Analiza sistemelor liniare şi continue

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Analiza sistemelor liniare şi continue"

Transcript

1 Paula Raica Departamentul de Automatică Str. Dorobanţilor 7, sala C2, tel: Str. Bariţiu 26, sala C4, tel: Universitatea Tehnică din Cluj-Napoca

2 Analiza sistemelor Determinarea unui model matematic Metode diferite sunt disponibile pentru analiză Performanţa se analizează pe baza semnalelor de test Scopul analizei: studiul comportamentului sistemului în regim tranzitoriu şi regim staţionar când modelul sistemului şi intrarea sunt cunoscute Semnale de test: treaptă, rampă, impuls, sinusoidal

3 Analiza sistemelor Sistemul se descompune în elemente simple de ordinul cel mult 2 şi efectele fiecărui element sunt analizate Comportamentul elementelor simple se poate studia utilizând parametri caracteristici: Constante de timp, T Timp mort, T m Factor de amortizare, ζ Pulsaţia naturală ω n Constanta de proporţionalitate (câştig), K

4 Sisteme de ordinul Funcţia de transfer: H(s) = C(s) R(s) = K Ts + K - factor de proporţionalitate (câştig) T - constanta de timp, T > 0 Se analizează răspunsul sistemului la intrare treaptă unitară, rampă unitară şi impuls. Condiţiile iniţiale se presupun zero.

5 Sistem de ordinul. Exemplu. Sistem mecanic O maşină cu masa m care se mişcă într-o singură direcţie u(t) o forţă externă = semnalul de intrare y(t) viteza maşinii = semnalul de ieşire Există forţă de frecare: b = coeficient de frecare Ecuaţia diferenţială care leagă intrarea de ieşire: m dy(t) +by(t) = u(t) dt Funcţia de transfer: H(s) = Y(s) U(s) = ms +b = b m b s + Factorul de proporţionalitate K = /b, constanta de timp T = m/b.

6 Răspunsul la treaptă unitară r(t) =, R(s) = s, C(s) = K Ts +s [ K c(t) = L [C(s)] = L s KT ] = K( e t/t ), (t 0) Ts + La t = T valoarea lui c(t) este 0.632K, sau răspunsul a ajuns la 63.2% din valoarea finală: c(t) = K( e ) = 0.632K Panta tangentei la t = 0 este /T: dc(t) dt = K T e t/t t=0 = K T La t = 4T răspunsul a ajuns la 98% din valoarea finală: c(4t) = K( e 4T/T ) = 0.982K

7 Răspunsul la treaptă unitară Pentru t 4T răspunsul rămâne într-un interval de 2% din valoarea sa finală. Timpul de răspuns este: t s = 4T

8 Răspunsul la treaptă unitară Pentru constante de timp mici - răspuns mai rapid. c(t) T= T=2 T=3 T=4 T= t (sec) Figura: Răspunsul sistemelor de ordinul pentru diferite valori ale constantei de timp

9 Răspunsul la rampă unitară r(t) = t, R(s) = K s2, C(s) = Ts + Dezvoltând C(s) în fracţii simple se obţine: c(t) = L [C(s)] = L [K = K(t T +Te t/t ), (t 0) s 2 ( s 2 T )] s + T2 Ts + Dacă timpul tinde la infinit t, sistemul va urmări asimptotic o dreaptă cu ecuaţia: c(t) = K (t T)

10 Răspunsul la rampă unitară e 4T/T = e 4 = 0.083, t s = 4T

11 Răspunsul la impuls ideal r(t) = δ(t), R(s) =, C(s) = K Ts +, c(t) = K T e t/t, (t 0)

12 Factorul de proporţionalitate. Exemplu Se consideră un sistem de ordinul cu funcţia de transfer: H(s) = K s + T = şi t s = 4T = 4sec, pentru orice valoare a lui K. Valoarea de regim staţionar a ieşirii, pentru intrare treaptă unitară este K. Răspunsul pentru diferite valori ale lui K: 4 3 K= K=2 K=3 K= t (sec)

13 Influenţa factorului de proporţionalitate Se consideră: orice sistem liniar cu factorul de proporţionalitate K = şi o funcţie de transfer H(s), şi un sistem cu fnucţia de transfer H k (s) = kh(s) Răspunsurile la treaptă unitară sunt: for H(s): for H k (s): c(t) = L [H(s)R(s)] = L [ H(s) ] s c k (t) = L [H k (s) R(s)] = L [ K H(s) s ] = K L [ H(s) ] = K c(t) s

14 Sisteme de ordinul 2 R(s) H(s) C(s) H(s) = C(s) R(s) = s 2 + 2ζ ω n s + = ω 2 n ω2 n s 2 +2ζω n s +ω 2 n ω n - pulsaţia naturată, ζ - factorul de amortizare, factorul de proporţionalitate K =. Exemplu. ω n > 0, ζ 0 H(s) = s 2 +s +, ω 2 n = ; 2ζ ω n = ; ω n = ; ζ = 2

15 Sisteme de ordinul 2 Rădăcinile ecuaţiei caracteristice (polii sistemului) s 2 +2ζω n s +ω 2 n = 0 sunt: s,2 = ζω n ±ω n ζ 2 Polii sunt: complex conjugaţi pentru 0 < ζ < şi se află în semiplanul stâng al planului s. Sistemul se numeşte subamortizat şi răspunsul în regim tranzitoriu este oscilant complex conjugaţi pe axa imaginară pentru ζ = 0. Sistemul este neamortizat şi răspunsul în regim tranzitoriu este oscilant întreţinut. reali pentru ζ şi sistemul se numeşte supraamortizat. Dacă ζ = sistemul este critic amortizat. Răspunsul în regim tranzitoriu nu oscilează.

16 Răspunsul la treaptă al sistemelor subamortizate r(t) =, R(s) = s, C(s) = ω 2 n s(s 2 +2ζω 2 ns +ω 2 n) Sistem subamortizat: 0 < ζ <. Polii sunt complecşi s,2 = ζω n ±ω n j ζ 2 C(s) = s s +ζω n (s +ζω n ) 2 +ωd 2 ζω n (s +ζω n ) 2 +ωd 2 unde ω d = ω n ζ 2 - pulsaţia de oscilaţie. ) L [C(s)] = c(t) = e ζωnt ζ (ω sin 2 d t +arctan ζ 2 ζ

17 Răspunsul la treaptă al sistemelor subamortizate ω n = ω n =2 ω =3 n ω n = t (sec) Figura: Răspunsul la treaptă al unui sistem subamortizat pentru ζ - constant şi diferite valori ale luiω n

18 Răspunsul la treaptă al sistemelor subamortizate ζ=0. ζ=0.2 ζ=0.5 ζ=0.7 ζ= t (sec) Figura: Răspunsul la treaptă al unui sistem subamortizat pentru ω n constant şi diferite valori ale lui ζ

19 Răspunsul la treaptă al sistemelor neamortizate Sistem neamortizat: ζ = 0. Poli imaginaris,2 = ±jω n H(s) = ω2 n s 2 +ωn 2, R(s) = s, C(s) = ωn 2 s(s 2 +ωn 2) = s s s 2 +ωn 2 Răspunsul la treaptă: c(t) = cosω n t, (t 0) t (sec) Figura: Răspunsul la treaptă al unui sistem de ordinul 2 neamortizat pentru diferite valori ale lui ω n ω n = ω n =2 ω n =4

20 Răspunsul la treaptă al sistemelor critic amortizate Sistem critic amortizat: ζ =. Polii sunt reali şi egali: s,2 = ω n H(s) = Răspunsul la treaptă: ω 2 n (s +ω n ) 2, R(s) = s, C(s) = ω 2 n (s +ω n ) 2 s c(t) = e ωnt ( ω n t),,(t 0) ω n = ω n =2 ω n = t (sec) Figura: Răspunsul la treaptă al sistemelor de ordinul 2 critic amortizate pentru diferite valori ale lui ω n

21 Răspunsul la treaptă al sistemelor supra-amortizate Sistem supraamortizat: ζ >. Polii sunt reali şi negativi: s,2 = ζω n ±ω n ζ 2. Răspunsul la treaptă: C(s) = c(t) = + ω 2 n s(s s )(s s 2 ) ( ω n e s 2 ) t es2t ζ 2 s s ζ=2 ζ=4 ζ=6 ζ= t (sec) Figura: Răspunsul la treaptă al unui sistem de ordinul 2 supraamortizate pentru diferite valori ale lui ζ

22 Răspunsul la treaptă al sistemelor de ordinul ζ=0 ζ=0. ζ=0.5 ζ=0.7 ζ= ζ=2 ζ=3 imag ζ=0 ζ=0. ζ=0.5 ζ=0.7 ζ= ζ=2 ζ= t (sec) real Figura: Răspunsul la treaptă al sistemelor de ordinul 2pentru diferite valori ale lui ζ şi polii sistemului

23 Specificaţiile răspunsului tranzitoriu al sistemelor Timp de creştere, timpul răspunsului maxim, suprareglaj, timp de răspuns

24 Răspunsul tranzitoriu al sistemelor de ordinul 2. Timpul de creştere, t r : timpul necesare răspunsului să crească de la 0% la 90%, sau de la 0% la 00% din valoarea finală. 2. Timpul răspunsului maxim, t p : timpul necesar răspunsului să atingă primul vârf al răspunsului (sau valoarea maximă). 3. Suprareglajul M p : valoarea maximă a răspunsului măsurată de la valoarea staţionară a răspunsului. Suprareglajul în procente este (M p% ): M p% = c(t p) c( ) c( ) 00% unde c( ) este valoarea finală (în regim staţionar) a ieşirii. 4. Timpul de răspuns, t s : timpul necesar ieşirii să ajungă şi să rămână într-un interval din jurul valorii de regim staţionar, de obicei 2% sau 5% din valoarea finală.

25 Timpul de creştere Timpul de creştere t r se obţine înlocuind c(t r ) = sau ) c(t r ) = e ζωntr ζ (ω sin 2 d t r +arctan = ζ 2 ζ sau ( ) ζ 2 sin ω d t r +arctan = 0 ζ ( t r = ) ζ 2 π arctan = π β ω d ζ ω d β = unghiul între axa reală negativă şi linia care leagă originea se polul s (vezi figura următoare).

26 Polii complecşi ai unui sistem de ordinul 2 Figură importantă!!

27 Timpul răspunsului maxim Se obţine derivând c(t) în raport cu timpul şi egalând derivata cu zero: dc(t) ω t=tp = sin(ω d t p ) n dt ζ 2 e ζωntp = 0 sin(ω d t p ) = 0 ω d t p = 0,π,2π,3π,..., unde: t p = π ω d ω d = ω n ( ζ 2 )

28 Suprareglajul M p apare la timpul t = t p = π ω d Mp (%) ζ M p = c(t p ) c( ) = c(t p ) = e ζωnπ/ω d ζ 2 sin(ω dπ/ω d +β) Suprareglajul în procente: M p% = c(t p) M p = e πζ/ ζ 2 00% == e πζ/ ζ 2 00%

29 Timpul de răspuns c(t) = e ζωnt / ζ 2 sin(ω d t +β) Curbele înfăşurătoare: c,2 (t) = ±e ζωnt / ζ 2 c (t),c 2 (t) şi c(t) vor ajunge la 2% din valoarea finală aproximativ când e ζωnts < 0.02, sau ζω n t s = 4 t s = 4 ζω n

30 Exemplu Se consideră un sistem cu funcţia de transfer: Se calculează: H(s) = Polii sistemului: 25 s 2 +6s +25 = ω 2 n s 2 +2ζω n s +ω 2 n s,2 = ζω n ± ζ 2 j = 3±4j 2 Pulsaţia oscilaţiilor (partea imaginară a polilor) este: ω d = ω n ζ 2 = = 4 şi partea reală negativă a polilor: ζω n = 3.

31 Exemplu t r = π β ω d β = arctan ω d ζω n = 0.93 = t p = π ω d = = 0.78sec = 0.55sec M p = e πζ/ ζ 2 = M p (%) = 9.5% t s = 4 ζω n = 4 3 =.33sec

32 Exemplu Răspunsul la treaptă al sistemului. Valorile parametrilor sistemului se observă din figură..4 Step Response.2 Mp Amplitude tr tp Time (sec) ts

33 Eroarea staţionară Eroarea staţionară = eroarea între intrarea de referinţă (r(t)) şi ieşirea sistemului (c(t)) în regim staţionar. e(t) = r(t) c(t), e ss = lim t e(t), e ss = lim t (r(t) c(t)) Transformata Laplace a erorii: E(s) = R(s) C(s) = ( G 0 (s))r(s) Teorema valorii finale stabileşte că: dacă lim t e(t) există, atunci: lim t e(t) = lim s 0 se(s)

34 Eroarea staţionară pentru sisteme cu reacţie negativă unitară Pentru un sistem în buclă închisă cu reacţie negativă unitară: eroarea este: sau E(s) = R(s) C(s) = R(s) R(s)G 0 (s) = R(s)( G 0 (s)) E(s) = R(s)( G(s) +G(s) ) = R(s) +G(s) Teorema valorii finale: e ss = lim t e(t) = lim s 0 se(s)

35 Eroarea staţionară pentru sisteme cu reacţie negativă unitară utilizând funcţia de transfer în buclă închisă G 0 (s): e ss = lim s 0 s( G 0 (s))r(s) utilizând funcţia de transfer în buclă deschisă G(s): ( ) e ss = lim s s 0 +G(s) R(s) Pentru o referinţa treaptă unitară: r(t) = or R(s) = /s: sau e ss = lim s 0 s( G 0 (s)) s = lim s 0 ( G 0(s)) = G 0 (0) ( e ss = lim s s 0 +G(s) )( ) = s +G(0)

36 Eroarea staţionară - Exemplu Se consideră un sistem în buclă închisă cu funcţia de transfer a buclei deschise: G(s) = k Ts + Pentru o intrare treaptă unitară, R(s) = /s, eroarea staţionară este: e ss = +G(0) = +k

Analiza sistemelor liniare şi continue

Analiza sistemelor liniare şi continue Paula Raica Departmentul de Automatică Str. Dorobantilor 71-73, sala C21, tel: 0264-401267 Str. Baritiu 26-28, sala C14, tel: 0264-202368 email: Paula.Raica@aut.utcluj.ro http://rocon.utcluj.ro/ts Universitatea

Διαβάστε περισσότερα

Proiectarea sistemelor de control automat

Proiectarea sistemelor de control automat Teoria sistemelor p. 1/28 Proiectarea sistemelor de control automat Paula Raica Paula.Raica@aut.utcluj.ro Departamentul de Automatică Universitatea Tehnică din Cluj-Napoca Dorobantilor, sala C21 Baritiu,

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Proiectarea sistemelor de control automat

Proiectarea sistemelor de control automat Paula Raica Departmentul de Automatică Str. Dorobantilor 7-73, sala C2, tel: 264-4267 Str. Baritiu 26-28, sala C4, tel: 264-22368 email: Paula.Raica@aut.utcluj.ro http://rocon.utcluj.ro/ts Universitatea

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Identificarea sistemelor

Identificarea sistemelor Identificarea sistemelor Ingineria sistemelor, anul 3 Universitatea Tehnică din Cluj-Napoca Lucian Buşoniu Partea II Analiza răspunsurilor la treaptă şi impuls Motivare În general: În anumite cazuri un

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar

FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar Pagina 1 FNOMN TANZITOII ircuite şi L în regim nestaţionar 1. Baze teoretice A) ircuit : Descărcarea condensatorului ând comutatorul este pe poziţia 1 (FIG. 1b), energia potenţială a câmpului electric

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Transformata Laplace

Transformata Laplace Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Manipulatoare si roboti industriali. Conf.dr.ing. Marian Poboroniuc

Manipulatoare si roboti industriali. Conf.dr.ing. Marian Poboroniuc Manipulatoare si roboti industriali Conf.dr.ing. Marian Poboroniuc Elemente introductive legate de controlul robotilor manipulatori Control clasic Regulator PID Control cu metode avansate Regulatoare bazate

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

10/31/2014. În evoluţia sistemelor dinamice unele semnale apar cu o anumită întârziere faţă de un anumit moment convenţional ales ca t = 0. (2.

10/31/2014. În evoluţia sistemelor dinamice unele semnale apar cu o anumită întârziere faţă de un anumit moment convenţional ales ca t = 0. (2. Transformata F(s) definită de (.37) este univocă şi se numeşte transformata Laplace directă.. Transformata Laplace inversă este univocă numai în cazul funcţiilor f(t) continue şi se defineşte prin relaţia

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Stabilitatea sistemelor liniare si invariante in timp

Stabilitatea sistemelor liniare si invariante in timp Stabilitatea sistemelor liniare si invariante in timp In continuare ne vom referi la sisteme liniare si invariante in timp cauzale. http://shannon.etc.upt.ro/teaching/ps/cap4_stabilitate.pdf Analiza stabilitatii

Διαβάστε περισσότερα

Examen AG. Student:... Grupa: ianuarie 2016

Examen AG. Student:... Grupa: ianuarie 2016 16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex

Διαβάστε περισσότερα

Laborator 3 I.S.A. Stabilitatea sistemelor liniare şi răspunsul în frecvență.

Laborator 3 I.S.A. Stabilitatea sistemelor liniare şi răspunsul în frecvență. Laborator 3 I.S.A. Stabilitatea sistemelor liniare şi răspunsul în frecvență. 1. Introducere...1 2. Stabilitatea sistemelor liniare...1 2.1 Stabilitatea internă...2 2.2 Stabilitatea externă...3 2.3. Exemple...4

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

Circuit rezonant LC paralel

Circuit rezonant LC paralel Circuit rezonant LC paralel Scopul lucrarii...1 Descrierea circuitului...1 Ecuatii de stare...1 Ecuatii TTN...2 Calculul functiei de transfer H(s)...2 Metoda I: divizor de tensiune...2 Metoda II: ecuatii

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

Capitolul 2: Sisteme

Capitolul 2: Sisteme Prelucrarea semnalelor Capitolul 2: Sisteme Bogdan Dumitrescu Facultatea de Automatică şi Calculatoare Universitatea Politehnica Bucureşti PS cap. 2: Sisteme p. 1/64 Sisteme discrete Sistem discret: transformă

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

Stabilitatea circuitelor cu reacţie

Stabilitatea circuitelor cu reacţie Lucrarea 21 Stabilitatea circuitelor cu reacţie Scopul lucrării: prezentarea schemei bloc, a terminologiei şi a criteriilor de stabilitate specifice circuitelor cu reacţie, exemplificarea acestora folosind

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice 4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI)

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI) Seminar 5: Sieme Analogice iniare şi Invariane (SAI) SAI po fi caracerizae prin: - ecuaţia diferenţială - funcţia de iem (fd) H() - funcţia pondere h - răpunul indicial a - răpunul la frecvenţă H(j) ăpunul

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Stabilizator cu diodă Zener

Stabilizator cu diodă Zener LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator

Διαβάστε περισσότερα

Sisteme discrete liniare şi invariante în timp

Sisteme discrete liniare şi invariante în timp PS Lucrarea 3 (partea a II-a) Sisteme discrete şi invariante în timp Lucrarea 3 (partea a II-a) Sisteme discrete liniare şi invariante în timp. Caracterizarea sistemelor discrete liniare, invariante în

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

LUCRAREA nr.6: Sinteza SRA. Criteriul Ziegler Nichols

LUCRAREA nr.6: Sinteza SRA. Criteriul Ziegler Nichols LUCRAREA nr.6: Sinteza SRA. Criteriul Ziegler Nichols. Scopul lucrării În practica industrială apar frecvent probleme privind sinteza compensatoarelor în cazul unor instalaţii relativ simple, caracterizabile

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

CURS MECANICA CONSTRUCŢIILOR

CURS MECANICA CONSTRUCŢIILOR CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la

Διαβάστε περισσότερα

SistemeIncorporate. Curs 6 Sisteme de Control

SistemeIncorporate. Curs 6 Sisteme de Control SistemeIncorporate Curs 6 Sisteme de Control ModelareaSistemelorIncorporate Un sistem incorporat este un sistem dinamic Sistemul actioneaza in functie de stimulii primiti Atuncicandunasaumaimulteiesiriale

Διαβάστε περισσότερα

2.2.1 Măsurători asupra semnalelor digitale

2.2.1 Măsurători asupra semnalelor digitale Lucrarea 2 Măsurători asupra semnalelor digitale 2.1 Obiective Lucrarea are ca obiectiv fixarea cunoştinţelor dobândite în lucrarea anterioară: Familiarizarea cu aparatele de laborator (generatorul de

Διαβάστε περισσότερα

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare

Διαβάστε περισσότερα

Lucrarea nr. 7: Reprezentarea în frecvenţă a funcţiilor de transfer. Criterii de stabilitate

Lucrarea nr. 7: Reprezentarea în frecvenţă a funcţiilor de transfer. Criterii de stabilitate Lucrarea nr. 7: prezentarea în frecvenţă a funcţiilor de transfer. Criterii de stabilitate. Scopul lucrării Se va face analiza comportării în frecvenţă a sistemelor de reglare automate (reprezentarea hodografului

Διαβάστε περισσότερα

FIZICĂ. Oscilatii mecanice. ş.l. dr. Marius COSTACHE

FIZICĂ. Oscilatii mecanice. ş.l. dr. Marius COSTACHE FIZICĂ Oscilatii mecanice ş.l. dr. Marius COSTACHE 3.1. OSCILAŢII. Noţiuni generale Oscilaţii mecanice Oscilaţia fenomenul fizic în decursul căruia o anumită mărime fizică prezintă o variaţie periodică

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

Lecţia a 4-a. Estimarea stării. Compensarea cu estimator

Lecţia a 4-a. Estimarea stării. Compensarea cu estimator Lecţia a 4-a. Estimarea stării. Compensarea cu estimator Ideea de estimare a stării Reacţia inversă după stare nu poate fi realizată (implementată) efectiv fără cunoaşterea stării curente. S-a văzut (cazul

Διαβάστε περισσότερα

Aplicaţii ale numerelor complexe în geometrie, utilizând Geogebra

Aplicaţii ale numerelor complexe în geometrie, utilizând Geogebra ale numerelor complexe în geometrie, utilizând Geogebra Adevărul matematic, indiferent unde, la Paris sau la Toulouse, este unul şi acelaşi (Blaise Pascal) Diana-Florina Haliţă grupa 331 dianahalita@gmailcom

Διαβάστε περισσότερα

3.5. Forţe hidrostatice

3.5. Forţe hidrostatice 35 oţe hidostatice 351 Elemente geneale lasificaea foţelo hidostatice: foţe hidostatice e suafeţe lane Duă foma eeţilo vasului: foţe hidostatice e suafeţe cube deschise foţe hidostatice e suafeţe cube

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme SEMINAR TRANSFORMAREA FOURIER. Probleme. Să se precizeze dacă funcţiile de mai jos sunt absolut integrabile pe R şi, în caz afirmativ să se calculeze { transformata Fourier., t a. σ(t), t < ; b. f(t) σ(t)

Διαβάστε περισσότερα

Lucrul mecanic şi energia mecanică.

Lucrul mecanic şi energia mecanică. ucrul mecanic şi energia mecanică. Valerica Baban UMC //05 Valerica Baban UMC ucrul mecanic Presupunem că avem o forţă care pune în mişcare un cărucior şi îl deplasează pe o distanţă d. ucrul mecanic al

Διαβάστε περισσότερα

COMPARATOARE DE TENSIUNE CU AO FĂRĂ REACŢIE

COMPARATOARE DE TENSIUNE CU AO FĂRĂ REACŢIE COMPARATOARE DE TENSIUNE CU AO FĂRĂ REACŢIE I. OBIECTIVE a) Determinarea caracteristicilor statice de transfer în tensiune pentru comparatoare cu AO fără reacţie. b) Determinarea tensiunilor de ieşire

Διαβάστε περισσότερα

Rezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare. Cuprins. Prof.dr.ing. Gabriela Ciuprina

Rezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare. Cuprins. Prof.dr.ing. Gabriela Ciuprina Rezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică Suport didactic pentru disciplina Metode numerice,

Διαβάστε περισσότερα

VII.2. PROBLEME REZOLVATE

VII.2. PROBLEME REZOLVATE Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea

Διαβάστε περισσότερα

Ecuatii trigonometrice

Ecuatii trigonometrice Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos

Διαβάστε περισσότερα

Noţiuni introductive

Noţiuni introductive Metode Numerice Noţiuni introductive Erori. Condiţionare numerică. Stabilitatea algoritmilor. Complexitatea algoritmilor. Metodele numerice reprezintă tehnici prin care problemele matematice sunt reformulate

Διαβάστε περισσότερα

CURS 1 oct Prof.univ.dr.ing Iulian Lupea

CURS 1 oct Prof.univ.dr.ing Iulian Lupea Oct. 1 Extrase: Iulian Lupea, Roboţi şi Vibraţii, Ed. Dacia, 1996 VIBRATII -> SISTEME DISCRETE CU UN GRAD DE LIBERTATE CURS 1 oct. 1 Prof.univ.dr.ing Iulian Lupea 1.1. Modelarea şi analiza vibraţiilor

Διαβάστε περισσότερα

Sisteme de ecuaţii diferenţiale

Sisteme de ecuaţii diferenţiale Curs 5 Sisteme de ecuaţii diferenţiale 5. Sisteme normale Definiţie 5.. Se numeşte sistem normal sistemul de ecuaţii diferenţiale de ordinul întâi dx dt = f (t, x, x 2,..., x n ) dx 2 dt = f 2(t, x, x

Διαβάστε περισσότερα

Transformări de frecvenţă

Transformări de frecvenţă Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.

Διαβάστε περισσότερα