יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)"

Transcript

1 יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p q) r (p r) (q r) F F F F T F F F T F T F F T F F T F F T T T T T פתרון: T F F F T F T F T T T T T T F F T F T T T T T T.2 תהי )} T g = {(p, T ), (q, F ), (r, השמה. חשבו את )g) val ( (ϕ,, עבור הפסוקים הבאים: val ( (p, )(r q), g) = t (val ( (p,, )g), val ( (r, )q, g)) (א) q).(p (r q)) (p פתרון: קודם נחשב את = t (g(p), t (val ( (r,, )g), val ( (q,, )g))) = t (T, t (g(r), g(q))) = t (T, t (T, F )) = t (T, F ) = F. val ( (p, )q, g) = t (val ( (p,, )g), val ( (q,, )g)) = t (g(p), g(q)) = t (T, F ) = F. עכשיו נחשב את val ( ((, p) (r q)) (p q), g) = t (val ( (p, )(r q), g), val ( (p, )q, g)) = t (F, F ) = T. לכן 1

2 3. לכל פסוק בידקו האם הוא טאוטולוגיה. (א) p).(p q) (q פתרון: הפסוק הוא טאוטולוגיה. תהי g השמה כלשהיא, אם g(p) = T אז,val ( (q, )p, g) = T ואם g(p) = F אז,val ( (p, )q, g) = T לכן הפסוק אמיתי בהשמה g. מכוון ש g השמה כלשהיא, הפסוק טאוטולוגיה. (ב) p)).p (q (r פתרון: הפסוק הוא טאוטולוגיה. תהי g השמה כלשהיא, אם g(p) = T אז,val ( (r, )p, g) = T לכן,val ( (q, )(r p), g) = T לכן הפסוק אמיתי בהשמה g. אם,g(p) = F אז שוב הפסוק אמיתי בהשמה g, בגלל ה p הראשון. מכוון ש g השמה כלשהיא, הפסוק טאוטולוגיה. (ג) p))).p (q (r (t פתרון: דומה לפתרון עבור הפסוק הקודם. 4. נניח ששלושת הטענות הבאות אמיתיות: אז (א) אדם הוליד את קין. (ב) קין אח של הבל. (ג) אם אדם הוליד את קין וקין הרג את הבל, אז קין לא אח של הבל. האם נובע ש: קין לא הרג את הבל? פתרון: כן נובע כי קין לא הרג את הבל, כי נסמן ''אדם הוליד את קין'' = p ''קין אח של הבל'' = q ''קין הרג את הבל'' = r ''קין לא אח של הבל'' = q ''קין לא הרג את הבל'' = r לכן (ג) הוא הפסוק p), (r q נניח ש (א),(ב), ו (ג) אמיתיים, כלומר תהי g השמה כך ש,g(q) = T,g(p) = T ו val ( ((, p) r) q, g) = T. אז val ( (p, )r, g) = F (כי,(val ( (, q), g) = F ומכוון ש g(p) = T נובע,val ( (r,, )g) = F לכן,val ( (, r), g) = T ז''א קין לא הרג את הבל. 5. הוכיחו את השקילויות הלוגיות הבאות,,ϕ,ψ χ הם פסוקים כלשהם. (א) ( ψ)).(ϕ ψ) (ϕ פתרון: נוכיח כי ( ψ)).(ϕ ψ) (ϕ תהי g השמה כך ש,val ( (ϕ, )ψ, g) = T אז val ( (ϕ,, )g) = T ו = )g) val ( (ψ,,,t ז''א,val ( (, ψ), g) = F לכן val ( (ϕ, )( ψ), g) = F, 2

3 ז''א.val ( (, ()ϕ ( ψ)), g) = T נוכיח כי ψ). (ϕ ( ψ)) (ϕ תהי g השמה כך ש val ( (, ()ϕ ( ψ)), g) = T, אז,val ( (ϕ, )( ψ), g) = F לכן val ( (ϕ,, )g) = T ו,val ( (, ψ), g) = F ז''א val ( (ϕ,, )g) = T ו,val ( (ψ,, )g) = T לכן.val ( (ϕ, )ψ, g) = T (ב) χ).ϕ (ψ χ) (ϕ ψ) (ϕ פתרון: תהי g השמה כך ש,val ( (ϕ, )(ψ χ), g) = T אז val ( (ϕ,, )g) = T וגם.val ( (ψ, )χ, g) = T לכן val ( (ϕ,, )g) = T ו ) T val ( (ψ,, )g) = או.(val ( (χ,, )g) = T.i אם,val ( (ψ,, )g) = T אז,val ( (ϕ, )ψ, g) = T לכן גם.val ( ((, ϕ) ψ) (ϕ χ), g) = T.ii אם,val ( (χ,, )g) = T אז,val ( (ϕ, )χ, g) = T לכן גם.val ( ((, ϕ) ψ) (ϕ χ), g) = T ז''א χ).ϕ (ψ χ) (ϕ ψ) (ϕ תהי g השמה כך ש,val ( ((, ϕ) ψ) (ϕ χ), g) = T אז val ( (ϕ, )ψ, g) = T או.val ( (ϕ, )χ, g) = T,val ( (ψ,, )g) = T וגם val ( (ϕ,, )g) = T אז,val ( (ϕ, )ψ, g) = T אם.i לכן val ( (ϕ,, )g) = T וגם,val ( (ψ, )χ, g) = T ז''א )(ψ val ( (ϕ,.χ), g) = T,val ( (χ,, )g) = T וגם val ( (ϕ,, )g) = T אז,val ( (ϕ, )χ, g) = T אם.ii לכן val ( (ϕ,, )g) = T וגם,val ( (ψ, )χ, g) = T ז''א )(ψ val ( (ϕ,.χ), g) = T לכן χ).(ϕ ψ) (ϕ χ) ϕ (ψ.6 תהי A קבוצת כל הפסוקים עם משתנים פסוקיים מתוך.}.., 2.{p 0, p 1, p נגדיר יחס R על A ע''י: עבור ϕrψ,ϕ, ψ A אם''ם ϕ שקול לוגית ל ψ. הוכיחו כי R יחס שקילות על A. פתרון: (א) רפלקסיביות: יהי ϕ פסוק ותהי g השמה, אז ברור שהטענה: ''val ( (ϕ,, )g) = T אם ורק אם val ( (ϕ,, )g) = T '' נכונה (אפילו אם לא קיימת השמה g כך ש.(val ( (ϕ,, )g) = T לכן.ϕ ϕ ז''א.ϕRϕ (ב) סימטריות: נניח,ϕRψ כלומר ϕ, ψ אז לפי הגדרת נובע ש ϕ ψ ו,ψ ϕ ז''א ψ ϕ ו,ϕ ψ לכן.ψ ϕ ז''א.ψRϕ (ג) טרנזיטיביות: נניח ϕrψ ו,ψRχ כלומר ϕ ψ ו,ψ χ אז ϕ ψ ו,ψ χ לכן ϕ χ (הוכחה בשאלה.(8 ויש גם χ ψ ו,ψ ϕ לכן.ϕRχ ז''א.ϕ χ לכן.χ ϕ ז''א היחס ''שקול לוגית'',, הוא יחס שקילות על A. 3

4 α φ, α γ, β φ, β δ.7 נניח α, β, γ, δ, φ פסוקים כך ש הם טאוטולוגיות. הוכיחו שגם γ δ טאוטולוגיה. פתרון: תהי g השמה כלשהי. מכוון שהפסוקים הם טאוטולוגיות יש: (1) val ( (α, )φ, g) = T, (2) val ( (α, )γ, g) = T, (3) val ( (β, ) φ, g) = T, (4) val ( (β, )δ, g) = T. מ (1) נקבל ש val ( (α,, )g) = T וגם.val ( (φ,, )g) = T מ (2) ומ,val ( (α,, )g) = T נקבל val ( (γ,, )g) = T. מ val ( (φ,, )g) = T נקבל ש val ( (, φ), g) = F ומכוון ש,val ( (β, ) φ, g) = T אז,val ( (β,, )g) = F ומכוון ש,val ( (β, )δ, g) = T יש val ( (δ,, )g) = T. לכן.val ( (γ, )δ, g) = T ז''א γ δ טאוטולוגיה. 8. נניח שה ϕ i הם פסוקים. הוכיחו או הפריכו: (א) (ϕ 1 ϕ 2 ) ϕ 3 שקול לוגית ל ) 3.ϕ 1 (ϕ 2 ϕ פתרון: זה לא נכון. נקח השמה g כך ש val ( (ϕ, ) 1, g) = F = val ( (ϕ, ) 3, g), val ( (ϕ, ) 2, g) = T יש השמה כזאת כי אנו יכולים לקחת את ה ϕ i להיות משתנים פסוקיים. אז val ( ((, ϕ) 1 ϕ 2 ) ϕ 3, g) = F val ( (ϕ, ) 1 (ϕ 2 ϕ 3 ), g) = T (ב) ) 3 ϕ 1 (ϕ 2 ϕ שקול לוגית ל.(ϕ 1 ϕ 2 ) ϕ 3 פתרון: זה נכון. תהי g השמה כך ש val ( (ϕ, ) 1 (ϕ 2 ϕ 3 ), g) = F אז val ( (ϕ, ) 1, g) = T ו,val ( (ϕ, ) 2 ϕ 3, g) = F לכן val ( (ϕ, ) 2, g) = T ו.val ( (ϕ, ) 3, g) = F ז''א val ( ((, ϕ) 1 ϕ 2 ) ϕ 3, g) = F val ( ((, ϕ) 1 ϕ 2 ) ϕ 3, g) = F כוון שני: נניח אז val ( (ϕ, ) 2, g) = T,val ( (ϕ, ) 1, g) = T ו.val ( (ϕ, ) 3, g) = F ז''א val ( (ϕ, ) 1 (ϕ 2 ϕ 3 ), g) = F 4

5 (ג) לכל > 2 :n ϕ 1 (ϕ 2 (ϕ 3... (ϕ n 1 ϕ n )...) (ϕ 1 ϕ 2... ϕ n 1 ) ϕ n שקול לוגית ל פתרון: נוכיח באינדוקציה על n. עבור = 3 n ראינו שזה נכון בסעיף (ב). נניח הטענה נכונה עבור n ונוכיח עבור + 1 n. נתבונן בפסוק ( ) ϕ 1 (ϕ 2 (ϕ 3... (ϕ n ϕ n+1 )...) נסמן.).. ) n+1 α = ϕ 2 (ϕ 3... (ϕ n ϕ אז ב α יש n פסוקים, לכן לפי הנחת האינדוקציה יש α (ϕ 2... ϕ n ) ϕ n+1 נסמן,β = ϕ 2... ϕ n אז הפסוק ( ) שקול לוגית לפסוק ϕ 1 (β ϕ n+1 ) אבל לפי סעיף (ב) פסוק זה שקול לוגית לפסוק 1+n ϕ) 1 (β ϕ וזה שקול לוגית לפסוק (ϕ 1 ϕ 2... ϕ n ) ϕ n+1 לכן הטענה נכונה עבור + 1 n, לכן היא נכונה לכל 3 n. 9. נניח Σ קבוצת פסוקים, הוכיחו או הפריכו: (א) אם Σ ϕ אז כל פסוק ב Σ גורר לוגית את ϕ. פתרון: זה לא נכון, נקח Σ = {p q, p ( q)} ϕ = p, אז אם g השמה כך שכל פסוק ב Σ מקבל ערך T בהשמה g, כלומר val ( (p, )q, g) = T val ( (p, )( q), g) = T, אז בהכרח,val ( (p,, )g) = T לכן.Σ ϕ אבל,p q p כי עבור ההשמה g = {(p, F ), (q, T )} נקבל val ( (p, )q, g) = T ו.val ( (p,, )g) = F (ב) אם כל פסוק ב Σ גורר לוגית את ϕ אז Σ. ϕ פתרון: נניח Σ לא ריקה, אז זה נכון. תהי g השמה כך שלכל ψ Σ מתקיים,val ( (ψ,, )g) = T רוצים להוכיח ש,val ( (ϕ,, )g) = T אבל עבור פסוק כלשהו.Σ ϕ ז''א.val ( (ϕ,, )g) = T לכן,ψ ϕ נתון ש ψ Σ הערה: מספיק שיש פסוק אחד ב Σ שגורר לוגית את ϕ כדי ש Σ תגרור לוגית את ϕ. אם Σ ריקה, אז זה לא נכון. כי נקח פסוק שיקרי למשל (p ) ϕ, = p אז זה נכון שכל פסוק ב גורר לוגית את ϕ, (כי אין פסוק בקבוצה הריקה שלא יגרור לוגית את ϕ). אבל גורר לוגית את ϕ פרושו: לכל השמה g כך ש val ( (ψ,, )g) = T לכל,ψ מתקיים.val ( (ϕ,, )g) = T וזה אומר ש ϕ הוא טאוטולוגיה, סתירה! כי ϕ שיקרי. 5

6 10. נניח Σ קבוצת פסוקים, ו,ϕ,ψ χ פסוקים, הוכיחו: (א) ϕ ו ψ שקולים לוגית אם''ם הפסוק (ψ ϕ) הוא טאוטולוגיה. פתרון: נניח ש ϕ ו ψ שקולים לוגית, כלומר ϕ. ψ תהי g השמה, אז val ( (ϕ,, )g) = val ( (ψ,, )g) val ( (ϕ, )ψ, g) = t (val ( (ϕ,, )g), val ( (ψ,, )g)) = T. ז''א ϕ ψ הוא טאוטולוגיה. נניח ש ϕ ψ הוא טאוטולוגיה. אז לכל השמה g יש,val ( (ϕ, )ψ, g) = T לכן,t (val ( (ϕ,, )g), val ( (ψ,, )g)) = T ז''א )g),val ( (ϕ,, )g) = val ( (ψ,, לכן.ϕ ψ (ב) {ϕ, ψ} χ אם''ם הפסוק (ϕ ψ) χ הוא טאוטולוגיה. פתרון: נניח,{ϕ, ψ} χ נניח בשלילה ש (ϕ ψ) χ לא טאוטולוגיה, אז קיימת השמה g כך ש val ( ((, ϕ) ψ) χ, g) = F, לכן ז''א val ( (ϕ, )ψ, g) = T ו,val ( (χ,, )g) = F לכן val ( (ϕ,, )g) = T, val ( (ψ,, )g) = T, val ( (χ,, )g) = F. מצאנו השמה g שנותנת ערך T לכל פסוק ב,Σ אבל,val ( (χ,, )g) = F לכן,{ϕ, ψ} χ סתירה! לכן הפסוק (ϕ ψ) χ הוא טאוטולוגיה. נניח ϕ) (ψ χ הוא טאוטולוגיה. תהי g השמה כך ש val ( (ϕ,, )g) = T, val ( (ψ,, )g) = T, אז,val (,ϕ),ψ( (g = T מכוון שהפסוק שלנו הוא טאטולוגיה אז val ( ((, ϕ) ψ) χ, g) = T, לכן.val ( (χ,, )g) = T ז''א.{ϕ, ψ} χ 11. נניח Σ קבוצת פסוקים, ו,ϕ ψ פסוקים, הוכיחו או הפריכו: (א) ψ) Σ (ϕ אם''ם Σ ϕ וגם.Σ ψ פתרון: זה נכון. נניח (ψ Σ, ϕ) תהי g השמה שנותנת ערך T לכל פסוק ב,Σ אז,val ( (ϕ, )ψ, g) = T לכן val ( (ϕ,, )g) = T, val ( (ψ,, )g) = T, ז''א Σ ϕ וגם.Σ ψ נניח Σ ϕ וגם Σ, ψ תהי g השמה שנותנת ערך T לכל פסוק ב Σ, אז val ( (ϕ,, )g) = T, val ( (ψ,, )g) = T, לכן,val ( (ϕ, )ψ, g) = T לכן ψ).σ (ϕ 6

7 (ב) ψ) Σ (ϕ אם''ם.Σ {ϕ} ψ פתרון: זה נכון. נניח (ψ Σ, ϕ) תהי g השמה שנותנת ערך T לכל פסוק ב {ϕ},σ צריך להוכיח ש.val ( (ψ,, )g) = T מיכוון ש ψ),σ (ϕ אז.val ( (ϕ, )ψ, g) = T אבל ידוע ש,val ( (ϕ,, )g) = T לכן בהכרח.val ( (ψ,, )g) = T ז''א Σ {ϕ}.ψ נניח,Σ {ϕ} ψ תהי g השמה שנותנת ערך T לכל פסוק ב Σ, צריך להוכיח ש.val ( (ϕ, )ψ, g) = T.i אם,val ( (ϕ,, )g) = F אז val ( (ϕ, )ψ, g) = T וגמרנו. g לכן יש לנו השמה,val ( (ϕ,, )g) = T אז,val ( (ϕ,, )g) F אם.ii שנותנת ערך T לכל פסוק ב {ϕ}.σ מיכוון ש,Σ {ϕ} ψ אז.val ( (ϕ, )ψ, g) = T לכן.val ( (ψ,, )g) = T ז''א ψ).σ (ϕ 12. מיצאו 2 פסוקים ϕ 2 ϕ, 1 (עם משתנים פסוקיים p ו q ) בלתי שקולים לוגית, כך שאם נציב כל אחד מהם במקום ϕ בפסוק α, הפסוק α יהיה טאוטולוגיה. α = [(ϕ q) p] [(p q) ϕ] פתרון נתייחס ל ϕ כאל פונקציה } F,ϕ : {T, F } {T, F } {T, ונבנה טבלת אמת רק עם 2 משתנים כי ϕ תלוי רק ב p ו q, אנו רוצים שהעמודה המרכזית תהיה רק T. g p q (ϕ q) p (p q) ϕ 1 F F x 1 =T T y 1 =T 2 F T x 2 =T T y 2 =T 3 T F x 3 =T T y 3 =T 4 T T x 4 =T/F T y 4 =T x 1 ו x 2 הם T בגלל ש val ( (, p), g i ) = T עבור = 1, 2,i לכן כל החלק השמאלי הוא T. מכוון שהחץ המרכזי חייב להיות T, נקבל ש y 1 ו y 2 חייבים להיות T, ומכוון ש ϕ(f, F ) = ϕ(f, T ) = נקבל שחייב להיות i עבור = 1, 2 val ( (p, ) q, g i ) = T.T val ( (p, ) q, g 3 ) = T ומכוון ש,T חייב להיות לכן גם y 3,g 3 (q) = F כי x 3 = T נקבל שחייב להיות.ϕ(T, F ) = T x 4 יכול להיות T או.ϕ(T, T ) = T/F לכן,val ( (p, ) q, g 4 ) = F כי y 4 = T.F p q ϕ F F T F T T T F T T T T/F לכן אפשר לבחור ϕ כך ש 7

8 נקח למשל q),ϕ 1 = (p ו ϕ 2 טאוטולוגיה, למשל q) ϕ 1.(p p) (q ו ϕ 2 לא שקולים לוגית, כי יש להם טבלאות אמת שונות. 8

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשעו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים: לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1

Διαβάστε περισσότερα

Logic and Set Theory for Comp. Sci.

Logic and Set Theory for Comp. Sci. 234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר

לוגיקה ותורת הקבוצות מבחן סופי אביב תשעב (2012) דפי עזר לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת

Διαβάστε περισσότερα

חורף תש''ע פתרון בחינה סופית מועד א'

חורף תש''ע פתרון בחינה סופית מועד א' מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ד (2014) דפי עזר

לוגיקה ותורת הקבוצות מבחן סופי אביב תשעד (2014) דפי עזר לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ד (2014) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת

Διαβάστε περισσότερα

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( ) פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e

Διαβάστε περισσότερα

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 2

מתמטיקה בדידה תרגול מס' 2 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: כמתים והצרנות. משתנים קשורים וחופשיים. 1 כמתים והצרנות בתרגול הקודם עסקנו בתחשיב הפסוקים, שבו הנוסחאות שלנו היו מורכבות מפסוקים יסודיים (אשר קיבלו ערך T או F) וקשרים.

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות אביבתשס ז מבחןסופי מועדב בהצלחה!

לוגיקה ותורת הקבוצות אביבתשס ז מבחןסופי מועדב בהצלחה! הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב 24/10/2007 מרצה: פרופ אורנה גרימברג מתרגלים: גבי סקלוסוב,קרן צנזור,רותם אושמן,אורלי יהלום לוגיקה ותורת הקבוצות 234293 אביבתשס ז מבחןסופי מועדב הנחיות: משךהבחינה:

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

"שקר". במקום המילים "אמת" או "שקר" משתמשים באותיות T ו- F (באנגלית truth אמת, false שקר (

שקר. במקום המילים אמת או שקר משתמשים באותיות T ו- F (באנגלית truth אמת, false שקר ( . חלק : 1 תחשיב הפסוקים. 1) פסוקים. משתנים פסוקיים. ערכי האמת. בדיבור יום-יומי אנו משתמשים במשפטים שונים. לדוגמא: " יורם סטודנט ", "בישראל בקיץ חם.", "מה השעה?", "דג כרפיון עף בשמיים.", "לך הביתה!", "פרות

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

לוגיקה למדעי המחשב תרגולים

לוגיקה למדעי המחשב תרגולים לוגיקה למדעי המחשב תרגולים ניצן פומרנץ 17 ביוני 2015 אתר הקורס: במודל בשבוע הראשון התרגילים ייועלו גם ל www.cs.tau.ac.il/~shpilka/teaching לירון כהן: liron.cohen@math.tau.ac.il (לא לשלוח שאלות על החומר

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 5

מתמטיקה בדידה תרגול מס' 5 מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 2

אלגברה ליניארית 1 א' פתרון 2 אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק

Διαβάστε περισσότερα

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה

Διαβάστε περισσότερα

תורת הקבוצות מושגי יסוד בתורת הקבוצות קבוצה אוסף של אלמנטים הנקראים אברי הקבוצה. אין חשיבות לסדר האיברים בקבוצה. אין חשיבות לחזרות.

תורת הקבוצות מושגי יסוד בתורת הקבוצות קבוצה אוסף של אלמנטים הנקראים אברי הקבוצה. אין חשיבות לסדר האיברים בקבוצה. אין חשיבות לחזרות. תורת הקבוצות מושגי יסוד בתורת הקבוצות קבוצה אוסף של אלמנטים הנקראים אברי הקבוצה. אין חשיבות לסדר האיברים בקבוצה. אין חשיבות לחזרות. A = 1,4,7,17,20 B = 1, a, b, c 2 נאמר ש x שייך ל A ונסמן x A אם x הוא

Διαβάστε περισσότερα

תורת הקבוצות תרגיל בית 2 פתרונות

תורת הקבוצות תרגיל בית 2 פתרונות תורת הקבוצות תרגיל בית 2 פתרונות חיים שרגא רוזנר כ"ה בניסן, תשע"ה תזכורות תקציר איזומורפיזם סדר, רישא, טרנזיטיביות, סודרים, השוואת סודרים, סודר עוקב, סודר גבולי. 1. טרנזיטיבות וסודרים קבוצה A היא טרנזיטיבית

Διαβάστε περισσότερα

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin( א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π

Διαβάστε περισσότερα

( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת

( )( ) ( ) f : B C היא פונקציה חחע ועל מכיוון שהיא מוגדרת עי. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חחע אז ועל פי הגדרת הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (

Διαβάστε περισσότερα

i שאלות 8,9 בתרגיל 2 ( A, F) אלגברת יצירה Α היא זוג כאשר i F = { f קבוצה של פונקציות {I קבוצה לא ריקה ו A A n i n i מקומית מ ל. A נרשה גם פונקציות 0 f i היא פונקציה n i טבעי כך ש כך שלכל i קיים B נוצר

Διαβάστε περισσότερα

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1 1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n

Διαβάστε περισσότερα

{ : Halts on every input}

{ : Halts on every input} אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.

Διαβάστε περισσότερα

אלגברה מודרנית פתרון שיעורי בית 6

אלגברה מודרנית פתרון שיעורי בית 6 אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:

Διαβάστε περισσότερα

הגדרה 0.1 טיעון הוא תקף אם בכל פעם שההנחות נכונות גם המסקנה נכונה.

הגדרה 0.1 טיעון הוא תקף אם בכל פעם שההנחות נכונות גם המסקנה נכונה. 1 לוגיקה סיכום הגדרות משפטים ודברים חשובים אחרים תודה רבה לניצן פומרנץ על הסיכום הכולל של החומר הקדמה הגדרה 0.1 טיעון הוא תקף אם בכל פעם שההנחות נכונות גם המסקנה נכונה. הערה 0.2 נשים לב שלכל שפה יש רובד

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 13

מתמטיקה בדידה תרגול מס' 13 מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 8

אלגברה ליניארית 1 א' פתרון 8 אלגברה ליניארית 1 א' פתרון 8.1 נניח כי (R) A M n מקיימת = 0 t.aa הוכיחו כי = 0.A הוכחה: נביט באיברי האלכסון של.AA t.(aa t ) ii = n k=1 (A) ik(a t ) ki = n k=1 a ika ik = n k=1 a2 ik = 0 מדובר במספרים ממשיים,

Διαβάστε περισσότερα

פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז

פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז פתרון תרגיל בית 6 מבוא לתורת החבורות 88-211 סמסטר א תשע ז הוראות בהגשת הפתרון יש לרשום שם מלא, מספר ת ז ומספר קבוצת תרגול. תאריך הגשת התרגיל הוא בתרגול בשבוע המתחיל בתאריך ג טבת ה תשע ז, 1.1.2017. שאלות

Διαβάστε περισσότερα

x a x n D f (iii) x n a ,Cauchy

x a x n D f (iii) x n a ,Cauchy גבולות ורציפות גבול של פונקציה בנקודה הגדרה: קבוצה אשר מכילה קטע פתוח שמכיל את a תקרא סביבה של a. קבוצה אשר מכילה קטע פתוח שמכיל את a אך לא מכילה את a עצמו תקרא סביבה מנוקבת של a. יהו a R ו f פונקציה מוגדרת

Διαβάστε περισσότερα

מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות

מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות מינימיזציה של DFA L. הוא אוטמומט מינימלי עבור L של שפה רגולרית A ראינו בסוף הסעיף הקודם שהאוטומט הקנוני קיים A DFA בכך הוכחנו שלכל שפה רגולרית קיים אוטומט מינמלי המזהה אותה. זה אומר שלכל נקרא A A לאוטומט

Διαβάστε περισσότερα

תרגיל 7 פונקציות טריגונומטריות הערות

תרגיל 7 פונקציות טריגונומטריות הערות תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

מבוא ללוגיקה מתמטית 80423

מבוא ללוגיקה מתמטית 80423 מבוא ללוגיקה מתמטית 80423 24 במרץ 2012 איני לוקחת אחריות על מה שכתוב כאן, so tread lightly אין המרצה או המתרגל קשורים לסיכום זה בשום דרך. הערות יתקבלו בברכה.noga.rotman@gmail.com אהבתם? יש עוד! www.cs.huji.ac.il/

Διαβάστε περισσότερα

חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה.

חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה. חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה. מרצה: למברג דן תוכן העניינים 3 מספרים ממשיים 1 3.................................. סימונים 1. 1 3..................................

Διαβάστε περισσότερα

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשעב זהויות טריגונומטריות תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si

Διαβάστε περισσότερα

גבול ורציפות של פונקציה סקלרית שאלות נוספות

גבול ורציפות של פונקציה סקלרית שאלות נוספות 08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך

Διαβάστε περισσότερα

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V ) הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה

Διαβάστε περισσότερα

לוגיקה למדעי המחשב ניצן פומרנץ 25 ביוני 2015

לוגיקה למדעי המחשב ניצן פומרנץ 25 ביוני 2015 לוגיקה למדעי המחשב ניצן פומרנץ 25 ביוני 2015 רשימות בקורס לוגיקה למדעי המחשב, סמסטר אביב תשע"ה, אוניברסיטת תל אביב. טעויות קורות אשמח שתעדכנו אותי עליהן ושאתקנן. אמיר שפילקה shpilka@post.tau.ac.il שרייבר

Διαβάστε περισσότερα

הרצאות לוגיקה ותורת הקבוצות. מרצה: אורנה גרימברג מתרגל: שקד פלור זכויות יוצרים: יאנה גרינברג (תורת הקבוצות)

הרצאות לוגיקה ותורת הקבוצות.   מרצה: אורנה גרימברג מתרגל: שקד פלור זכויות יוצרים: יאנה גרינברג (תורת הקבוצות) הרצאות לוגיקה ותורת הקבוצות 234293 http://webcourse.cs.technion.ac.il/234293 מרצה: אורנה גרימברג מתרגל: שקד פלור זכויות יוצרים: יאנה גרינברג (תורת הקבוצות) אנטון וולקוב (לוגיקה) גרסה 1 24/06/11 תיקון שגיאות

Διαβάστε περισσότερα

פתרונות מלאים אלגברה 1 מ בחן אמצע חורף תשס"ג מטריצה הפיכה ב- הפיכה סקלרית, לכן A = αi

פתרונות מלאים אלגברה 1 מ בחן אמצע חורף תשסג מטריצה הפיכה ב- הפיכה סקלרית, לכן A = αi פתרונות מלאים אלגברה מ - 4 - בחן אמצע חורף תשס"ג -.. משך הבחינה :.5 שעות. שאלה מס' היא שאלת תרגילי בית. אין להשתמש בחומר עזר או מחשבונים. יש לענות על כל שאלה בדף נפרד ולנמק את התשובות. נא לרשום את השם

Διαβάστε περισσότερα

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך

Διαβάστε περισσότερα

שאלה 1 V AB פתרון AB 30 R3 20 R

שאלה 1 V AB פתרון AB 30 R3 20 R תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A

Διαβάστε περισσότερα

קיום ויחידות פתרונות למשוואות דיפרנציאליות

קיום ויחידות פתרונות למשוואות דיפרנציאליות קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית

Διαβάστε περισσότερα

הגדרה: מצבים k -בני-הפרדה

הגדרה: מצבים k -בני-הפרדה פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון

Διαβάστε περισσότερα

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח.

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח. 1 תשע'א תירגול 8 אלגברה לינארית 1 טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של וקטור אם הוכחה: חד חד ערכית ויהי כך ש מכיוון שגם נקבל מחד חד הערכיות כי בהכרח

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

לוגיקה מתמטית הוא התחום במתמטיקה שחוקר בצורה מדויקת מושגים כמו טענה ו- הוכחה. על מנת לספק מוטיבציה, נתבונן בשתי דוגמאות היסטוריות.

לוגיקה מתמטית הוא התחום במתמטיקה שחוקר בצורה מדויקת מושגים כמו טענה ו- הוכחה. על מנת לספק מוטיבציה, נתבונן בשתי דוגמאות היסטוריות. לוגיקה מתמטית משה קמנסקי 1. מבוא לוגיקה מתמטית הוא התחום במתמטיקה שחוקר בצורה מדויקת מושגים כמו טענה ו- הוכחה. על מנת לספק מוטיבציה, נתבונן בשתי דוגמאות היסטוריות. 1.1. גאומטריית המישור. אוקלידס רצה לדעת

Διαβάστε περισσότερα

הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי

הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב 2011 2010 פרופ' יעקב ורשבסקי אסף כץ 15//11 1 סמל לזנדר יהי מספר שלם קבוע, ו K שדה גלובלי המכיל את חבורת שורשי היחידה מסדר µ. תהי S קבוצת הראשוניים הארכימדיים

Διαβάστε περισσότερα

תרגול מס' 1 3 בנובמבר 2012

תרגול מס' 1 3 בנובמבר 2012 תרגול מס' 1 3 בנובמבר 2012 1 מערכת המספרים השלמים בשיעור הקרוב אנו נעסוק בקבוצת המספרים השלמים Z עם הפעולות (+) ו ( ), ויחס סדר (>) או ( ). כל התכונות הרגילות והידועות של השלמים מתקיימות: חוק הקיבוץ (אסוציאטיביות),

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

לוגיקה מתמטית משה קמנסקי 23 בינואר 2018

לוגיקה מתמטית משה קמנסקי 23 בינואר 2018 לוגיקה מתמטית משה קמנסקי 23 בינואר 2018 1 מבוא לוגיקה מתמטית הוא התחום במתמטיקה שחוקר בצורה מדויקת מושגים כמו טענה ו- הוכחה. על מנת לספק מוטיבציה, נתבונן בשתי דוגמאות היסטוריות. 1.1 גאומטריית המישור אוקלידס

Διαβάστε περισσότερα

אלגברה לינארית מטריצות מטריצות הפיכות

אלגברה לינארית מטריצות מטריצות הפיכות מטריצות + [( αij+ β ij ] m λ [ λα ij ] m λ [ αijλ ] m + + ( + +C + ( + C i C m q m q ( + C C + C C( + C + C λ( ( λ λ( ( λ (C (C ( ( λ ( + + ( λi ( ( ( k k i חיבור מכפלה בסקלר מכפלה בסקלר קומוטטיב אסוציאטיב

Διαβάστε περισσότερα

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A )

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A ) הסתברות למתמטיקאים c ארזים 3 במאי 2017 1 תוחלת מותנה הגדרה 1.1 לכל משתנה מקרי X אינטגרבילית ותת סיגמא אלגברה G F קיים משתנה מקרי G) Y := E (X המקיים: E (X1 A ) = E (Y 1 A ).G מדיד לפי Y.1.E Y

Διαβάστε περισσότερα

מודלים חישוביים תרגולמס 5

מודלים חישוביים תרגולמס 5 מודלים חישוביים תרגולמס 5 30 במרץ 2016 נושאי התרגול: דקדוקים חסרי הקשר. למת הניפוח לשפות חסרות הקשר. פעולות סגור לשפות חסרות הקשר. 1 דקדוקים חסרי הקשר נזכיר כי דקדוק חסר הקשר הוא רביעיה =(V,Σ,R,S) G, כך

Διαβάστε περισσότερα

תורת הקבוצות יובל קפלן סיכום הרצאות פרופ ארז לפיד בקורס "תורת הקבוצות" (80200) באוניברסיטה העברית,

תורת הקבוצות יובל קפלן סיכום הרצאות פרופ ארז לפיד בקורס תורת הקבוצות (80200) באוניברסיטה העברית, תורת הקבוצות יובל קפלן סיכום הרצאות פרופ ארז לפיד בקורס "תורת הקבוצות" (80200) באוניברסיטה העברית, 7 2006. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו. סודר באמצעות L

Διαβάστε περισσότερα

אי שלמות ואי כריעות בשפות פורמליות ד ר אסף חסון, אוניברסיטת בן גוריון בנגב

אי שלמות ואי כריעות בשפות פורמליות ד ר אסף חסון, אוניברסיטת בן גוריון בנגב אי שלמות ואי כריעות בשפות פורמליות ד ר אסף חסון, אוניברסיטת בן גוריון בנגב יובל אדם Young man, in mathematics you don t understand things. You just get used to them. - John von Neumann תוכן עניינים 2 פרולוג....................................

Διαβάστε περισσότερα

אלגברה לינארית (1) - פתרון תרגיל 11

אלגברה לינארית (1) - פתרון תרגיל 11 אלגברה לינארית ( - פתרון תרגיל דרגו את המטריצות הבאות לפי אלגוריתם הדירוג של גאוס (א R R4 R R4 R=R+R R 3=R 3+R R=R+R R 3=R 3+R 9 4 3 7 (ב 9 4 3 7 7 4 3 9 4 3 4 R 3 R R3=R3 R R 4=R 4 R 7 4 3 9 7 4 3 8 6

Διαβάστε περισσότερα

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה. בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית

Διαβάστε περισσότερα

ניתן לקבל אוטומט עבור השפה המבוקשת ע "י שימוששאלה 6 בטכניקתשפה המכפלה שנייה כדי לבנות אוטומט לשפת החיתוך של שתי השפות:

ניתן לקבל אוטומט עבור השפה המבוקשת ע י שימוששאלה 6 בטכניקתשפה המכפלה שנייה כדי לבנות אוטומט לשפת החיתוך של שתי השפות: שאלה 1 בנה אוטומט המקבל את שפת כל המילים מעל הא"ב {,,} המכילות לפחות פעם אחת את הרצף ומיד אחרי כל אות מופיע הרצף. ניתן לפרק את השפה לשתי שפות בסיס מעל הא"ב :{,,} שפת כל המילים המכילות לפחות פעם אחת את

Διαβάστε περισσότερα

בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד

בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד סמסטר: א' מועד: א' תאריך: יום ה' 0100004 שעה: 04:00 משך הבחינה: שלוש שעות חומר עזר: אין בבחינה שני פרקים בפרק הראשון 8 שאלות אמריקאיות ולכל אחת מהן מוצעות

Διαβάστε περισσότερα

The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן

The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן .. The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן 03.01.16 . Factor Models.i = 1,..., n,r i נכסים, תשואות (משתנים מקריים) n.e[f j ] נניח = 0.j = 1,..., d,f j

Διαβάστε περισσότερα

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי

Διαβάστε περισσότερα

s ק"מ קמ"ש מ - A A מ - מ - 5 p vp v=

s קמ קמש מ - A A מ - מ - 5 p vp v= את זמני הליכת הולכי הרגל עד הפגישות שלהם עם רוכב האופניים (שעות). בגרות ע מאי 0 מועד קיץ מבוטל שאלון 5006 מהירות - v קמ"ש t, א. () נסמן ב- p נכניס את הנתונים לטבלה מתאימה: רוכב אופניים עד הפגישה זמן -

Διαβάστε περισσότερα

רשימת משפטים והגדרות

רשימת משפטים והגדרות רשימת משפטים והגדרות חשבון אינפיניטיסימאלי ב' מרצה : למברג דן 1 פונקציה קדומה ואינטגרל לא מסויים הגדרה 1.1. (פונקציה קדומה) יהי f :,] [b R פונקציה. פונקציה F נקראת פונקציה קדומה של f אם.[, b] גזירה ב F

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 11

אלגברה ליניארית 1 א' פתרון 11 אלגברה ליניארית 1 א' פתרון 11.1 K α : F איזומורפיזם של שדות. א. טענה 1 :.α(0 F ) = 0 K עלינו להוכיח כי לכל,b K מתקיים.b + α(0 F ) = α(0 F ) + b = b עבור b K (כיוון ש α חח"ע ועל), קיים ויחיד x F כך ש.α(x)

Διαβάστε περισσότερα

מבני נתונים ואלגוריתמים תרגול #11

מבני נתונים ואלגוריתמים תרגול #11 מבני נתונים ואלגוריתמים תרגול # התאמת מחרוזות סימונים והגדרות: P[,,m] כך Σ * טקסט T )מערך של תווים( באורך T[,,n] n ותבנית P באורך m ש.m n התווים של P ו T נלקחים מאלפבית סופי Σ. לדוגמא: {a,b,,z},{,}=σ.

Διαβάστε περισσότερα

אלגברה לינארית 1 יובל קפלן

אלגברה לינארית 1 יובל קפלן אלגברה לינארית 1 יובל קפלן מחברת סיכום הרצאות ד"ר אלי בגנו בקורס "אלגברה לינארית 1" (80134) באוניברסיטה העברית, 7 2006 תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן אין המרצה אחראי לכל טעות שנפלה בו סודר

Διαβάστε περισσότερα

logn) = nlog. log(2n

logn) = nlog. log(2n תכנוןוניתוחאלגוריתמים סיכוםהתרגולים n log O( g( n)) = Ω( g( n)) = θ ( g( n)) = תרגול.3.04 סיבוכיות { f ( n) c> 0, n0 > 0 n> n0 0 f ( n) c g( n) } { f ( n) c> 0, n0 > 0 n> n0 0 c g( n) f ( n) } { f ( n)

Διαβάστε περισσότερα

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα

אינפי - 1 תרגול בינואר 2012

אינפי - 1 תרגול בינואר 2012 אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר

Διαβάστε περισσότερα

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 7

אלגברה ליניארית 1 א' פתרון 7 אלגברה ליניארית 1 א' פתרון 7 2 1 1 1 0 1 1 0 1 0 2 1 1 0 1 0 2 1 2 1 1 0 2 1 0 1 1 3 1 2 3 1 2 0 1 5 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 4 0 0 0.1 עבור :A לכן = 3.rkA עבור B: נבצע פעולות עמודה אלמנטריות

Διαβάστε περισσότερα

מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015)

מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015) מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015) מרצה: פרופ' בני שור מתרגלים: אורית מוסקוביץ' וגל רותם 28.1.2015 הנחיות: 1. מומלץ לקרוא את כל ההנחיות והשאלות בתחילת המבחן, לפני כתיבת התשובות. 2. משך

Διαβάστε περισσότερα

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.

Διαβάστε περισσότερα

חשבון אינפיניטסימלי 1

חשבון אינפיניטסימלי 1 חשבון אינפיניטסימלי 1 יובל קפלן סיכום הרצאות פרופ צליל סלע בקורס "חשבון אינפיניטסימלי 1" (80131) באוניברסיטה העברית, 7 2006. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו.

Διαβάστε περισσότερα

תרגול מס' 6 פתרון מערכת משוואות ליניארית

תרגול מס' 6 פתרון מערכת משוואות ליניארית אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית

Διαβάστε περισσότερα

תורת הקבוצות בפברואר 2012 תקציר סיכום הרצאות של פרופסור רון לבנה בשנת לימודים 2012

תורת הקבוצות בפברואר 2012 תקציר סיכום הרצאות של פרופסור רון לבנה בשנת לימודים 2012 תורת הקבוצות 80200 אור דגמי, ÓÖ Ñ ºÓÖ 11 בפברואר 2012 אתר אינטרנט: ØØÔ»» Ñ ºÓÖ תקציר סיכום הרצאות של פרופסור רון לבנה בשנת לימודים 2012 1 תוכן עניינים תוכן עניינים תוכן עניינים מבוא.............................................

Διαβάστε περισσότερα

הסיכום סמסטר ב' תשס"ז

הסיכום סמסטר ב' תשסז הסיכום סוכם, עובד והוקלד ע"י דינה זליגר מבוסס על הרצאותיו של שמואל ברגר ותרגוליו של איתי קפלן סמסטר ב' תשס"ז תנאי שימוש Please read the ollowg mportat legal ormato beore readg or usg these otes The use

Διαβάστε περισσότερα

הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות

הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות אלגוריתמים חמדניים אלגוריתם חמדן, הוא כזה שבכל צעד עושה את הבחירה הטובה ביותר האפשרית, ולא מתחרט בהמשך גישה זו נראית פשטנית מדי, וכמובן שלא תמיד היא נכונה, אך במקרים רבים היא מוצאת פתרון אופטימאלי בתרגול

Διαβάστε περισσότερα

תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית:

תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית: משפט הדיברגנץ תחום חסום וסגור בעל שפה חלקה למדי, ותהי F פו' וקטורית :F, R n R n אזי: div(f ) dxdy = F, n dr נוסחת גרין I: uδv dxdy = u v n dr u, v dxdy הוכחה: F = (u v v, u x y ) F = u v כאשר u פו' סקלרית:

Διαβάστε περισσότερα

פרק 5 טורי חזקות 5.5 טור לורן. (z z 0 ) m. c n = 1. 2πi γ (ξ z 0 ) n+1dξ, .a 1 = 1 f(z)dz בפרט,.a 2πi γ m וגם 0 0 < z z 0 < r בעיגול הנקוב z.

פרק 5 טורי חזקות 5.5 טור לורן. (z z 0 ) m. c n = 1. 2πi γ (ξ z 0 ) n+1dξ, .a 1 = 1 f(z)dz בפרט,.a 2πi γ m וגם 0 0 < z z 0 < r בעיגול הנקוב z. פרק 5 טורי חזקות 5.5 טור לורן הגדרה 5. טורלורןסביבקוטב z מסדרm שלפונקציה( f(z הואמהצורה n m a n(z z m. למשל,טורלורן שלהפונקציה e z /z 2 סביב הוא + 2./z 2 +/z+/2+/3!z+/4!z משפט 5. תהי f פונקציה אנליטית

Διαβάστε περισσότερα

תכנון אלגוריתמים 2016 עבודה 1 שאלה 1 פתרון נתונות שתי בעיות. יש למצוא: אורך מסלול קצר ביותר המתחיל באחד מן הקודקודים s 1,..., s k ומסתיים ב t.

תכנון אלגוריתמים 2016 עבודה 1 שאלה 1 פתרון נתונות שתי בעיות. יש למצוא: אורך מסלול קצר ביותר המתחיל באחד מן הקודקודים s 1,..., s k ומסתיים ב t. תכנון אלגוריתמים 2016 עבודה 1 פתרון שאלה 1 נזכר כי בגרף (E G, =,V) עבור שני קודקודים d(u, (v,u, v הוא אורך מסלול קצר ביותר מ u ל v. אם אין מסלול מ u ל.d(u, v) =,v נתונות שתי בעיות. בעיה א' מופע: גרף מכוון

Διαβάστε περισσότερα

סדרות - תרגילים הכנה לבגרות 5 יח"ל

סדרות - תרגילים הכנה לבגרות 5 יחל סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר

Διαβάστε περισσότερα

אלגברה א' - פתרונות לשיעורי הבית סמסטר חורף תשס"ט

אלגברה א' - פתרונות לשיעורי הבית סמסטר חורף תשסט 467 אלגברה א', סמסטר חורף תשס"ט, פתרונות לשיעורי הבית, עמוד מתוך 6 467 אלגברה א' - פתרונות לשיעורי הבית סמסטר חורף תשס"ט תוכן עניינים : גליון שדות... גליון מרוכבים 7... גליון מטריצות... גליון 4 דירוג,

Διαβάστε περισσότερα

אוטומטים ושפות פורמליות תרגולים

אוטומטים ושפות פורמליות תרגולים אוטומטים ושפות פורמליות תרגולים מבוסס על תרגולים של מר גולדגביכט עומר, אוניברסיטת בר אילן 2012. שיעור 1 הגדרות: א"ב: אוסף סופי ולא ריק של סימנים/אותיות/תווים. נסמן אותו באות. דוגמאות: 9},... 1,,{0, {א,..,.

Διαβάστε περισσότερα

הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל-

הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל- מ'' ל'' Deprmen of Applied Mhemics Holon Acdemic Insiue of Technology PROBABILITY AND STATISTICS Eugene Knzieper All righs reserved 4/5 חומר לימוד בקורס "הסתברות וסטטיסטיקה" מאת יוג'ין קנציפר כל הזכויות

Διαβάστε περισσότερα

מבוא ללוגיקה מתמטית מבוסס על הרצאותיו של פרופ' איליה ריפס נכתב ונערך ע"י דינה זליגר סמסטר א' תשס"ו

מבוא ללוגיקה מתמטית מבוסס על הרצאותיו של פרופ' איליה ריפס נכתב ונערך עי דינה זליגר סמסטר א' תשסו מבוא ללוגיקה מתמטית נכתב ונערך ע"י דינה זליגר מבוסס על הרצאותיו של פרופ' איליה ריפס סמסטר א' תשס"ו מבוא ללוגיקה, דינה זליגר תנאי שימוש Please read the followg mportat legal formato before readg or usg

Διαβάστε περισσότερα

3-9 - a < x < a, a < x < a

3-9 - a < x < a, a < x < a 1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.

Διαβάστε περισσότερα

co ארזים 3 במרץ 2016

co ארזים 3 במרץ 2016 אלגברה לינארית 2 א co ארזים 3 במרץ 2016 ניזכר שהגדרנו ווקטורים וערכים עצמיים של מטריצות, והראינו כי זהו מקרה פרטי של ההגדרות עבור טרנספורמציות. לכן כל המשפטים והמסקנות שהוכחנו לגבי טרנספורמציות תקפים גם

Διαβάστε περισσότερα

מבנים אלגבריים II 27 במרץ 2012

מבנים אלגבריים II 27 במרץ 2012 מבנים אלגבריים 80446 II אור דגמי, or@digmi.org 27 במרץ 2012 אתר אינטרנט: http://digmi.org סיכום הרצאות של פרופ אלכס לובוצקי בשנת לימודים 2012 1 תוכן עניינים 1 שדות 3 1.1 תזכורת מהעבר....................................................

Διαβάστε περισσότερα