Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ."

Transcript

1 ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει ανάµεσα σε δύο ανεξάρτητα δείγµατα, χρησιµοποιούµε το t-test. Για παράδειγµα, αν η µέση ηλικία των γυναικών από την Αθήνα (µ 1 ), διαφέρει από την µέση ηλικία των γυναικών από την Θεσσαλονίκη (µ 2 ). Αυτό, είναι ισοδύναµο µε το να πούµε ότι ελέγχουµε την διαφορά των µέσων τιµών µίας ποσοτικής µεταβλητής (ηλικία), ανάµεσα στις κατηγορίες µίας ποιοτικής (τόπος γέννησης). Στην περίπτωση όµως που η ποιοτική µεταβλητή, έχει περισσότερες από δύο κατηγορίες, δεν εφαρµόζουµε το t-test. Προκειµένου να ελέγξουµε το αν διαφέρουν οι µέσες τιµές µίας ποσοτικής µεταβλητής, ανάµεσα στις κατηγορίες µιας ποιοτικής, όταν αυτή έχει περισσότερες από δύο κατηγορίες (έστω k), χρησιµοποιούµε την Ανάλυση ιασποράς µιας κατεύθυνσης (One-way ANOVA). 1 Εδώ δηλαδή, θέλουµε να ελέγξουµε τη: Μηδενική υπόθεση: µ 1 =µ 2 =...=µ κ έναντι της Εναλλακτικής υπόθεσης: µ i µ j, i,j = 1,2,,k (τουλάχιστον ένα ζευγάρι διαφέρει). Προϋποθέσεις 2 :! Η ποσοτική µεταβλητή να κατανέµεται κανονικά, σε κάθε κατηγορία της ποιοτικής.! Οι διασπορές της ποσοτικής µεταβλητής, σε κάθε κατηγορία της ποιοτικής, να είναι ίσες.! Οι k - οµάδες ατόµων (k - δείγµατα) να είναι ανεξάρτητες. Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ. 1 Το t-test, δεν είναι τίποτα άλλο από υποπερίπτωση της ανάλυσης διασποράς, για δύο κατηγορίες. 2 Αντίστοιχες του t-test αλλά για k-κατηγορίες!

2 SPSS 1) One Way ANOVA (Παραµετρικό τεστ ) Ας υποθέσουµε ότι θέλουµε να ελέγξουµε αν η µέση τιµή του βάρους των γυναικών, διαφέρει ανάλογα µε την βαθµίδα ς. ηλαδή αν η µέση τιµή της wht, διαφέρει σε κάθε κατηγορία της edu_cat. Προκειµένου να ελέγξουµε το αν το βάρος κατανέµεται κανονικά, σε κάθε βαθµίδα ς, θα χωρίσουµε τα δεδοµένα µας αρχικά ανά κατηγορία της edu_cat χρησιµοποιώντας την εντολή split : Data # Split File # Compare groups # Group based on: και βάζουµε την µεταβλητή σύµφωνα µε την οποία θα γίνει ο διαχωρισµός (edu_cat) # Ok Μετά εφαρµόζουµε τον έλεγχο των Kolmogorov Smirnov. One-Sample Kolmogorov-Smirnov Test EDU_CAT Πρωτοβάθµια Τριτοβάθµια a. Test distribution is Normal. b. Calculated from data. N Normal Parameters Most Extreme Differences a,b Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed) N Normal Parameters a,b Most Extreme Differences Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed) N Normal Parameters a,b Most Extreme Differences Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed) Std. Deviation Absolute Positive Negative Std. Deviation Absolute Positive Negative Std. Deviation Absolute Positive Negative Βάρος (πριν) 89 67,72 11,74,108,108 -,061 1,022, ,88 10,15,101,101 -,054,785, ,92 10,63,128,128 -,055,641,806

3 Η µεταβλητή βάρος κατανέµεται κανονικά και στις τρεις βαθµίδες της ς. Μπορούµε να προχωρήσουµε λοιπόν στην ανάλυση διασποράς. Analyze # General linear model # Univariate # Dependent Variables: βάζουµε την ποσοτική µεταβλητή, Fixed factors: βάζουµε την ποιοτική µεταβλητή # Ok Post hoc # Post hoc test for: edu_cat # ενεργοποιούµε τα: LSD, Bonferroni & Tukey # Continue Save # Residuals # ενεργοποιούµε τα: Unstandardized # Continue Options # Display means for: edu_cat # Display : ενεργοποιούµε τα: Descriptive statistics, Estimates of effect size, Parameter estimates & Homogeneity tests # Continue Levene's Test of Equality of Error Variances a F df1 df2 Sig., ,396 Tests the null hypothesis that the error variance of the dependent variable is equal across groups. a. Design: Intercept+EDU_CAT Το Levene s Test of Equality of Error Variances κάτω από τη µηδενική υπόθεση: οι διασπορές είναι ίσες ( σπρωτοβ. = σδευτεροβ. = στριτοβ.), δίνει p-value = Κατά συνέπεια ισχύει και η προϋπόθεση της ισότητας των διασπορών. Source Corrected Model Intercept EDU_CAT Error Total Corrected Total Tests of Between-Subjects Effects Type III Sum of Squares df Square F Sig. Eta Squared 663,838 a 2 331,919 2,713,069, , , ,690,000, , ,919 2,713,069, , , , , a. R Squared =,031 (Adjusted R Squared =,019)

4 F-test: Ο έλεγχος γίνεται κάτω από την µηδενική υπόθεση ότι οι µέσες τιµές του βάρους είναι ίσες για κάθε βαθµίδα της ς. Parameter Intercept [EDU_CAT=1] [EDU_CAT=2] [EDU_CAT=3] Parameter Estimates 95% Confidence Interval B Std. Error t Sig. Lower Bound Upper Bound Eta Squared 61,920 2,212 27,990,000 57,553 66,287,821 5,799 2,504 2,316,022,857 10,741,030 4,963 2,633 1,885,061 -,234 10,161,020 0 a,,,,,, a. This parameter is set to zero because it is redundant. Το µοντέλο που αντιστοιχεί στον παραπάνω πίνακα είναι το: Y i = µ + b EDU_CAT=i, i = 1,2 ή 3 όπου! στη θέση του i, βάζουµε το επίπεδο εκείνο της κατηγορικής µας, για τα άτοµα του οποίου θέλουµε να υπολογίσουµε την αναµενόµενη µέση τιµή (Υ i )!! µ είναι η σταθερά (intercept), η οποία αντιστοιχεί στην αναµενόµενη µέση τιµή του βάρους για τις γυναίκες που έχουν τελειώσει την τριτοβάθµια (επίπεδο αναφοράς) b EDU_CAT=1 = # Η µέση τιµή του βάρους των γυναικών που έχουν τελειώσει την πρωτοβάθµια είναι κατά 5.8 κιλά µεγαλύτερη από τη µέση τιµή του βάρους των γυναικών που έχουν τελειώσει την τριτοβάθµια (επίπεδο αναφοράς). Το αντίστοιχο one sample t-test (p-value = 0.022) δείχνει ότι η διαφορά αυτή στις µέσες τιµές είναι στατιστικά σηµαντική. b EDU_CAT=2 = # Η µέση τιµή του βάρους των γυναικών που έχουν τελειώσει την δευτεροβάθµια είναι κατά 5 κιλά µεγαλύτερη από τη µέση τιµή του βάρους των γυναικών που έχουν τελειώσει την τριτοβάθµια (επίπεδο αναφοράς). Το αντίστοιχο one sample t-test (p-value = 0.061) δείχνει ότι η διαφορά αυτή στις µέσες τιµές δεν είναι στατιστικά σηµαντική.

5 Multiple Comparisons LSD (I) EDU_CAT Πρωτοβάθµια (J) EDU_CAT Τριτοβάθµια Πρωτοβάθµια Τριτοβάθµια Difference 95% Confidence Interval (I-J) Std. Error Sig. Lower Bound Upper Bound,84 1,85,652-2,81 4,48 5,80* 2,50,022,86 10,74 -,84 1,85,652-4,48 2,81 4,96 2,63,061 -,23 10,16 Τριτοβάθµια Πρωτοβάθµια Based on observed means. *. The mean difference is significant at the,05 level. -5,80* 2,50,022-10,74 -,86-4,96 2,63,061-10,16,23 Στον παραπάνω πίνακα µπορούµε να δούµε αναλυτικά τις διαφορές στις µέσες τιµές σε όλους τους δυνατούς συνδυασµούς ανά δύο των κατηγοριών της ποιοτικής. Το αστεράκι σε κάποια διαφορά, µας πληροφορεί ότι είναι στατιστικά σηµαντική, στο επίπεδο του 5 %. Εναλλακτικός τρόπος για την εφαρµογή της One-way ANOVA Analyze # Compare s # One way anova # και δηλώνουµε την ποσοτική µεταβλητή (depended) και τη ποιοτική (Factor) # Post hoc # Equal variances Assumed και ενεργοποιούµε τα: LSD, Bonferroni & Tukey # Continue # Ok 2) Μη - Παραµετρικό τεστ Στην περίπτωση που δεν ισχύουν οι προϋποθέσεις, καταφεύγουµε σε µη παραµετρικό έλεγχο. Τότε SPSS Analyze # Non parametric tests # k Independent Samples test # Test variable list: την ποσοτική µεταβλητή, Grouping variable: την ποιοτική, στο Define Range δηλώνουµε το εύρος των τιµών της ποιοτικής µεταβλητής και επιλέγουµε το Kruskal Wallis test # Ok.

6 Γραφική Απεικόνιση Graphs # Error Bar # Simple # Define # Y axis: βάζουµε την ποσοτική µεταβλητή, X Axis: βάζουµε την ποιοτική µεταβλητή # Ok % CI Βάρος (πριν) N = Πρωτοβάθµια εκπαίδευ Τριτοβάθµια εκπαίδευ εκπαίδ EDU_CAT

7 ΣΤ 2. Ανάλυση ιασποράς κατά δύο κατευθύνσεις. Προκειµένου να ελέγξουµε το αν διαφέρουν οι µέσες τιµές µίας ποσοτικής µεταβλητής, ανάµεσα στις κατηγορίες όχι µίας ποιοτικής όχι αλλά δύο χρησιµοποιούµε την Ανάλυση ιασποράς δύο κατευθύνσεων (Two-way ANOVA). Εδώ, για κάθε ποιοτική µεταβλητή ξεχωριστά θα γίνουν οι παρακάτω έλεγχοι: Μηδενική υπόθεση: µ 1. =µ 2. =...=µ κ. έναντι της Εναλλακτικής υπόθεσης: µ i. µ j., i,j = 1,2,,k (τουλάχιστον ένα ζευγάρι διαφέρει), όπου η. στους δείκτες των µέσων τιµών δηλώνει ότι η άλλη µεταβλητή παραµένει σταθερή. Προϋποθέσεις :! Οι παρατηρήσεις να προέρχονται από κανονική κατανοµή.! Οι διασπορές των συγκρινόµενων κανονικών κατανοµών, να είναι ίσες.! Οι προκύπτουσες οµάδες ατόµων να είναι ανεξάρτητες. SPSS Two Way ANOVA Ας υποθέσουµε ότι θέλουµε να ελέγξουµε αν η µέση τιµή του βάρους των γυναικών, διαφέρει ανάλογα µε την βαθµίδα ς και τον τόπο γέννησης. ηλαδή αν η µέση τιµή της wht, διαφέρει σε κάθε κατηγορία της edu_cat και της bp. Analyze # General linear model # Univariate # Dependent Variables: βάζουµε την ποσοτική µεταβλητή, Fixed factors: βάζουµε τις ποιοτικές µεταβλητές Model # Custom και στο πλαίσιο Model: edu_cat, bp, Built terms: Main Effects # Continue Post hoc # Post hoc test for: edu_cat, bp # ενεργοποιούµε τα: LSD, Bonferroni & Tukey # Continue

8 Save # Residuals # ενεργοποιούµε τα: Unstandardized # Continue Options # Display means for: edu_cat, bp # Display : ενεργοποιούµε τα: Descriptive statistics, Estimates of effect size, Parameter estimates & Homogeneity tests # Continue # Ok Levene's Test of Equality of Error Variances a F df1 df2 Sig. 1, ,317 Tests the null hypothesis that the error variance of the dependent variable is equal across groups. a. Design: Intercept+BP+EDU_CAT Το Levene s Test of Equality of Error Variances, κάτω από τη µηδενική υπόθεση της ισότητας των διασπορών, δίνει p-value = Κατά συνέπεια ισχύει και η προϋπόθεση της ισότητας των διασπορών. Source Corrected Model Intercept BP EDU_CAT Error Total Corrected Total Tests of Between-Subjects Effects Type III Sum of Squares df Square F Sig. Eta Squared 2033,316 a 3 677,772 5,893,001, , , ,606,000, , ,477 11,907,001, , ,298 4,385,014, , , , , a. R Squared =,094 (Adjusted R Squared =,078)

9 F(Corrected model): Ο έλεγχος γίνεται κάτω από την µηδενική υπόθεση ότι η µέση τιµή της wht, διαφέρει σε κάθε κατηγορία της edu_cat και της bp. F(Εdu_cat): Ο έλεγχος γίνεται κάτω από την µηδενική υπόθεση ότι η µέση τιµή της wht, διαφέρει σε κάθε κατηγορία της edu_cat, λαµβάνοντας υπόψη και τη µεταβλητή bp. F(Βp): Ο έλεγχος γίνεται κάτω από την µηδενική υπόθεση ότι η µέση τιµή της wht, διαφέρει σε κάθε κατηγορία της bp, λαµβάνοντας υπόψη και τη µεταβλητή edu_cat. Parameter Intercept [BP=1] [BP=2] [EDU_CAT=1] [EDU_CAT=2] [EDU_CAT=3] Parameter Estimates 95% Confidence Interval B Std. Error t Sig. Lower Bound Upper Bound Eta Squared 56,147 2,720 20,641,000 50,778 61,517,715 6,560 1,901 3,451,001 2,807 10,312,065 0 a,,,,,, 7,297 2,466 2,959,004 2,429 12,165,049 5,379 2,556 2,105,037,334 10,424,025 0 a,,,,,, a. This parameter is set to zero because it is redundant. Το µοντέλο που αντιστοιχεί στον παραπάνω πίνακα είναι το: Y i = µ + b BP=j + b EDU_CAT=i, j = 1 ή 2 και i = 1,2 ή 3 όπου! στη θέση του i, βάζουµε το επίπεδο εκείνο της κατηγορικής µας, για τα άτοµα του οποίου θέλουµε να υπολογίσουµε την αναµενόµενη µέση τιµή (Υ i )! µ είναι η σταθερά (intercept),η οποία αντιστοιχεί στην αναµενόµενη µέση τιµή του βάρους για τις γυναίκες που έχουν τελειώσει την τριτοβάθµια και είναι από την Θεσσαλονίκη (επίπεδο αναφοράς). b BP=1 = # Η µέση τιµή του βάρους των γυναικών που είναι από την Αθήνα, είναι κατά 6.5 κιλά µεγαλύτερη, από τη µέση τιµή του βάρους των γυναικών είναι από την Θεσσαλονίκη (επίπεδο αναφοράς), δεδοµένου ότι έχουν την ίδια βαθµίδα

10 ς. Το αντίστοιχο one sample t-test (p-value = 0.001) δείχνει ότι η διαφορά αυτή στις µέσες τιµές είναι στατιστικά σηµαντική. b EDU_CAT=1 = # Η µέση τιµή του βάρους των γυναικών που έχουν τελειώσει την πρωτοβάθµια είναι κατά 7.3 κιλά µεγαλύτερη από τη µέση τιµή του βάρους των γυναικών που έχουν τελειώσει την τριτοβάθµια (επίπεδο αναφοράς), δεδοµένου ότι κατάγονται από την ίδια πόλη. Το αντίστοιχο one sample t-test (p-value = 0.004) δείχνει ότι η διαφορά αυτή στις µέσες τιµές είναι στατιστικά σηµαντική. b EDU_CAT=2 = # Η µέση τιµή του βάρους των γυναικών που έχουν τελειώσει την δευτεροβάθµια είναι κατά 5.4 κιλά µεγαλύτερη από τη µέση τιµή του βάρους των γυναικών που έχουν τελειώσει την τριτοβάθµια (επίπεδο αναφοράς), δεδοµένου ότι κατάγονται από την ίδια πόλη. Το αντίστοιχο one sample t-test (p-value = 0.037) δείχνει ότι η διαφορά αυτή στις µέσες τιµές είναι στατιστικά σηµαντική. LSD Multiple Comparisons (I) EDU_CAT Πρωτοβάθµια εκπαίδευ (J) EDU_CAT Τριτοβάθµια εκπαίδευσ Πρωτοβάθµια εκπαίδευ Τριτοβάθµια εκπαίδευσ Difference (I-J) Std. Error Sig. 95% Confidence Interval Lower Bound Upper Bound,84 1,79,641-2,70 4,37 5,80* 2,43,018 1,01 10,59 -,84 1,79,641-4,37 2,70 4,96 2,55,054-7,62E-02 10,00 Τριτοβάθµια εκπαίδευσ Πρωτοβάθµια εκπαίδευ -5,80* 2,43,018-10,59-1,01-4,96 2,55,054-10,00 7,62E-02 Based on observed means. *. The mean difference is significant at the,05 level. Για την προϋπόθεση της κανονικής κατανοµής, ο συντοµότερος τρόπος είναι να εξετάσουµε κατά πόσο κατανέµονται κανονικά τα κατάλοιπα (residuals) 3 που υπολογίστηκαν µε την εφαρµογή της two-way-anova. Αν τα κατάλοιπα κατανέµονται κανονικά, τότε όλες οι παρατηρήσεις προέρχονται από κανονική κατανοµή. 3 Αυτό θα µπορούσε να γίνει και στην περίπτωση της one-way ANOVA.

11 One-Sample Kolmogorov-Smirnov Test N Normal Parameters a,b Most Extreme Differences Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed) Std. Deviation Absolute Positive Negative a. Test distribution is Normal. b. Calculated from data. Residual for WTA 174-3,29E-08 10,6311,075,075 -,046,986,285 Γραφική Απεικόνιση Graphs # Error Bar # Clustered # Define # Variable: βάζουµε την ποσοτική µεταβλητή, Category Axis: βάζουµε τη µια ποιοτική µεταβλητή και Define clusters by βάζουµε την άλλη ποιοτική µεταβλητή # Ok % CI Βάρος (πριν) N = Πρωτοβάθµια εκπαίδευ Τριτοβάθµια εκπαίδευ εκπαίδ 3 Τόπος γέννησης Αθήνα Θεσσαλονίκη EDU_CAT

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:

Διαβάστε περισσότερα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το

Διαβάστε περισσότερα

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία. . ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Διακύμανσης

Εισαγωγή στην Ανάλυση Διακύμανσης Εισαγωγή στην Ανάλυση Διακύμανσης 1 Η Ανάλυση Διακύμανσης Από τα πιο συχνά χρησιμοποιούμενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές μέσων όρων, όπως και το κριτήριο

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 8. Ανάλυση διασποράς (ANOVA)

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 8. Ανάλυση διασποράς (ANOVA) ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 8. Ανάλυση διασποράς (ANOVA) Γενικά Επέκταση της σύγκρισης µέσων τιµών µεταβλητής ανάµεσα σε 2 δείγµατα (οµάδες ήστάθµες): Σύγκριση πολλών δειγµάτων (K>2) µαζί Σχέση ανάµεσα σε µια ποσοτική

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Περιεχόμενα 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...

Διαβάστε περισσότερα

6.4. LOGLINEAR 90 8.5 (MANOVA) 121

6.4. LOGLINEAR 90 8.5 (MANOVA) 121 Φ Γ SPSS Dr. υ υ α α Θ α 2012 2 1. Γ SPSS 19.0 1.1 Φ Γ SPSS 4 1.2 Φ Γ 7 1.3 9 1.4 Φ 10 1.5 Pτ ΘHKH IAΓPAΦH 16 1.6 16 1.7 17 1.8 20 1.9 22 1.10 Γ 23 1.11 Γ Φ 25 1.12 Γ 27 1.13 Θ 28 2. Γ Φ 2.1 Θ, Γ, Γ 29

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Στόχοι: (a) να δοθεί µια εισαγωγή στη θεωρία της στατιστικής συµπερασµατολογίας ελέγχων υποθέσεων, (b) να παρουσιάσει τις βασικές εφαρµογές αυτών των ελέγχων: µέσης τιµής, ποσοστού

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 6 ο 6.1 Ερωτήσεις Πολλαπλών Απαντήσεων 6.2 Εντολή Case Summaries 6.3 Ο έλεγχος t : (correlate t-test) 6.3.1Σύγκριση

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. ΜΑΘΗΜΑ 12 Συµπερασµατολογία για την επίδραση πολλών µεταβλητών σε µια ποσοτική (Πολλαπλή Παλινδρόµηση) [µέρος 2ο]

ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. ΜΑΘΗΜΑ 12 Συµπερασµατολογία για την επίδραση πολλών µεταβλητών σε µια ποσοτική (Πολλαπλή Παλινδρόµηση) [µέρος 2ο] Ενότητα 2 ιαφάνειες Μαθήµατος: 2- Ενότητα 2 ιαφάνειες Μαθήµατος: 2-2 ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο.6. είκτες µερικής συσχέτισης

Διαβάστε περισσότερα

Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance)

Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance) ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (Oe-way aalysis of variace) Να γίνει µια εισαγωγή στη µεθοδολογία της ανάλυσης > δειγµάτων Να εφαρµοσθεί και να κατανοηθεί η ανάλυση διασποράς µε ένα παράγοντα. Να κατανοηθεί η χρήση των

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Έλεγχος κανονικότητας P-P Plot και Q-Q Plot Τεστ Κανονικότητας Τεστ Κανονικότητας

Διαβάστε περισσότερα

ROEHAMPTON UNIVERSITY MA IN EDUCATION Ρ ΚΟΡΡEΣ ΚΩΝΣΤΑΝΤIΝΟΣ ΑΘΗΝΑ 2011

ROEHAMPTON UNIVERSITY MA IN EDUCATION Ρ ΚΟΡΡEΣ ΚΩΝΣΤΑΝΤIΝΟΣ ΑΘΗΝΑ 2011 Ι.Τ.Ε. ROEHAMPTON UNIVERSITY MA IN EDUCATION ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΤΟ SPSS Ρ ΚΟΡΡEΣ ΚΩΝΣΤΑΝΤIΝΟΣ ΑΘΗΝΑ 2011 ΕΚΚΙΝΗΣΗ ΤΟΥ SPSS Από την Έναρξη των Windows, επιλέγουµε: Προγράµµατα SPSS for Windows SPSS *.*

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 24 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Όπως ακριβώς συνέβη και στο κριτήριο t, τα δεδοµένα µας θα πρέπει να έχουν οµαδοποιηθεί χρησιµοποιώντας µια αντίστοιχη

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows

Εισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φιλοσοφίας, Παιδαγωγικής και Ψυχολογίας Τομέας Ψυχολογίας Εισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows Επιμέλεια: Λέκτορας Βασίλης

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης

Διαβάστε περισσότερα

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ Να δοθούν οι βασικές αρχές των µη παραµετρικών ελέγχων (non-parametric tests). Να παρουσιασθούν και να αναλυθούν οι γνωστότεροι µη παραµετρικοί έλεγχοι Να αναπτυχθεί η µεθοδολογία των

Διαβάστε περισσότερα

Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση!

Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση! Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση! ΘΕΜΑ ο [Μονάδες 20] Ερώτημα i (4 μονάδες). Για να κάνουμε τους υπολογισμούς που χρειάζονται

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Κωνσταντίνος Ζαφειρόπουλος Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Μη Παραµετρικοί Έλεγχοι

Μη Παραµετρικοί Έλεγχοι Μη Παραµετρικοί Έλεγχοι Επιστηµονική Επιµέλεια: ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Εργαστήριο Γεωργίας Viola adorata Καταρχήν Μη Παραµετρικοί Έλεγχοι εν απαιτούν κανονικότητα

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 10 ο 10.1 Πολλαπλή Γραµµική Παλινδρόµηση 10.2 Η εφαρµογή της Πολλαπλής Γραµµικής Παλινδρόµησης 10.3 Παράδειγµα

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

Μη Παραµετρικά Κριτήρια. Παραµετρικά Κριτήρια

Μη Παραµετρικά Κριτήρια. Παραµετρικά Κριτήρια Κεφάλαιο 7 Μη Παραµετρικά Κριτήρια Παραµετρικά Κριτήρια Τα παραµετρικά κριτήρια είναι στατιστικά κριτήρια που απαιτούν την ικανοποίηση συγκεκριµένων προϋποθέσεων είτε αναφορικά µε συγκεκριµένες παραµέτρους

Διαβάστε περισσότερα

Στατιστικό κριτήριο χ 2

Στατιστικό κριτήριο χ 2 18 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Στατιστικό κριτήριο χ 2 Ο υπολογισµός του κριτηρίου χ 2 γίνεται µέσω του µενού [Statistics => Summarize => Crosstabs...]. Κατά τη συγκεκριµένη διαδικασία

Διαβάστε περισσότερα

T-tests One Way Anova

T-tests One Way Anova William S. Gosset Student s t Sir Ronald Fisher T-tests One Way Anova ΣΤΑΤΙΣΤΙΚΗ Νίκος Ζουρμπάνος Ρούσσος, Π.Λ., & Τσαούσης, Γ. (2002). Στατιστική εφαρμοσμένη στις κοινωνικές επιστήμες. Αθήνα: Ελληνικά

Διαβάστε περισσότερα

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Κωνσταντίνος Τζιόμαλος Επίκουρος Καθηγητής Παθολογίας ΑΠΘ Α Προπαιδευτική Παθολογική Κλινική, Νοσοκομείο ΑΧΕΠΑ 1 ο βήμα : καταγραφή δεδομένων Το πιο πρακτικό

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΔΥΟ ΚΑΤΑΝΟΜΩΝ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΔΥΟ ΚΑΤΑΝΟΜΩΝ ΚΕΦΑΛΑΙO 5 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΔΥΟ ΚΑΤΑΝΟΜΩΝ Στο προηγούμενο κεφάλαιο εξετάσαμε διάφορες μορφές ελέγχου της υπόθεσης ότι ένα δείγμα παρατηρήσεων προέρχεται από κάποια συγκεκριμένη κατανομή. Στην

Διαβάστε περισσότερα

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό

Διαβάστε περισσότερα

Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S.

Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S. Σημειώσεις για το μάθημα Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S. Παπάνα Αγγελική E mail: papanagel@yahoo.gr, agpapana@gen.auth.gr Α.Τ.Ε.Ι. Θεσσαλονίκης ΠΑΡΑΡΤΗΜΑ ΚΑΤΕΡΙΝΗΣ Τμήμα Τυποποίησης και

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ PSPP

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ PSPP Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Πληροφορικής (ΤΕ) Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ PSPP

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 13. Συμπεράσματα για τη σύγκριση δύο πληθυσμών

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 13. Συμπεράσματα για τη σύγκριση δύο πληθυσμών ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα

Διαβάστε περισσότερα

Άσκηση 2. i β. 1 ου έτους (Υ i )

Άσκηση 2. i β. 1 ου έτους (Υ i ) Άσκηση Ο επόμενος πίνακας δίνει τους βαθμούς φοιτητών (Χ i ) στις εισαγωγικές εξετάσεις ενός κολεγίου και τους αντίστοιχους βαθμούς τους (Υ i ) στο τέλος της πρώτης χρονιάς φοίτησης στο συγκεκριμένο κολέγιο.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «ΑΣΚΗΣΗ, ΕΡΓΟΣΠΙΡΟΜΕΤΡΙΑ ΚΑΙ ΑΠΟΚΑΤΑΣΤΑΣΗ» ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Μεθοδολογία έρευνας και στατιστική 2. ΚΩΔ.

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

έρευνας και στατιστική» παραμετρικές συγκρίσεις»

έρευνας και στατιστική» παραμετρικές συγκρίσεις» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ «Μεθοδολογία έρευνας και στατιστική» Μάθημα μεταπτυχιακού κύκλου σπουδών Διάλεξη: «Μη παραμετρικές συγκρίσεις» ΔΙΔΑΣΚΩΝ: Δρ. Αθανάσιος

Διαβάστε περισσότερα

ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ 2 (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., 04-05) (Επιµέλεια: Ελευθεράκη Αναστασία)

ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ 2 (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., 04-05) (Επιµέλεια: Ελευθεράκη Αναστασία) ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., -) (Επιµέλεια: Ελευθεράκη Αναστασία) Άσκηση (Εργαστήριο #) Στις εξετάσεις Φεβρουαρίου του µαθήµατος

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ -3 Ακαδημαϊκό Έτος -3 . ΕΙΣΑΓΩ ΓΗ ΣΤΟ SPSS ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ..... Καταγραφή δεδομένων και

Διαβάστε περισσότερα

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΚΕΦΑΛΑΙΟ 13 ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Στις προηγούμενες ενότητες ασχοληθήκαμε με μεθόδους που οδηγούν σε εκτιμήτριες των τιμών μιας ή και περισσοτέρων αγνώστων παραμέτρων. Αυτό έγινε με την κατασκευή

Διαβάστε περισσότερα

Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική

Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική Το πρώτο βήμα στην ανάλυση ενός συνόλου δεδομένων, που αποτελούν μετρήσεις ενός δείγματος είναι η παρουσίαση και σύνοψη των πληροφοριών

Διαβάστε περισσότερα

Διδακτορική Διατριβή

Διδακτορική Διατριβή ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Διδακτορική Διατριβή Η ΕΠΙΔΡΑΣΗ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΑΡΕΜΒΑΣΗΣ ΥΠΟΒΟΗΘΟΥΜΕΝΗΣ ΑΠΟ ΥΠΟΛΟΓΙΣΤΗ ΣΤΗΝ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΚΑΙ ΣΤΗΝ ΑΥΤΟΦΡΟΝΤΙΔΑ ΑΣΘΕΝΩΝ ΜΕ ΚΑΡΔΙΑΚΗ

Διαβάστε περισσότερα

Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων. Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή

Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων. Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή Δεκέμβριος 2011 Στόχος Έρευνας H βιτρίνα των καταστημάτων αποτελεί

Διαβάστε περισσότερα

1.α ιαγνωστικοί Έλεγχοι. 2.α Ευαισθησία και Ειδικότητα (εισαγωγικές έννοιες) ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Πολύ σηµαντικό το θεώρηµα του Bayes:

1.α ιαγνωστικοί Έλεγχοι. 2.α Ευαισθησία και Ειδικότητα (εισαγωγικές έννοιες) ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Πολύ σηµαντικό το θεώρηµα του Bayes: ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 6 ΙΑΓΝΩΣΤΙΚΟΙ ΕΛΕΓΧΟΙ 1.β ιαγνωστικοί Έλεγχοι Πολύ σηµαντικό το θεώρηµα

Διαβάστε περισσότερα

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Exploring Data: Distributions Look for overall pattern (shape, center, spread) and deviations (outliers). Mean (use a calculator): x = x 1 + x

Διαβάστε περισσότερα

Σύντομο Εγχειρίδιο SPSS 16.0. Πέτρος Ρούσσος & Γιώργος Ευσταθίου Πρόγραμμα Ψυχολογίας, Τμήμα ΦΠΨ, ΕΚΠΑ

Σύντομο Εγχειρίδιο SPSS 16.0. Πέτρος Ρούσσος & Γιώργος Ευσταθίου Πρόγραμμα Ψυχολογίας, Τμήμα ΦΠΨ, ΕΚΠΑ Πέτρος Ρούσσος & Γιώργος Ευσταθίου Πρόγραμμα Ψυχολογίας, Τμήμα ΦΠΨ, ΕΚΠΑ ΑΘΗΝΑ 2008 [2] Περιεχόμενα Δυο λόγια εισαγωγικά... 3 1.0 Το περιβάλλον του SPSS... 3 2.0 Εισαγωγή και διαχείριση δεδομένων... 6

Διαβάστε περισσότερα

η πιθανότητα επιτυχίας. Επομένως, η συνάρτηση πιθανοφάνειας είναι ίση με: ( ) 32 = p 18 1 p

η πιθανότητα επιτυχίας. Επομένως, η συνάρτηση πιθανοφάνειας είναι ίση με: ( ) 32 = p 18 1 p ΑΣΚΗΣΗ 1 ΣΕΜΦΕ 14-15 i. Έστω yi ο αριθμός των προσπαθειών κάθε μαθητή μέχρι να πετύχει τρίποντο. Ο αριθμός των προσπαθειών πριν ο μαθητής να πετύχει τρίποντο θα είναι xi = yi - 1, i = 1,,18. 2 2 3 2 1

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ 6.1 Εισαγωγή Σε πολλές στατιστικές εφαρµογές συναντάται το πρόβληµα της µελέτης της σχέσης δυο ή περισσότερων τυχαίων µεταβλητών. Η σχέση

Διαβάστε περισσότερα

= p 20 1 p 18. 1 p Το σημείο στο οποίο μηδενίζεται η παραπάνω μερική παράγωγος είναι

= p 20 1 p 18. 1 p Το σημείο στο οποίο μηδενίζεται η παραπάνω μερική παράγωγος είναι Άσκηση 1 i) Σε κάθε παρατήρηση περιλαμβάνεται ένας έλεγχος (ο τελευταίος) κατά τον οποίο εμφανίστηκε το πρώτο ελαττωματικό της παραγωγικής διαδικασίας. Επομένως, ο αριθμός ελέγχων που έγιναν πριν εμφανιστεί

Διαβάστε περισσότερα

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Σύνολα Δεδομένων - Είδη Ποσοτικής Έρευνας: Παράλογες Ιδέες Γονέων (Δειγματοληπτική)

Διαβάστε περισσότερα

Εισαγωγή στη Βιοστατιστική

Εισαγωγή στη Βιοστατιστική Εισαγωγή στη Βιοστατιστική Π.Μ.Σ.: Έρευνα στη Γυναικεία Αναπαραγωγή Οκτώβριος Νοέµβριος 2013 Αλέξανδρος Γρυπάρης, PhD Αλέξανδρος Γρυπάρης, PhD 3 Περιεχόµενα o Ορισµός της Στατιστικής o Περιγραφική στατιστική

Διαβάστε περισσότερα

Στατιστική Επαγωγή με τα Οφθαλμολογικά Δεδομένα

Στατιστική Επαγωγή με τα Οφθαλμολογικά Δεδομένα ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οπτική και Όραση Στατιστική Επαγωγή με τα Οφθαλμολογικά Δεδομένα Καρακώστα Άννα Επιβλέπουσα καθηγήτρια : Ιωάννα Μοσχανδρέα ΓΕΝΙΚΑ Εισαγωγή Σκοπός και στόχοι της έρευνας Ανασκόπηση δημοσιευμένων

Διαβάστε περισσότερα

Βασικές Τεχνικές Δειγματοληψίας και Ανάλυση Ερωτηματολογίων με χρήση του ελέγχου (t)

Βασικές Τεχνικές Δειγματοληψίας και Ανάλυση Ερωτηματολογίων με χρήση του ελέγχου (t) ΚΕΦΑΛΑΙΟ ο Βασικές Τεχνικές Δειγματοληψίας και Ανάλυση Ερωτηματολογίων με χρήση του ελέγχου (t) (Basic Sampling Tecniques and Questionnaire Analysis using (t) test). Εισαγωγή Η Δειγματοληψία είναι ένα

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος... v

Περιεχόμενα. Πρόλογος... v Περιεχόμενα Πρόλογος... v 1 Χρήση της έκδοσης 10 του SPSS για Windows και καταχώριση δεδομένων... 1 2 Περιγραφή μεταβλητών: πίνακες και γραφήματα... 19 3 Περιγραφή μεταβλητών αριθμητικά: μέσοι όροι, διακύμανση,

Διαβάστε περισσότερα

Επιδρά το προφίλ παρακίνησης του διευθυντή στην αποτελεσματική άσκηση σχολικής ηγεσίας;

Επιδρά το προφίλ παρακίνησης του διευθυντή στην αποτελεσματική άσκηση σχολικής ηγεσίας; Έρκυνα, Επιθεώρηση Εκπαιδευτικών Επιστημονικών Θεμάτων, Τεύχος 3ο, 109-135, 2014 Επιδρά το προφίλ παρακίνησης του διευθυντή στην αποτελεσματική άσκηση σχολικής ηγεσίας; Χρήστος Θεοδώρου, christheodorou@sch.gr

Διαβάστε περισσότερα

Σύντοµο εγχειρίδιο του SPSS 13.0

Σύντοµο εγχειρίδιο του SPSS 13.0 Σύντοµο εγχειρίδιο του SPSS 13.0 1.0 ΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟΥ SPSS 4 ΣΧΗΜΑ 1.1 Η ΕΙΣΑΓΩΓΙΚΗ ΟΘΟΝΗ ΤΟΥ SPSS 4 ΣΧΗΜΑ 1.2 Η ΑΡΧΙΚΗ ΟΘΟΝΗ ΤΟΥ SPSS 5 ΣΧΗΜΑ 1.3 ΤΟ ΜΕΝΟΥ ΕΠΙΛΟΓΩΝ ΤΟΥ [FILE] 7 2.0 ΕΙΣΑΓΩΓΗ Ε ΟΜΕΝΩΝ

Διαβάστε περισσότερα

Επαγωγική Στατιστική. Εισαγωγή Βασικές έννοιες

Επαγωγική Στατιστική. Εισαγωγή Βασικές έννοιες Επαγωγική Στατιστική Εισαγωγή Βασικές έννοιες Επαγωγική Στατιστική Πως μπορούμε να συγκρίνουμε μεταβλητές μεταξύ τους? Διαφορά συγκρίνοντας το μέσο μιας μεταβλητής (λόγος ή διάστημα) στις ομάδες πχ. t-test

Διαβάστε περισσότερα

Εισαγωγή στο SPSS. ΚΕΔΙΜΑ 28/9/2013 Γεώργιος Σπανούδης (spanouod@ucy.ac.cy) Τμήμα Ψυχολογίας

Εισαγωγή στο SPSS. ΚΕΔΙΜΑ 28/9/2013 Γεώργιος Σπανούδης (spanouod@ucy.ac.cy) Τμήμα Ψυχολογίας Εισαγωγή στο SPSS ΚΕΔΙΜΑ 28/9/2013 Γεώργιος Σπανούδης (spanouod@ucy.ac.cy) Τμήμα Ψυχολογίας Στόχος του μαθήματος Τα τέσσερα παράθυρα του SPSS Η διαχείριση των αρχείων δεδομένων Βασικά στοιχεία ανάλυσης

Διαβάστε περισσότερα

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ.

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Smple Lear Regresso) Να κατανοηθεί η έννοια της παλινδρόµησης Ποιες οι προϋποθέσεις για να εφαρµοσθεί η γραµµική παλινδρόµηση; Τι είναι το γραµµικό µοντέλο και πως εκτιµούνται

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Πολλαπλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 7 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Πολλαπλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 7 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 12β ΕΡΓΑΣΤΗΡΙΟ 4β ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΕΡΓΕΙΑΚΩΝ ΠΙΣΤΟΠΟΙΗΤΙΚΩΝ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΕΡΓΕΙΑΚΩΝ ΠΙΣΤΟΠΟΙΗΤΙΚΩΝ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΕΡΓΕΙΑΚΩΝ ΠΙΣΤΟΠΟΙΗΤΙΚΩΝ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΣΩΤΗΡΙΟΥ ΣΤΥΛΙΑΝΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

Methods of analysis. Assumptions. Normality. Variables. Normality. Groups. Summary Guide. Quantitative Qualitative. Normal Non-normal distributed

Methods of analysis. Assumptions. Normality. Variables. Normality. Groups. Summary Guide. Quantitative Qualitative. Normal Non-normal distributed Methods of analysis Summary Guide Assumptions Variables Quantitative Qualitative Normality Normal Non-normal distributed Groups Number (1, 2, >2) Pair or independent Normality Cases Cases >50

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA) ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας Κεφάλαιο 5 Οι δείκτες διασποράς 1 Ένα παράδειγµα εργασίας Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

Investigating the fuzzy areas of accuracy and confidence of muslim pupils- learners of Greek as Second Language in Thrace, Greece

Investigating the fuzzy areas of accuracy and confidence of muslim pupils- learners of Greek as Second Language in Thrace, Greece Investigating the fuzzy areas of accuracy and confidence of muslim pupils- learners of Greek as Second Language in Thrace, Greece Polyxeni Intze & Nikolaos Mathioudakis Democritus University of Thrace,

Διαβάστε περισσότερα

( ) Multiple Comparisons on Longitudinal Data Junji Kishimoto SAS Institute Japan / Keio Univ. SFC / Univ. of Tokyo e-mail address: jpnjak@jpn.sas.

( ) Multiple Comparisons on Longitudinal Data Junji Kishimoto SAS Institute Japan / Keio Univ. SFC / Univ. of Tokyo e-mail address: jpnjak@jpn.sas. ( ) Multiple Comparisons on Longitudinal Data Junji Kishimoto SAS Institute Japan / Keio Univ SFC / Univ of Tokyo e-mail address: jpnjak@jpnsascom Dunnett SAS Multiple Comparisons, Repeated Measures, Quadrature

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ ΟΦΕΛΟΥΣ ΣΤΟΝ ΚΛΑΔΟ ΤΗΣ ΕΝΕΡΓΕΙΑΣ

ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ ΟΦΕΛΟΥΣ ΣΤΟΝ ΚΛΑΔΟ ΤΗΣ ΕΝΕΡΓΕΙΑΣ Εργασία στα πλαίσια του μαθήματος ΟΙΚΟΝΟΜΙΚΑ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ ΟΦΕΛΟΥΣ ΣΤΟΝ ΚΛΑΔΟ ΤΗΣ ΕΝΕΡΓΕΙΑΣ Α.Μ. 12012058 Επιβλέπων: Κωνσταντίνος Κουνετάς ΔΕΚΕΜΒΡΙΟΣ 2014 Περίληψη Η ανάλυση κόστους οφέλους

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21

ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21 Πίνακας Περιεχομένων Πρόλογος... 17 ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21 (Basic Sampling Techniques and Questionnaire Analysis using

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS. Θα επιλέξουμε Type in data ώστε να εισάγουμε νέα στοιχεία και θα επιλέξουμε ΟΚ.

ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS. Θα επιλέξουμε Type in data ώστε να εισάγουμε νέα στοιχεία και θα επιλέξουμε ΟΚ. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS To SPSS είναι ένα πακέτο για γενικές στατιστικές αναλύσεις το οποίο από την σκοπιά του οικονομολόγου προσφέρει δυνατότητες που είναι ενδιάμεσα στο Excel και στο Eviews. Θα αρχίσουμε διαβάζοντας

Διαβάστε περισσότερα

29/11/2010 Προεδρείο: Κωνσταντινίδης Θ. Ομιλία: «Ιατρική Στατιστική Ανάλυση Συνήθεις μέθοδοι (επιλογή εφαρμογήαξιολόγηση)»,

29/11/2010 Προεδρείο: Κωνσταντινίδης Θ. Ομιλία: «Ιατρική Στατιστική Ανάλυση Συνήθεις μέθοδοι (επιλογή εφαρμογήαξιολόγηση)», 29/11/2010 Προεδρείο: Κωνσταντινίδης Θ. Ομιλία: «Ιατρική Στατιστική Ανάλυση Συνήθεις μέθοδοι (επιλογή εφαρμογήαξιολόγηση)», Κοντακιώτης Θ. Ομιλία: «Μεταναλύσεις», Χάιδιτς Άννα Μπετίνα Βασικές γνώσεις για

Διαβάστε περισσότερα

Ανάλυση εδοµένων - Χρήση του στατιστικού πακέτου SPSS. 1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩ ΓΗ ΣΤΟ SPSS ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ

Ανάλυση εδοµένων - Χρήση του στατιστικού πακέτου SPSS. 1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩ ΓΗ ΣΤΟ SPSS ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ Ανάλυση εδοµένων - Χρήση του στατιστικού πακέτου SPSS η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩ ΓΗ ΣΤΟ SPSS ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ (Α) Καταγραφή δεδοµένων και επιλογή κατάλληλων ρυθµίσεων των µεταβλητών Η βασική οθόνη του στατιστικού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. Διπλωματική Εργασία

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. Διπλωματική Εργασία ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Διπλωματική Εργασία Σχολική Αποτυχία Η περίπτωση του Νομού Λέσβου Επιβλέπων Καθηγητής : Τσομπάνογλου

Διαβάστε περισσότερα

ΕΝΕΡΓΟΠΟΙΗΣΗ Η ενεργοποίηση του SPSS γίνεται με 2 τρόπους : Με διπλό πάτημα του εικονιδίου SPSS στην επιφάνεια εργασίας, ή

ΕΝΕΡΓΟΠΟΙΗΣΗ Η ενεργοποίηση του SPSS γίνεται με 2 τρόπους : Με διπλό πάτημα του εικονιδίου SPSS στην επιφάνεια εργασίας, ή ΤΟ ΣΤΑΤΙΣΤΙΚΟ ΠΡΟΓΡΑΜΜΑ SPSS Το SPSS (Statistical Package for Social Sciences) είναι ένα στατιστικό πρόγραμμα με ευρύτατη χρήση σε όλους τους ερευνητικούς χώρους και ιδιαίτερα στο χώρο των κοινωνικών επιστημών.

Διαβάστε περισσότερα

Ενότητα 4: Πίνακες συνάφειας (Contingency tables)

Ενότητα 4: Πίνακες συνάφειας (Contingency tables) Ενότητα 4: Πίνακες συνάφειας (Cotigecy tables Σε αρκετές εφαρµογές παρουσιάζεται η ανάγκη ελέγχου της σχέσης µεταξύ δυο κατηγορικών µεταβλητών (Ordial ή omial. Π.χ. θέλουµε να διερευνήσουµε τη σχέση µεταξύ

Διαβάστε περισσότερα

«Επιδράσεις των Στάσεων για την Τοποθέτηση Προϊόντος στη Συμπεριφορά των Ελλήνων Kαταναλωτών»

«Επιδράσεις των Στάσεων για την Τοποθέτηση Προϊόντος στη Συμπεριφορά των Ελλήνων Kαταναλωτών» «Επιδράσεις των Στάσεων για την Τοποθέτηση Προϊόντος στη Συμπεριφορά των Ελλήνων Kαταναλωτών» Ονοματεπώνυμο: Κωνσταντίνα Τσούτσου Σειρά: 9 η Επιβλέπων Καθηγητής: κ. Γ. Ι. Σιώμκος Δεκέμβριος 2012 Σκοπός

Διαβάστε περισσότερα

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Θεματικές

Διαβάστε περισσότερα

Παράγοντες που επηρεάζουν την εκµάθηση των µαθηµατικών από τους µαθητές του Λυκείου

Παράγοντες που επηρεάζουν την εκµάθηση των µαθηµατικών από τους µαθητές του Λυκείου ΤΕΤΡΑ ΙΑ ΑΝΑΛΥΣΗΣ Ε ΟΜΕΝΩΝ, ΤΕΥΧΟΣ 15 (σσ. 111-121) DATA ANALYSIS BULLETIN, ISSUE 15 (pp. 111-121) Παράγοντες που επηρεάζουν την εκµάθηση των µαθηµατικών από τους µαθητές του Λυκείου Σπύρος Παπαγεωργάκης

Διαβάστε περισσότερα

Η Σχέση Της Επιχειρηματικής Στρατηγικής Και Της Καινοτομικής Επίδοσης: Μια Εμπειρική Διερεύνηση Σε 2000 Ελληνικές Επιχειρήσεις

Η Σχέση Της Επιχειρηματικής Στρατηγικής Και Της Καινοτομικής Επίδοσης: Μια Εμπειρική Διερεύνηση Σε 2000 Ελληνικές Επιχειρήσεις Η Σχέση Της Επιχειρηματικής Στρατηγικής Και Της Καινοτομικής Επίδοσης: Μια Εμπειρική Διερεύνηση Σε 2000 Ελληνικές Επιχειρήσεις Άγγελος Τσακανίκας, Επίκουρος Καθηγητής ΕΜΠ Γεώργιος Σιώκας, Υποψήφιος Διδάκτορας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 ο. Minerals (select) ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ Human Apple Mango Orange Water-

ΚΕΦΑΛΑΙΟ 11 ο. Minerals (select) ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ Human Apple Mango Orange Water- ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 11 ο 11.1 Παράθυρο εισαγωγής εντολών (SYNTAX) 11.2 Script γλώσσα προγραµµατισµού στο SPSS 11.3 Λήψη και εισαγωγή

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS12 ΓΙΑ WINDOWS. Κριτσωτάκης Ευάγγελος. Παπαδοπούλου Ελένη. Μαθηµατικός, MSc Στατιστική. Στατιστικός MSc Περιβαλλοντική ιαχείριση

ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS12 ΓΙΑ WINDOWS. Κριτσωτάκης Ευάγγελος. Παπαδοπούλου Ελένη. Μαθηµατικός, MSc Στατιστική. Στατιστικός MSc Περιβαλλοντική ιαχείριση T.E.I. ΗΡΑΚΛΕΙΟΥ Σ.Ε.Υ.Π ΤΜΗΜΑ ΚΟΙΝΩΝΙΚΗΣ ΕΡΓΑΣΙΑΣ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS12 ΓΙΑ WINDOWS Κριτσωτάκης Ευάγγελος Μαθηµατικός, MSc Στατιστική Παπαδοπούλου Ελένη Στατιστικός MSc Περιβαλλοντική ιαχείριση Ηράκλειο

Διαβάστε περισσότερα

Ο ΡΟΛΟΣ ΤΩΝ SOCIAL MEDIA ΣΤΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΣΤΟ ΤΟΥΡΙΣΤΙΚΟ ΚΛΑΔΟ

Ο ΡΟΛΟΣ ΤΩΝ SOCIAL MEDIA ΣΤΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΣΤΟ ΤΟΥΡΙΣΤΙΚΟ ΚΛΑΔΟ Ο ΡΟΛΟΣ ΤΩΝ SOCIAL MEDIA ΣΤΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΣΤΟ ΤΟΥΡΙΣΤΙΚΟ ΚΛΑΔΟ Ονοματεπώνυμο: ΜΟΙΡΑΣΓΕΤΗ ΦΩΤΕΙΝΗ Σειρά: 10 Επιβλέπων Καθηγητής: ΑΔΑΜ ΒΡΕΧΟΠΟΥΛΟΣ Δεκέμβριος 2013 ΕΙΣΑΓΩΓΗ Σκοπός της έρευνας

Διαβάστε περισσότερα

ΤΕΙ ΠΕΙΡΑΙΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΤΕΙ ΠΕΙΡΑΙΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΤΕΙ ΠΕΙΡΑΙΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΜΑΘΗΜΑ: Ανάλυση Πολυδιάστατων (Πολυμεταβλητών) Δεδομένων και Συστήματα Εξόρυξης Δεδομένων (Multivariate Data

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΡΗΣΗ ΤΟΥ ΣΤΑΤΙΣΤΙΚΟΥ ΠΑΚΕΤΟΥ SPSS 14.0

ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΡΗΣΗ ΤΟΥ ΣΤΑΤΙΣΤΙΚΟΥ ΠΑΚΕΤΟΥ SPSS 14.0 ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΡΗΣΗ ΤΟΥ ΣΤΑΤΙΣΤΙΚΟΥ ΠΑΚΕΤΟΥ SPSS 14.0 Περιεχόµενα Εισαγωγή στο Στατιστικό πακέτο SPSS 14.0...1 Αρχικά...1 Παράθυρα του SPSS...2 Παράθυρο δεδοµένων του SPSS...4 Status bar και Toolbar...4

Διαβάστε περισσότερα

ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ

ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ ΑΝΑΓΚΗ ΔΗΜΙΟΥΡΓΙΑΣ ΤΗΣ ΕΡΕΥΝΑΣ Μελέτη ποιοτικών χαρακτηριστικών ξενοδοχείων Συμβουλευτικές υπηρεσίες από εσωτερικούς

Διαβάστε περισσότερα

8. ΠΙΝΑΚΕΣ ΣΥΝΑΦΕΙΑΣ ΜΙΑ ΕΝΔΙΑΦΕΡΟΥΣΑ ΕΙΔΙΚΗ ΠΕΡΙΠΤΩΣΗ Οι rc πίνακες συναφείας που εξετάσθηκαν στην προηγούμενη ενότητα, αποτελούν εν γένει μία παράθεση φυσικών αριθμών ταξινομημένων σε r γραμμές και c

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

Πρακτικές Θετικής Οργανωσιακής Αλλαγής και οι στάσεις των εργαζομένων απέναντι στην αλλαγή

Πρακτικές Θετικής Οργανωσιακής Αλλαγής και οι στάσεις των εργαζομένων απέναντι στην αλλαγή Πρακτικές Θετικής Οργανωσιακής Αλλαγής και οι στάσεις των εργαζομένων απέναντι στην αλλαγή Ονοματεπώνυμο : Ευανθία Καρακατσάνη Σειρά: 9 Επιβλέπων Καθηγητής: Ο. Κυριακίδου Δεκέμβριος 2012 ΣΤΟΧΟΣ/ ΣΚΟΠΟΣ

Διαβάστε περισσότερα

Μελέτη Συμπεριφοράς Καταναλωτή στο Ηλεκτρονικό Εμπόριο: Η περίπτωση των Ιστοσελίδων Ηλεκτρονικών Κουπονιών

Μελέτη Συμπεριφοράς Καταναλωτή στο Ηλεκτρονικό Εμπόριο: Η περίπτωση των Ιστοσελίδων Ηλεκτρονικών Κουπονιών Μελέτη Συμπεριφοράς Καταναλωτή στο Ηλεκτρονικό Εμπόριο: Η περίπτωση των Ιστοσελίδων Ηλεκτρονικών Κουπονιών Ονοματεπώνυμο: Βλαχάκη Παρασκευή- Ερασμία Σειρά: 9η Επιβλέπων Καθηγητής: Αδάμ Βρεχόπουλος Δεκέμβριος

Διαβάστε περισσότερα

Βήματα για την επίλυση ενός προβλήματος

Βήματα για την επίλυση ενός προβλήματος ΜΑΘΗΜΑ 2ο Βήματα για την επίλυση ενός προβλήματος 1. Κατανόηση του προβλήματος με τη σχετική επιστήμη (όπως οικονομία, διοίκηση, γενικές επιστήμες) π.χ το πρόβλημα της κατανάλωσης κάποιας περιοχής σε σχέση

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ. Εαρινό εξάµηνο ακαδηµαϊκού έτους 2003-2004 ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. Εργασία 4 - Ενδεικτική λύση

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ. Εαρινό εξάµηνο ακαδηµαϊκού έτους 2003-2004 ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. Εργασία 4 - Ενδεικτική λύση ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ Εαρινό εξάµηνο ακαδηµαϊκού έτους 34 ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 5 Μαΐου 4 Εργασία 4 - Ενδεικτική λύση Το κείµενο απευθύνεται στους φοιτητές και αιτιολογεί και περιγράφει

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΚΑΤΑΝΟΜΩΝ ΚΕΦΑΛΑΙΟ 4

ΕΛΕΓΧΟΙ ΚΑΤΑΝΟΜΩΝ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 4 ΕΛΕΓΧΟΙ ΚΑΤΑΝΟΜΩΝ Οι πληθυσμοί, ανεξάρτητα από το αν έχουν ίδιες θέσεις (ίσες μέσες τιμές) ή ίσες διασπορές, ενδέχεται να διαφέρουν πάρα πολύ ως προς άλλα χαρακτηριστικά τους. Έτσι, οι έλεγχοι

Διαβάστε περισσότερα