Μελέτη στην ανάλυση οµάδων και εφαρµογή σε δεδοµένα γονιδιακής έκφρασης καρκίνου από µικροσυστοιχίες

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μελέτη στην ανάλυση οµάδων και εφαρµογή σε δεδοµένα γονιδιακής έκφρασης καρκίνου από µικροσυστοιχίες"

Transcript

1 Μελέτη στην ανάλυση οµάδων και εφαρµογή σε δεδοµένα γονιδιακής έκφρασης καρκίνου από µικροσυστοιχίες Ιωάννης Αγ. Μαραζιώτης Εποπτεία: Καθ. Αναστάσιος Μπεζεριάνος

2 Βιοπληροφορική Βιολογικά δεδοµένα + Υπολογιστικές Μέθοδοι

3 Οι µικροσυστοιχίες παρέχουν ένα τρόπο µέτρησης της έκφρασης γονιδίων.

4 Μέτρηση Έκφρασης Γονιδίου Ιδέα: µέτρηση του ποσού του mrna για να διαπιστώσουµε πια γονίδια εκφράζονται (ή χρησιµοποιούνται ) από το κύτταρο.

5 Πειράµατα µε µικροσυστοιχίες cdna ιαφορετικοί ιστοί, ίδιος οργανισµός (εγκέφαλος συκώτι) Ίδιοι ιστοί, διαφορετικοί οργανισµοί Ίδιοι ιστοί, ίδιοι οργανισµοί (φυσιολογικοί καρκινικοί)

6 Υβριδισµός Ο υβριδισµός (Hybridization) εκµεταλλεύεται ένα ισχυρό χαρακτηριστικό του DNA, που είναι η συµπληρωµατικότητα των ακολουθιών των δυο ζωνών του. Το DNA µπορεί να επανασυναρµολογηθεί µε τέλεια πιστότοτητα από µια από τις διαχωριζόµενες ζώνες. Οι ζώνες µπορούν να διαχωρισθούν µε θέρµανση.

7 Υβριδισµός νουκλεονικού οξέος

8 Μικροσυστοιχίες cdna Κλώνοι cdna

9 Στάδια παραγωγής δεδοµένων από µικροσυστοιχία ΥΒΡΙ ΙΣΜΟΣ ΕΚΤΥΠΩΣΗ ΣΑΡΩΣΗ Πρόσθεση cdna από ισων κάθε ποσοτήτων Laser cdna γονίδιο δειγµάτων σε κάθε Ανιχνευτής στην spot µικροσυστοιχία

10 Ποσοτικοποίηση έκφρασης Για κάθε spot στο slide υπολογίζουµε: Κόκκινη ένταση = Κfg - Κbg (fg = foreground, bg = background) και Πράσινη ένταση = Πfg - Πbg Και τα συνδυάζουµε σε ένα λογαριθµικό (βάσης 2) λόγο Log2( Κόκκινη ένταση / Πράσινη ένταση)

11 εδοµένα Έκφρασης Γονιδίων Σε p γονίδια για n slides: το p είναι O(10,000), το n είναι O(10-100), αλλά αυξάνεται Γονίδια Slides slide 1 slide 2 slide 3 slide 4 slide Επίπεδο έκφρασης του γονιδίου 5 στο slide 4 = Log 2 ( Κόκκινη ένταση / Πράσινη ένταση) Αυτές οι τιµές τυπικά εµφανίζονται σε κόκκινες (>0) κίτρινες (0) πράσινες (<0) κλίµακες.

12 Βιολογικές ερωτήσεις ιαφορετικές εκφράσεις γονιδίων Πρόβλεψη οµάδας δείγµατος κ.λ.π. Σχεδίαση πειράµατος Εκτίµηση Πείραµα µικροσυστοιχίας Ανάλυση εικόνας Κανονικοποίηση 16-bit TIFF αρχεία (Κfg, Κbg), (Πfg, Πbg) Κ, Π Testing Οµαδοποίηση ιάκριση Βιολογική επαλήθευση και εξέταση αποτελεσµάτων

13 Βασική διαφορά στα δεδοµένα Ανάγκη ύπαρξης νέων εργαλείων έρευνας µιας και οι κλασσικές βιοστατιστικές µέθοδοι δεν αρκουν για την αναλυση των νεων δεδοµένων.

14 Μορφή Αρχείων Σχήµα και διάταξη ενός τύπου αρχείου, όπως προκύπτει µετά την επεξεργασία εικόνας µιας µικροσυστοιχίας.

15 Σηµειογραφία i-οστή συντεταγµένη i=1..ν Γονίδιο 1 Γονίδιο 2... Γονίδιο Ν είγµα 1 DATA DATA DATA DATA είγµα 2 DATA DATA DATA DATA DATA DATA DATA DATA είγµα κ DATA DATA DATA DATA Σηµεία ιάσταση

16 Οµαδοποίηση Η οµαδοποίηση µπορεί να οριστεί ως η διαδικασία κατά την οποία ένα συνολο αντικειµένων διαχωρίζονται σε υποσύνολα βάση διάφορων οµοιοτήτων που παρουσιάζουν. Πρόκειται δηλαδή για προσπάθεια εύρεσης οµάδων µε µέλη που είναι όσο το δυνατόν όµοια µεταξύ τους και όσο το δυνατόν ανόµοια µε µέλη άλλης οµάδας. εδοµένου ενός συνόλου Σ, ν γονιδίων των οποίων έχουµε µετρήσει τα επίπεδα έκφρασης κατά µήκος κ συνθηκών δειγµάτων, πρεπει να ευρεθεί η καλύτερη κατάτµηση του Σ σε υποσύνολα τετοια ώστε κάθε υποσύνολο να περιέχει γονίδια των οποίων οι εκφράσεις είναι παρόµοιες µεταξύ τους.

17 Οµαδοποίηση µε και χωρίς επόπτη Ανάλυση µε και χωρίς επόπτη. Στην περίπτωση της εκµάθησης χωρίς επόπτη (αριστερά) δίνονται σηµεία δεδοµενων στον ν-διαστατό χώρο και προσπαθούµε να βρούµε τρόπους να οµαδοποιήσουµε τα σηµεία µε παρόµοια χαρακτηριστικά. Στην περίπτωση της εκµάθησης µε επόπτη (δεξιά) τα αντικείµενα ετικετοποιούνται και ο στόχος είναι η εύρεση ενός συνόλου κανόνων οµαδοποίησης να διακρίνουµε αναµεσα σε αυτά τα σηµεία όσο το δυνατόν καλύτερα.

18 εδοµένα Λευχαιµίας εδοµένα προερχόµενα από εργασία Golub et al. Περιέχει δυο βασικές οµάδες καρκίνου: 1. οξεία µυελική λευχαιµία (acute myelogenous leukemia AML) 2. οξεία λεµφοκυτταρική λευχαιµία (acute lemphocytic leukemia ALL) Γονίδια Αριθµός δειγµάτων εκπαίδευσης Αριθµός δειγµάτων ελέγχου

19 εδοµένα Λεµφώµατος Τα δεδοµένα προέρχονται από την εργασία του G. Valentini Το σύνολο αποτελούνταν από 4 οµάδες καρκίνου λεµφώµατος και ένα συνολο δειγµάτων µε υγιή δείγµατα. Ο αριθµός των δειγµάτων καρκίνου ανέρχονταν σε 72 ενώ υγιή λεµφοειδή δείγµατα ανέρχονταν σε 24, συνολο 96. Τα δεδοµένα χωρίστηκαν σε: συνολο εκπαίδευσης και σύνολο ελέγχου. Γονίδια Αριθµός δειγµάτων εκπαίδευσης Αριθµός δειγµάτων ελέγχου

20 εδοµένα πολυταξικού συνόλου εδοµένα προερχόµενα από την εργασια των Ramaswamy et al. Περιέχει 14 οµάδες καρκίνου Γονίδια Αριθµός δειγµάτων εκπαίδευσης Αριθµός δειγµάτων ελέγχου

21 Μέλη Πολυταξικού συνόλου είκτης Τύπος Καρκίνου είγµατα εκπαίδευσης είγµατα ελέγχου 1 1. Στήθους Προστάτη Πνεύµονα Παχέως εντέρου Λέµφωµα Ουροδόχου κύστης Μελάνωµα Μήτρας Λευχαιµία Νεφρικός Πάγκρεας Ωοθήκης Μεσοθηλιακού ιστού Κεντρικού Νευρικού Συστήµατος 16 4

22 Signal to Noise Ratio Η µέθοδος αυτή χρησιµοποιεί ένα µέτρο συσχετίσεως P(g, c) που δίνει έµφαση στον λόγο «σήµα προς - θόρυβο» (signal to noise) χρησιµοποιώντας τα γονίδια σαν µέσο πρόβλεψης. Έστω µε [µ1(g), σ1(g)] και [µ2(g), σ2(g)] ότι σηµειώνουµε τους µέσους όρους και τις τυπικές αποκλίσεις των επιπέδων έκφρασης του γονίδιου g για τα δείγµατα στην κλάση 1 και 2 αντίστοιχα. µ ( g) µ ( g) σ ( g) + σ ( g) 1 2 (, ) = P g c 1 2

23 Signal to Noise Ratio Μεγάλες τιµές P(g,c) προδίδει µια σηµαντική συσχέτιση ανάµεσα στην έκφραση του γονιδίου και την διάκριση κλάσης. Ενώ το πρόσηµο του P(g,c) θετικό ή αρνητικό αντιστοιχεί στο να εκφράζεται το γονίδιο g περισσότερο από την κλάση 1 από ότι στην κλάση 2. Αντίθετα µε τον τυπικό συντελεστή συσχέτισης του Pearson, το P(g,c) δεν περιορίζεται στο διάστηµα [-1, +1].

24 Συνδυαστικές Μέθοδοι Εφαρµόζεται όταν έχουµε περίπτωση δυικής οµαδοποίησης υο είναι πιο συχνά χρησιµοποιούµενες µέθοδοι: 1. One Versus All OVA (ένας έναντι όλων) 2. All Pairs AP (όλα τα ζεύγη)

25 Συνδυαστικές Μέθοδοι -OVA ηµιουργία κ (κ = αριθµός οµάδων) δυαδικών οµαδοποιητών, καθένας από τους οποίους διακρίνει µια οµάδα από όλες τις άλλες οµάδες συνδυασµένες µαζί. Για ένα δείγµα έλεγχου ο δυαδικός οµαδοποιητής δίνει ένα διάνυσµα διάστασης κ, f(x)=(f 1 (x),, f k (x)). Εάν το f i (x) είναι ένας πραγµατικός αριθµός (π.χ. προβλεπόµενη κλάση µε τιµή εµπιστοσύνης), τότε η µέθοδος πρόβλεψης βρίσκει το µέγιστο των fi(x) και αναθέτει το δείγµα στην αντίστοιχη ετικέτα τάξης: F(x) = argmax i f i (x).

26 Μέθοδοι Οµαδοποίησης που εξετάζονται στην εργασία Χωρίς επόπτη Με επόπτη Hierarchical Clustering Brain State in a Box Self Organizing Maps Multilayer Perceptron Support Vector Machines Weighted Voting Nearest Neighbors Probabilistic Neural Networks

27 Μέθοδοι Οµαδοποίησης

28 Self Organizing Maps

29 Περιγραφή SOM Πρόκειται για νευρωνικό δίκτυο δυο επιπέδων. Το πρώτο λέγεται επιπεδο εισόδου και δέχεται τις εισόδους. Το δεύτερο λέγεται επιπεδο Kohonen ιάταξη νευρώνων επιπέδου Kohonen: 1. Εξαγωνικό πλέγµα 2. Παραλληλόγραµµο πλέγµα.

30 Εκπαίδευση SOM Πριν την φάση της εκπαίδευσης αρχικοποιούνται τα βάρη. Τυχαία επιλογή ενός δείγµατος εισόδου. Εύρεση νευρώνα πλησιέστερα στο δείγµα. x x = min{ x m } c Ο νευρώνας αυτός λέγεται BMU. Μετακίνηση του BMU και της τοπολογικής γειτονιάς του πλησίον του δείγµατος. i

31 Μετακίνηση νευρώνων του SOM προς δείγµα Σχηµατική απεικόνιση της µετακίνησης του BMU και των τοπολογικών γειτόνων του προς το τρέχον δείγµα.

32 Εκπαίδευση SOM Κανόνας ενηµέρωσης για το διάνυσµα βάρους του νευρώνα i: mi t+ 1 = mi t + hci t x t mi t ( ) ( ) ( ) ( ) ( ) Ο πυρήνας γειτονίας σχηµατίζεται από την συνάρτηση γειτονίας και την συνάρτηση εκµάθησης: h t a t h r r t ( ) = ( ) (, ) ci c i

33 Συναρτήσεις γειτονιάς για SOM (α) Συνάρτηση Φυσαλίδας, (β) Συνάρτηση Gauss

34 Σύνοψη SOM Αρχή αυτοοργανούµενων χαρτών (Self Organizing Maps). Τα κεντροειδή ξεκινούν µε µια αυθαίρετη τοπολογία. Καθώς η µέθοδος προχωρά κάθε ένα κινείται προς ένα τυχαία επιλεγµένο γονίδιο κατά την διάρκεια κάθε επανάληψης. Μετά την συνέχιση της διαδικασίας για αρκετό χρόνο, κάθε κεντροειδές θα τοποθετηθεί (ιδανικά) στο κέντρο κάθε κλάσης.

35 Probabilistic Neural Networks Πιθανοκρατικά Νευρωνικά ίκτυα Νευρωνικό ίκτυο τυπου RBF, για χρηση σε προβλήµατα οµαδοποιησης Όταν παρουσιάζεται µια είσοδος, το πρώτο επιπεδο υπολογίζει τις αποστάσεις από του διανυσµατος εισόδου από όλα τα διανύσµατα εισόδου του συνόλου εκπαίδευσης και παράγει ένα διανυσµα του οποίου τα στοιχεία προσδιορίζουν το πόσο κοντά είναι το διανυσµα εισόδου στα διανύσµατα εισόδου εκπαίδευσης. Το δεύτερο επιπεδο αθροίζει αυτές τις τιµές, για κάθε οµάδα εισόδων προκείµενου να παράγει σαν έξοδο ένα διανυσµα πιθανοτήτων. Τελικά µια συνάρτηση ανταγωνισµού (compete) στην έξοδο του δεύτερου επιπέδου επιλέγει την µέγιστη από αυτές τις πιθανότητες και παράγει 1 για αυτή την κλάση και 0 για τις άλλες.

36 Support Vector Machines

37 Βασική ιδέα Αλγόριθµος δυικης οµαδοποίησης. εδοµένου ενός συνόλου σηµείων σε µια από δυο κλάσεις ένα SVM βρίσκει το υπερεπιπεδο που: 1. Αφήνει το µεγαλύτερο δυνατό κλάσµα σηµείων της ίδιας κλάσης στην ίδια µεριά 2. Μεγιστοποιεί την απόσταση της µιας από τις δυο κλάσεις από το υπερεπιπεδο. Εύρεση του βέλτιστου υπερεπιπέδου διαχωρισµού που ελαχιστοποιεί το ρίσκο της λάθος οµαδοποίησης των δειγµάτων εκπαίδευσης και των άγνωστων δειγµάτων ελέγχου.

38 Γραµµικά SVM εδοµένου ενός συνόλου σηµείων x i εr n κάθε σηµείο χ i σε µια από δυο κλάσεις µε ετικέτα y i ε {-1,1}. Ορισµός 1: Το συνολο Σ είναι γραµµικά διαχωριζόµενο εάν υπάρχει w τ.ω. n και ακόµη τετοιο ώστε: w R b R y w x + b i= 1, 2, K, N i ( ) 1 i Τα ζεύγη (w, b) ορίζουν ένα υπερεπίπεδο από την εξίσωση w x i + b = 0 που ονοµάζεται υπερεπίπεδο διαχωρισµου.η προσηµασµένη απόσταση d i ενός σηµείου x i από το επιπεδο διαχωρισµού (w,b) δίνεται από d i = w x + b i w x Σ Από τις δυο τελευταίες εξισώσεις προκύπτει για όλα τα ότι i yd i i 1 w

39 Γραµµικά SVM εδοµένου ενός γραµµικά διαχωριζόµενου συνόλου Σ, το βέλτιστο υπερεπίπεδο διαχωρισµού είναι το υπερεπιπεδο διαχωρισµού για το οποίο η απόσταση του πλησιέστερου σηµείου του Σ είναι µέγιστη

40 Support Vectors Αυτά τα διανύσµατα λέγονται support vectors γιατί είναι τα πλησιέστερα σηµεία από το υπερεπίπεδο διαχωρισµού και τα µόνα σηµεία του Σ που χρειάζονται για την κατασκευή αυτού του βέλτιστου υπερεπιπέδου. Το πρόβληµα τώρα της οµαδοποίησης ενός νέου σηµείου χ λύνεται εύκολα από το πρόσηµο n m της: Φ: R R

41 Μη γραµµικά Support Vector Machines Στην περίπτωση που δεν µπορεί να βρεθεί ένα υπερεπιπεδο διαχωρισµού που να οµαδοποιεί σωστά τα σηµεία τότε µπορούµε να βρούµε να ανεβούµε σε ένα χώρο υψηλότερων διαστάσεων όπου είναι πολύ πιθανό να υπάρχει τέτοιο επιπεδο διαχωρισµού. Φ: R 2 3 R ( 2 2 ) x= ( x, x ) x' = x, x, x x Γίνεται δηλαδη χαρτογράφηση των σηµείων δεδοµένων από τον χώρο εισόδου R n σε ένα χώρο µεγαλύτερης διάστασης R m (m > n) ο οποιός λέγεται χώρος χαρακτηριστικών, µε χρήση µιας συνάρτησης πυρήνα Φ. n Φ: R R m

42 Πειραµατικά Αποτελέσµατα

43 Ιεραρχική Οµαδοποίηση στα εδοµένα Λευχαιµίας Εφαρµογή στο σύνολο δεδοµένων εκπαίδευσης Εφαρµογή στο σύνολο δεδοµένων ελέγχου Γενικά δεν παρατηρείται καλή απόδοση οµαδοποίησης. Παρατηρούνται καλύτερα αποτελέσµατα στα δεδοµένα εκπαίδευσης, από ότι στα δεδοµένα ελέγχου.

44 Weighted Voting σε δεδοµένα Λευχαιµίας Κάθετος άξονας εγκυρότητα πρόβλεψης από τον αλγόριθµο Η αριστερή στήλη αναφέρεται στα δεδοµένα εκπαίδευσης µε την µέθοδο της επαλήθευσης µε κατακράτηση ενός Η δεξιά στήλη αναφέρεται στα δεδοµένα ελέγχου Κάτω από την τιµή 0.3 η πρόβλεψη θεωρείται ανασφαλής και απορρίπτεται εδοµένα Αριθµός δειγµάτων Αριθµός γονιδίων Αβέβαια δείγµατα Λάθη Εκπαίδευσης Ελέγχου

45 Εφαρµογή SOM στα δεδοµένα Λευχαιµίας Εφαρµογή στα δεδοµένα εκπαίδευσης Εφαρµογή στα δεδοµένα εκπαίδευσης είγµατα AML είγµατα ALL είγµατα AML είγµατα ALL Τ- κυττάρου είγµατα ALL Β - κυττάρου

46 SVM στα δεδοµένα Λευχαιµίας Ο παρακάτω πίνακας απεικονίζει τα αποτελέσµατα οµαδοποίησης του SVM για διαφορετικούς αριθµούς γονιδιων στα δεδοµένα ελέγχου. Αριθµός γονιδίων Αριθµός σφαλµάτων

47 SVM στα δεδοµένα Λευχαιµίας Κάθετος άξονας, απόσταση από οριο διαχωρισµού υπερεπιπέδου Αριθµός δείγµατος 34 δείγµατα 7129 γονίδια 2 σφάλµατα AML (*), ALL (+), Σφάλµατα (χ)

48 Εφαρµογή PNN στα δεδοµένα Λεµφώµατος Για αυτό το πείραµα έγινε διαχωρισµός των δεδοµένων σε δυο συνολα ένα εκπαίδευσης και ένα ελέγχου. Μπλε χρώµα: σωστές προβλέψεις. Κόκκινο χρώµα: λανθασµένες προβλέψεις Η επιλογη των γονιδίων εγινε βάση της µεθόδου s2n. Καλύτερα αποτελέσµατα επιτέυχθησαν µε χρήση 2000 γονιδίων. # Χαρακτηριστικών spread Ακρίβεια Ευαισθησία % 100% ,4% 100% Όλα ,1% 100%

49 HC στα δεδοµένα πολυταξικού Χρωµατική αναπαράσταση οµάδων. Παρατηρούµε ότι η µέθοδος δεν κατόρθωσε να αναδείξει την συνάφεια αναµεσα στις οµάδες.

50 SOM στο πολυταξικό 5x5 SOM Εφαρµογή στα 144 δειγµατα εκπαίδευσης. Χρήση και των γονιδίων. Χρωµατική αναπαράσταση οµάδων.

51 Πρόβλεψη βάση απόστασης από το υπερεπίπεδο των SVM Αποτελέσµατα των 14 SVM οµαδοποιητών σε 2 δείγµατα από τα δεδοµένα ελέγχου.

52 Αποτελέσµατα Αλγορίθµων για το Αριθµός Χαρακτηριστικών Όλα πολυταξικό σύνολο WV - OVA knn - OVA SVM - OVA Πίνακας λάθος οµαδοποιήσεων για τις µεθόδους Support Vector Machine, Nearest Neighbors, Weighted Voting που έγινε στα δεδοµένα εκπαίδευσης µε την τεχνική της επαλήθευσης µε κράτηση ενός, όπου αποτελούνταν από 144 δειγµατα. Αριθµός Χαρακτηριστικών WV - OVA knn - OVA SVM - OVA Πίνακας λάθος οµαδοποιήσεων για τις µεθόδους Support Vector Machine, Nearest Neighbors, Weighted Voting που έγινε στα δεδοµένα ελέγχου όπου αποτελούνταν από 46 δειγµατα. Όλα

53 Συµπεράσµατα Από τις µεθόδους εκµάθησης χωρίς επόπτη καλύτερα αποτελέσµατα εµφανίζει η µέθοδος SOM. Από τις µεθόδους οµαδοποίησης µε επόπτη καλύτερα αποτελέσµατα εµφανίζει η µέθοδος SVM. Σαφώς καλύτερα αποτελέσµατα λαµβάνουµε από τις µεθόδους µε επόπτη.

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5 IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό

Διαβάστε περισσότερα

Με τα sequence projects φτάσαμε στην εποχή που η ελάχιστη πληροφορία για να ξεκινήσει ένα πείραμα είναι ολόκληρη ακολουθία DNA του οργανισμού Το DNA

Με τα sequence projects φτάσαμε στην εποχή που η ελάχιστη πληροφορία για να ξεκινήσει ένα πείραμα είναι ολόκληρη ακολουθία DNA του οργανισμού Το DNA Microarrays Με τα sequence projects φτάσαμε στην εποχή που η ελάχιστη πληροφορία για να ξεκινήσει ένα πείραμα είναι ολόκληρη ακολουθία DNA του οργανισμού Το DNA όμως του οργανισμού είναι μια στατική πληροφορία

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης Αναγνώριση Προτύπων (Pattern Recognton Μπεϋζιανή Θεωρία Αποφάσεων (Bayesan Decson Theory Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Μπεϋζιανή Θεωρία Αποφάσεων (Bayes Decson theory Στατιστικά

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ελαχιστοποίηση χαρακτηριστικών ταξινομητή για γονιδιακή σύνθεση ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ : 2008 2009 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διαβάστε περισσότερα

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Τι είναι το Πρόβλημα της Πινακοθήκης; Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη

Διαβάστε περισσότερα

Η ΑΛΗΘΙΝΗ ΚΑΙ Η ΕΙΚΟΝΙΚΗ ΜΙΚΡΟΣΥΣΤΟΙΧΙΑ ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ

Η ΑΛΗΘΙΝΗ ΚΑΙ Η ΕΙΚΟΝΙΚΗ ΜΙΚΡΟΣΥΣΤΟΙΧΙΑ ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ Η ΑΛΗΘΙΝΗ ΚΑΙ Η ΕΙΚΟΝΙΚΗ ΜΙΚΡΟΣΥΣΤΟΙΧΙΑ ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ DNA μικροσυστοιχίες: βήμα προς βήμα Παραγωγή DNA ανιχνευτών Οι επιστήμονες μπορούν να παράγουν «σπιτικές» μικροσυστοιχίες χρησιμοποιώντας την αλυσιδωτή

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

Επαγωγικές Μηχανές Διανυσμάτων Στήριξης και εφαρμογή σε προβλήματα ταξινόμησης

Επαγωγικές Μηχανές Διανυσμάτων Στήριξης και εφαρμογή σε προβλήματα ταξινόμησης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Επαγωγικές Μηχανές Διανυσμάτων Στήριξης

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

ΛΥΣΗ ΤΗΣ ΑΣΚΗΣΗΣ ΕΠΑΝΑΛΗΨΗΣ

ΛΥΣΗ ΤΗΣ ΑΣΚΗΣΗΣ ΕΠΑΝΑΛΗΨΗΣ ΛΥΣΗ ΤΗΣ ΑΣΚΗΣΗΣ ΕΠΑΝΑΛΗΨΗΣ 1. Ο γενετικός κώδικας είναι ένας κώδικας αντιστοίχισης των κωδικονίων του mrna με αμινοξέα στην πολυπεπτιδική αλυσίδα. Σύμφωνα με αυτόν η 3 μετάφραση όλων των mrna αρχίζει

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Κεφάλαιο 3 Αριθµητική για υπολογιστές Ασκήσεις Η αρίθµηση των ασκήσεων είναι από την 4 η έκδοση του «Οργάνωση και Σχεδίαση

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ Α Σχολικό βιβλίο σελ 6 Α Σχολικό βιβλίο σελ 9 Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ // - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Σύμφωνα με τον παγκόσμιο οργανισμό υγείας, κάθε χρόνο υπάρχουν 1.38 εκατομμύρια καινούρια περιστατικά και περίπου 458 000 θάνατοι από τον καρκίνο του

Σύμφωνα με τον παγκόσμιο οργανισμό υγείας, κάθε χρόνο υπάρχουν 1.38 εκατομμύρια καινούρια περιστατικά και περίπου 458 000 θάνατοι από τον καρκίνο του 1 Σύμφωνα με τον παγκόσμιο οργανισμό υγείας, κάθε χρόνο υπάρχουν 1.38 εκατομμύρια καινούρια περιστατικά και περίπου 458 000 θάνατοι από τον καρκίνο του μαστού. Ο καρκίνος του μαστού είναι με μεγάλη διαφορά

Διαβάστε περισσότερα

ΤΕΛΙΚΗ ΕΚΘΕΣΗ ΜΕΤΑ Ι ΑΚΤΟΡΙΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΘΕΜΑ:

ΤΕΛΙΚΗ ΕΚΘΕΣΗ ΜΕΤΑ Ι ΑΚΤΟΡΙΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΘΕΜΑ: ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΓΕΩΤΕΧΝΟΛΟΓΙΑΣ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΕΛΙΚΗ ΕΚΘΕΣΗ ΜΕΤΑ Ι ΑΚΤΟΡΙΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΘΕΜΑ: ιερεύνηση Επιπτώσεων ιαστατικότητας στην

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΑΚΡΙΒΕΙΑΣ ΤΩΝ ΗΜΟΓΡΑΦΙΚΩΝ Ε ΟΜΕΝΩΝ

ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΑΚΡΙΒΕΙΑΣ ΤΩΝ ΗΜΟΓΡΑΦΙΚΩΝ Ε ΟΜΕΝΩΝ ΚΕΦΑΛΑΙΟ 9 ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΑΚΡΙΒΕΙΑΣ ΤΩΝ ΗΜΟΓΡΑΦΙΚΩΝ Ε ΟΜΕΝΩΝ Τα δηµογραφικά δεδοµένα τα οποία προέρχονται από τις απογραφές πληθυσµού, τις καταγραφές της φυσικής και µεταναστευτικής κίνησης του πληθυσµού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

Κατασκευή μοντέλων Data Mining με Γενικευμένα Νευρωνικά Δίκτυα Παλινδρόμησης GRNN σε βάσεις δεδομένων Oracle

Κατασκευή μοντέλων Data Mining με Γενικευμένα Νευρωνικά Δίκτυα Παλινδρόμησης GRNN σε βάσεις δεδομένων Oracle ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τµήµα Πληροφορικής και Επικοινωνιών ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Κατασκευή μοντέλων Data Mining με Γενικευμένα Νευρωνικά Δίκτυα Παλινδρόμησης GRNN

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΑΝΑΛΥΣΗΣ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ

ΑΛΓΟΡΙΘΜΟΙ ΑΝΑΛΥΣΗΣ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΕΘΝΙΚΟ & ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Μεταπτυχιακό Πρόγραµµα Σπουδών ΑΛΓΟΡΙΘΜΟΙ ΑΝΑΛΥΣΗΣ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ Χάρης Γεωργίου, ΑΜ:Μ-177 Αθήνα, Σεπτέµβριος 2000 - ii - ΑΛΓΟΡΙΘΜΟΙ ΑΝΑΛΥΣΗΣ

Διαβάστε περισσότερα

Εισαγωγή και ανάλυση ευαισθησίας προβληµάτων Γραµµικού Προγραµµατισµού. υϊκότητα. Παραδείγµατα.

Εισαγωγή και ανάλυση ευαισθησίας προβληµάτων Γραµµικού Προγραµµατισµού. υϊκότητα. Παραδείγµατα. Η ανάλυση ευαισθησίας και η δυϊκότητα είναι σηµαντικά τµήµατα της θεωρίας του γραµµικού προγραµµατισµού και εν γένει του µαθηµατικού προγραµµατισµού, αφού αφορούν την ανάλυση των προτύπων και την εξαγωγή

Διαβάστε περισσότερα

ΧΕΙΡΟΥΡΓΙΚΗ ΠΛΟΗΓΗΣΗΣ

ΧΕΙΡΟΥΡΓΙΚΗ ΠΛΟΗΓΗΣΗΣ ΧΕΙΡΟΥΡΓΙΚΗ ΠΛΟΗΓΗΣΗΣ Μέχρι πρόσφατα, παρ όλες τις δυνατότητες που έχουμε στο οπλοστάσιο μας για να απεικονίζουμε όγκους στο ήπαρ και στο πάγκρεας, λόγω της έλλειψης λεπτομερούς απεικονίσεως αλλά και ουσιαστικής

Διαβάστε περισσότερα

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Περίληψη ιδακτορικής ιατριβής Τριχακης Ιωάννης Εργαστήριο

Διαβάστε περισσότερα

Για το χρώµα σπέρµατος επικρατής είναι η ιδιότητα κίτρινο και η υπολειπόµενη το πράσινο. Συµβολίζουµε: Κ:Κίτρινο κ: Πράσινο Κ>κ

Για το χρώµα σπέρµατος επικρατής είναι η ιδιότητα κίτρινο και η υπολειπόµενη το πράσινο. Συµβολίζουµε: Κ:Κίτρινο κ: Πράσινο Κ>κ Απαντήσεις Βιολογία Κατεύθυνσης 2011 ΘΕΜΑ Α Α1 α Α2 δ Α3 γ Α4 β Α5 β ΘΕΜΑ Β Β1 Σελ. 13 «Το 1928 γίνεται αυτό» Β2 Σελ 101 «βλάβες στους επιδιορθωτικά ένζυµα» (Χωρίς να απαιτείται θα θεωρηθεί σωστό να γίνει

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Περιβαλλοντικά Καρκινογόνα Κυρίως τρεις τύποι: Χηµικά (µόλυνση, κάπνισµα, αµίαντος) Φυσικά (ιονίζουσα ακτινοβολία, µή- ιονίζουσα???) Βιολογικά (ιοί π.χ.. HPV) Καρκίνος παχέος εντέρου ΓΕΝΕΤΙΚΟΣ

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

R n R 2. x 2. x 1. x: συντεταγµένες του z

R n R 2. x 2. x 1. x: συντεταγµένες του z Αναγνώριση Προσώπου µε Σύγκριση Υπερεπιφανειών Θανάσης Ζάγουρας.Π.Μ.Σ Η.Ε.Π, Τµήµα Φυσικής, Πανεπιστήµιο Πατρών Επιβλέποντες: Σπ. Φωτόπουλος Γ. Οικονόµου Ανάλυση Εικόνων Προσώπου Πεδία Αναγνώρισης Προτύπων

Διαβάστε περισσότερα

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1 Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1.1 Ηλεκτρικά και Ηλεκτρονικά Συστήµατα Μετρήσεων Στο παρελθόν χρησιµοποιήθηκαν µέθοδοι µετρήσεων που στηριζόταν στις αρχές της µηχανικής, της οπτικής ή της θερµοδυναµικής.

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

ÍÅÏ ÄÕÍÁÌÉÊÏ ÓÔÁÕÑÏÕÐÏËÇ

ÍÅÏ ÄÕÍÁÌÉÊÏ ÓÔÁÕÑÏÕÐÏËÇ 1 ΘΕΜΑ 1 o Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΒΙΟΛΟΓΙΑ Α. Για τις ερωτήσεις 1 5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα του το γράµµα, που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του

Διαβάστε περισσότερα

ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ. Ευάγγελος Παντελής Επ. Καθ. Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή Αθηνών

ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ. Ευάγγελος Παντελής Επ. Καθ. Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή Αθηνών ΑΞΟΝΙΚΗ ΤΟΜΟΓΡΑΦΙΑ Ευάγγελος Παντελής Επ. Καθ. Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής Ιατρική Σχολή Αθηνών ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ Διαγνωστικές και θεραπευτικές εφαρμογές ακτινοβολιών : Κεφάλαιο 11 ΕΙΣΑΓΩΓΗ

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

ΓΕΝΕΤΙΚΑ ΤΡΟΠΟΠΟΙΗΜΕΝΑ ΦΥΤΑ. ΑΡΧΕΣ ΓΟΝΙ ΙΑΚΟΥ ΧΕΙΡΙΣΜΟΥ ΙΙ (ΜΑΘΗΜΑ 3ο)

ΓΕΝΕΤΙΚΑ ΤΡΟΠΟΠΟΙΗΜΕΝΑ ΦΥΤΑ. ΑΡΧΕΣ ΓΟΝΙ ΙΑΚΟΥ ΧΕΙΡΙΣΜΟΥ ΙΙ (ΜΑΘΗΜΑ 3ο) ΓΕΝΕΤΙΚΑ ΤΡΟΠΟΠΟΙΗΜΕΝΑ ΦΥΤΑ ΑΡΧΕΣ ΓΟΝΙ ΙΑΚΟΥ ΧΕΙΡΙΣΜΟΥ ΙΙ (ΜΑΘΗΜΑ 3ο) 1 ΦΟΡΕΙΣ πλασµίδια βακτηρίων βακτηριοφάγοι ιοί συνδυασµός πλασµιδίου βακτηριοφάγου (κοσµίδια) 2 ΦΟΡΕΙΣ Βακτηριοφάγοι Χαρακτηριστικά

Διαβάστε περισσότερα

Μελέτη κατηγοριοποίησης δεδομένων με Μηχανές Διανυσμάτων Υποστήριξης (Support Vector Machines) και υλοποίηση εφαρμογής.

Μελέτη κατηγοριοποίησης δεδομένων με Μηχανές Διανυσμάτων Υποστήριξης (Support Vector Machines) και υλοποίηση εφαρμογής. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ Μελέτη κατηγοριοποίησης δεδομένων με Μηχανές Διανυσμάτων Υποστήριξης (Support Vector Machines) και

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ημιτελείς προτάσεις Α1 έως Α5 και δίπλα το γράμμα που αντιστοιχεί στη λέξη

Διαβάστε περισσότερα

Μεθοδολογίες Αξιοποίησης Δεδομένων

Μεθοδολογίες Αξιοποίησης Δεδομένων Μεθοδολογίες Αξιοποίησης Δεδομένων Βλάχος Σ. Ιωάννης Λέκτορας 407/80, Ιατρικής Σχολής Πανεπιστημίου Αθηνών Εργαστήριο Πειραματικής Χειρουργικής και Χειρουργικής Ερεύνης «Ν.Σ. Σ Χρηστέας» Στάδια Αξιοποίησης

Διαβάστε περισσότερα

Ανάπτυξη Νευρωνικού Μοντέλου Για Γονιδιακή Ανάλυση

Ανάπτυξη Νευρωνικού Μοντέλου Για Γονιδιακή Ανάλυση Πολυτεχνείο Κρήτης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Ανάπτυξη Νευρωνικού Μοντέλου Για Γονιδιακή Ανάλυση Φοίβος Γύπας Εξεταστική επιτροπή Μιχάλης Ζερβάκης (Επιβλέπων) Γεώργιος Σταυρακάκης

Διαβάστε περισσότερα

Ανάπτυξη Νευρωνικού Μοντέλου Για Γονιδιακή Ανάλυση

Ανάπτυξη Νευρωνικού Μοντέλου Για Γονιδιακή Ανάλυση Πολυτεχνείο Κρήτης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Ανάπτυξη Νευρωνικού Μοντέλου Για Γονιδιακή Ανάλυση Φοίβος Γύπας Χανιά, Ιούνιος 2011 Τριµελής εξεταστική επιτροπή Καθηγητής Ζερβάκης

Διαβάστε περισσότερα

Έλεγχοι. Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού

Έλεγχοι. Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού Έλεγχοι Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού Το ρυθμό απελευθέρωσης του φαρμάκου από το σκεύασμα Έλεγχο ταυτότητας και καθαρότητας της πρώτης ύλης και των εκδόχων( βάση προδιαγραφών)

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes)

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) Πολλά ΧΠ δεν µπορούν να αναπαρασταθούν αριθµητικά. Τα ΧΠ χαρακτηρίζονται συµµορφούµενα και µη-συµµορφούµενα. Τα ΧΠ τέτοιου είδους ονοµάζονται

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 8 (ΦΡΟΝΤΙΣΤΗΡΙΟ) ΦΑΣΜΑΤΟΦΩΤΟΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ

ΕΡΓΑΣΤΗΡΙΟ 8 (ΦΡΟΝΤΙΣΤΗΡΙΟ) ΦΑΣΜΑΤΟΦΩΤΟΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ ΕΡΓΑΣΤΗΡΙΟ 8 (ΦΡΟΝΤΙΣΤΗΡΙΟ) ΦΑΣΜΑΤΟΦΩΤΟΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ Με τον όρο αυτό ονοµάζουµε την τεχνική ποιοτικής και ποσοτικής ανάλυσης ουσιών µε βάση το µήκος κύµατος και το ποσοστό απορρόφησης της ακτινοβολίας

Διαβάστε περισσότερα

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( )

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( ) ΚΕΦΑΛΑΙ 6 ΕΥΘΕΙΑ-ΕΠΙΠΕ 6 Γεωµετρικοί τόποι και εξισώσεις στο χώρο Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών ρισµός 6 Θεωρούµε τη συνάρτηση F:Α,

Διαβάστε περισσότερα

[2] Υπολογιστικά συστήματα: Στρώματα. Τύποι δεδομένων. Μπιτ. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό

[2] Υπολογιστικά συστήματα: Στρώματα. Τύποι δεδομένων. Μπιτ. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό Υπολογιστικά συστήματα: Στρώματα 1 ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό δεδομένα Αναπαράσταση δεδομένων 2 Τύποι δεδομένων Τα δεδομένα

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Δασική Γενετική Εισαγωγή: Βασικές έννοιες

Δασική Γενετική Εισαγωγή: Βασικές έννοιες Δασική Γενετική Εισαγωγή: Βασικές έννοιες Χειμερινό εξάμηνο 2014-2015 Γενετική Πειραματική επιστήμη της κληρονομικότητας Προέκυψε από την ανάγκη κατανόησης της κληρονόμησης οικονομικά σημαντικών χαρακτηριστικών

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

Εισαγωγή στο Πρόγραμμα Spatial Analyst

Εισαγωγή στο Πρόγραμμα Spatial Analyst Εισαγωγή στο Πρόγραμμα Spatial Analyst Γενικά Το πρόγραμμα Spatial Analyst είναι μια επέκταση του ArcMap με πολλές επιπλέον δυνατότητες, κυρίως όσον αφορά τα πλεγματικά (raster) δεδομένα. Επιπλέον δέχεται

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

Πανελλαδικές εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου Βιολογία Θετικής Κατεύθυνσης Τετάρτη 4 Ιουνίου 2014

Πανελλαδικές εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου Βιολογία Θετικής Κατεύθυνσης Τετάρτη 4 Ιουνίου 2014 Πανελλαδικές εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου Βιολογία Θετικής Κατεύθυνσης Τετάρτη 4 Ιουνίου 2014 ΘΕΜΑ Α Α1.δ Α2.γ Α3.β Α4.γ Α5.β ΘΕΜΑ Β Β1. 4,2,1,6,3,5 Β2. α. DNA πολυμεράση β. πριμόσωμα γ.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε

Διαβάστε περισσότερα

Περίθλαση από ακµή και από εµπόδιο.

Περίθλαση από ακµή και από εµπόδιο. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 63 6. Άσκηση 6 Περίθλαση από ακµή και από εµπόδιο. 6.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης αυτής, καθώς και των δύο εποµένων, είναι η γνωριµία των σπουδαστών

Διαβάστε περισσότερα

IMAGE-PRO Ποσοτική ανάλυση συνεντοπισµού φθοριοχρωµάτων Quantitative colocalization analysis

IMAGE-PRO Ποσοτική ανάλυση συνεντοπισµού φθοριοχρωµάτων Quantitative colocalization analysis IMAGE-PRO Ποσοτική ανάλυση συνεντοπισµού φθοριοχρωµάτων Quantitative colocalization analysis Η ανάλυση συνεντοπισµού σε πολυχρωµατικές εικόνες µικροσκοπίας φθορισµού βασίζεται στην µελέτη παρουσίας σήµατος

Διαβάστε περισσότερα

4.2 Μέθοδος Απαλοιφής του Gauss

4.2 Μέθοδος Απαλοιφής του Gauss 4.2 Μέθοδος Απαλοιφής του Gauss Θεωρούµε το γραµµικό σύστηµα α 11χ 1 + α 12χ 2 +... + α 1νχ ν = β 1 α 21χ 1 + α 22χ2 +... + α 2νχ ν = β 2... α ν1χ 1 + α ν2χ 2 +... + α ννχ ν = β ν Το οποίο µπορεί να γραφεί

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α Πότε λέμε ότι η συνάρτηση είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της; Α Αν οι συναρτήσεις και g είναι παραγωγίσιμες στο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla

Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Bla Η εικονική μικροσυστοιχία Μια ματιά στις επιστημονικές δημοσιεύσεις Τώρα που καταλαβαίνετε πώς δουλεύουν οι μικροσυστοιχίες (τουλάχιστον αυτό πιστεύουμε!), είναι ώρα να δούμε πως τις έχουν χρησιμοποιήσει

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΕΠΛ 450 ΥΠΟΛΟΓΙΣΤΙΚΗ ΒΙΟΛΟΓΙΑ. Παύλος Αντωνίου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΕΠΛ 450 ΥΠΟΛΟΓΙΣΤΙΚΗ ΒΙΟΛΟΓΙΑ. Παύλος Αντωνίου ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΕΠΛ 450 ΥΠΟΛΟΓΙΣΤΙΚΗ ΒΙΟΛΟΓΙΑ Παύλος Αντωνίου Με μια ματιά: Εισαγωγή στη Βιολογία Ευθυγράμμιση Ακολουθιών Αναζήτηση ομοίων ακολουθιών από βάσεις δεδομενων Φυλογενετική πρόβλεψη Πρόβλεψη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΘΟΡΥΒΟΣ Αξιολόγηση και µέτρα αντιµετώπισης

ΘΟΡΥΒΟΣ Αξιολόγηση και µέτρα αντιµετώπισης TEE TKM ΣΕΜΙΝΑΡΙΑ ΜΙΚΡΗΣ ΙΑΡΚΕΙΑ ΣΤ ΚΥΚΛΟΣ2005 ΥΓΕΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΕΡΓΑΖΟΜΕΝΩΝ ΣΤΗΝ ΒΙΟΜΗΧΑΝΙΑ ΘΟΡΥΒΟΣ Αξιολόγηση και µέτρα αντιµετώπισης Ν. Μαραγκός Μηχανολόγος Mηχ. Msc ΚΙΛΚΙΣ 2005 ΘΟΡΥΒΟΣ Αξιολόγηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα

Διαβάστε περισσότερα

ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΤΟ ΕΓΣΑ87 ΜΕΣΩ ΤΟΥ HEPOS

ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΤΟ ΕΓΣΑ87 ΜΕΣΩ ΤΟΥ HEPOS ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΤΟ ΕΓΣΑ87 ΜΕΣΩ ΤΟΥ HEPOS Γιαννίου Μιχάλης ρ. ΑΤΜ Επιστηµονικός Σύµβουλος ΚΤΗΜΑΤΟΛΟΓΙΟ Α.Ε. Τµήµα Γεωδαιτικών εδοµένων ιεύθυνση Ψηφιακών Συστηµάτων, Υπηρεσιών & Προώθησης Προϊόντων

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΤΟΥ ΕΜΒΡΥΟΥ. Ζαρφτζιάν Μαριλένα Πρότυπο Πειραματικό Σχολείο Πανεπιστημίου Μακεδονίας

ΑΝΑΠΤΥΞΗ ΤΟΥ ΕΜΒΡΥΟΥ. Ζαρφτζιάν Μαριλένα Πρότυπο Πειραματικό Σχολείο Πανεπιστημίου Μακεδονίας ΑΝΑΠΤΥΞΗ ΤΟΥ ΕΜΒΡΥΟΥ ΑΥΛΑΚΩΣΗ Αυλάκωση ονομάζεται η διαίρεση του ζυγωτού Η πρώτη μιτωτική διαίρεση σε 2 κύτταρα γίνεται 30 ώρες μετά τη γονιμοποίηση Ακολουθούν πολλές μιτωτικές διαιρέσεις και 5 7 μέρες

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 8 ο 8.1 Συντελεστές συσχέτισης: 8.1.1 Συσχέτιση Pearson, και ρ του Spearman 8.1.2 Υπολογισµός του συντελεστή

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ

Διαβάστε περισσότερα

ΔΙΑΝΕΛΛΕΙΟ ΓΥΜΝΑΣΙΟ ΛΑΡΝΑΚΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009 2010 ΓΡΑΠΤΕΣ ΑΝΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2009

ΔΙΑΝΕΛΛΕΙΟ ΓΥΜΝΑΣΙΟ ΛΑΡΝΑΚΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009 2010 ΓΡΑΠΤΕΣ ΑΝΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2009 ΔΙΑΝΕΛΛΕΙΟ ΓΥΜΝΑΣΙΟ ΛΑΡΝΑΚΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009 2010 ΓΡΑΠΤΕΣ ΑΝΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2009 Τάξη : Γ Γυμνασίου Βαθμός : Μάθημα : Βιολογία Ημερομηνία : 4 / 09/ 2009 Υπογραφή καθηγητή :... Διάρκεια : ΟΝΟΜΑ

Διαβάστε περισσότερα

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 5 ΕΡΓΑΣΤΗΡΙΟ 1 ΜΕΤΡΑ ΚΙΝ ΥΝΟΥ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Περιεχόμενα Μαθήματος Εισαγωγή στο Πρόβλημα. Monte Carlo Εκτιμητές. Προσομοίωση. Αλυσίδες Markov. Αλγόριθμοι MCMC (Metropolis Hastings & Gibbs Sampling).

Διαβάστε περισσότερα

ΙΑΜΟΡΙΑΚΕΣ ΥΝΑΜΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΗΣ ΥΛΗΣ ΠΡΟΣΘΕΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ

ΙΑΜΟΡΙΑΚΕΣ ΥΝΑΜΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΗΣ ΥΛΗΣ ΠΡΟΣΘΕΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΙΑΜΟΡΙΑΚΕΣ ΥΝΑΜΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΗΣ ΥΛΗΣ ΠΡΟΣΘΕΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ εσµός Υδρογόνου 1) Τι ονοµάζεται δεσµός υδρογόνου; εσµός ή γέφυρα υδρογόνου : είναι µια ειδική περίπτωση διαµοριακού δεσµού διπόλου-διπόλου,

Διαβάστε περισσότερα

Τι συµβαίνει σε ένα Εργαστήριο Γενετικής?

Τι συµβαίνει σε ένα Εργαστήριο Γενετικής? 12 εργαστήριο ίσως ελέγξει τα αποθηκευµένα δείγµατα (ιδιαίτερα εάν ο αρχικός έλεγχος δεν έδωσε αποτέλεσµα), αλλά µόνο εάν έχετε δώσει τη γραπτή σας συγκατάθεση για κάτι τέτοιο. Με αυτό τον τρόπο οι ασθενείς

Διαβάστε περισσότερα

Ευφυείς Τεχνικές για Εφαρμογές Αποθετηρίων

Ευφυείς Τεχνικές για Εφαρμογές Αποθετηρίων Ευφυείς Τεχνικές για Εφαρμογές Αποθετηρίων Α.-Γ. Σταφυλοπάτης Ερευνητικό Πανεπιστημιακό Ινστιτούτο Συστημάτων Επικοινωνιών και Υπολογιστών Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

ΟΓΚΟΛΟΓΙΑ - ΡΑΔΙΟΒΙΟΛΟΓΙΑ

ΟΓΚΟΛΟΓΙΑ - ΡΑΔΙΟΒΙΟΛΟΓΙΑ ΟΓΚΟΛΟΓΙΑ - ΡΑΔΙΟΒΙΟΛΟΓΙΑ Βασικές γνώσεις I SBN 960-372-069-0 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΙΣ Α. ΚΟΣΜΙΔΗΣ ΓΕΩΡΓΙΟΣ ΤΣΑΚΙΡΗΣ Μ Ε Ρ Ο Σ Ι ΟΓΚΟΛΟΓΙΑ Κεφάλαιο 1 ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΚΑΡΚΙΝΟ... 3 Το καρκινικό κύτταρο... 3 Κυτταρικός

Διαβάστε περισσότερα

Περίληψη ιπλωµατικής Εργασίας

Περίληψη ιπλωµατικής Εργασίας Περίληψη ιπλωµατικής Εργασίας Θέµα: Εναλλακτικές Τεχνικές Εντοπισµού Θέσης Όνοµα: Κατερίνα Σπόντου Επιβλέπων: Ιωάννης Βασιλείου Συν-επιβλέπων: Σπύρος Αθανασίου 1. Αντικείµενο της διπλωµατικής Ο εντοπισµός

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

Εισαγωγή στις Ηλεκτρικές Μετρήσεις

Εισαγωγή στις Ηλεκτρικές Μετρήσεις Εισαγωγή στις Ηλεκτρικές Μετρήσεις Σφάλματα Μετρήσεων Συμβατικά όργανα μετρήσεων Χαρακτηριστικά μεγέθη οργάνων Παλμογράφος Λέκτορας Σοφία Τσεκερίδου 1 Σφάλματα μετρήσεων Επιτυχημένη μέτρηση Σωστή εκλογή

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 21 Οκτωβρίου 2009 ΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ Η ανάγκη εισαγωγής της δεσµευµένης πιθανότητας αναφύεται στις περιπτώσεις όπου µία µερική

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά

Διαβάστε περισσότερα

Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων

Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων 1. Αναζήτηση των κατάλληλων δεδοµένων. 2. Έλεγχος µεταβλητών και κωδικών για συµβατότητα. 3. Αποθήκευση σε ηλεκτρονική µορφή (αρχεία

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεμάτων

Διαβάστε περισσότερα

Γενετικοί Αλγόριθμοι. Εισαγωγή

Γενετικοί Αλγόριθμοι. Εισαγωγή Τεχνητή Νοημοσύνη 08 Γενετικοί Αλγόριθμοι (Genetic Algorithms) Εισαγωγή Σε αρκετές περιπτώσεις το μέγεθος ενός προβλήματος καθιστά απαγορευτική τη χρήση κλασικών μεθόδων αναζήτησης για την επίλυσή του.

Διαβάστε περισσότερα