Μελέτη στην ανάλυση οµάδων και εφαρµογή σε δεδοµένα γονιδιακής έκφρασης καρκίνου από µικροσυστοιχίες

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μελέτη στην ανάλυση οµάδων και εφαρµογή σε δεδοµένα γονιδιακής έκφρασης καρκίνου από µικροσυστοιχίες"

Transcript

1 Μελέτη στην ανάλυση οµάδων και εφαρµογή σε δεδοµένα γονιδιακής έκφρασης καρκίνου από µικροσυστοιχίες Ιωάννης Αγ. Μαραζιώτης Εποπτεία: Καθ. Αναστάσιος Μπεζεριάνος

2 Βιοπληροφορική Βιολογικά δεδοµένα + Υπολογιστικές Μέθοδοι

3 Οι µικροσυστοιχίες παρέχουν ένα τρόπο µέτρησης της έκφρασης γονιδίων.

4 Μέτρηση Έκφρασης Γονιδίου Ιδέα: µέτρηση του ποσού του mrna για να διαπιστώσουµε πια γονίδια εκφράζονται (ή χρησιµοποιούνται ) από το κύτταρο.

5 Πειράµατα µε µικροσυστοιχίες cdna ιαφορετικοί ιστοί, ίδιος οργανισµός (εγκέφαλος συκώτι) Ίδιοι ιστοί, διαφορετικοί οργανισµοί Ίδιοι ιστοί, ίδιοι οργανισµοί (φυσιολογικοί καρκινικοί)

6 Υβριδισµός Ο υβριδισµός (Hybridization) εκµεταλλεύεται ένα ισχυρό χαρακτηριστικό του DNA, που είναι η συµπληρωµατικότητα των ακολουθιών των δυο ζωνών του. Το DNA µπορεί να επανασυναρµολογηθεί µε τέλεια πιστότοτητα από µια από τις διαχωριζόµενες ζώνες. Οι ζώνες µπορούν να διαχωρισθούν µε θέρµανση.

7 Υβριδισµός νουκλεονικού οξέος

8 Μικροσυστοιχίες cdna Κλώνοι cdna

9 Στάδια παραγωγής δεδοµένων από µικροσυστοιχία ΥΒΡΙ ΙΣΜΟΣ ΕΚΤΥΠΩΣΗ ΣΑΡΩΣΗ Πρόσθεση cdna από ισων κάθε ποσοτήτων Laser cdna γονίδιο δειγµάτων σε κάθε Ανιχνευτής στην spot µικροσυστοιχία

10 Ποσοτικοποίηση έκφρασης Για κάθε spot στο slide υπολογίζουµε: Κόκκινη ένταση = Κfg - Κbg (fg = foreground, bg = background) και Πράσινη ένταση = Πfg - Πbg Και τα συνδυάζουµε σε ένα λογαριθµικό (βάσης 2) λόγο Log2( Κόκκινη ένταση / Πράσινη ένταση)

11 εδοµένα Έκφρασης Γονιδίων Σε p γονίδια για n slides: το p είναι O(10,000), το n είναι O(10-100), αλλά αυξάνεται Γονίδια Slides slide 1 slide 2 slide 3 slide 4 slide Επίπεδο έκφρασης του γονιδίου 5 στο slide 4 = Log 2 ( Κόκκινη ένταση / Πράσινη ένταση) Αυτές οι τιµές τυπικά εµφανίζονται σε κόκκινες (>0) κίτρινες (0) πράσινες (<0) κλίµακες.

12 Βιολογικές ερωτήσεις ιαφορετικές εκφράσεις γονιδίων Πρόβλεψη οµάδας δείγµατος κ.λ.π. Σχεδίαση πειράµατος Εκτίµηση Πείραµα µικροσυστοιχίας Ανάλυση εικόνας Κανονικοποίηση 16-bit TIFF αρχεία (Κfg, Κbg), (Πfg, Πbg) Κ, Π Testing Οµαδοποίηση ιάκριση Βιολογική επαλήθευση και εξέταση αποτελεσµάτων

13 Βασική διαφορά στα δεδοµένα Ανάγκη ύπαρξης νέων εργαλείων έρευνας µιας και οι κλασσικές βιοστατιστικές µέθοδοι δεν αρκουν για την αναλυση των νεων δεδοµένων.

14 Μορφή Αρχείων Σχήµα και διάταξη ενός τύπου αρχείου, όπως προκύπτει µετά την επεξεργασία εικόνας µιας µικροσυστοιχίας.

15 Σηµειογραφία i-οστή συντεταγµένη i=1..ν Γονίδιο 1 Γονίδιο 2... Γονίδιο Ν είγµα 1 DATA DATA DATA DATA είγµα 2 DATA DATA DATA DATA DATA DATA DATA DATA είγµα κ DATA DATA DATA DATA Σηµεία ιάσταση

16 Οµαδοποίηση Η οµαδοποίηση µπορεί να οριστεί ως η διαδικασία κατά την οποία ένα συνολο αντικειµένων διαχωρίζονται σε υποσύνολα βάση διάφορων οµοιοτήτων που παρουσιάζουν. Πρόκειται δηλαδή για προσπάθεια εύρεσης οµάδων µε µέλη που είναι όσο το δυνατόν όµοια µεταξύ τους και όσο το δυνατόν ανόµοια µε µέλη άλλης οµάδας. εδοµένου ενός συνόλου Σ, ν γονιδίων των οποίων έχουµε µετρήσει τα επίπεδα έκφρασης κατά µήκος κ συνθηκών δειγµάτων, πρεπει να ευρεθεί η καλύτερη κατάτµηση του Σ σε υποσύνολα τετοια ώστε κάθε υποσύνολο να περιέχει γονίδια των οποίων οι εκφράσεις είναι παρόµοιες µεταξύ τους.

17 Οµαδοποίηση µε και χωρίς επόπτη Ανάλυση µε και χωρίς επόπτη. Στην περίπτωση της εκµάθησης χωρίς επόπτη (αριστερά) δίνονται σηµεία δεδοµενων στον ν-διαστατό χώρο και προσπαθούµε να βρούµε τρόπους να οµαδοποιήσουµε τα σηµεία µε παρόµοια χαρακτηριστικά. Στην περίπτωση της εκµάθησης µε επόπτη (δεξιά) τα αντικείµενα ετικετοποιούνται και ο στόχος είναι η εύρεση ενός συνόλου κανόνων οµαδοποίησης να διακρίνουµε αναµεσα σε αυτά τα σηµεία όσο το δυνατόν καλύτερα.

18 εδοµένα Λευχαιµίας εδοµένα προερχόµενα από εργασία Golub et al. Περιέχει δυο βασικές οµάδες καρκίνου: 1. οξεία µυελική λευχαιµία (acute myelogenous leukemia AML) 2. οξεία λεµφοκυτταρική λευχαιµία (acute lemphocytic leukemia ALL) Γονίδια Αριθµός δειγµάτων εκπαίδευσης Αριθµός δειγµάτων ελέγχου

19 εδοµένα Λεµφώµατος Τα δεδοµένα προέρχονται από την εργασία του G. Valentini Το σύνολο αποτελούνταν από 4 οµάδες καρκίνου λεµφώµατος και ένα συνολο δειγµάτων µε υγιή δείγµατα. Ο αριθµός των δειγµάτων καρκίνου ανέρχονταν σε 72 ενώ υγιή λεµφοειδή δείγµατα ανέρχονταν σε 24, συνολο 96. Τα δεδοµένα χωρίστηκαν σε: συνολο εκπαίδευσης και σύνολο ελέγχου. Γονίδια Αριθµός δειγµάτων εκπαίδευσης Αριθµός δειγµάτων ελέγχου

20 εδοµένα πολυταξικού συνόλου εδοµένα προερχόµενα από την εργασια των Ramaswamy et al. Περιέχει 14 οµάδες καρκίνου Γονίδια Αριθµός δειγµάτων εκπαίδευσης Αριθµός δειγµάτων ελέγχου

21 Μέλη Πολυταξικού συνόλου είκτης Τύπος Καρκίνου είγµατα εκπαίδευσης είγµατα ελέγχου 1 1. Στήθους Προστάτη Πνεύµονα Παχέως εντέρου Λέµφωµα Ουροδόχου κύστης Μελάνωµα Μήτρας Λευχαιµία Νεφρικός Πάγκρεας Ωοθήκης Μεσοθηλιακού ιστού Κεντρικού Νευρικού Συστήµατος 16 4

22 Signal to Noise Ratio Η µέθοδος αυτή χρησιµοποιεί ένα µέτρο συσχετίσεως P(g, c) που δίνει έµφαση στον λόγο «σήµα προς - θόρυβο» (signal to noise) χρησιµοποιώντας τα γονίδια σαν µέσο πρόβλεψης. Έστω µε [µ1(g), σ1(g)] και [µ2(g), σ2(g)] ότι σηµειώνουµε τους µέσους όρους και τις τυπικές αποκλίσεις των επιπέδων έκφρασης του γονίδιου g για τα δείγµατα στην κλάση 1 και 2 αντίστοιχα. µ ( g) µ ( g) σ ( g) + σ ( g) 1 2 (, ) = P g c 1 2

23 Signal to Noise Ratio Μεγάλες τιµές P(g,c) προδίδει µια σηµαντική συσχέτιση ανάµεσα στην έκφραση του γονιδίου και την διάκριση κλάσης. Ενώ το πρόσηµο του P(g,c) θετικό ή αρνητικό αντιστοιχεί στο να εκφράζεται το γονίδιο g περισσότερο από την κλάση 1 από ότι στην κλάση 2. Αντίθετα µε τον τυπικό συντελεστή συσχέτισης του Pearson, το P(g,c) δεν περιορίζεται στο διάστηµα [-1, +1].

24 Συνδυαστικές Μέθοδοι Εφαρµόζεται όταν έχουµε περίπτωση δυικής οµαδοποίησης υο είναι πιο συχνά χρησιµοποιούµενες µέθοδοι: 1. One Versus All OVA (ένας έναντι όλων) 2. All Pairs AP (όλα τα ζεύγη)

25 Συνδυαστικές Μέθοδοι -OVA ηµιουργία κ (κ = αριθµός οµάδων) δυαδικών οµαδοποιητών, καθένας από τους οποίους διακρίνει µια οµάδα από όλες τις άλλες οµάδες συνδυασµένες µαζί. Για ένα δείγµα έλεγχου ο δυαδικός οµαδοποιητής δίνει ένα διάνυσµα διάστασης κ, f(x)=(f 1 (x),, f k (x)). Εάν το f i (x) είναι ένας πραγµατικός αριθµός (π.χ. προβλεπόµενη κλάση µε τιµή εµπιστοσύνης), τότε η µέθοδος πρόβλεψης βρίσκει το µέγιστο των fi(x) και αναθέτει το δείγµα στην αντίστοιχη ετικέτα τάξης: F(x) = argmax i f i (x).

26 Μέθοδοι Οµαδοποίησης που εξετάζονται στην εργασία Χωρίς επόπτη Με επόπτη Hierarchical Clustering Brain State in a Box Self Organizing Maps Multilayer Perceptron Support Vector Machines Weighted Voting Nearest Neighbors Probabilistic Neural Networks

27 Μέθοδοι Οµαδοποίησης

28 Self Organizing Maps

29 Περιγραφή SOM Πρόκειται για νευρωνικό δίκτυο δυο επιπέδων. Το πρώτο λέγεται επιπεδο εισόδου και δέχεται τις εισόδους. Το δεύτερο λέγεται επιπεδο Kohonen ιάταξη νευρώνων επιπέδου Kohonen: 1. Εξαγωνικό πλέγµα 2. Παραλληλόγραµµο πλέγµα.

30 Εκπαίδευση SOM Πριν την φάση της εκπαίδευσης αρχικοποιούνται τα βάρη. Τυχαία επιλογή ενός δείγµατος εισόδου. Εύρεση νευρώνα πλησιέστερα στο δείγµα. x x = min{ x m } c Ο νευρώνας αυτός λέγεται BMU. Μετακίνηση του BMU και της τοπολογικής γειτονιάς του πλησίον του δείγµατος. i

31 Μετακίνηση νευρώνων του SOM προς δείγµα Σχηµατική απεικόνιση της µετακίνησης του BMU και των τοπολογικών γειτόνων του προς το τρέχον δείγµα.

32 Εκπαίδευση SOM Κανόνας ενηµέρωσης για το διάνυσµα βάρους του νευρώνα i: mi t+ 1 = mi t + hci t x t mi t ( ) ( ) ( ) ( ) ( ) Ο πυρήνας γειτονίας σχηµατίζεται από την συνάρτηση γειτονίας και την συνάρτηση εκµάθησης: h t a t h r r t ( ) = ( ) (, ) ci c i

33 Συναρτήσεις γειτονιάς για SOM (α) Συνάρτηση Φυσαλίδας, (β) Συνάρτηση Gauss

34 Σύνοψη SOM Αρχή αυτοοργανούµενων χαρτών (Self Organizing Maps). Τα κεντροειδή ξεκινούν µε µια αυθαίρετη τοπολογία. Καθώς η µέθοδος προχωρά κάθε ένα κινείται προς ένα τυχαία επιλεγµένο γονίδιο κατά την διάρκεια κάθε επανάληψης. Μετά την συνέχιση της διαδικασίας για αρκετό χρόνο, κάθε κεντροειδές θα τοποθετηθεί (ιδανικά) στο κέντρο κάθε κλάσης.

35 Probabilistic Neural Networks Πιθανοκρατικά Νευρωνικά ίκτυα Νευρωνικό ίκτυο τυπου RBF, για χρηση σε προβλήµατα οµαδοποιησης Όταν παρουσιάζεται µια είσοδος, το πρώτο επιπεδο υπολογίζει τις αποστάσεις από του διανυσµατος εισόδου από όλα τα διανύσµατα εισόδου του συνόλου εκπαίδευσης και παράγει ένα διανυσµα του οποίου τα στοιχεία προσδιορίζουν το πόσο κοντά είναι το διανυσµα εισόδου στα διανύσµατα εισόδου εκπαίδευσης. Το δεύτερο επιπεδο αθροίζει αυτές τις τιµές, για κάθε οµάδα εισόδων προκείµενου να παράγει σαν έξοδο ένα διανυσµα πιθανοτήτων. Τελικά µια συνάρτηση ανταγωνισµού (compete) στην έξοδο του δεύτερου επιπέδου επιλέγει την µέγιστη από αυτές τις πιθανότητες και παράγει 1 για αυτή την κλάση και 0 για τις άλλες.

36 Support Vector Machines

37 Βασική ιδέα Αλγόριθµος δυικης οµαδοποίησης. εδοµένου ενός συνόλου σηµείων σε µια από δυο κλάσεις ένα SVM βρίσκει το υπερεπιπεδο που: 1. Αφήνει το µεγαλύτερο δυνατό κλάσµα σηµείων της ίδιας κλάσης στην ίδια µεριά 2. Μεγιστοποιεί την απόσταση της µιας από τις δυο κλάσεις από το υπερεπιπεδο. Εύρεση του βέλτιστου υπερεπιπέδου διαχωρισµού που ελαχιστοποιεί το ρίσκο της λάθος οµαδοποίησης των δειγµάτων εκπαίδευσης και των άγνωστων δειγµάτων ελέγχου.

38 Γραµµικά SVM εδοµένου ενός συνόλου σηµείων x i εr n κάθε σηµείο χ i σε µια από δυο κλάσεις µε ετικέτα y i ε {-1,1}. Ορισµός 1: Το συνολο Σ είναι γραµµικά διαχωριζόµενο εάν υπάρχει w τ.ω. n και ακόµη τετοιο ώστε: w R b R y w x + b i= 1, 2, K, N i ( ) 1 i Τα ζεύγη (w, b) ορίζουν ένα υπερεπίπεδο από την εξίσωση w x i + b = 0 που ονοµάζεται υπερεπίπεδο διαχωρισµου.η προσηµασµένη απόσταση d i ενός σηµείου x i από το επιπεδο διαχωρισµού (w,b) δίνεται από d i = w x + b i w x Σ Από τις δυο τελευταίες εξισώσεις προκύπτει για όλα τα ότι i yd i i 1 w

39 Γραµµικά SVM εδοµένου ενός γραµµικά διαχωριζόµενου συνόλου Σ, το βέλτιστο υπερεπίπεδο διαχωρισµού είναι το υπερεπιπεδο διαχωρισµού για το οποίο η απόσταση του πλησιέστερου σηµείου του Σ είναι µέγιστη

40 Support Vectors Αυτά τα διανύσµατα λέγονται support vectors γιατί είναι τα πλησιέστερα σηµεία από το υπερεπίπεδο διαχωρισµού και τα µόνα σηµεία του Σ που χρειάζονται για την κατασκευή αυτού του βέλτιστου υπερεπιπέδου. Το πρόβληµα τώρα της οµαδοποίησης ενός νέου σηµείου χ λύνεται εύκολα από το πρόσηµο n m της: Φ: R R

41 Μη γραµµικά Support Vector Machines Στην περίπτωση που δεν µπορεί να βρεθεί ένα υπερεπιπεδο διαχωρισµού που να οµαδοποιεί σωστά τα σηµεία τότε µπορούµε να βρούµε να ανεβούµε σε ένα χώρο υψηλότερων διαστάσεων όπου είναι πολύ πιθανό να υπάρχει τέτοιο επιπεδο διαχωρισµού. Φ: R 2 3 R ( 2 2 ) x= ( x, x ) x' = x, x, x x Γίνεται δηλαδη χαρτογράφηση των σηµείων δεδοµένων από τον χώρο εισόδου R n σε ένα χώρο µεγαλύτερης διάστασης R m (m > n) ο οποιός λέγεται χώρος χαρακτηριστικών, µε χρήση µιας συνάρτησης πυρήνα Φ. n Φ: R R m

42 Πειραµατικά Αποτελέσµατα

43 Ιεραρχική Οµαδοποίηση στα εδοµένα Λευχαιµίας Εφαρµογή στο σύνολο δεδοµένων εκπαίδευσης Εφαρµογή στο σύνολο δεδοµένων ελέγχου Γενικά δεν παρατηρείται καλή απόδοση οµαδοποίησης. Παρατηρούνται καλύτερα αποτελέσµατα στα δεδοµένα εκπαίδευσης, από ότι στα δεδοµένα ελέγχου.

44 Weighted Voting σε δεδοµένα Λευχαιµίας Κάθετος άξονας εγκυρότητα πρόβλεψης από τον αλγόριθµο Η αριστερή στήλη αναφέρεται στα δεδοµένα εκπαίδευσης µε την µέθοδο της επαλήθευσης µε κατακράτηση ενός Η δεξιά στήλη αναφέρεται στα δεδοµένα ελέγχου Κάτω από την τιµή 0.3 η πρόβλεψη θεωρείται ανασφαλής και απορρίπτεται εδοµένα Αριθµός δειγµάτων Αριθµός γονιδίων Αβέβαια δείγµατα Λάθη Εκπαίδευσης Ελέγχου

45 Εφαρµογή SOM στα δεδοµένα Λευχαιµίας Εφαρµογή στα δεδοµένα εκπαίδευσης Εφαρµογή στα δεδοµένα εκπαίδευσης είγµατα AML είγµατα ALL είγµατα AML είγµατα ALL Τ- κυττάρου είγµατα ALL Β - κυττάρου

46 SVM στα δεδοµένα Λευχαιµίας Ο παρακάτω πίνακας απεικονίζει τα αποτελέσµατα οµαδοποίησης του SVM για διαφορετικούς αριθµούς γονιδιων στα δεδοµένα ελέγχου. Αριθµός γονιδίων Αριθµός σφαλµάτων

47 SVM στα δεδοµένα Λευχαιµίας Κάθετος άξονας, απόσταση από οριο διαχωρισµού υπερεπιπέδου Αριθµός δείγµατος 34 δείγµατα 7129 γονίδια 2 σφάλµατα AML (*), ALL (+), Σφάλµατα (χ)

48 Εφαρµογή PNN στα δεδοµένα Λεµφώµατος Για αυτό το πείραµα έγινε διαχωρισµός των δεδοµένων σε δυο συνολα ένα εκπαίδευσης και ένα ελέγχου. Μπλε χρώµα: σωστές προβλέψεις. Κόκκινο χρώµα: λανθασµένες προβλέψεις Η επιλογη των γονιδίων εγινε βάση της µεθόδου s2n. Καλύτερα αποτελέσµατα επιτέυχθησαν µε χρήση 2000 γονιδίων. # Χαρακτηριστικών spread Ακρίβεια Ευαισθησία % 100% ,4% 100% Όλα ,1% 100%

49 HC στα δεδοµένα πολυταξικού Χρωµατική αναπαράσταση οµάδων. Παρατηρούµε ότι η µέθοδος δεν κατόρθωσε να αναδείξει την συνάφεια αναµεσα στις οµάδες.

50 SOM στο πολυταξικό 5x5 SOM Εφαρµογή στα 144 δειγµατα εκπαίδευσης. Χρήση και των γονιδίων. Χρωµατική αναπαράσταση οµάδων.

51 Πρόβλεψη βάση απόστασης από το υπερεπίπεδο των SVM Αποτελέσµατα των 14 SVM οµαδοποιητών σε 2 δείγµατα από τα δεδοµένα ελέγχου.

52 Αποτελέσµατα Αλγορίθµων για το Αριθµός Χαρακτηριστικών Όλα πολυταξικό σύνολο WV - OVA knn - OVA SVM - OVA Πίνακας λάθος οµαδοποιήσεων για τις µεθόδους Support Vector Machine, Nearest Neighbors, Weighted Voting που έγινε στα δεδοµένα εκπαίδευσης µε την τεχνική της επαλήθευσης µε κράτηση ενός, όπου αποτελούνταν από 144 δειγµατα. Αριθµός Χαρακτηριστικών WV - OVA knn - OVA SVM - OVA Πίνακας λάθος οµαδοποιήσεων για τις µεθόδους Support Vector Machine, Nearest Neighbors, Weighted Voting που έγινε στα δεδοµένα ελέγχου όπου αποτελούνταν από 46 δειγµατα. Όλα

53 Συµπεράσµατα Από τις µεθόδους εκµάθησης χωρίς επόπτη καλύτερα αποτελέσµατα εµφανίζει η µέθοδος SOM. Από τις µεθόδους οµαδοποίησης µε επόπτη καλύτερα αποτελέσµατα εµφανίζει η µέθοδος SVM. Σαφώς καλύτερα αποτελέσµατα λαµβάνουµε από τις µεθόδους µε επόπτη.

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο

Διαβάστε περισσότερα

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5 IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό

Διαβάστε περισσότερα

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων Δρ. Ε. Χάρου Πρόγραμμα υπολογιστικής ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΔΗΜΟΚΡΙΤΟΣ exarou@iit.demokritos.gr Μηχανική

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο

Διαβάστε περισσότερα

Με τα sequence projects φτάσαμε στην εποχή που η ελάχιστη πληροφορία για να ξεκινήσει ένα πείραμα είναι ολόκληρη ακολουθία DNA του οργανισμού Το DNA

Με τα sequence projects φτάσαμε στην εποχή που η ελάχιστη πληροφορία για να ξεκινήσει ένα πείραμα είναι ολόκληρη ακολουθία DNA του οργανισμού Το DNA Microarrays Με τα sequence projects φτάσαμε στην εποχή που η ελάχιστη πληροφορία για να ξεκινήσει ένα πείραμα είναι ολόκληρη ακολουθία DNA του οργανισμού Το DNA όμως του οργανισμού είναι μια στατική πληροφορία

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης Αναγνώριση Προτύπων (Pattern Recognton Μπεϋζιανή Θεωρία Αποφάσεων (Bayesan Decson Theory Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Μπεϋζιανή Θεωρία Αποφάσεων (Bayes Decson theory Στατιστικά

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 10: Ομαδοποίηση με Ανταγωνιστική Μάθηση - Δίκτυα Kohonen

Υπολογιστική Νοημοσύνη. Μάθημα 10: Ομαδοποίηση με Ανταγωνιστική Μάθηση - Δίκτυα Kohonen Υπολογιστική Νοημοσύνη Μάθημα 10: Ομαδοποίηση με Ανταγωνιστική Μάθηση - Δίκτυα Kohonen Ανταγωνιστικοί Νευρώνες Ένα στρώμα με ανταγωνιστικούς νευρώνες λειτουργεί ως εξής: Όλοι οι νευρώνες δέχονται το σήμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008 Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 5//008 Πρόβληµα ο Στα παρακάτω ερωτήµατα επισηµαίνουµε ότι perceptron είναι ένας νευρώνας και υποθέτουµε, όπου χρειάζεται, τη χρήση δικτύων

Διαβάστε περισσότερα

Μέτρα της οργάνωσης και της ποιότητας για τον Self-Organizing Hidden Markov Model Map (SOHMMM)

Μέτρα της οργάνωσης και της ποιότητας για τον Self-Organizing Hidden Markov Model Map (SOHMMM) Μέτρα της οργάνωσης και της ποιότητας για τον Self-Organizing Hidden Markov Model Map (SOHMMM) Γενική περιγραφή του SOHMMM Ένα υβριδικό νευρωνικό δίκτυο, σύζευξη δύο πολύ επιτυχημένων μοντέλων: -Self-Organizing

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ελαχιστοποίηση χαρακτηριστικών ταξινομητή για γονιδιακή σύνθεση ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ : 2008 2009 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διαβάστε περισσότερα

Καρκίνος. Note: Σήμερα όμως πάνω από το 50% των διαφόρων καρκινικών τύπων είναι θεραπεύσιμοι

Καρκίνος. Note: Σήμερα όμως πάνω από το 50% των διαφόρων καρκινικών τύπων είναι θεραπεύσιμοι Ο πιο απλός ορισμός είναι ότι ο καρκίνος είναι μια ομάδα ασθενειών που χαρακτηρίζεται από ανεξέλεγκτη ανάπτυξη και διασπορά ανώμαλων κυττάρων. Αν η εξάπλωση δεν ελεγχθεί θα οδηγήσει στο θάνατο. Ποσοστό

Διαβάστε περισσότερα

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

Περιβαλλοντική πληροφορική - Ευφυείς εφαρµογές

Περιβαλλοντική πληροφορική - Ευφυείς εφαρµογές Περιβαλλοντική πληροφορική - Ευφυείς εφαρµογές ρ. Ε. Χάρου Πρόγραµµα υπολογιστικής ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΗΜΟΚΡΙΤΟΣ http://www.iit.demokritos.gr/neural Περιβαλλοντικά προβλήµατα

Διαβάστε περισσότερα

HY 571 - Ιατρική Απεικόνιση. ιδάσκων: Kώστας Μαριάς

HY 571 - Ιατρική Απεικόνιση. ιδάσκων: Kώστας Μαριάς HY 571 - Ιατρική Απεικόνιση ιδάσκων: Kώστας Μαριάς 7. Υπολογιστική τοµογραφία Η ανάγκη απεικόνισης στις 3- ιαστάσεις Στην κλασική ακτινολογία η τρισδιάστατη ανθρώπινη ανατοµία προβάλλεται πάνω στο ακτινογραφικό

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 1.

ραστηριότητες στο Επίπεδο 1. ραστηριότητες στο Επίπεδο 1. Στο επίπεδο 0, στις πρώτες τάξεις του δηµοτικού σχολείου, όπου στόχος είναι η οµαδοποίηση των γεωµετρικών σχηµάτων σε οµάδες µε κοινά χαρακτηριστικά στη µορφή τους, είδαµε

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Τι είναι το Πρόβλημα της Πινακοθήκης; Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,

Διαβάστε περισσότερα

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΠΕΡΙΕΧΟΜΕΝΑ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 Πιθανότητες 1.1 Πιθανότητες και Στατιστική... 5 1.2 ειγματικός χώρος Ενδεχόμενα... 7 1.3 Ορισμοί και νόμοι των πιθανοτήτων... 10 1.4 εσμευμένη πιθανότητα Ολική

Διαβάστε περισσότερα

Ψηφιακοί Υπολογιστές

Ψηφιακοί Υπολογιστές 1 η Θεµατική Ενότητα : υαδικά Συστήµατα Ψηφιακοί Υπολογιστές Παλαιότερα οι υπολογιστές χρησιµοποιούνταν για αριθµητικούς υπολογισµούς Ψηφίο (digit) Ψηφιακοί Υπολογιστές Σήµατα (signals) : διακριτά στοιχεία

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Η ΑΛΗΘΙΝΗ ΚΑΙ Η ΕΙΚΟΝΙΚΗ ΜΙΚΡΟΣΥΣΤΟΙΧΙΑ ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ

Η ΑΛΗΘΙΝΗ ΚΑΙ Η ΕΙΚΟΝΙΚΗ ΜΙΚΡΟΣΥΣΤΟΙΧΙΑ ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ Η ΑΛΗΘΙΝΗ ΚΑΙ Η ΕΙΚΟΝΙΚΗ ΜΙΚΡΟΣΥΣΤΟΙΧΙΑ ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ DNA μικροσυστοιχίες: βήμα προς βήμα Παραγωγή DNA ανιχνευτών Οι επιστήμονες μπορούν να παράγουν «σπιτικές» μικροσυστοιχίες χρησιμοποιώντας την αλυσιδωτή

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

GIS: Εισαγωγή στα Γεωγραφικά Συστήµατα Πληροφοριών

GIS: Εισαγωγή στα Γεωγραφικά Συστήµατα Πληροφοριών GIS: Εισαγωγή στα Γεωγραφικά Συστήµατα Πληροφοριών Σηµειώσεις Σεµιναρίου ηµήτρης Τσολάκης v1.2 ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 9 1.1. GIS in Greek...10 1.2. Γιατί GIS;...10 1.3. Τι Είναι τα GIS...12 1.3.1.

Διαβάστε περισσότερα

Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια

Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια 6 Nicol Tptouli Ευστάθεια και θέση πόλων Σ.Α.Ε ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος

Διαβάστε περισσότερα

5. Μέθοδοι αναγνώρισης εκπαίδευση χωρίς επόπτη

5. Μέθοδοι αναγνώρισης εκπαίδευση χωρίς επόπτη 5. Μέθοδοι αναγνώρισης εκπαίδευση χωρίς επόπτη Tο πρόβληµα του προσδιορισµού των συγκεντρώσεων των προτύπων, όταν δεν είναι γνωστό το πλήθος τους και η ταυτότητα των προτύπων, είναι δύσκολο και για την

Διαβάστε περισσότερα

Αναγνώριση Προτύπων - Νευρωνικά ίκτυα

Αναγνώριση Προτύπων - Νευρωνικά ίκτυα ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ Αναγνώριση Προτύπων - Νευρωνικά ίκτυα ρ. Χαράλαµπος Π. Στρουθόπουλος Αναπληρωτής Καθηγητής

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)=

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)= ΣΥΝΑΡΤΗΣΕΙΣ - 9 - ΚΕΦΑΛΑΙ ΚΕΦΑΛΑΙ ο - ΣΥΝΑΡΤΗΣΕΙΣ.. ρισµός Συνάρτηση από ένα σύνολο Α σ ένα σύνολο Β είναι ένας κανόνας µε τον οποίο κάθε στοιχείο του Α απεικονίζεται σε ένα ακριβώς στοιχείο του Β. Το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

Επαγωγικές Μηχανές Διανυσμάτων Στήριξης και εφαρμογή σε προβλήματα ταξινόμησης

Επαγωγικές Μηχανές Διανυσμάτων Στήριξης και εφαρμογή σε προβλήματα ταξινόμησης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Επαγωγικές Μηχανές Διανυσμάτων Στήριξης

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες

Διαβάστε περισσότερα

Κεφάλαιο M3. Διανύσµατα

Κεφάλαιο M3. Διανύσµατα Κεφάλαιο M3 Διανύσµατα Διανύσµατα Διανυσµατικά µεγέθη Φυσικά µεγέθη που έχουν τόσο αριθµητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούµε µε τις µαθηµατικές πράξεις των

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

Έγχρωµο και Ασπρόµαυρο Φως

Έγχρωµο και Ασπρόµαυρο Φως Έγχρωµο και Ασπρόµαυρο Φως Χρώµα: κλάδος φυσικής, φυσιολογίας, ψυχολογίας, τέχνης. Αφορά άµεσα τον προγραµµατιστή των γραφικών. Αν αφαιρέσουµε χρωµατικά χαρακτηριστικά, λαµβάνουµε ασπρόµαυρο φως. Μόνο

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων ΘΕ1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες όπως : σφάλµατα, στατιστική

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Ορισµένοι ερευνητές υποστηρίζουν ότι χρειαζόµαστε µίνιµουµ 30 περιπτώσεις για να προβούµε σε κάποιας µορφής ανάλυσης των δεδοµένων.

Ορισµένοι ερευνητές υποστηρίζουν ότι χρειαζόµαστε µίνιµουµ 30 περιπτώσεις για να προβούµε σε κάποιας µορφής ανάλυσης των δεδοµένων. ειγµατοληψία Καθώς δεν είναι εφικτό να παίρνουµε δεδοµένα από ολόκληρο τον πληθυσµό που µας ενδιαφέρει, διαλέγουµε µια µικρότερη οµάδα που θεωρούµε ότι είναι αντιπροσωπευτική ολόκληρου του πληθυσµού. Τέσσερις

Διαβάστε περισσότερα

γένεση των µετακινήσεων

γένεση των µετακινήσεων 3 γένεση των µετακινήσεων εισαγωγή το υπό διερεύνηση θέµα: πόσες µετακινήσεις ξεκινούν από κάθε ζώνη? πόσες µετακινήσεις κάνει ένας µετακινούµενος κατά την διάρκεια µιας µέσης εβδοµάδας? Ανάλυση κατά ζώνη

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Εξετάσεις Προσομοίωσης 06/04/2015 Θέμα Α Α1. Να γράψετε στο τετράδιο σας τον αριθμό κάθε πρότασης και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή και ΛΑΘΟΣ αν

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ. Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ

ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ. Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΣΕΡΡΩΝ Τμήμα ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός Κεφάλαιο 5ο: Ακέραιος προγραμματισμός 5.1 Εισαγωγή Ο ακέραιος προγραμματισμός ασχολείται με προβλήματα γραμμικού προγραμματισμού στα οποία μερικές ή όλες οι μεταβλητές είναι ακέραιες. Ένα γενικό πρόβλημα

Διαβάστε περισσότερα

Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ

Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Οι Ενόργανες Μέθοδοι Ανάλυσης είναι σχετικές μέθοδοι και σχεδόν στο σύνολο τους παρέχουν την αριθμητική τιμή μιας φυσικής ή φυσικοχημικής ιδιότητας, η

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Έστω η συνάρτηση f() = 80 αν < < 0 αν 0 αν i ) Να υπολογιστεί η τιµή της παράστασης Α = f( ) + f(0) 5f() f + f( ) Αν Μ(, ) και Ν(, 0) να βρείτε την εξίσωση της ευθείας ΜΝ i

Διαβάστε περισσότερα

Α.Τ.Ε.Ι. Ηρακλείου Ψηφιακή Επεξεργασία Εικόνας ιδάσκων: Βασίλειος Γαργανουράκης. Ανθρώπινη Όραση - Χρωµατικά Μοντέλα

Α.Τ.Ε.Ι. Ηρακλείου Ψηφιακή Επεξεργασία Εικόνας ιδάσκων: Βασίλειος Γαργανουράκης. Ανθρώπινη Όραση - Χρωµατικά Μοντέλα Ανθρώπινη Όραση - Χρωµατικά Μοντέλα 1 Τι απαιτείται για την όραση Φωτισµός: κάποια πηγή φωτός Αντικείµενα: που θα ανακλούν (ή διαθλούν) το φως Μάτι: σύλληψη του φωτός σαν εικόνα Τρόποι µετάδοσης φωτός

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση

Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση ΤΨΣ 50 Ψηφιακή Επεξεργασία Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

Για το χρώµα σπέρµατος επικρατής είναι η ιδιότητα κίτρινο και η υπολειπόµενη το πράσινο. Συµβολίζουµε: Κ:Κίτρινο κ: Πράσινο Κ>κ

Για το χρώµα σπέρµατος επικρατής είναι η ιδιότητα κίτρινο και η υπολειπόµενη το πράσινο. Συµβολίζουµε: Κ:Κίτρινο κ: Πράσινο Κ>κ Απαντήσεις Βιολογία Κατεύθυνσης 2011 ΘΕΜΑ Α Α1 α Α2 δ Α3 γ Α4 β Α5 β ΘΕΜΑ Β Β1 Σελ. 13 «Το 1928 γίνεται αυτό» Β2 Σελ 101 «βλάβες στους επιδιορθωτικά ένζυµα» (Χωρίς να απαιτείται θα θεωρηθεί σωστό να γίνει

Διαβάστε περισσότερα

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Ψηφιακή Επεξεργασία Σηµάτων 20 Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Α. Εγκατάσταση Αφού κατεβάσετε το συµπιεσµένο αρχείο µε το πρόγραµµα επίδειξης, αποσυµπιέστε το σε ένα κατάλογο µέσα

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και

Διαβάστε περισσότερα

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Περίληψη ιδακτορικής ιατριβής Τριχακης Ιωάννης Εργαστήριο

Διαβάστε περισσότερα

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Συστηµάτν Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode 6 Ncolas Tsaatsouls Εισαγγή ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος

Διαβάστε περισσότερα

Επίλυση Εξισώσεων. Συστήµατα γραµµικών εξισώσεων. λύση ... = ... ηµοκρίτειο Πανεπιστήµιο Θράκης Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Επίλυση Εξισώσεων. Συστήµατα γραµµικών εξισώσεων. λύση ... = ... ηµοκρίτειο Πανεπιστήµιο Θράκης Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Συστήµατα γραµµικών εξισώσεων m m... n... n mn M n b M b m µη-οµογενείς Μπορεί να υπάρχει µία, πολλές ή καµία λύση Προγραµµατισµός µε χρήση MATLAB 58 ΈστωΈστω το σύστηµα: 5 λύση: 7/3, 8/3 συντεταγµένες

Διαβάστε περισσότερα

ÍÅÏ ÄÕÍÁÌÉÊÏ ÓÔÁÕÑÏÕÐÏËÇ

ÍÅÏ ÄÕÍÁÌÉÊÏ ÓÔÁÕÑÏÕÐÏËÇ 1 ΘΕΜΑ 1 o Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΒΙΟΛΟΓΙΑ Α. Για τις ερωτήσεις 1 5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα του το γράµµα, που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

ΤΕΛΙΚΗ ΕΚΘΕΣΗ ΜΕΤΑ Ι ΑΚΤΟΡΙΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΘΕΜΑ:

ΤΕΛΙΚΗ ΕΚΘΕΣΗ ΜΕΤΑ Ι ΑΚΤΟΡΙΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΘΕΜΑ: ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΓΕΩΤΕΧΝΟΛΟΓΙΑΣ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΕΛΙΚΗ ΕΚΘΕΣΗ ΜΕΤΑ Ι ΑΚΤΟΡΙΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΘΕΜΑ: ιερεύνηση Επιπτώσεων ιαστατικότητας στην

Διαβάστε περισσότερα

ΑΡΧΙΜΗ ΗΣ - ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑ ΩΝ ΣΤΑ ΤΕΙ. Υποέργο: «Ανάκτηση και προστασία πνευµατικών δικαιωµάτων σε δεδοµένα

ΑΡΧΙΜΗ ΗΣ - ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑ ΩΝ ΣΤΑ ΤΕΙ. Υποέργο: «Ανάκτηση και προστασία πνευµατικών δικαιωµάτων σε δεδοµένα ΑΡΧΙΜΗ ΗΣ - ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑ ΩΝ ΣΤΑ ΤΕΙ Υποέργο: «Ανάκτηση και προστασία πνευµατικών δικαιωµάτων σε δεδοµένα πολυδιάστατου ψηφιακού σήµατος (Εικόνες Εικονοσειρές)» Πακέτο Εργασίας 4: Προστασία

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΑΚΡΙΒΕΙΑΣ ΤΩΝ ΗΜΟΓΡΑΦΙΚΩΝ Ε ΟΜΕΝΩΝ

ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΑΚΡΙΒΕΙΑΣ ΤΩΝ ΗΜΟΓΡΑΦΙΚΩΝ Ε ΟΜΕΝΩΝ ΚΕΦΑΛΑΙΟ 9 ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΑΚΡΙΒΕΙΑΣ ΤΩΝ ΗΜΟΓΡΑΦΙΚΩΝ Ε ΟΜΕΝΩΝ Τα δηµογραφικά δεδοµένα τα οποία προέρχονται από τις απογραφές πληθυσµού, τις καταγραφές της φυσικής και µεταναστευτικής κίνησης του πληθυσµού

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ισχύει: Ρ(Α )=-Ρ(Α) Μονάδες 7 Α. Να ορίσετε το μέτρο διασποράς εύρος ή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Κεφάλαιο 3 Αριθµητική για υπολογιστές Ασκήσεις Η αρίθµηση των ασκήσεων είναι από την 4 η έκδοση του «Οργάνωση και Σχεδίαση

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας. Πολυτεχνική Σχολή. Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης

Πανεπιστήμιο Θεσσαλίας. Πολυτεχνική Σχολή. Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης ΘΕΜΑΤΙΚΗ : ΦΑΣΜΑΤΙΚΕΣ ΥΠΟΓΡΑΦΕΣ - ΤΑΞΙΝΟΜΗΣΕΙΣ Ιωάννης Φαρασλής Τηλ : 24210-74466, Πεδίον Άρεως,

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

Μαθηματικά. Γ'Λυκείου. Γενικής. Μαρίνος Παπαδόπουλος

Μαθηματικά. Γ'Λυκείου. Γενικής. Μαρίνος Παπαδόπουλος Μαθηματικά Γ'Λυκείου Γενικής Μαρίνος Παπαδόπουλος Πίνακας Περιεχοµένων Τίτλος Θεµατικές Ενότητες Σελίδες Προλογικό Σηµείωµα υο λόγια προς τους µαθητές 5-6 Μάθηµα Έννοια συνάρτησης Πεδίο ορισµού 7-4 Μάθηµα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 = ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,

Διαβάστε περισσότερα