαβάστε περισσότερα

Volume dos corpos xeométricos

Volume dos corpos xeométricos 11 Volume dos corpos xeométricos Obxectivos Nesta quincena aprenderás a: Comprender o concepto de medida do volume e coñecer e manexar as unidades de medida do S.M.D. Obter e aplicar expresións para o

Διαβάστε περισσότερα

Couplage dans les applications interactives de grande taille

Couplage dans les applications interactives de grande taille Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications

Διαβάστε περισσότερα

PAU XUÑO 2016 MATEMÁTICAS II

PAU XUÑO 2016 MATEMÁTICAS II PAU XUÑO 06 Código: 6 MATEMÁTICAS II (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio = 3 puntos, exercicio = 3 puntos, exercicio

Διαβάστε περισσότερα

Polinomios. Obxectivos. Antes de empezar. 1.Polinomios... páx. 4 Grao. Expresión en coeficientes Valor numérico dun polinomio

Polinomios. Obxectivos. Antes de empezar. 1.Polinomios... páx. 4 Grao. Expresión en coeficientes Valor numérico dun polinomio 3 Polinomios Obxectivos Nesta quincena aprenderás a: Achar a expresión en coeficientes dun polinomio e operar con eles. Calcular o valor numérico dun polinomio. Recoñecer algunhas identidades notables,

Διαβάστε περισσότερα

MATEMÁTICAS. PRIMEIRA PARTE (Parte Común) ), cadradas de orde tres, tales que a 21

MATEMÁTICAS. PRIMEIRA PARTE (Parte Común) ), cadradas de orde tres, tales que a 21 PRIMEIRA PARTE (Parte Común) (Nesta primeira parte tódolos alumnos deben responder a tres preguntas. Unha soa pregunta de cada un dos tres bloques temáticos: Álxebra Lineal, Xeometría e Análise. A puntuación

Διαβάστε περισσότερα

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.

Διαβάστε περισσότερα

Ονομαστική Γενική Αιτιατική Κλητική Αρσ. γλ υκοί γλ υκών γλ υκούς γλ υκοί Θηλ. γλ υκές γλ υκών γλ υκές γλ υκές Ουδ. γλ υκά γλ υκών γλ υκά γλ υκά

Ονομαστική Γενική Αιτιατική Κλητική Αρσ. γλ υκοί γλ υκών γλ υκούς γλ υκοί Θηλ. γλ υκές γλ υκών γλ υκές γλ υκές Ουδ. γλ υκά γλ υκών γλ υκά γλ υκά Επίθετα και Μετοχές Nic o las Pe lic ioni de OLI V EI RA 1 Apresentação Modelo de declinação de adjetivos e particípios (επίθετα και μετοχές, em grego) apresentado pela universidade Thessaloniki. Só é

Διαβάστε περισσότερα

TEMA 6.- BIOMOLÉCULAS ORGÁNICAS IV: ÁCIDOS NUCLEICOS

TEMA 6.- BIOMOLÉCULAS ORGÁNICAS IV: ÁCIDOS NUCLEICOS TEMA 6.- BIMLÉCULAS RGÁNICAS IV: ÁCIDS NUCLEICS A.- Características generales de los Ácidos Nucleicos B.- Nucleótidos y derivados nucleotídicos El esqueleto covalente de los ácidos nucleicos: el enlace

Διαβάστε περισσότερα

Panel lateral/de esquina de la Synergy. Synergy πλαϊνή σταθερή πλευρά τετράγωνης καμπίνας. Rohová/boční zástěna Synergy

Panel lateral/de esquina de la Synergy. Synergy πλαϊνή σταθερή πλευρά τετράγωνης καμπίνας. Rohová/boční zástěna Synergy Instrucciones de instalación Suministrar al usuario ADVERTENCIA! Este producto pesa más de 19 kg, puede necesitarse ayuda para levantarlo Lea con atención las instrucciones antes de empezar la instalación.

Διαβάστε περισσότερα

Puerta corredera de la Synergy Synergy Συρόμενη πόρτα Posuvné dveře Synergy Porta de correr da Synergy

Puerta corredera de la Synergy Synergy Συρόμενη πόρτα Posuvné dveře Synergy Porta de correr da Synergy Instrucciones de instalación Suministrar al usuario ADVERTENCIA! Este producto pesa más de 19 kg, puede necesitarse ayuda para levantarlo Lea con atención las instrucciones antes de empezar la instalación.

Διαβάστε περισσότερα

CAMPO ELECTROSTÁTICO. LEI DE COULOMB

CAMPO ELECTROSTÁTICO. LEI DE COULOMB Apuntes de lectomgnetsmo. Cpítulo CAMPO LCTOTÁTICO. LI D COULOMB A cg eléctc é unh popedde ds ptículs que dá lug unh nteccón ente els dependente ds poscós eltvs. xsten dous tpos de cgs que se chmn negtv

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa.

Διαβάστε περισσότερα

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Anahita Basirat To cite this version: Anahita Basirat.

Διαβάστε περισσότερα

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5

Διαβάστε περισσότερα

VI. VECTORES NO ESPAZO

VI. VECTORES NO ESPAZO VI. VECTORES NO ESPAZO.- Vectores no espazo. Operacións Sexa E o espazo de pntos ordinario o intitio da xeometría elemental. Un segmento orientado AB con orixe no pnto A e extremo no pnto B recibe o nome

Διαβάστε περισσότερα

Consommation marchande et contraintes non monétaires au Canada ( )

Consommation marchande et contraintes non monétaires au Canada ( ) Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes

Διαβάστε περισσότερα

Métodos Estadísticos en la Ingeniería

Métodos Estadísticos en la Ingeniería Métodos Estadísticos e la Igeiería INTERVALOS DE CONFIANZA Itervalo de cofiaza para la media µ de ua distribució ormal co variaza coocida: X ± z α/ µ = X = X i N µ X... X m.a.s. de X Nµ Itervalo de cofiaza

Διαβάστε περισσότερα

Ámbito científico tecnolóxico. Números e álxebra. Unidade didáctica 1. Módulo 3. Educación a distancia semipresencial

Ámbito científico tecnolóxico. Números e álxebra. Unidade didáctica 1. Módulo 3. Educación a distancia semipresencial Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo Unidade didáctica 1 Números e álxebra Índice 1. Introdución... 1.1 Descrición da unidade

Διαβάστε περισσότερα

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence

Διαβάστε περισσότερα

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Khadija Idlemouden To cite this version: Khadija Idlemouden. Annulations de la dette extérieure

Διαβάστε περισσότερα

SISTEMAS DE ECUACIÓNS LINEAIS

SISTEMAS DE ECUACIÓNS LINEAIS SISTEMS DE ECUCIÓNS LINEIS Ídice Ecuciós lieis Sistems de ecuciós lieis: otciós Sistems equivletes Clsificció dos sistems lieis Discusió e solució de sistems po Guss Resolució dlgús sistems 7 Método d

Διαβάστε περισσότερα

ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1

ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1 (1922- ) 2005 1 2 .1.2 1.1.2-3 1.2.3-4 1.3.4-5 1.4.5-6 1.5.6-10.11 2.1 2.2 2.3 2.4.11-12.12-13.13.14 2.5 (CD).15-20.21.22 3 4 20.,,.,,.,.,,.,.. 1922., (= )., (25/10/2004), (16/5/2005), (26/1/2005) (7/2/2005),,,,.,..

Διαβάστε περισσότερα

Inecuacións. Obxectivos

Inecuacións. Obxectivos 5 Inecuacións Obxectivos Nesta quincena aprenderás a: Resolver inecuacións de primeiro e segundo grao cunha incógnita. Resolver sistemas de ecuacións cunha incógnita. Resolver de forma gráfica inecuacións

Διαβάστε περισσότερα

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes 1.- Distancia entre dous puntos Se A e B son dous puntos do espazo, defínese a distancia entre A e B como o módulo

Διαβάστε περισσότερα

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage José Marconi Rodrigues To cite this version: José Marconi Rodrigues. Transfert sécurisé d Images par combinaison

Διαβάστε περισσότερα

S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA EXTRACCIÓN DO ADN EXTRACCIÓN DO ADN CUANTIFICACIÓN. 260 280 260/280 ng/µl

S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA EXTRACCIÓN DO ADN EXTRACCIÓN DO ADN CUANTIFICACIÓN. 260 280 260/280 ng/µl CUANTIFICACIÖN 26/VI/2013 S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA - ESPECTROFOTÓMETRO: Cuantificación da concentración do ADN extraido. Medimos a absorbancia a dúas lonxitudes

Διαβάστε περισσότερα

ACI sécurité informatique KAA (Key Authentification Ambient)

ACI sécurité informatique KAA (Key Authentification Ambient) ACI sécurité informatique KAA (Key Authentification Ambient) Samuel Galice, Veronique Legrand, Frédéric Le Mouël, Marine Minier, Stéphane Ubéda, Michel Morvan, Sylvain Sené, Laurent Guihéry, Agnès Rabagny,

Διαβάστε περισσότερα

Tema 7. Glúcidos. Grados de oxidación del Carbono. BIOQUÍMICA-1º de Medicina Dpto. Biología Molecular Isabel Andrés. Alqueno.

Tema 7. Glúcidos. Grados de oxidación del Carbono. BIOQUÍMICA-1º de Medicina Dpto. Biología Molecular Isabel Andrés. Alqueno. Tema 7. Glúcidos. Funciones biológicas. Monosacáridos: nomenclatura y estereoisomería. Pentosas y hexosas. Disacáridos. Enlace glucídico. Polisacáridos de reserva: glucógeno y almidón. Polisacáridos estructurales:

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Puntuación máima dos eercicios de cada opción: eercicio 1= 3 puntos, eercicio = 3 puntos, eercicio

Διαβάστε περισσότερα

Obxectivos. polinomios. Valor. por diferenza. Factor común. ao cadrado. Suma. Resumo. titor. numérico. seu grao. Polinomios. Sacar factor. común.

Obxectivos. polinomios. Valor. por diferenza. Factor común. ao cadrado. Suma. Resumo. titor. numérico. seu grao. Polinomios. Sacar factor. común. Polinomios Obxectivos Nesta quincena aprenderás a: Manexar as expresiónss alxébricas e calcular o seu valor numérico. Recoñecer os polinomios e o seu grao. Sumar, restar e multiplicar polinomios. Sacar

Διαβάστε περισσότερα

Vers un assistant à la preuve en langue naturelle

Vers un assistant à la preuve en langue naturelle Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.

Διαβάστε περισσότερα

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato Estrutura atómica 2 1

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato Estrutura atómica 2 1 As leis ponderais e volumétricas, estudadas no anterior tema, analizadas á luz da teoría atómica que hoxe manexamos resultan ser unha consecuencia lóxica da mesma, pero non debemos esquecer que historicamente

Διαβάστε περισσότερα

ELECTROTECNIA. BLOQUE 1: ANÁLISE DE CIRCUÍTOS (Elixir A ou B) A.- No circuíto da figura determinar o valor da intensidade na resistencia R 2

ELECTROTECNIA. BLOQUE 1: ANÁLISE DE CIRCUÍTOS (Elixir A ou B) A.- No circuíto da figura determinar o valor da intensidade na resistencia R 2 36 ELECTROTECNIA O exame consta de dez problemas, debendo o alumno elixir catro, un de cada bloque. Non é necesario elixir a mesma opción (A ou B ) de cada bloque. Todos os problemas puntúan igual, é dicir,

Διαβάστε περισσότερα

QUALITES DE VOL DES AVIONS

QUALITES DE VOL DES AVIONS QUALITES DE OL DES AIONS IPSA Philippe GUIETEAU ONERA/DPRS/PRE Tel : 69 93 63 54 : 69 93 63 Eil : philippe.uicheteu@oner.r Qulités de vol des vions (/4) 4 Petits ouveents lonitudinu 4. Principe de linéristion

Διαβάστε περισσότερα

Semellanza e trigonometría

Semellanza e trigonometría 7 Semellanza e trigonometría Obxectivos Nesta quincena aprenderás a: Recoñecer triángulos semellantes. Calcular distancias inaccesibles, aplicando a semellanza de triángulos. Nocións básicas de trigonometría.

Διαβάστε περισσότερα

Química P.A.U. ÁCIDOS E BASES 1 ÁCIDOS E BASES

Química P.A.U. ÁCIDOS E BASES 1 ÁCIDOS E BASES Química P.A.U. ÁCIDOS E BASES 1 ÁCIDOS E BASES PROBLEMAS ÁCIDO/BASE DÉBIL 1. Unha disolución de amonuíaco de concentración 0,01 mol/dm³ está ionizada nun 4,2 %. a) Escribe a reacción de disociación e calcula

Διαβάστε περισσότερα