ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ"

Transcript

1 ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ Μωυσιάδης Πολυχρόνης, Ανδρεάδης Ιωάννης Τμήμα Μαθηματικών Α.Π.Θ. ΠΕΡΙΛΗΨΗ Στην εργασία αυτή παρουσιάζεται μία μελέτη για την ελάχιστη διαδρομή σε δίκτυα μεταβλητού κόστους. Αρχικά παρουσιάζεται το πρόβλημα όταν τα βάρη των ακμών θεωρούνται σταθερά. Στην συνέχεια με τη βοήθεια μίας προσομοίωσης σε Η/Υ παρατηρείται η συμπεριφορά των δικτύων των οποίων τα βάρη είναι τυχαίες μεταβλητές που ακολουθούν λογαριθμοκανονική κατανομή. Το ερώτημα που τίθεται είναι αν η ελάχιστη διαδρομή που προκύπτει με τη χρήση των μέσων τιμών είναι αξιόπιστη. Από τα αποτελέσματα της προσομοίωσης προκύπτει η ανάγκη κατασκευής αλγορίθμου για την εύρεση της αμέσως μεγαλύτερης από την ελάχιστη διαδρομή. Τέλος διατυπώνονται κάποια συμπεράσματα και προτάσεις.. ΕΙΣΑΓΩΓΗ Ένα από τα συχνά εμφανιζόμενα προβλήματα στη μελέτη των δικτύων είναι αυτό της εύρεσης ελαχίστης διαδρομής από ένα κόμβο ο οποίος ονομάζεται αρχή σε έναν άλλο ο οποίος ονομάζεται τέλος. Το βάρος ή στάθμη (weight) της κάθε ακμής θεωρείται σταθερό. Για τη λύση του προβλήματος εφαρμόζεται συνήθως ο αλγόριθμος του Dijkstra. (βλ. Winston (99) ). Έστω g το δίκτυο της Εικόνας α στην οποία φαίνονται οι κόμβοι και οι ακμές με το βάρος τους. Εφαρμόζοντας τον αλγόριθμο του Dijkstra, βρίσκουμε τη ελάχιστη διαδρομή που εμφανίζεται στην Εικόνα β, με συνολικό βάρος, από τον κόμβο στον κόμβο 6 ίσο με 8 μονάδες. Στη συνέχεια της εργασίας στην διαδρομή αυτή θα αναφερόμαστε με το όνομα d α Εικόνα β

2 ΜΩΥΣΙΑΔΗΣ Χ. ΑΝΔΡΕΑΔΗΣ Ι.. ΔΙΚΤΥΑ ΜΕ ΑΚΜΕΣ ΜΕΤΑΒΛΗΤΟΥ ΒΑΡΟΥΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ. Έστω τώρα ότι το δίκτυο g έχει ακμές μεταβλητού βάρους. Παράδειγμα τέτοιου δικτύου είναι το σύνολο διαδρομών σε μία πόλη, όπου ο χρόνος εξαρτάται από τον κυκλοφοριακό φόρτο. Σε τέτοια δίκτυα όπως του παραδείγματος που αναφέρουμε παραπάνω, ο χρόνος από τον ένα κόμβο στον άλλο είναι τυχαία μεταβλητή που ακολουθεί κάποια κατανομή. Αν τα βάρη έχουν μεγάλες μέσες τιμές σε σχέση με τη διασπορά η πιθανότητα εμφάνισης αρνητικής τιμής για κάποια ακμή είναι πολύ μικρή. Σε αυτή την περίπτωση μπορούμε να χρησιμοποιήσουμε τη κανονική κατανομή για τις ακμές του δικτύου g. Επίσης η βήτα κατανομή έχει χρησιμοποιηθεί σε διάφορα δίκτυα των οποίων οι ακμές είναι τυχαίες μεταβλητές, όπως για παράδειγμα στα προβλήματα PERT. (βλ. Malcolm et al (99)). Σημειώνουμε ότι η LogNormal κατανομή είναι αυτή της οποίας αν λογαριθμήσουμε τις τιμές θα πάρουμε την αντίστοιχη κανονική κατανομή. Η LogNormal κατανομή είναι προτιμότερη της Κανονικής (Gaussian/Normal) κατανομής επειδή μας εξασφαλίζει ότι οι τιμές των ακμών θα είναι θετικές. Επίσης όπως προκύπτει από τη βιβλιογραφία συνήθως η κατανομή των ακμών ενός δικτύου παρουσιάζει λοξότητα προς τα δεξιά. (βλ. MacCrimmon, K.R., Ryavec, C.A. (964).). Ακόμη, από την ευκολία υπολογισμού τιμών της λογαριθμοκανονικής κατανομής σε συνδυασμό με τα προαναφερθέντα προκύπτει ότι η χρησιμοποίησή της στο πρόβλημα της ελάχιστης διαδρομής σε δίκτυα με ακμές μεταβλητού βάρους θα ήταν χρήσιμη σε πολλές περιπτώσεις.. ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ (SIMULATION) Επιστρέφουμε στο παράδειγμα του δικτύου που παραθέτουμε στην αρχή της εργασίας. Αυτή τη φορά θα θεωρήσουμε ότι τα βάρη των ακμών δεν είναι σταθερές, αλλά τυχαίες μεταβλητές οι οποίες ακολουθούν λογαριθμοκανονική κατανομή με μέση τιμή αυτή που φαίνεται στο σχέδιο και διασπορά τέτοια ώστε η αντίστοιχη κανονική κατανομή της καθεμιάς να έχει την ίδια τυπική απόκλιση. Αυτό δεν σημαίνει βέβαια ότι οι αντίστοιχες λογαριθμοκανονικές κατανομές έχουν την ίδια διασπορά, αλλά ότι ο λόγος διασποράς προς μέση τιμή είναι ίδιος για όλες τις μεταβλητές. Σκοπός μας είναι να μελετήσουμε το πρόβλημα της εύρεσης της ελαχίστης διαδρομής σε διάφορες στάθμες της τυπικής απόκλισης. Χρησιμοποιήσαμε το πακέτο λογισμικού «Mathematica» για να πάρουμε αποτελέσματα προσομοίωσης του προβλήματος αυτού στον Η/Υ. Κατασκευάστηκε ένα μικρό πρόγραμμα που εκμεταλλεύεται τις βιβλιοθήκες και τις συναρτήσεις του «Mathematica», το οποίο για κάθε στάθμη της τυπικής απόκλισης κάνει εκατό (00) επαναλήψεις. Σε κάθε μία από αυτές τα βάρη των ακμών παίρνουν μία τιμή από την κατανομή που ακολουθεί το καθένα. Θεωρώντας αυτές τις τιμές των βαρών ως σταθερές εφαρμόζεται ο αλγόριθμος του Dijkstra για την εύρεση της ελαχίστης διαδρομής. Στον Πίνακα που παραθέτουμε φαίνεται ένα απόσπασμα των αποτελεσμάτων.

3 ΒΕΛΤΙΣΤΕΣ ΔΙΑΔΡΟΜΕΣ ΣΕ ΔΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ Πίνακας Τυπική Απόκλιση Συχνότητα Εμφάνισης της Συχνότητα Εμφάνισης της της αντίστοιχης διαδρομής {,,, 4, 6} ως διαδρομής {,, 4, 6} Κανονικής Κατανομής ελάχιστη ως ελάχιστη Παλαιότερες μελέτες που έχουν γίνει στην περιοχή του προβλήματος της εύρεσης της ελάχιστης διαδρομής σε δίκτυα με ακμές μεταβλητού κόστους αφορούν στην εύρεση της κατανομής της τυχαίας μεταβλητής της ελάχιστης διαδρομής (βλ. Frank, H. (969).). Ο υπολογισμός της όμως, προϋποθέτει πολύπλοκους υπολογισμούς που καθιστούν την χρήση της μεθόδου δύσκολη. Την ίδια προσέγγιση στο πρόβλημα κάνουν και οι Sigal, C.E., Pritsker, A.A.B., Solberg J.J. (980) ελαττώνοντας την πολυπλοκότητα των υπολογισμών, αλλά και πάλι απαιτείται αρκετός κόπος για να χρησιμοποιηθεί η μέθοδος. Το πρόβλημα που τίθεται στην παρούσα εργασία είναι διαφορετικό. Το ερώτημα είναι αν και υπό ποιες συνθήκες, είναι αξιόπιστο να χρησιμοποιούμε τις μέσες τιμές για την εύρεση της ελάχιστης διαδρομής και όχι ποια είναι η κατανομή της τυχαίας μεταβλητής της ελάχιστης διαδρομής. Θεωρώντας ότι μία πρόταση είναι στατιστικά αξιόπιστη όταν το ποσοστό λάθους είναι κάτω του %, θα πρέπει να βρούμε τις συνθήκες κάτω από τις οποίες υφίσταται αυτή η αξιοπιστία. Στο παραπάνω πίνακα φαίνεται ότι για τιμές της τυπικής απόκλισης μεγαλύτερες του 0.4 η συχνότητα εμφάνισης της d είναι μικρότερη του 9 και εμφανίζεται με ποσοστό άνω του % μία άλλη διαδρομή η οποία είναι η αμέσως μεγαλύτερη. Τη διαδρομή αυτή στο εξής θα την αποκαλούμε d. Έτσι λοιπόν από τις συνεχείς προσομοιώσεις που έγιναν προέκυψε ότι το ποσοστό λάθους είναι συνάρτηση δύο παραγόντων: α) της τυπικής απόκλισης της αντίστοιχης κανονικής κατανομής και β) της διαφοράς της ελαχίστης διαδρομής d από την αμέσως μεγαλύτερη d. Έτσι προκύπτει η ανάγκη εύρεσης της αμέσως μεγαλύτερης από την ελάχιστη διαδρομή.

4 ΜΩΥΣΙΑΔΗΣ Χ. ΑΝΔΡΕΑΔΗΣ Ι. 4. ΕΥΡΕΣΗ ΤΗΣ ΑΜΕΣΩΣ ΜΕΓΑΛΥΤΕΡΗΣ ΑΠΟ ΤΗΝ ΕΛΑΧΙΣΤΗ ΔΙΑΔΡΟΜΗ. Έχουν γίνει διάφορες μελέτες για την ταξινόμηση των μονοπατιών από ένα κόμβο του δικτύου σε ένα άλλο. Μία από αυτές είναι του Martins, V.Q. (984) ο οποίος κατασκεύασε έναν αλγόριθμο κατά τον οποίο σε κάθε βήμα αντικαθίσταται το δίκτυο με ένα επεκτεταμένο στο οποίο υπάρχουν όλα τα μονοπάτια εκτός από αυτό που βρέθηκε στο προηγούμενο βήμα ως ελάχιστο. Για την περίπτωση όμως που το δίκτυο είναι πυκνό και η ελάχιστη διαδρομή αποτελείται από λίγες ακμές, θα ήταν χρήσιμος και ο παρακάτω αλγόριθμος, ο οποίος βασίζεται στην εξής σκέψη: αν αφαιρεθούν από το δίκτυο μία-μία οι ακμές που αποτελούν την ελάχιστη διαδρομή και σε καθένα από τα ζευγνύοντα υπογραφήματα εφαρμοστεί ο αλγόριθμος του Dijkstra θα δημιουργηθεί ένα σύνολο διαδρομών. Η μικρότερη από αυτές θα αποτελεί και την δεύτερη (αμέσως μεγαλύτερη) ελάχιστη διαδρομή. Ο αλγόριθμος ο οποίος υλοποιήθηκε στο «Mathematica» έχει ως εξής: α).υπολογίζουμε την ελάχιστη διαδρομή d από τον αρχικό κόμβο, στο τελικό 6, θεωρώντας σα σταθερά βάρη των ακμών τις μέσες τιμές των κατανομών. Έτσι για το g έχουμε ότι d={{,},{,},{,4},{4,6}}. β).αφαιρούμε από το γράφημα g, τη πρώτη ακμή που ανήκει στο μονοπάτι (path) d. Στο υπογράφημα ζεύξης (spanning subgraph) του g που προκύπτει εφαρμόζουμε τον αλγόριθμο εύρεσης της ελαχίστης διαδρομής. γ).επαναλαμβάνουμε την ίδια διαδικασία και για τις υπόλοιπες ακμές του d. Τέλος κρατάμε σαν αμέσως μεγαλύτερη ελάχιστη διαδρομή τη διαδρομή με το μικρότερο συνολικό βάρος. Πίνακας Σύμφωνα με τα παραπάνω Υπογράφημα ζεύξης Ελάχιστη διαδρομή Βάρος αποτελέσματα, όπως g-{,} {,,, 4, 6} φαίνονται στον Πίνακα η g-{,} {,, 4, 6} 0 αμέσως μεγαλύτερη ελάχιστη g-{,4} {,, 4, 6} 0 διαδρομή είναι η g-{4,6} {,,, 6} d={,,4,6} με βάρος 0. Σημειώνουμε ότι στη περίπτωση που στο υπό μελέτη δίκτυο υπάρχει και δεύτερη διαδρομή με συνολικό βάρος ίδιο με αυτό της ελάχιστης διαδρομής, ο αλγόριθμος θα μας δώσει αυτή τη διαδρομή σαν αποτέλεσμα. Στην περίπτωση αυτή μπορούμε να συνεχίσουμε σε δύο διαφορετικές κατευθύνσεις: α)αν θεωρήσουμε τις δύο διαδρομές απόλυτα ισοδύναμες, μπορούμε να βρούμε την αμέσως μεγαλύτερη από αυτές χρησιμοποιώντας μία παραλλαγή του παραπάνω αλγόριθμου. Συγκεκριμένα σε κάθε κύκλο του παραπάνω αλγορίθμου θα θεωρούμε το υπογράφημα ζεύξης το οποίο θα προκύπτει από το αρχικό αν κάθε φορά αφαιρούμε δύο ακμές. Μία από τη πρώτη ελάχιστη και μία από τη δεύτερη, έτσι όπως προκύπτουν από τους ανά δύο συνδυασμούς τους.

5 ΒΕΛΤΙΣΤΕΣ ΔΙΑΔΡΟΜΕΣ ΣΕ ΔΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ β) Αν δεν θεωρήσουμε τις δύο διαδρομές απόλυτα ισοδύναμες και μας ενδιαφέρει να δούμε ποια από τις δύο διαδρομές είναι καλύτερη μπορούμε να φτάσουμε σε συμπεράσματα χρησιμοποιώντας πάλι την προσομοίωση στο «Mathematica».. ΕΥΡΕΣΗ ΣΥΝΘΗΚΩΝ ΑΞΙΟΠΙΣΤΙΑΣ Έχοντας υπολογίσει την ελάχιστη διαδρομή d καθώς και τη δεύτερη ελάχιστη d, έχουμε τα βάρη τους τα οποία είναι τυχαίες μεταβλητές με μέση τιμή το άθροισμα των μέσων τιμών των αντίστοιχων ακμών και διασπορά τα αθροίσματα των διασπορών. Αν το πλήθος των ακμών είναι αρκετά μεγάλο έτσι ώστε να εφαρμόζεται το Κ.Ο.Θ., μπορούμε να θεωρήσουμε ότι τα βάρη των δύο ελαχίστων διαδρομών είναι τυχαίες μεταβλητές που ακολουθούν κανονικές κατανομές. Αν οι δύο διαδρομές δεν έχουν κοινές ακμές, μπορούν να θεωρηθούν ως ανεξάρτητες μεταβλητές. Στη περίπτωση αυτή η διαφορά των βαρών των δύο ελαχίστων διαδρομών μπορεί να θεωρηθεί ότι ακολουθεί κανονική κατανομή με μέση τιμή τη διαφορά των δύο βαρών (για το υπό μελέτη παράδειγμα -) και διασπορά το άθροισμα των διασπορών των δύο βαρών. Στην περίπτωση που οι δύο διαδρομές δεν είναι ξένες μεταξύ τους παύει να ισχύει η ανεξαρτησία. Αν ισχύει κάτι τέτοιο (βλ. Frank, H. (969).) στη θέση της διαφοράς πρέπει να μπει η μεταβλητή που προκύπτει από την διαφορά μόνο των ξένων κομματιών των δύο διαδρομών, η οποία θα έχει την ίδια μέση τιμή αλλά μικρότερη διασπορά. 70 Η μεταβλητή αυτή πάλι 60 εφόσον ισχύουν οι προϋπο- 0 θέσεις του Κ.Ο.Θ., μπορεί 40 να θεωρηθεί ότι ακολουθεί 0 κανονική κατανομή, γεγο- 0 νός που επαληθεύθηκε από την προσομοίωση όπως 0 0-7,0 -,0 -,0 -,0,0 Std. Dev =,9 Mean = -,0 N = 400,00,0 φαίνεται και γραφικά στο σχήμα. -6,0 DIFF -4,0 -,0 -,0,0 Διατυπώνουμε τις προτάσεις:. Αν το 9 ποσοστιαίο σημείο της κατανομής της διαφοράς είναι μεγαλύτερο του 0, τότε υπάρχει πιθανότητα άνω του 0,0 η δεύτερη ελάχιστη διαδρομή d να είναι μικρότερη από την d.. Η πιθανότητα η διαφορά να είναι μικρότερη του μηδενός μας δίνει τη σχετική συχνότητα εμφάνισης της d.

6 ΜΩΥΣΙΑΔΗΣ Χ. ΑΝΔΡΕΑΔΗΣ Ι. 6. ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ (SIMULATION) Στα αποτελέσματα της προσομοίωσης που εμφανίζονται στον Πίνακα μπορούμε να δούμε ότι δίνοντας στη τυπική απόκλιση της αντίστοιχης κανονικής κατανομής τιμές από 0, έως 0,4 παίρνουμε το 9% ποσοστιαίο σημείο της ίδιας κατανομής, καθώς και την πιθανότητα η διαφορά να είναι μικρότερη του μηδενός. Επίσης μπορούμε να δούμε ποια μονοπάτια και πόσες φορές εμφανίζονται ως ελάχιστα. Στο πίνακα αυτόν φαίνεται να ισχύουν οι προτάσεις μας. Πίνακας Τυπική Απόκλιση 9 ποσοστιαίο Πιθανότητα η Συχνότητα Εμφάνισης Συχνότητα Εμφά- της αντίστοιχης σημείο της Διαφορά να της διαδρονισης της διαδρο- Κανονικής Κατανομής κατανομής της είναι μικρότεμής {,,,4,6}ως μής {,,4,6} ως Διαφοράς ρη του μηδέν ελάχιστη ελάχιστη 0, -0,6 0, , -0,489 0, , -0,948 0, ,4-0,99 0, , -0,04 0, ,6 0, 0, ,7 0,0 0,98 9 0,8 0,887 0, ,9 0,84 0, , 0,669 0, , 0,84 0, , 0,948 0, ,,0996 0, ,4,48 0, ABSTRACT This paper considers the problem of the reliability of the expected shortest path in graphs where edge lengths are random variables with lognormal distribution. A Monte Carlo simulation is used in order to observe the performance of the variable cost networks. Based on the Monte Carlo results, it develops a heuristic method to calculate the expected shortest path s reliability, designed in such a way as to keep computational needs to a minimum. It also presents an alternative method for determining the K best paths in a graph, which could be useful for small K values in dense graphs whose shortest path consists of a small number of edges.

7 ΒΕΛΤΙΣΤΕΣ ΔΙΑΔΡΟΜΕΣ ΣΕ ΔΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ ΒΙΒΛΙΟΓΡΑΦΙΑ Winston, W.L. (99): Introduction to mathematical programming: applications and algorithms. PWS-KENT, Boston. Malcolm, D.G., Roseboom, J.H., Clarck C.E., Fazar, W. (99): Application of a Technique for Research and Development Program Evaluation. Operations Research, 7, MacCrimmon, K.R., Ryavec, C.A. (964): An Analytical Study of the PERT Assumptions. Operations Research,, 6-7. Frank, H. (969): Shortest Paths in Probabilistic Graphs. Operations Research, 7, Sigal, C.E., Pritsker, A.A.B. Solberg J.J. (980): The Stochastic Shortest Route Problem. Operations Research, 8, -9. Martins, V.Q. (984): An algorithm for ranking paths that may contain cycles. European Journal of Operational Research, 8, -0.

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα 7ο εξάμηνο Σ.Η.Μ.Μ.Υ. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 4η εβδομάδα: Εύρεση k-οστού Μικρότερου Στοιχείου, Master Theorem, Τεχνική Greedy: Knapsack, Minimum Spanning Tree, Shortest Paths

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : , Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕΤΑΔΟΣΗΣ ΣΕ ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ ΜΕ ΣΥΣΚΕΥΕΣ ΔΙΑΚΡΙΤΩΝ ΤΙΜΩΝ ΙΣΧΥΟΣ ΜΕ ΤΗ ΧΡΗΣΗ

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

u v 4 w G 2 G 1 u v w x y z 4

u v 4 w G 2 G 1 u v w x y z 4 Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E

Διαβάστε περισσότερα

Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια

Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια Graph Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια Περιεχόμενα Μεταβατικό Κλείσιμο Συνεκτικές συνιστώσες Συντομότερα μονοπάτια Breadth First Spanning

Διαβάστε περισσότερα

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο Σχεδίαση Αλγορίθμων Άπληστοι Αλγόριθμοι http://delab.csd.auth.gr/~gounaris/courses/ad 1 Άπληστοι αλγόριθμοι Προβλήματα βελτιστοποίησης ηςλύνονται με μια σειρά επιλογών που είναι: εφικτές τοπικά βέλτιστες

Διαβάστε περισσότερα

Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική

Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική Graph Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική Περιεχόμενα minimum weight spanning tree connected components transitive closure shortest paths

Διαβάστε περισσότερα

Δροµολόγηση (Routing)

Δροµολόγηση (Routing) Δροµολόγηση (Routing) Περίληψη Flooding Η Αρχή του Βέλτιστου και Δυναµικός Προγραµµατισµός Dijkstra s Algorithm Αλγόριθµοi Δροµολόγησης Link State Distance Vector Δροµολόγηση σε Κινητά Δίκτυα Δροµολόγηση

Διαβάστε περισσότερα

Ποσοτική Ανάλυση Επιχειρηματικών Αποφάσεων Προγραμματισμός ιαχείριση Έργων. Μέρος B

Ποσοτική Ανάλυση Επιχειρηματικών Αποφάσεων Προγραμματισμός ιαχείριση Έργων. Μέρος B Ποσοτική Ανάλυση Επιχειρηματικών Αποφάσεων Προγραμματισμός ιαχείριση Έργων. Μέρος B Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών στη ιοίκηση Επιχειρήσεων Πανεπιστήμιο Μακεδονίας, Ακαδημαϊκό

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοικητική Επιστήμη

Ποσοτικές Μέθοδοι στη Διοικητική Επιστήμη ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Προγράμματα Εκπαίδευσης με τη χρήση καινοτόμων μεθόδων εξ αποστάσεως εκπαίδευσης Ποσοτικές Μέθοδοι στη Διοικητική Επιστήμη Χρονικός προγραμματισμός έργων με

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 1 Εισαγωγή 1 / 14 Δομές Δεδομένων και Αλγόριθμοι Δομή Δεδομένων Δομή δεδομένων είναι ένα σύνολο αποθηκευμένων

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Παράδειγµα (Risky Business 1)

Παράδειγµα (Risky Business 1) Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 3 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) ΑΝΤΙΚΕΙΜΕΝΟ: Συµπεράσµατα για την αβεβαιότητα Θέµατα

Διαβάστε περισσότερα

H ΚΑΤΑΝΟΜΗ WEIBULL ΣΤΟ ΧΡΟΝΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΡΓΩΝ (PERT)

H ΚΑΤΑΝΟΜΗ WEIBULL ΣΤΟ ΧΡΟΝΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΡΓΩΝ (PERT) H ΚΑΤΑΝΟΜΗ WEIBULL ΣΤΟ ΧΡΟΝΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΡΓΩΝ (PERT) Ιωάννης Ανδρεάδης & Χρόνης Μωυσιάδης Τμήμα Μαθηματικών, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΠΕΡΙΛΗΨΗ Η τεχνική PERT χρησιμοποιείται για τον

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ EΡΕΥΝΑ & ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ OPERATIONS RESEARCH & MANAGEMENT SCIENCE

ΕΠΙΧΕΙΡΗΣΙΑΚΗ EΡΕΥΝΑ & ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ OPERATIONS RESEARCH & MANAGEMENT SCIENCE ΕΠΙΧΕΙΡΗΣΙΑΚΗ EΡΕΥΝΑ & ΔΙΟΙΚΗΤΙΚΗ OPERATIONS RESEARCH & MANAGEMENT SCIENCE ΚΑΤΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Τμήμα Διοικητικής Επιστήμης & Τεχνολογίας Οικονομικό Πανεπιστήμιο Αθηνών 1. Κ. Πραματάρη, Δ.Ε.Τ. / Ο.Π.Α. The

Διαβάστε περισσότερα

Τεχνολογίες Υλοποίησης Αλγορίθµων

Τεχνολογίες Υλοποίησης Αλγορίθµων Τεχνολογίες Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Ενότητα 3 1 / 25 Ενότητα 3 οκιµή Προγραµµάτων (Program Testing)

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Τομέας Μαθηματικών, Τηλέφωνο: (210) 772-1702, Φαξ: (210) 772-1775.

Διαβάστε περισσότερα

Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο. Δίκτυα Ροής Ελάχιστου Κόστους (Minimum Cost Flow Networks)

Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο. Δίκτυα Ροής Ελάχιστου Κόστους (Minimum Cost Flow Networks) Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο Ορισμοί Παραδείγματα Δικτυακή Simplex (προβλήματα με και χωρίς φραγμούς). Δίκτυα Ροής Ελάχιστου Κόστους (Minimum ost Flow Networks) Ένα δίκτυο μεταφόρτωσης αποτελείται

Διαβάστε περισσότερα

Σχέσεις, Ιδιότητες, Κλειστότητες

Σχέσεις, Ιδιότητες, Κλειστότητες Σχέσεις, Ιδιότητες, Κλειστότητες Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σχέσεις 1 / 26 Εισαγωγή & Ορισµοί ιµελής Σχέση R από

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Το Πιθανοκρατικό Μοντέλο Κλασικά Μοντέλα Ανάκτησης Τρία είναι τα, λεγόμενα, κλασικά μοντέλα ανάκτησης: Λογικό (Boolean) που βασίζεται στη Θεωρία Συνόλων Διανυσματικό (Vector) που βασίζεται στη Γραμμική

Διαβάστε περισσότερα

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Μ ΑΪΟΥ 2002 2004 Δ ΕΥΤΕΡΟ ΜΕΡΟΣ Π ΕΡΙΛΗΨΗ: Η μελέτη αυτή έχει σκοπό να παρουσιάσει και να ερμηνεύσει τα ευρήματα που προέκυψαν από τη στατιστική

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ανάλυση Χρόνου, Πόρων & Κόστους

Ανάλυση Χρόνου, Πόρων & Κόστους ΠΜΣ: «Παραγωγή και ιαχείριση Ενέργειας» ιαχείριση Ενέργειας και ιοίκηση Έργων Ανάλυση Χρόνου, Πόρων & Κόστους Επ. Καθηγητής Χάρης ούκας, Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστημάτων Αποφάσεων & ιοίκησης

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Περιεχόμενα Μαθήματος Εισαγωγή στο Πρόβλημα. Monte Carlo Εκτιμητές. Προσομοίωση. Αλυσίδες Markov. Αλγόριθμοι MCMC (Metropolis Hastings & Gibbs Sampling).

Διαβάστε περισσότερα

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι: Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του

Διαβάστε περισσότερα

Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim. Αικατερίνη Κούκιου

Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim. Αικατερίνη Κούκιου Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim Αικατερίνη Κούκιου Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

Δίκτυα Υπολογιστών ΙΙ (Ασκήσεις Πράξης)

Δίκτυα Υπολογιστών ΙΙ (Ασκήσεις Πράξης) TEI Σερρών Τμήμα Πληροφορικής και Επικοινωνιών Δίκτυα Υπολογιστών ΙΙ (Ασκήσεις Πράξης) Least Cost Algorithms Τομέας Τηλεπικοινωνιών και Δικτύων Δρ. Αναστάσιος Πολίτης Καθηγητής Εφαρμογών anpol@teiser.gr

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας. Περιεχόμενα της Ενότητας Στατιστική Ι Ενότητα 5: Συνεχείς Κατανομές Πιθανότητας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς

Διαβάστε περισσότερα

ΑΠΟΣΤΑΣΕΙΣ ΓΙΑ ΤΗΝ ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΠΟΙΟΤΙΚΕΣ ΜΕΤΑΒΛΗΤΈΣ (ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ)

ΑΠΟΣΤΑΣΕΙΣ ΓΙΑ ΤΗΝ ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΠΟΙΟΤΙΚΕΣ ΜΕΤΑΒΛΗΤΈΣ (ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ) «ΣΠ0ΥΔΑI», Τόμος 47, Τεύχος 3o-4o, Πανεπιστήμιο Πειραιώς / «SPOUDAI», Vol. 47, No 3-4, University of Piraeus ΑΠΟΣΤΑΣΕΙΣ ΓΙΑ ΤΗΝ ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΠΟΙΟΤΙΚΕΣ ΜΕΤΑΒΛΗΤΈΣ (ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ) Υπό Γιάννης

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

Ανάπτυξη του Τεχνικού Κειμένου Η Αρχική Σύνταξη

Ανάπτυξη του Τεχνικού Κειμένου Η Αρχική Σύνταξη Ανάπτυξη του Τεχνικού Κειμένου Η Αρχική Σύνταξη Ενότητες και υποενότητες Εισαγωγή - Δομικές μηχανές - Τύποι, ταξινομήσεις και χρήσεις Γενική θεωρία δομικών μηχανών Χαρακτηριστικά υλικών Αντιστάσεις κίνησης

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

Αξιολόγηση Επενδυτικών Σχεδίων

Αξιολόγηση Επενδυτικών Σχεδίων Αξιολόγηση Επενδυτικών Σχεδίων Ενότητα 4: Ανάλυση ευαισθησίας και πιθανολογική ανάλυση Δ. Δαμίγος Μ. Μενεγάκη Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ

2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΣΤΑΘΕΡΕΣ είναι τα μεγέθη που δεν μεταβάλλονται κατά την εκτέλεση ενός αλγόριθμου. Εκτός από τις αριθμητικές σταθερές (7, 4, 3.5, 100 κλπ), τις λογικές σταθερές (αληθής και ψευδής)

Διαβάστε περισσότερα

βασικές έννοιες (τόμος Β)

βασικές έννοιες (τόμος Β) θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)

Διαβάστε περισσότερα

Ανάπτυξη συστήματος ερωταποκρίσεων για αρχεία ελληνικών εφημερίδων

Ανάπτυξη συστήματος ερωταποκρίσεων για αρχεία ελληνικών εφημερίδων Ανάπτυξη συστήματος ερωταποκρίσεων για αρχεία ελληνικών εφημερίδων Οικονομικό Πανεπιστήμιο Αθηνών Πρόγραμμα Μεταπτυχιακών Σπουδών «Επιστήμη των Υπολογιστών» Διπλωματική Εργασία Μαρία-Ελένη Κολλιάρου 2

Διαβάστε περισσότερα

Προσομοίωση Συστημάτων

Προσομοίωση Συστημάτων Προσομοίωση Συστημάτων Προσομοίωση και μοντέλα συστημάτων Άγγελος Ρούσκας Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Γενικός ορισμός συστήματος Ένα σύνολο στοιχείων/οντοτήτων που αλληλεπιδρούν μεταξύ

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Διμεταβλητές κατανομές πιθανοτήτων

Διμεταβλητές κατανομές πιθανοτήτων Διμεταβλητές κατανομές πιθανοτήτων Για να περιγράψουμε την σχέση ανάμεσα σε δύο τυχαίες μεταβλητές χρειαζόμαστε την κοινή κατανομή πιθανοτήτων τους. Η κοινή συνάρτηση πιθανότητ ικανοποιε ί τις συνθ ήκες

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ TECHNOLOGICAL EDUCATIONAL INSTITUTE OF WESTERN GREECE

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ TECHNOLOGICAL EDUCATIONAL INSTITUTE OF WESTERN GREECE ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής

Διαβάστε περισσότερα

Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 4 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας)

Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 4 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 4 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) ΑΝΤΙΚΕΙΜΕΝΟ: Προσοµοίωση (Simulation) και Τυχαίες µεταβλητές

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

ΔΙΚΤΥΑ (13) Π. Φουληράς

ΔΙΚΤΥΑ (13) Π. Φουληράς ΔΙΚΤΥΑ (13) Π. Φουληράς Τεχνολογίες WAN και Δρομολόγηση LAN Επεκτείνεται μόνον σε ένα κτίριο ή ομάδα κτιρίων WAN (Wide Area Network) Επεκτείνονται σε μεγάλες περιοχές MAN Ενδιάμεσο ως προς το μέγεθος της

Διαβάστε περισσότερα

Ενότητα 4. Πρωτόκολλα ροµολόγησης: Αρχές Λειτουργίας του OSPF (Open Shortest Path First)

Ενότητα 4. Πρωτόκολλα ροµολόγησης: Αρχές Λειτουργίας του OSPF (Open Shortest Path First) Ενότητα 4 Πρωτόκολλα ροµολόγησης: Αρχές Λειτουργίας του OSPF (Open Shortest Path First) Πρωτόκολλα ροµολόγησης Πρωτόκολλα ιανύσµατος Απόστασης Πρωτόκολλα Κατάστασης Ζεύξης Πρωτόκολλα ιανύσµατος Απόστασης

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Ενότητα 10 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΣ ΕΠΙΛΟΓΗΣ ΥΠΟΠΙΝΑΚΑ ΜΕ ΤΗΝ ΠΛΗΣΙΕΣΤΕΡΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕΣΩ ΤΗΣ AFC ΣΤΟ ΓΕΝΙΚΕΥΜΕΝΟ ΠΙΝΑΚΑ

ΑΛΓΟΡΙΘΜΟΣ ΕΠΙΛΟΓΗΣ ΥΠΟΠΙΝΑΚΑ ΜΕ ΤΗΝ ΠΛΗΣΙΕΣΤΕΡΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕΣΩ ΤΗΣ AFC ΣΤΟ ΓΕΝΙΚΕΥΜΕΝΟ ΠΙΝΑΚΑ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 18 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ.247-256 ΑΛΓΟΡΙΘΜΟΣ ΕΠΙΛΟΓΗΣ ΥΠΟΠΙΝΑΚΑ ΜΕ ΤΗΝ ΠΛΗΣΙΕΣΤΕΡΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕΣΩ ΤΗΣ AFC ΣΤΟ ΓΕΝΙΚΕΥΜΕΝΟ ΠΙΝΑΚΑ ΣΥΜΠΤΩΣΕΩΝ

Διαβάστε περισσότερα

Αλγόριθμοι Γραφημάτων

Αλγόριθμοι Γραφημάτων Αλγόριθμοι Γραφημάτων 1. Minimum Spanning Trees 2. Αλγόριθμος Prim 3. Αλγόριθμος Kruskal Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Minimum Spanning Tree Πρόβλημα: Για δοσμένο συνεκτικό, μη προσανατολισμένο,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 24: Ειδικές Περιπτώσεις του Προβλήματος Ροής Ελαχίστου Κόστους Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ . ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ (RANK REGRESSION).1 Μονότονη Παλινδρόμηση (Monotonic Regression) Από τη γραφική παράσταση των δεδομένων του προηγουμένου προβλήματος παρατηρούμε ότι τα ζευγάρια (Χ i, i )

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 3 : Γραφήματα & Αποδείξεις Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι) HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 5 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ

ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ Μέτρα Περιγραφικής Στατιστικής Πληθυσμιακοί παράμετροι: τα αριθμητικά μεγέθη που εκφράζουν τις στατιστικές ιδιότητες ενός πληθυσμού (που προσδιορίζουν / περιγράφουν τη φυσιογνωμία και τη δομή του) Στατιστικά

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γράφων (Graph Theory)

Στοιχεία Θεωρίας Γράφων (Graph Theory) Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,

Διαβάστε περισσότερα

Minimum Spanning Tree: Prim's Algorithm

Minimum Spanning Tree: Prim's Algorithm Minimum Spanning Tree: Prim's Algorithm 1. Initialize a tree with a single vertex, chosen arbitrarily from the graph. 2. Grow the tree by one edge: of the edges that connect the tree to vertices not yet

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 9: Άπληστοι Αλγόριθμοι. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 9: Άπληστοι Αλγόριθμοι. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 9: Άπληστοι Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Ενότητα Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή Εργαστήριο 10 Γράφηµα (Graph) Εισαγωγή Στην πληροφορική γράφηµα ονοµάζεται µια δοµή δεδοµένων, που αποτελείται από ένα σύνολο κορυφών ( vertices) (ή κόµβων ( nodes» και ένα σύνολο ακµών ( edges). Ενας

Διαβάστε περισσότερα

ιαδίκτυα & Ενδοδίκτυα Η/Υ

ιαδίκτυα & Ενδοδίκτυα Η/Υ ιαδίκτυα & Ενδοδίκτυα Η/Υ (Kεφ. 10) ΡΟΜΟΛΟΓΗΣΗ Χαρακτηριστικά Στρατηγικές ροµολόγησης Παραδείγµατα Βιβλίο Μαθήµατος: Επικοινωνίες Υπολογιστών & εδοµένων, William Stallings, 6/e, 2000. ΕΥ - κεφ.10 (2/3)

Διαβάστε περισσότερα

Θεωρία Γράφων Αλγόριθμοι BFS, Prim, Dijkstra, Bellman-Ford

Θεωρία Γράφων Αλγόριθμοι BFS, Prim, Dijkstra, Bellman-Ford Θεωρία ράφων λγόριθμοι BFS, Prim, Dijkstra, Bellman-Ford Θεωρία γράφων Υπογράφοι και spanning trees Ένας γράφος G =(V,E ) είναι υπογράφος (subgraph) ενός γράφου G=(V,E) αν V ' V και E' E Ένας υπογράφος

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθμους. Παύλος Εφραιμίδης, Λέκτορας

Εισαγωγή στους Αλγόριθμους. Παύλος Εφραιμίδης, Λέκτορας Εισαγωγή στους Αλγόριθμους Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr 1 Περιεχόμενα Μαθήματος Εισαγωγή στου Αλγόριθμους Πολυπλοκότητα Αλγορίθμων Ασυμπτωτική Ανάλυση Θεωρία Γράφων Κλάσεις Πολυπλοκότητας

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου Χριστίνα Σπυροπούλου 8η Διάλεξη 8 Δεκεμβρίου 2016 1 Ασύγχρονη κατασκευή BFS δέντρου Στα σύγχρονα συστήματα ο αλγόριθμος της πλημμύρας είναι ένας απλός αλλά

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4Β: Έλεγχοι Κανονικότητας Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 4o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f =

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f = ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 16 (version 9-6-16) 1. A Να δώσετε τον ορισμό της παραγώγου μιας συνάρτησης σε ένα σημείο x του πεδίο ορισμού της. Απάντηση: Παράγωγος μιας συνάρτησης σε ένα σημείο x του πεδίο

Διαβάστε περισσότερα

Μάθημα 21: Ουρές (Queues)

Μάθημα 21: Ουρές (Queues) Queues Page 1 Μάθημα 21: Ουρές (Queues) Η ουρά (queue) είναι μια δομή δεδομένων. Η βασική λειτουργικότητα είναι η εισαγωγή στοιχείων στην πίσω θέση και η εξαγωγή-διαγραφή στοιχείων από την μπροστινή θέση.

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Δρομολόγηση (Routing)

Δρομολόγηση (Routing) Δρομολόγηση (Routing) Περίληψη Flooding Η Αρχή του Βέλτιστου και Δυναμικός Προγραμματισμός ijkstra s Algorithm Αλγόριθμοi Δρομολόγησης Link State istance Vector Δρομολόγηση σε Κινητά Δίκτυα Δρομολόγηση

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 22 Counting sort, bucket sort και radix sort 1 / 16 Ιδιότητες αλγορίθμων ταξινόμησης ευστάθεια (stable

Διαβάστε περισσότερα

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 4ο Κατανομές Στατιστικών Συναρτήσεων Δείγμα από κανονική κατανομή Έστω Χ= Χ Χ Χ τ.δ. από Ν µσ τότε ( 1,,..., n) (, ) Τ Χ Χ Ν Τ Χ σ σ Χ Τ Χ n Χ S µ S µ 1( ) = (0,1), ( ) = ( n 1)

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός (ΓΠ)

Γραµµικός Προγραµµατισµός (ΓΠ) Γραµµικός Προγραµµατισµός (ΓΠ) Περίληψη Επίλυση δυσδιάστατων προβληµάτων Η µέθοδος simplex Τυπική µορφή Ακέραιος Προγραµµατισµός Προγραµµατισµός Παραγωγής Προϊόν Προϊόν 2 Παραγωγική Δυνατότητα Μηχ. 4 Μηχ.

Διαβάστε περισσότερα

Ελεγκτικής. ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας)

Ελεγκτικής. ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) Πληροφοριακά Συστήµατα ιοίκησης Management Information Systems Εργαστήριο 2 Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) ΑΝΤΙΚΕΙΜΕΝΟ: Προσοµοίωση (Simulation) και τυχαίες µεταβλητές

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων

ΠΕΡΙΕΧΟΜΕΝΑ. Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων ΠΕΡΙΕΧΟΜΕΝΑ Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων Εισαγωγή Η χρήση των μεταβλητών με δείκτες στην άλγεβρα είναι ένας ιδιαίτερα

Διαβάστε περισσότερα

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΝΑΛΥΣΗ ΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ ΧΡΕΟΚΟΠΙΑΣ ΚΑΙ ΤΩΝ

Διαβάστε περισσότερα

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Ενότητα 6 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αυτόματα Στοίβας (2.2) Τυπικός Ορισμός Παραδείγματα Ισοδυναμία με Ασυμφραστικές

Διαβάστε περισσότερα

Συνδετικότητα γραφήματος (graph connectivity)

Συνδετικότητα γραφήματος (graph connectivity) Συνδετικότητα γραφήματος (graph connectivity) Συνδετικότητα γραφήματος (graph connectivity) Υπάρχει μονοπάτι μεταξύ α και β; α Παραδείγματα: υπολογιστές ενός δικτύου ιστοσελίδες ισοδύναμες μεταβλητές ενός

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος

Διαβάστε περισσότερα