Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17)"

Transcript

1 Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε Άπληστους Αλγόριθµους Στοιχεία άπληστων αλγορίθµων Το πρόβληµα επιλογής εργασιών ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 4-1

2 Άπληστοι Αλγόριθµοι Προβλήµατα στα οποία ζητείται µια βέλτιστη λύση (optimization problems) συχνά λύνονται από αλγόριθµους οι οποίοι ακολουθούν µια σειρά βηµάτων µε ένα σύνολο επιλογών σε κάθε βήµα. Κύρια ιδέα: σε κάθε βήµα επέλεξε την επιλογή που φαίνεται καλύτερη για τη δεδοµένη στιγµή (the locally optimal choice). Ποιο είναι το κατάλληλο κριτήριο για τη λήψη µιας τοπικά βέλτιστης επιλογής; Ερώτηµα: αυτή η ακολουθία τοπικά βέλτιστων επιλογών δίνει τη βέλτιστη λύση του προβλήµατος; εξαρτάται από το πρόβληµα για ορισµένα προβλήµατα εγγυείται µόνο κοντινή (approximate) λύση ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 4-2

3 Άπληστοι Αλγόριθµοι Παραδείγµατα άπληστων αλγόριθµων: 1. οι αλγόριθµοι εύρεσης ελάχιστου δέντρου σκελετού του Kruskal και του Prim 2. ο αλγόριθµος υπολογισµού των κωδικών Huffman 3. o αλγόριθµος επεξεργασίας εργασιών (job scheduling) Παραδείγµατα προβληµάτων στα οποία δεν προτρέπεται η χρήση άπληστου αλγόριθµου 1. προβλήµατα στα οποία τα υποπροβλήµατα δεν είναι ανεξάρτητα µεταξύ τους. 2. ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 4-3

4 Επιλογή Εργασιών σύµφωνα µε προθεσµίες Το πρόβληµα Έχουµε ένα σύνολο εργασιών S={1,2, n} κάθε µία από τις οποίες χρειάζεται µία µονάδα χρόνου για να ολοκληρωθεί. Κάθε εργασία έχει κάποια προθεσµία d i και εκτέλεσή της πριν από την πάροδο της προθεσµίας της µας επιφέρει κέρδος g i. Για τη συµπλήρωση των εργασιών έχουµε στη διάθεση µας ένα επεξεργαστή (ανά πάσα στιγµή ο επεξεργαστής είναι χρησιµοποιήσιµος από το πολύ µια εργασία). Ένα σύνολο εργασιών ονοµάζεται συµβατό αν υπάρχει σειρά εκτέλεσης των εργασιών του η οποία ικανοποιεί τις προθεσµίες της κάθε εργασίας. Στόχος: η εύρεση του συνόλου συµβατών εργασιών που επιφέρει το µέγιστο δυνατό κέρδος. ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 4-4

5 Παράδειγµα Εργασίες: i g i d i Σύνολα Συµβατών Εργασιών Σύνολο Εργασιών ,3 2,1 2,3 4,1 4,3 Κέρδος Πως µπορούµε να διαλέξουµε την πρώτη εργασία για δηµιουργία του συµβατού συνόλου µε το µέγιστο κόστος; 1. αυτή µε την πιο κοντινή προθεσµία; 2. αυτή µε το µεγαλύτερο κέρδος; ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 4-5

6 O Αλγόριθµος Υποθέτουµε ότι οι εργασίες είναι ταξινοµηµένες σε φθίνουσα σειρά ως προς το κέρδος που επιφέρουν. Αν όχι τις ταξινοµούµε σε χρόνο Ο(n log n). Αρχικά επιλέγουµε την εργασία µε το πιο µεγάλο κέρδος. Στη συνέχεια επιλέγουµε την επόµενη πιο κερδοφόρα εργασία η οποία είναι συµβατή µε το σύνολο που έχουµε επιλέξει µέχρι στιγµής. greedy { A={1}; for (i=2; i<=n; i++){ if legal(α {i}) A=A {i}; } return A; } H διαδικασία legal(b) αποφασίζει αν το σύνολο Β είναι συµβατό. ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 4-6

7 H διαδικασία legal Σε κάθε επανάληψη του βρόχου επιλέγεται η εργασία µε το πιο µεγάλο κέρδος η οποία είναι συµβατή µε την υπάρχουσα επιλογή. Πως µπορούµε να αποφασίσουµε κάτα πόσο ένα σύνολο εργασιών είναι συµβατό; Λήµµα 1: Έστω σύνολο εργασιών µε k εργασίες {1,2,...,k} αριθµηµένες έτσι ώστε οι προθεσµίες τους να βρίσκονται σε αύξουσα σειρά, δηλ. d 1 d 2... d n. Αν οι k εργασίες είναι συµβατές τότε κατά την εκτέλεσή τους σε σειρά 1,2,...,k (δηλαδή διαλέγοντας κάθε φορά εκείνη µε την πιο κοντινή προθεσµία) καµιά εργασία δεν χάνει την προθεσµία της. Απόδειξη µε αντίφαση: Έστω ότι η το σύνολο των εργασιών είναι συµβατό αλλά κατά την εκτέλεσή τους σε σειρά 1,2,...,k κάποια εργασία χάνει την προθεσµία της. Έστω ότι η εργασία r είναι η πρώτη τέτοια εργασία. Τότε d r r-1. ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 4-7

8 H διαδικασία legal Αφού οι εργασίες βρίσκονται σε αύξουσα σειρά προθεσµίας τότε οι εργασίες 1,...,r-1 έχουν επίσης προθεσµίες r-1. Εποµένως υπάρχουν τουλάχιστον r εργασίες µε προθεσµίες r-1. Όπως και αν εκτελέσουµε αυτές τις r εργασίες κάποια από αυτές θα χάσει την προθεσµία της! Εποµένως το σύνολο των εργασιών δεν είναι συµβατό. Αντίφαση! Για να ελέγχουµε τη συµβατότητα συνόλων εργασιών πρέπει 1. να κρατούµε την άνα πάσα στιγµή επιλογή µας ταξινοµηµένη σε αύξουσα σειρά ως προς το χρόνο προθεσµίας των εργασιών και 2. κάθε φορά που θεωρούµε µια καινούρια εργασία να ελέγχουµε αν µπορεί να εκτελεστεί η εργασία χωρίς να αναγκάσει κάποια από τις υπάρχουσες να χάσει την προθεσµία της. ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 4-8

9 O Αλγόριθµος greedy2(int d[n]){ int j[n]; int k; {o πίνακας όπου φυλάγουµε την επιλογή εργασιών} {µετρητής των επιλεγµένων εργασιών} j[0] = 0; j[1] = 1; k = 1; for (i=2; i<=n; i++){ r = k; while (d j[r] > max(d i,r)) r -; if (d j[r] > r) for (m=k; m r+1; m--) j[m+1] = j[m]; j[r+1] = i; k=k+1; return j; } {διάλεξε την πρώτη εργασία} {βρες το σηµείο όπου µπορεί να εισαχθεί η εργασία i} αν η i µπορεί να εισαχθεί στη θέση r+1} {µετακίνησε τις εργασίες από τη θέση r+1 και µετά µια θέση προς τα δεξιά και εισήγαγε την i} ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 4-9

10 Ο Αλγόριθµος Χρόνος Εκτέλεσης: Στη χείριστη περίπτωση κατά την i-οστή εκτέλεση του βρόχου χρειάζονται Θ(i) βήµατα στο εσωτερικό while-loop και Θ(i) βήµατα στο εσωτερικό for-loop). Εποµένως ο χρόνος εκτέλεσης χειρίστης περίπτωσης είναι Θ(n²). Παράδειγµα εκτέλεσης i d i g i , 1 2, 1, 3 2, 4, 1, 3 2, 4, 1, 3 2, 4, 1, 3 2, 4, 1, 3, 7 ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 4-10

11 Απόδειξη της ορθότητας του αλγόριθµου Θεώρηµα 2: Έστω Α η ακολουθία εργασιών που παράγεται ως δεδοµένο εξόδου από τον αλγόριθµο. Τότε, 1. Η Α περιέχει συµβατές εργασίες, και 2. Η Α έχει το µέγιστο δυνατό κέρδος συνόλου που ικανοποιεί τις προδιαγραφές του προβλήµατος. Το πρώτο µέρος µπορεί να αποδειχθεί εύκολα µε τη µέθοδο της επαγωγής. Απόδειξη του 2: Θα δείξουµε ότι υπάρχει βέλτιστη λύση στο πρόβληµα που περιέχει την εργασία 1, δηλαδή την εργασία µε το µεγαλύτερο κέρδος. Έστω σύνολο Β Sµια βέλτιστη λύση στο πρόβληµα. Αν 1 Β τότε η λύση περιέχει την άπληστη επιλογή. ιαφορετικά, αφού το σύνολο εργασιών Β είναι συµβατό, σύµφωνα µε το Λήµµα 1, οι εργασίες της Β µπορούν να εκτελεστούν σε αύξουσα σειρά προθεσµίας, χωρίς καµιά να χάσει την προθεσµία της. ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 4-11

12 Απόδειξη της ορθότητας του αλγόριθµου Έστω η σειρά αυτή είναι η k Β, δηλαδή η εργασία k είναι η εργασία στο Β µε την κοντινότερη προθεσµία. Θεωρείστε την ακολουθία Α = 1 Β. Προφανώς η ακολουθία αυτή αντιστοιχεί σε ένα συµβατό σύνολο εργασιών (καµιά από τις εργασίες στο Β δεν πρόκειται να χάσει την προθεσµία της). Επιπλέον, αφού g k g 1, τότε το Α είναι επίσης βέλτιστη λύση του προβλήµατος. Εποµένως υπάρχει βέλτιστη λύση η οποία περιέχει την άπληστη επιλογή. Μπορούµε να χρησιµοποιήσουµε τα ίδια επιχειρήµατα και για την εργασία µε το δεύτερο κοντινότερη προθεσµία και ούτω καθεξής. (µαθηµατική επαγωγή.) ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 4-12

13 Στοιχεία άπληστων αλγορίθµων Ένας άπληστος αλγόριθµος προσπαθεί να βρει τη βέλτιστη λύση σε ένα πρόβληµα εφαρµόζοντας µια ακολουθία επιλογών. Κάθε µια από τις επιλογές επιλέγει την καλύτερη λύση στη δεδοµένη στιγµή σύµφωνα µε κάποιο κριτήριο. Αυτή η µέθοδος δεν βρίσκει πάντα τη βέλτιστη λύση. Πως µπορούµε να αποφασίσουµε κάτα πόσο ένα πρόβληµα µπορεί να λυθεί από ένα άπληστο αλγόριθµο; Γενικά δεν υπάρχει χαρακτηρισµός `άπληστων προβληµάτων. Εντούτοις, οι δύο πιο κάτω ιδιότητες προβληµάτων συχνά εισηγούνται την καταλληλότητα της χρήσης άπληστου αλγόριθµου. 1. Ιδιότητα της άπληστης επιλογής. 2. Ιδιότητα της βέλτιστης υποδοµής. ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 4-13

14 Στοιχεία άπληστων αλγορίθµων Η Ιδιότητα της άπληστης επιλογής Μια ολικά βέλτιστη λύση µπορεί να βρεθεί µε τη λήψη µιας τοπικά βέλτιστης απόφασης. Η λήψη µιας απόφασης δεν εξαρτάται από µελλοντικές αποφάσεις. Απόδειξη ικανοποίησης της ιδιότητας από κάποιο πρόβληµα χρειάζεται και επιχειρηµατολογία της µορφής: αν Α είναι µια βέλτιστη λύση του προβλήµατος, τότε µπορούµε να δηµιουργήσουµε παραλλαγή της Α, Α, όπου η πρώτη απόφαση είναι άπληστη και η Α εξακολουθεί να είναι βέλτιστη. Με τη µέθοδο της επαγωγής µπορούµε να δείξουµε ότι άπληστη επιλογή µπορεί να εφαρµοστεί σε κάθε βήµα του αλγόριθµου. Η ιδιότητα της βέλτιστης υποδοµής Μια βέλτιστη λύση του προβλήµατος περιέχει βέλτιστες λύσεις υποπροβληµάτων. (Συγκρίνετε µε τη µέθοδο του δυναµικού προγραµµατισµού.) ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 4-14

15 Άπληστος αλγόριθµος ή δυναµικός προγραµµατισµός; ίνοντας ρέστα (1) Το Αυστριακό νοµισµατικό σύστηµα περιέχει νοµίσµατα των 1, 5, 10, 25 και 100 σελινιών. Να σχεδιασθεί άπληστος αλγόριθµος ο οποίος, θεωρώντας την ύπαρξη απεριόριστης ποσότητας όλων των νοµισµάτων, για οποιοδήποτε ακέραιο Χ επιστρέφει τον ελάχιστο αριθµό νοµισµάτων µε συνολική αξία Χ. Για παράδειγµα, για Χ=46, ο αλγόριθµός σας θα πρέπει να επιστρέψει την τιµή 4 αφού η ελάχιστη συλλογή νοµισµάτων αξίας 46 είναι η 25, 10, 10,1. ίνοντας ρέστα (2) Να εισηγηθείτε αλγόριθµο ο οποίος να λύνει το πρόβληµα δεδοµένου ότι τα νοµίσµατα αξίας 5 σελινιών έχουν εξαντληθεί. ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 4-15

16 ίνοντας Ρέστα Και τα δύο προβλήµατα ικανοποιούν την ιδιότητα βέλτιστης υποδοµής: 1. Για το πρώτο πρόβληµα, αν για κάποια βέλτιστη επιλογή κερµάτων Ε αξίας Χ αφαιρέσουµε κάποιο κέρµα a αξίας x, x {1,5,10,25,100}, η επιλογή E-a είναι η βέλτιστη επιλογή κερµάτων αξίας Χ-x. 2. Στο δεύτερο πρόβληµα, αν για κάποια βέλτιστη επιλογή κερµάτων Ε αξίας Χ αφαιρέσουµε κάποιο κέρµα a αξίας x, x {1,10,25,100}, η επιλογή E-a είναι η βέλτιστη επιλογή κερµάτων αξίας Χ-x. Μπορούν τα προβλήµατα να λυθούν µε άπληστο αλγόριθµό; Κριτήριο επιλογής: διάλεξε το πιο µεγάλο νόµισµα που χωρεί στην αξία που θέλεις να επιστρέψεις. ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 4-16

17 ίνοντας Ρέστα ίνοντας ρέστα (1) ίνοντας ρέστα (2) change (int x) A = ; while(x>0){ if x>=100 A=A {100}; x=x-100; if x>=25 A=A {25}; x=x-25; if x>=10 A=A {10}; x=x-10; if x>=5 A=A {5}; x=x-5; if x>=1 A=A {1}; x=x-1; return A; change (int x) A = ; while(x>0) if x>=100 A=A {100}; x=x-100; if x>=25 A=A {25}; x=x-25; if x>=10 A=A {10}; x=x-10; if x>=1 A=A {1}; x=x-1; return A; ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 4-17

18 ίνοντας Ρέστα Επιτυγχάνουν το στόχο τους οι δύο αλγόριθµοι; δηλ. ελαχιστοποιούν τον αριθµό νοµισµάτων της επιλογής που επιστρέφεται; Για το πρώτο πρόβληµα ναι, µπορούµε να το αποδείξουµε µε παρόµοιο τρόπο όπως και το πρόβληµα επιλογής εργασιών. Αντιπαράδειγµα για το δεύτερο αλγόριθµο: Έστω ότι η αξία που θέλουµε να επιστρέψουµε είναι 30: Mε τον άπληστο αλγόριθµο επιλέγονται νοµίσµατα 25, 1, 1, 1, 1, 1 ενώ βέλτιστη λύση είναι η επιλογή: 10, 10, 10 Γιατί δουλεύει ο αλγόριθµος για το πρώτο και όχι για το δεύτερο πρόβληµα; Πως µπορεί να λυθεί το δεύτερο πρόβληµα; ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 4-18

ΕΠΛ 232 Φροντιστήριο 2

ΕΠΛ 232 Φροντιστήριο 2 Πρόβληµα ΕΠΛ Φροντιστήριο Έχετε 0 και θέλετε να τις επενδύσετε για n µήνες. Tην πρώτη µέρα κάθε µήνα έχετε µόνο µια από τις παρακάτω τρεις επιλογές:. Να αγοράσετε ένα πιστοποιητικό αποταµίευσης από την

Διαβάστε περισσότερα

Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων

Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων Τεχνικές Σχεδιασµού Αλγορίθµων Αλγόριθµοι Παύλος Εφραιµίδης pefraimi@ee.duth.gr Ορισµένες γενικές αρχές για τον σχεδιασµό αλγορίθµων είναι: ιαίρει και Βασίλευε (Divide and Conquer) υναµικός Προγραµµατισµός

Διαβάστε περισσότερα

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης

Διαβάστε περισσότερα

Ελάχιστα Γεννητορικά ένδρα

Ελάχιστα Γεννητορικά ένδρα λάχιστα Γεννητορικά ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος του Prim και ο αλγόριθµος του Kruskal για εύρεση λάχιστων Γεννητορικών ένδρων ΠΛ 23 οµές εδοµένων και Αλγόριθµοι

Διαβάστε περισσότερα

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα:

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: υναµικός Προγραµµατισµός Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε υναµικό Προγραµµατισµό Το πρόβληµα του πολλαπλασιασµού πινάκων ΕΠΛ 3 Αλγόριθµοι και Πολυπλοκότητα 3- υναµικός

Διαβάστε περισσότερα

Κεφάλαιο 4. Άπληστοι Αλγόριθµοι (Greedy Algorithms) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 4. Άπληστοι Αλγόριθµοι (Greedy Algorithms) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 4 Άπληστοι Αλγόριθµοι (Greedy Algorithms) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 4.1 Χρονοπρογραµµατισµός Διαστηµάτων Χρονοπρογραµµατισµός Διαστηµάτων Το πρόβληµα.

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

ΕΠΛ 232: Αλγόριθµοι και Πολυπλοκότητα. Κατ οίκον Εργασία 1 Σκελετοί Λύσεων

ΕΠΛ 232: Αλγόριθµοι και Πολυπλοκότητα. Κατ οίκον Εργασία 1 Σκελετοί Λύσεων ΕΠΛ 22: Αλγόριθµοι και Πολυπλοκότητα Κατ οίκον Εργασία Σκελετοί Λύσεων. (α) Έστω δροµολόγηση e, e 2,, e των εργασιών, 2,,. Τότε οι χρόνοι συµπλήρωσης των εργασιών είναι e d e e 2 d e + d e 2 e d e + d

Διαβάστε περισσότερα

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 9-1

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 9-1 Σωροί Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθµος ταξινόµησης HeapSort Παραλλαγές Σωρών ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι

Διαβάστε περισσότερα

ίκτυα Ταξινόµησης (CLR κεφάλαιο 28)

ίκτυα Ταξινόµησης (CLR κεφάλαιο 28) ίκτυα Ταξινόµησης (CLR κεφάλαιο 28) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: ίκτυα σύγκρισης, δίκτυα ταξινόµησης Αρχή - ιτονική ταξινόµηση ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 2- Μοντέλο στο οποίο

Διαβάστε περισσότερα

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Κατ οίκον Εργασία 2 Σκελετοί Λύσεων 1. Ο αλγόριθµος κτίζει όλες τις δυνατές αναθέσεις εργασιών στους φοιτητές (υπάρχουν n! διαφορετικές αναθέσεις) και επιστρέφει εκείνη µε το µέγιστο βαθµό καταλληλότητας.

Διαβάστε περισσότερα

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος των BellmanFord Ο αλγόριθµος του Dijkstra ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 61

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

ΑΛΓΟΡΙΘΜΟΙ  Άνοιξη I. ΜΗΛΗΣ ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2016 - I. ΜΗΛΗΣ ΑΠΛΗΣΤΟΙ ΑΛΓΟΡΙΘΜΟΙ Greedy Algorithms 1 Greedy algorithms H βασική ιδέα: Άρχισε από ένα υπο-πρόβλημα μικρού μεγέθους Επαναληπτικά,

Διαβάστε περισσότερα

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για

Διαβάστε περισσότερα

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΕΡΙΓΡΑΦΗ Σε αυτή την άσκηση καλείστε να αναλύσετε και να υπολογίσετε το

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

Αλγόριθµοι Οπισθοδρόµησης

Αλγόριθµοι Οπισθοδρόµησης Αλγόριθµοι Οπισθοδρόµησης Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Η οπισθοδρόµηση στο σχεδιασµό αλγορίθµων Το πρόβληµα των σταθερών γάµων και ο αλγόριθµος των Gale-Shapley Το πρόβληµα

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα 7ο εξάμηνο Σ.Η.Μ.Μ.Υ. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 4η εβδομάδα: Εύρεση k-οστού Μικρότερου Στοιχείου, Master Theorem, Τεχνική Greedy: Knapsack, Minimum Spanning Tree, Shortest Paths

Διαβάστε περισσότερα

Παράδειγµα: Προσοµοίωση µιας ουράς FIFO Οι λειτουργίες που υποστηρίζονται από µια ουρά FIFO είναι: [enq(q,x), ack(q)] [deq(q), return(q,x)] όπου x είν

Παράδειγµα: Προσοµοίωση µιας ουράς FIFO Οι λειτουργίες που υποστηρίζονται από µια ουρά FIFO είναι: [enq(q,x), ack(q)] [deq(q), return(q,x)] όπου x είν Wait-free προσοµοιώσεις αυθαίρετων αντικειµένων Έχουµε δει ότι το πρόβληµα της οµοφωνίας δεν µπορεί να επιλυθεί µε χρήση µόνο read/write καταχωρητών. Πολλοί µοντέρνοι επεξεργαστές παρέχουν επιπρόσθετα

Διαβάστε περισσότερα

ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 2-1

ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 2-1 ιαίρει και Βασίλευε Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Η Μέθοδος Σχεδιασµού Αλγορίθµων ιαίρει και Βασίλευε Επίλυση Αναδροµικών Εξισώσεων ΕΠΛ 3 Αλγόριθµοι και Πολυπλοκότητα - ιαίρει και Βασίλευε

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή Επαγωγή HY8- ιακριτά Μαθηµατικά Τρίτη, /03/06 Μαθηµατική Επαγωγή Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University

Διαβάστε περισσότερα

Χαρακτηριστικά αναδροµής

Χαρακτηριστικά αναδροµής Χαρακτηριστικά αναδροµής base case : συνθήκη τερµατισµού της αναδροµής Όταν το πρόβληµα είναι αρκετά µικρό ή απλό ώστε η λύση να είναι άµεση αναδροµικό βήµα : κλήση της ίδιας συνάρτησης για µικρότερη ή

Διαβάστε περισσότερα

Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27)

Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27) Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: ίκτυα ροής και το πρόβληµα της µέγιστης ροής Η µεθοδολογία Ford-Fulkerson Ο αλγόριθµος Edmonds-Karps ΕΠΛ 232

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

Διάλεξη 21: Γράφοι IV - Βραχύτερα Μονοπάτια σε Γράφους

Διάλεξη 21: Γράφοι IV - Βραχύτερα Μονοπάτια σε Γράφους Διάλεξη 2: Γράφοι IV - Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Βραχύτερα Μονοπάτια σε γράφους - Ο αλγόριθμος Dijkstra για εύρεση της βραχύτερης απόστασης

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 8η

Εισαγωγή στους Αλγορίθμους Ενότητα 8η Εισαγωγή στους Αλγορίθμους Ενότητα 8η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άπληστοι Αλγόριθμοι Χρονοπρογραμματισμός

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές

Αλγοριθμικές Τεχνικές Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Αλγοριθμικές Τεχνικές 1 Τεχνικές Σχεδιασμού Αλγορίθμων Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2 Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Εµπειρική ανάλυση αλγορίθµων Μαθηµατική ανάλυση αλγορίθµων Αύξηση συναρτήσεων Συµβολισµός µεγάλου όµικρον Παραδείγµατα

Διαβάστε περισσότερα

Διάλεξη 9: Αλγόριθμοι Αμοιβαίου Αποκλεισμού με τη χρήση μεταβλητών Ανάγνωσης/Εγγραφής. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 9: Αλγόριθμοι Αμοιβαίου Αποκλεισμού με τη χρήση μεταβλητών Ανάγνωσης/Εγγραφής. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 9: Αλγόριθμοι Αμοιβαίου Αποκλεισμού με τη χρήση μεταβλητών Ανάγνωσης/Εγγραφής ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Αλγόριθμος Ψησταριάς (Bakery Algorithm) Αλγόριθμος 2- επεξεργαστών

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier CLR, κεφάλαιο 3 Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιακριτό Πρόβλημα Σακιδίου ίνονται n αντικείμενα και σακίδιο μεγέθους Β. Αντικείμενο

Διαβάστε περισσότερα

Προβλήµατα Μεταφορών (Transportation)

Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια

Διαβάστε περισσότερα

Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Άπληστοι Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άπληστοι Αλγόριθμοι... για προβλήματα

Διαβάστε περισσότερα

Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Άπληστοι Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άπληστοι Αλγόριθμοι... για προβλήματα

Διαβάστε περισσότερα

Κεφάλαιο : Επαναλήψεις (for, do-while)

Κεφάλαιο : Επαναλήψεις (for, do-while) Κεφάλαιο 5.4-5.11: Επαναλήψεις (for, do-while) 10-1 Εντολές Επανάληψης που θα καλυφθούν σήµερα while(){ τελεστές postfix/prefix (++, --,...) και σύνθετοι τελεστές Παραδείγµατα Σήµερα for(){ Η εντολές break/continue;

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and

Διαβάστε περισσότερα

Γεωµετρικοί Αλγόριθµοι (CLR, κεφάλαιο 35)

Γεωµετρικοί Αλγόριθµοι (CLR, κεφάλαιο 35) Γεωµετρικοί Αλγόριθµοι (CLR, κεφάλαιο 35) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Γινόµενα σηµεία, τοµή ευθυγράµµων τµηµάτων Εύρεση κυρτών περιβληµάτων: Ο αλγόριθµος του Grm και ο αλγόριθµος του

Διαβάστε περισσότερα

Δυναμικός Προγραμματισμός

Δυναμικός Προγραμματισμός Τρίγωνο του Pascal Δυναμικός Προγραμματισμός Διωνυμικοί συντελεστές Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1

Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1 Διαίρει-και-Βασίλευε Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική μέθοδος

Διαβάστε περισσότερα

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει

Διαβάστε περισσότερα

Γράφοι (συνέχεια) Ο αλγόριθµος Dijkstra για εύρεση βραχυτέρων µονοπατιών Ta µονοπάτια Euler

Γράφοι (συνέχεια) Ο αλγόριθµος Dijkstra για εύρεση βραχυτέρων µονοπατιών Ta µονοπάτια Euler Γράφοι (συνέχεια) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος Dijkstra για εύρεση βραχυτέρων µονοπατιών Ta µονοπάτια Euler ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Άπληστοι Αλγόριθμοι Είναι δύσκολο να ορίσουμε ακριβώς την έννοια του άπληστου

Διαβάστε περισσότερα

Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθμος ταξινόμησης HeapSort

Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθμος ταξινόμησης HeapSort Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθμος ταξινόμησης HeapSort ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-1 Ουρά προτεραιότητας

Διαβάστε περισσότερα

Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις

Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή

Διαβάστε περισσότερα

Τεχνικές Σχεδιασμού Αλγορίθμων

Τεχνικές Σχεδιασμού Αλγορίθμων Τεχνικές Σχεδιασμού Αλγορίθμων Διαίρει και Βασίλευε Δυναμικός Προγραμματισμός Απληστία Π. Μποζάνης ΤHMMY - Αλγόριθμοι 2014-2015 1 Διαίρει και Βασίλευε Βασικά Βήματα Διαίρει: Κατάτμηση του αρχικού προβλήματος

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 10η Διάλεξη Ταξινόµηση. E. Μαρκάκης

Δοµές Δεδοµένων. 10η Διάλεξη Ταξινόµηση. E. Μαρκάκης Δοµές Δεδοµένων 10η Διάλεξη Ταξινόµηση E. Μαρκάκης Περίληψη Ταξινόµηση µε αριθµοδείκτη κλειδιού Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μη Ασυμφραστικές Γλώσσες (2.3) Λήμμα Άντλησης για Ασυμφραστικές Γλώσσες Παραδείγματα

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(), Ω(), Θ( ) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 6 Μαΐου 2015 1 / 42 Εύρεση Ελάχιστου Μονοπατιού

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Mergesort Κεφάλαιο 8 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική ταξινόµηση

Διαβάστε περισσότερα

Πολυπλοκότητα Αλγορίθµων

Πολυπλοκότητα Αλγορίθµων Πολυπλοκότητα Αλγορίθµων Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εµπειρική Θεωρητική Ανάλυση Αλγορίθµων Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις

Διαβάστε περισσότερα

Υπολογιστικό Πρόβληµα

Υπολογιστικό Πρόβληµα Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 6η Διάλεξη Αναδροµικές Εξισώσεις και Αφηρηµένοι Τύποι Δεδοµένων. Ε. Μαρκάκης

Δοµές Δεδοµένων. 6η Διάλεξη Αναδροµικές Εξισώσεις και Αφηρηµένοι Τύποι Δεδοµένων. Ε. Μαρκάκης Δοµές Δεδοµένων 6η Διάλεξη Αναδροµικές Εξισώσεις και Αφηρηµένοι Τύποι Δεδοµένων Ε. Μαρκάκης Περίληψη Χρήση αναδροµικών εξισώσεων στην ανάλυση αλγορίθµων Αφηρηµένοι τύποι δεδοµένων Συλλογές στοιχείων Στοίβα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη Επιλογή και επανάληψη Η ύλη που αναπτύσσεται σε αυτό το κεφάλαιο είναι συναφής µε την ύλη που αναπτύσσεται στο 2 ο κεφάλαιο. Όπου υπάρχουν διαφορές αναφέρονται ρητά. Προσέξτε ιδιαίτερα, πάντως, ότι στο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Πτυχιακή Εξεταστική Ιούλιος 2014 Διδάσκων : Ευάγγελος Μαρκάκης 09.07.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες

Διαβάστε περισσότερα

Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1

Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Στοιχείο διαχωρισµού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση εισόδου σε δύο υπο-ακολουθίες:

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Εισαγωγή στους Αλγορίθμους Ενότητα 9η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Ελάχιστα Γεννητικά Δένδρα Ελάχιστο Γεννητικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 8η

Εισαγωγή στους Αλγορίθμους Ενότητα 8η Εισαγωγή στους Αλγορίθμους Ενότητα 8η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα

Διαβάστε περισσότερα

Αξιολόγηση Ευριστικών Αλγορίθµων

Αξιολόγηση Ευριστικών Αλγορίθµων Προσεγγιστικοί Αλγόριθµοι Πολλές ϕορές η εύρεση της ϐέλτιστων λύσεων προβληµάτων ακέραιου γραµµικού προγραµµατισµού είναι µια χρονοβόρα διαδικασία (εκθετική πολυπλοκότητα) Προσεγγιστικοί Αλγόριθµοι Πολλές

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 26 Ιουνίου 201 1 / Απληστοι (Greedy) Αλγόριθµοι

Διαβάστε περισσότερα

Αλγόριθµοι Divide-and- Conquer

Αλγόριθµοι Divide-and- Conquer Αλγόριθµοι Divide-and- Conquer Περίληψη Αλγόριθµοι Divide-and-Conquer Master Theorem Παραδείγµατα Αναζήτηση Ταξινόµηση Πλησιέστερα σηµεία Convex Hull Αλγόριθµοι Divide-and-Conquer Γενική Μεθοδολογία Το

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

Δένδρα επικάλ επικ υψης ελάχιστου στους

Δένδρα επικάλ επικ υψης ελάχιστου στους Δένδρα επικάλυψης ελάχιστου κόστους Αλγόριθμος Kruskal Αλγόριθμος Kruskal Ξεκινάμε από ένα δάσος από n δένδρα, κάθε ένα δένδρο εκφυλισμένο σε ένα μεμονωμένο κόμβο. Σε κάθε επανάληψη, προσθέτουμε τη πλευρά

Διαβάστε περισσότερα

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 5) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Βραχύτερα Μονοπάτια για όλα τα Ζεύγη Λύση υναµικού Προγραµµατισµού Ο αλγόριθµος των Floyd-Warshal ΕΠΛ 3

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008 Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 5//008 Πρόβληµα ο Στα παρακάτω ερωτήµατα επισηµαίνουµε ότι perceptron είναι ένας νευρώνας και υποθέτουµε, όπου χρειάζεται, τη χρήση δικτύων

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 28: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Η διαδικασία PercolateDown, Δημιουργία Σωρού - O Αλγόριθμος Ταξινόμησης HeapSort - Υλοποίηση, Παραδείγματα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND)

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) Ένωση Ξένων Συνόλων (Disjoint Sets with Union) S 1,, S k : ξένα υποσύνολα ενός συνόλου U δηλ., S i S j =, αν i j, και S 1 S k = U. Λειτουργίες που θέλουµε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 Ηµεροµηνία αποστολής στον φοιτητή: 9 Φεβρουαρίου 5. Τελική ηµεροµηνία αποστολής από τον φοιτητή: Μαρτίου 5.

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης: Α. SelectoSort Ταξινόμηση με Επιλογή Β. IsertoSort Ταξινόμηση με Εισαγωγή Γ. MergeSort

Διαβάστε περισσότερα

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εισαγωγή, εύρεση, διαγραφή) Ευθύγραμμες Διπλά Συνδεδεμένες Λίστες

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα

Άρα, Τ ser = (A 0 +B 0 +B 0 +A 0 ) επίπεδο 0 + (A 1 +B 1 +A 1 ) επίπεδο 1 + +(B 5 ) επίπεδο 5 = 25[χρονικές µονάδες]

Άρα, Τ ser = (A 0 +B 0 +B 0 +A 0 ) επίπεδο 0 + (A 1 +B 1 +A 1 ) επίπεδο 1 + +(B 5 ) επίπεδο 5 = 25[χρονικές µονάδες] Α. Στο παρακάτω διάγραµµα εµφανίζεται η εκτέλεση ενός παράλληλου αλγόριθµου που λύνει το ίδιο πρόβληµα µε έναν ακολουθιακό αλγόριθµο χωρίς πλεονασµό. Τα Α i και B i αντιστοιχούν σε ακολουθιακά υποέργα

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 19/04/2016 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραµα Πείραµα: Οποιαδήποτε διαδικασία που µπορεί να οδηγήσει σε ένα αριθµό παρατηρήσιµων

Διαβάστε περισσότερα

Διάλεξη 6: Εκλογή Προέδρου σε Σύγχρονους Δακτύλιους. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 6: Εκλογή Προέδρου σε Σύγχρονους Δακτύλιους. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 6: Εκλογή Προέδρου σε Σύγχρονους Δακτύλιους ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Μη Ομοιόμορφος Αλγόριθμος Εκλογής Προέδρου σε Σύγχρονο Δακτύλιο Ομοιόμορφος Αλγόριθμος Εκλογής Προέδρου

Διαβάστε περισσότερα

Branch and Bound. Branch and Bound

Branch and Bound. Branch and Bound Μέθοδος επίλυσης προβληµάτων ακέραιου γραµµικού προγραµµατισµού Μέθοδος επίλυσης προβληµάτων ακέραιου γραµµικού προγραµµατισµού Προσπαθούµε να αποφύγουµε την εξαντλητική αναζήτηση Μέθοδος επίλυσης προβληµάτων

Διαβάστε περισσότερα

ΗΜΥ 325: Επαναληπτικές Μέθοδοι. Διδάσκων: Χρίστος Παναγιώτου

ΗΜΥ 325: Επαναληπτικές Μέθοδοι. Διδάσκων: Χρίστος Παναγιώτου ΗΜΥ 325: Επαναληπτικές Μέθοδοι Διδάσκων: Χρίστος Παναγιώτου ΗΜΥ 325: Επαναληπτικές Μέθοδοι. A. Levitin, Introduction to the Design and Analysis of Algorithms, 2 nd Ed. Περίληψη µαθήµατος Επιπρόσθετες Πληροφορίες

Διαβάστε περισσότερα

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο Σχεδίαση Αλγορίθμων Άπληστοι Αλγόριθμοι http://delab.csd.auth.gr/~gounaris/courses/ad 1 Άπληστοι αλγόριθμοι Προβλήματα βελτιστοποίησης ηςλύνονται με μια σειρά επιλογών που είναι: εφικτές τοπικά βέλτιστες

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone Hµέθοδος Stepping Stoneείναι µία επαναληπτική διαδικασία για τον προσδιορισµό της βέλτιστης λύσης σε ένα πρόβληµα µεταφοράς.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: ΣΤΟΧΑΣΤΙΚΟΣ ΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΙΑ ΜΟΝΤΕΛΑ ΠΕΠΕΡΑΣΜΕΝΟΥ ΧΡΟΝΙΚΟΥ ΟΡΙΖΟΝΤΑ

ΚΕΦΑΛΑΙΟ 1: ΣΤΟΧΑΣΤΙΚΟΣ ΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΙΑ ΜΟΝΤΕΛΑ ΠΕΠΕΡΑΣΜΕΝΟΥ ΧΡΟΝΙΚΟΥ ΟΡΙΖΟΝΤΑ ΚΕΦΑΛΑΙΟ : ΣΤΟΧΑΣΤΙΚΟΣ ΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΙΑ ΜΟΝΤΕΛΑ ΠΕΠΕΡΑΣΜΕΝΟΥ ΧΡΟΝΙΚΟΥ ΟΡΙΖΟΝΤΑ. Εισαγωγή Στις αρχές του ου αιώνα ο Ρώσος Μαθηµατικός A. A. Markov στην προσπάθειά του να ερµηνεύσει την «αβεβαιότητα»

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Τελικές εξετάσεις 3 Ιανουαρίου 27 Διάρκεια εξέτασης: 3 ώρες (2:-5:) ΘΕΜΑ ο

Διαβάστε περισσότερα

ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης

ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων Λουκάς Γεωργιάδης loukas@cs.uoi.gr www.cs.uoi.gr/~loukas Βασικές έννοιες και εφαρμογές Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δομή

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανεπίλυτα Προβλήματα από τη Θεωρία Γλωσσών (5.1) To Πρόβλημα της Περάτωσης Το Πρόβλημα της Κενότητα

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα