Μέτρα της οργάνωσης και της ποιότητας για τον Self-Organizing Hidden Markov Model Map (SOHMMM)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μέτρα της οργάνωσης και της ποιότητας για τον Self-Organizing Hidden Markov Model Map (SOHMMM)"

Transcript

1 Μέτρα της οργάνωσης και της ποιότητας για τον Self-Organizing Hidden Markov Model Map (SOHMMM)

2 Γενική περιγραφή του SOHMMM Ένα υβριδικό νευρωνικό δίκτυο, σύζευξη δύο πολύ επιτυχημένων μοντέλων: -Self-Organizing Maps (SOM) -Hidden Markov Models (HMM) Με μια αφαιρετική περιγραφή ένα SOM με κόμβους μαρκοβιανά μοντέλα. Εφαρμογές: Ό,τι και ένα SOM( οπτικοποίηση, αφαίρεση, μείωση διάστασης), χωρίς όμως τον περιορισμό τα δεδομένα να έχουν διανυσματική μορφή (πχ clustering DNA ή πρωτεϊνικών ακολουθιών)

3 Υλοποίηση Αποστάσεις μεταξύ HMMs πιθανοτικό μέτρο απόστασης D λ 0, λ =lim T 1 T [ log μ O T λ 0 log μ O T λ ] Όμοια με το SOM: για κάθε ακολουθία Ο του συνόλου δεδομένων -προσδιορίζουμε τον κόμβο νικητή λi( ΗΜΜ με τη μεγαλύτερη πιθανότητα εμφάνισης της συγκεκριμένης ακολουθίας) -ανανεώνουμε τις παραμέτρους του λi ώστε να μεγιστοποιήσουμε την πιθανότητα εμφάνισης της Ο από αυτό ανανέωση των παραμέτρων των HMM μέσω ενός online gradient descent αλγόριθμου

4 Παράδειγμα οπτικοποίησης SOHMMM

5 Μέτρα οργάνωσης Ένας μεγάλος αριθμός μέτρων οργάνωσης έχει αναπτυχθεί και χρησιμοποιηθεί για διάφορους αλγόριθμους ομαδοποίησης/χαρτογράφησης ώστε: να μπορούμε να παρακολουθούμε την εξέλιξη του εκάστοτε αλγόριθμου εφαρμογές: πχ early stopping να εκφράζεται με ποσοτικό τρόπο η ποιότητα μιας δοσμένης απεικόνισης προκειμένου να είναι δυνατή η σύγκριση με άλλες ή η απόφανση για το αν είναι ικανοποιητική ή όχι εφαρμογές: πχ εύρεση βέλτιστης παραμετροποίησης ενός νευρωνικού δικτύου

6 Στην εργασία αυτή Μελετήθηκε μια πλειάδα από ήδη υπάρχοντα μέτρα Επιλέχθηκαν εννέα από αυτά που τροποποιήθηκαν και προσαρμόστηκαν κατάλληλα ώστε να είναι δυνατή η χρήση τους για το SOHMMM Διερευνήθηκαν η επίδοση και η λειτουργικότητά τους μέσω προσομοιώσεων

7 Quantization Error Το σφάλμα κβαντισμού, προέρχεται από την θεωρία του κβαντισμού διανυσμάτων και περιγράφει το πόσο καλά περιγράφονται τα δεδομένα από τον κόμβο αναφοράς στον οποίο έχουν αντιστοιχηθεί. q e = 1 λ N M Ο. loglikelihood Ο all Ο

8 Topographic error Το τοπογραφικό σφάλμα, προερχόμενο από το SOM, περιγράφει την ομαλότητα της απεικόνισης. N t e = 1 N k=1 u Ο κ με u Ο k = 1, μη γειτονικά i, j 0, διαφορετικά i:1 st best matching unit j:2 nd best matching unit

9 C-measure Το μέτρο αυτό, αναπτύχθηκε από τους Goodhill και Sernowski, αυξάνεται για καλύτερες απεικονίσεις. N C = i=1 j i F i, j G M i,m j με, F i, j = D s λ i, λ j G M i, M j = p M i p M j

10 Demartines-Herault measure Το μέτρο αυτό αποτελεί μια συνάρτηση ενέργειας που αναμένουμε να μειώνεται για καλύτερες απεικονίσεις. N E = 1/2 i=1 j i F i, j G M i, M j 2 h G

11 Distortion measure Αποτελεί μια συνάρτηση ενέργειας. Προσεγγίζει καλύτερα από κάθε άλλο μέτρο τη συνάρτηση ενέργειας του SOM. P N E = i=1 j=1 h bi j m j. loglikelihood Ο i 2

12 Κριτήριο Calinski Harabasz HC = BGSS k 1 / WGSS n k

13 Topographic product Περιγράφει την ποιότητα της απεικόνισης, λαμβάνοντας την τιμή 0 για τέλεια απεικόνιση. Αποτελεί ένα από τα πιο δημοφιλή μέτρα οργάνωσης για το SOM. P = 1 N N 1 j=1 N N 1 k=1 log P 3 j,k P 3 j, k = l=1 k Q 1 j,l Q 2 j, l 1 2k Q 1 j, k = d V λ j, λ nk A j d V λ j, λ nk V j Q 2 j, k = d A j, n A k j d A j, n V k j

14 Εντροπία i A p i log p i όπου p i = 1 N Ο V p i Ο Δείγματα εισόδου που αλλάζουν κόμβο αναφοράς μεταξύ δύο επαναλήψεων N C e = 1 N k =1 p Ο κ με p Ο e k = 1, BMU Ο e k BMU Ο e 1 k 0, διαφορετικά

15 Προσομοιώσεις Μονότονη συμπεριφορά των μέτρων κατά τη διάρκεια της εκπαίδευσης Βέλτιστη επιλογή παραμέτρων αριθμός εποχών αριθμός κρυμμένων καταστάσεων των ΗΜΜ μέγεθος πλέγματος

16 Μονοτονία Οι προσομοιώσεις πραγματοποιήθηκαν για όλα τα μέτρα εκτός του τοπογραφικού γινομένου. ποιότητα της απεικόνισης από τοπογραφικής απόψεως (παραβιάσεις γειτονιάς, ομαλότητα απεικόνισης,κλπ). C- measure, Demartines-Herault, distortion measure, τοπογραφικό σφάλμα. Προτιμητέο το τοπογραφικό σφάλμα (καλή επίδοση και εξαιρετική απλότητα και ταχύτητας υπολογισμού). ύπαρξη συμπαγών συστάδων (κόμβων) και ανομοιότητα μεταξύ των συστάδων (κόμβων). σφάλμα κβαντισμού και Calinski- Harabasz. Πιο ταχύ στον υπολογισμό και με καλύτερη επίδοση το σφάλμα κβαντισμού, πάντως το Calinski Harabasz μετρά και την ανομοιότητα μεταξύ των κόμβων (between group sum of squares). αριθμός των ακολουθιών που αλλάζουν κόμβο σε κάθε εποχή εντροπία

17 Globins (560 protein sequences)

18 Globins διαγράμματα (α) C-measure (β) Calinski-Harabasz (γ) Demartines-Herault (δ)distortion measure

19 Globins διαγράμματα (2) (ε) Quantization error (ζ) topographic error (η) ακολουθίες που άλλαξαν κόμβο (θ)εντροπία ( σε λογαριθμική κλίμακα)

20 Επιλογή παραμέτρων αριθμός εποχών αριθμός κρυμμένων καταστάσεων των ΗΜΜ μέγεθος πλέγματος

21 Αριθμός εποχών Στις περισσότερες περιπτώσεις αύξηση του αριθμού εποχών εκπαίδευσης προκαλεί σε μικρότερο ή μεγαλύτερο βαθμό καλύτερη διάταξη του χάρτη. Σε κάποιες όμως περιπτώσεις, παρατηρείται υπερεκπαίδευση του χάρτη και χειροτέρευση της διάταξης. Αυτό που εν τέλει αναζητούμε είναι αν τα μέτρα οργάνωσης που αναπτύχθηκαν μπορούν να περιγράψουν αυτά τα φαινόμενα και να μας δώσουν μια ποσοτική πληροφορία περί αυτών.

22 Τεχνητό dataset (HMMs 10 καταστάσεων-3 συστάδες) α. 5 εποχές β.10 εποχές γ.20 εποχές Φαινόμενο overtraining

23 Εποχές σφάλμα κβαντισμού 3,30E+00 2,56E+00 3,24E+00 2,63E+00 2,62E+00 εντροπία 2,69E-33 6,19E-32 5,37E-32 2,26E-31 1,67E-31 τοπογραφικό σφάλμα 7,50E-02 1,00E-01 1,25E-01 2,00E-01 1,75E-01 παραμόρφωση 1,26E+01 1,01E+01 1,19E+01 1,05E+01 9,92E+00 C-measure 1,27E+07 2,01E+07 1,97E+07 2,21E+07 2,29E+07 Calinski- Harabasz Demartines- Herault 7,02E+04 1,24E+05 1,18E+05 1,30E+05 1,30E+05 4,81E+01 4,33E+01 4,60E+01 4,80E+01 4,91E+01 Συμπερασματικά: το σφάλμα κβαντισμού, η παραμόρφωση, το τοπογραφικό σφάλμα. και το μέτρο Demartines-Herault περιγράφουν σε γενικές γραμμές φαινόμενα overtraining ή ενδεικνύουν το βέλτιστο αριθμό εποχών εκπαίδευσης. Πάντως, η πληροφορία που συνάγουμε από πρέπει να μελετάται προσεκτικά, σε συνάρτηση και με άλλους παράγοντες (πχ οπτικοποίηση του SOHMMM)

24 Αριθμός καταστάσεων των HMMs #HMMs σφάλμα κβαντισμο ύ 1,03E+01 2,44E+01 1,78E+01 6,28E+00 4,69E+00 εντροπία 3,73E-124 3,67E-119 1,35E-106 1,42E-94 1,31E-115 τοπογραφι κό σφάλμα παραμόρφ ωση 1,00E-01 3,67E-01 3,00E-01 6,00E-02 3,67E-01 3,88E+01 5,50E+01 6,45E+01 2,08E+01 1,91E+01 C-measure 3,85E+05 7,41E+05 1,41E+06 2,27E+06 2,60E+06 Calinski- Harabasz Demartine s-herault 1,62E+03 3,59E+03 7,23E+03 1,32E+04 1,74E+04 2,60E+01 1,99E+01 1,79E+01 1,52E+01 1,55E+01 Globins (30 protein sequences)

25 Αριθμός καταστάσεων των HMMs συμπερασματα πιο αξιόπιστο το σφάλμα κβαντισμού με το τοπογραφικό σφάλμα και την παραμόρφωση να ακολουθούν. Τα μέτρα C, Calinski-Harabasz και Demartines-Herault θα ήταν καλό να λαμβάνονται υπόψιν, σε συνάρτηση πάντως με κάποια άλλη πληροφορία.

26 Μέγεθος πλέγματος Πλέγμα 3x2 3x5 6x5 9x9 12x12 14x14 σφάλμα κβαντισμο ύ 1,60E+01 8,77E+00 2,31E+00 8,50E-01 4,78E-01 3,51E-01 εντροπία 2,01E-43 9,09E-39 2,88E-39 6,79E-39 8,49E-39 9,22E-39 τοπογραφι κό σφάλμα παραμόρφ ωση τοπογραφι κό γινόμενο 6,70E-03 3,40E-01 6,40E-01 6,07E-01 5,40E-01 6,20E-01 6,10E+01 4,17E+01 8,59E+00 4,17E+00 2,61E+00 2,26E+00-0,218-0,201-0,560-0,770-0,802-0,595 Τεχνητό dataset (150 ακολουθίες απο ΗΜΜ 1 κατάστασης, 3 συστάδες)

27 Μέγεθος πλέγματος συμπεράσματα Μπορούμε να χωρίσουμε ανάλογα με την επίδοσή τους τα μέτρα οργάνωσης σε τρεις κατηγορίες: σφάλμα κβαντισμού και παραμόρφωση, μειώνονται μονότονα με την αύξηση του μεγέθους του πλέγματος. τοπογραφικό σφάλμα και τοπογραφικό γινόμενο. Αυξομειώνονται παρουσιάζοντας, συνήθως, κάποιο ελάχιστο ή μέγιστο αντίστοιχα για κάποιο πλέγμα, που δείχνει και το βέλτιστο, σύμφωνα με το κριτήριο πλέγμα. εντροπία, δεν παρουσιάζει κάποια επιθυμητή συμπεριφορά. Προτείνουμε την χρήση των τεσσάρων μέτρων (εκτός εντροπίας) για την απόφαση του βέλτιστου μεγέθους για το πλέγμα, σε συνάρτηση πάντως με τις αναφερθείσες παρατηρήσεις. Τα συμπεράσματα πρέπει πάντοτε να λαμβάνονται υπόψιν και με τη βοήθεια κάποιας οπτικοποίησης.

28 Σύνοψη Στη διερεύνηση που έγινε θα μπορούσαμε να πραγματοποιήσουμε κάποια μελέτη σε σχέση και με τις υπόλοιπες παραμέτρους του SOHMMM ή να εμβαθύνουμε παραπάνω σε κάποια μέτρα ή επιμέρους λειτουργίες. Στόχος δεν ήταν η εξαντλητική παρουσίαση των δυνατοτήτων των μέτρων οργάνωσης, αλλά να καταδείξουμε ότι τα μέτρα αυτά είναι σε θέση να παρακολουθήσουν ικανοποιητικά τη διαδικασία εκπαίδευσης ενός SOHMMM καθώς και να χρησιμοποιηθούν σε ποικίλες λειτουργίες. Εν τέλει, κάποια μέτρα αποδείχθηκαν καταλληλότερα να περιγράψουν συγκεκριμένες παραμέτρους της διαδικασίας οργάνωσης σε σχέση με άλλα. Για αυτό τον λόγο, δεν θελήσαμε να προχωρήσουμε σε μια αυστηρή αξιολόγησή τους, αλλά με βάση την εκάστοτε μελέτη καταδείξαμε από ποια άποψη ένα μέτρο μπορούσε να είναι καλύτερο από ένα άλλο.

29 Ερωτήσεις

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Περίληψη ιδακτορικής ιατριβής Τριχακης Ιωάννης Εργαστήριο

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

Με τα sequence projects φτάσαμε στην εποχή που η ελάχιστη πληροφορία για να ξεκινήσει ένα πείραμα είναι ολόκληρη ακολουθία DNA του οργανισμού Το DNA

Με τα sequence projects φτάσαμε στην εποχή που η ελάχιστη πληροφορία για να ξεκινήσει ένα πείραμα είναι ολόκληρη ακολουθία DNA του οργανισμού Το DNA Microarrays Με τα sequence projects φτάσαμε στην εποχή που η ελάχιστη πληροφορία για να ξεκινήσει ένα πείραμα είναι ολόκληρη ακολουθία DNA του οργανισμού Το DNA όμως του οργανισμού είναι μια στατική πληροφορία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Βιοπληροφορική. Ενότητα 14: Μοντέλα Πολλαπλής Στοίχισης (2/2), 1.5ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου

Βιοπληροφορική. Ενότητα 14: Μοντέλα Πολλαπλής Στοίχισης (2/2), 1.5ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Βιοπληροφορική Ενότητα 14: Μοντέλα Πολλαπλής Στοίχισης (2/2), 1.5ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι παρουσίαση των μοντέλων πολλαπλής στοίχισης. κατανόηση των εφαρμογών

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Θεματικές

Διαβάστε περισσότερα

ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack. Χλης Νικόλαος-Κοσμάς

ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack. Χλης Νικόλαος-Κοσμάς ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack Χλης Νικόλαος-Κοσμάς Περιγραφή παιχνιδιού Βlackjack: Σκοπός του παιχνιδιού είναι ο παίκτης

Διαβάστε περισσότερα

Εκτίμηση μη-γραμμικών χαρακτηριστικών

Εκτίμηση μη-γραμμικών χαρακτηριστικών Εκτίμηση μη-γραμμικών χαρακτηριστικών Μη-γραμμικά χαρακτηριστικά ή αναλλοίωτα μέτρα Διάσταση. Ευκλείδια. Τοπολογική 3. Μορφοκλασματική (συσχέτισης, πληροφορίας, μέτρησης κουτιών, ) Εκθέτες Lypunov (μεγαλύτερος,

Διαβάστε περισσότερα

Πρόταση διαφοροποιημένης διδασκαλίας στην Γ Δημοτικού (Κλουβάτος, Κ.) (Η πρόταση μπορεί να προσαρμοστεί σε κάθε Γ τάξη Δημοτικού) Μάθημα: Γλώσσα

Πρόταση διαφοροποιημένης διδασκαλίας στην Γ Δημοτικού (Κλουβάτος, Κ.) (Η πρόταση μπορεί να προσαρμοστεί σε κάθε Γ τάξη Δημοτικού) Μάθημα: Γλώσσα Πρόταση διαφοροποιημένης διδασκαλίας στην Γ Δημοτικού (Κλουβάτος, Κ.) (Η πρόταση μπορεί να προσαρμοστεί σε κάθε Γ τάξη Δημοτικού) Μάθημα: Γλώσσα Διδακτική ενότητα: Μαθησιακό περιβάλλον τάξης διαδικασία

Διαβάστε περισσότερα

Ολοκλήρωση - Μέθοδος Monte Carlo

Ολοκλήρωση - Μέθοδος Monte Carlo ΦΥΣ 145 - Διαλ.09 Ολοκλήρωση - Μέθοδος Monte Carlo Χρησιμοποίηση τυχαίων αριθμών για επίλυση ολοκληρωμάτων Η μέθοδος Monte Carlo δίνει μια διαφορετική προσέγγιση για την επίλυση ενός ολοκληρώμτατος Τυχαίοι

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

Εξόρυξη γνώμης πολιτών από ελεύθερο κείμενο

Εξόρυξη γνώμης πολιτών από ελεύθερο κείμενο Δίκαρος Νίκος Δ/νση Μηχανογράνωσης κ Η.Ε.Σ. Υπουργείο Εσωτερικών. Τελική εργασία Κ Εκπαιδευτικής Σειράς Ε.Σ.Δ.Δ. Επιβλέπων: Ηρακλής Βαρλάμης Εξόρυξη γνώμης πολιτών από ελεύθερο κείμενο Κεντρική ιδέα Προβληματισμοί

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Αξιολόγηση του Εκπαιδευτικού Έργου στην Πρωτοβάθμια Εκπαίδευση. Διαδικασία Αυτοαξιολόγησης στη Σχολική Μονάδα

Αξιολόγηση του Εκπαιδευτικού Έργου στην Πρωτοβάθμια Εκπαίδευση. Διαδικασία Αυτοαξιολόγησης στη Σχολική Μονάδα ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ Αξιολόγηση του Εκπαιδευτικού Έργου στην Πρωτοβάθμια Εκπαίδευση Διαδικασία Αυτοαξιολόγησης στη Σχολική Μονάδα Σχέδια Εκθέσεων

Διαβάστε περισσότερα

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis)

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΚΕΦΑΛΑΙΟ 23 ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΕΙΣΑΓΩΓΗ Έχοντας παρουσιάσει τις βασικές έννοιες των ελέγχων υποθέσεων, θα ήταν, ίσως, χρήσιμο να αναφερθούμε σε μια άλλη περιοχή στατιστικής συμπερασματολογίας

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ

ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ Μαρία Γιαννακούρου ΤΕΙ Αθηνών, Σχολή Τεχνολογίας Τροφίμων και Διατροφής, Τμήμα Τεχνολογίας Τροφίμων Νικόλαος Γ. Στοφόρος Γεωπονικό

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

Βιοπληροφορική Ι. Παντελής Μπάγκος. Παν/µιο Στερεάς Ελλάδας

Βιοπληροφορική Ι. Παντελής Μπάγκος. Παν/µιο Στερεάς Ελλάδας Βιοπληροφορική Ι Παντελής Μπάγκος Παν/µιο Στερεάς Ελλάδας Λαµία 2006 1 Βιοπληροφορική Ι Εισαγωγή: Ορισµός της Βιοπληροφορικής, Υποδιαιρέσεις της Βιοπληροφορικής, Τα είδη των δεδοµένων στη Βιοπληροφορική.

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Αβεβαιότητα πεποιθήσεων πράκτορας θεωρίας

Διαβάστε περισσότερα

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt Προχωρημένα Θέματα Τηλεπικοινωνιών Συγχρονισμός Συμβόλων Εισαγωγή Σε ένα ψηφιακό τηλεπικοινωνιακό σύστημα, η έξοδος του φίλτρου λήψης είναι μια κυματομορφή συνεχούς χρόνου y( an x( t n ) n( n x( είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ31 (2004-5) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #3 Στόχος Στόχος αυτής της εργασίας είναι η απόκτηση δεξιοτήτων σε θέματα που αφορούν τα Τεχνητά Νευρωνικά Δίκτυα και ποιο συγκεκριμένα θέματα εκπαίδευσης και υλοποίησης.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 008-009 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) Να απαντηθούν 5

Διαβάστε περισσότερα

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας ΙΕΚ ΞΑΝΘΗΣ Μάθημα : Στατιστική Ι Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας Επαμεινώνδας Διαμαντόπουλος Ιστοσελίδα : http://users.sch.gr/epdiaman/ Email : epdiamantopoulos@yahoo.gr 1 Στόχοι της υποενότητας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

2.6.2 Φυσικές σταθερές των χημικών ουσιών

2.6.2 Φυσικές σταθερές των χημικών ουσιών 1 2.6.2 Φυσικές σταθερές των χημικών ουσιών Ερωτήσεις θεωρίας με απαντήσεις 6-2-1. Ποιες χημικές ουσίες λέγονται καθαρές ή καθορισμένες; Τα χημικά στοιχεία και οι χημικές ενώσεις. 6-2-2. Ποια είναι τα

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του

Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Ταιριάσματα Γράφημα Ταίριασμα (matching) Σύνολο ακμών τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Θέλουμε να βρούμε ένα μέγιστο ταίριασμα (δηλαδή με μέγιστο αριθμό ακμών) Ταιριάσματα

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ

ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ 3 ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ 3.1 Εισαγωγη ΣΥΣΤΗΜΑΤΩΝ Τα συστηματα εφαρμοζονται σε αναπτυξιακα προγραμματα, σε μελετες σχεδιασμου εργων, σε προγραμματα διατηρησης ή προστασιας περιβαλλοντος και υδατικων πορων και

Διαβάστε περισσότερα

9. Τοπογραφική σχεδίαση

9. Τοπογραφική σχεδίαση 9. Τοπογραφική σχεδίαση 9.1 Εισαγωγή Το κεφάλαιο αυτό εξετάζει τις παραμέτρους, μεθόδους και τεχνικές της τοπογραφικής σχεδίασης. Η προσέγγιση του κεφαλαίου γίνεται τόσο για την περίπτωση της συμβατικής

Διαβάστε περισσότερα

Επιτάχυνση του αλγορίθμου αναγνώρισης φωνής Sphinx 3 με χρήση πολυεπεξεργαστικής κάρτας γραφικών

Επιτάχυνση του αλγορίθμου αναγνώρισης φωνής Sphinx 3 με χρήση πολυεπεξεργαστικής κάρτας γραφικών Π Κ Τ Η Μ.& Μ. Η/Υ Επιτάχυνση του αλγορίθμου αναγνώρισης φωνής Sphinx 3 με χρήση πολυεπεξεργαστικής κάρτας γραφικών Συγγραφέας: Δημήτρης Τσιαμασιώτης Ιανουάριος 2012 Περίληψη Το τελευταίο καιρό, ο παράλληλος

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ 7 ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ Δρ. Γιωργος Μαϊστρος Παράγοντας ης τάξης (+jωτ) Αντιστοιχεί σε πραγματικό πόλο: j j j Έτσι το μέτρο: ιαγράμματα χρήση ασυμπτώτων τομή τους

Διαβάστε περισσότερα

Μορφές προϊόντων (1/3) Πλέγµα τριγώνων (polygon meshes) Εικόνες απόστασης (range images)

Μορφές προϊόντων (1/3) Πλέγµα τριγώνων (polygon meshes) Εικόνες απόστασης (range images) Μορφές προϊόντων (1/3) Νέφη σηµείων (point clouds) + Εύκολος τρόπος παρουσίασης στον Η/Υ + Ικανοποιητικό τελικό προϊόν για απλά σχήµατα / όψεις υσκολία ερµηνείας για αντικείµενα µε σύνθετες µορφές Απώλεια

Διαβάστε περισσότερα

Η ΤΕΧΝΟΛΟΓΙΑ ΟΡΥΦΟΡΙΚΟΥ ΕΝΤΟΠΙΣΜΟΥ ΘΕΣΗΣ ΣΤΗΝ ΤΟΠΟΓΡΑΦΙΑ ΚΑΙ Η ΧΡΗΣΗ ΤΟΥ ΣΕ ΤΟΥΡΙΣΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΠΕΡΙΟΧΗ ΤΗΣ ΗΓΟΥΜΕΝΙΤΣΑΣ.

Η ΤΕΧΝΟΛΟΓΙΑ ΟΡΥΦΟΡΙΚΟΥ ΕΝΤΟΠΙΣΜΟΥ ΘΕΣΗΣ ΣΤΗΝ ΤΟΠΟΓΡΑΦΙΑ ΚΑΙ Η ΧΡΗΣΗ ΤΟΥ ΣΕ ΤΟΥΡΙΣΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΠΕΡΙΟΧΗ ΤΗΣ ΗΓΟΥΜΕΝΙΤΣΑΣ. ΤΕΙ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΟΠΟΓΡΑΦΙΑΣ Η ΤΕΧΝΟΛΟΓΙΑ ΟΡΥΦΟΡΙΚΟΥ ΕΝΤΟΠΙΣΜΟΥ ΘΕΣΗΣ ΣΤΗΝ ΤΟΠΟΓΡΑΦΙΑ ΚΑΙ Η ΧΡΗΣΗ ΤΟΥ ΣΕ ΤΟΥΡΙΣΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΠΕΡΙΟΧΗ ΤΗΣ ΗΓΟΥΜΕΝΙΤΣΑΣ.

Διαβάστε περισσότερα

Εισαγωγή στις Ηλεκτρικές Μετρήσεις

Εισαγωγή στις Ηλεκτρικές Μετρήσεις Εισαγωγή στις Ηλεκτρικές Μετρήσεις Σφάλματα Μετρήσεων Συμβατικά όργανα μετρήσεων Χαρακτηριστικά μεγέθη οργάνων Παλμογράφος Λέκτορας Σοφία Τσεκερίδου 1 Σφάλματα μετρήσεων Επιτυχημένη μέτρηση Σωστή εκλογή

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 3 η Παρουσίαση : Συμπίεση Διδάσκων: Γιάννης Ντόκας Εισαγωγή 2 Συμπίεση πληροφορίας πολυμέσων 3 Γιατί χρειάζεται συμπίεση? 4

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Περίληψη Αλγόριθµοι τύπου Brute-Force Παραδείγµατα Αναζήτησης Ταξινόµησης Πλησιέστερα σηµεία Convex hull Βελτιστοποίηση Knapsack problem Προβλήµατα Ανάθεσης

Διαβάστε περισσότερα

Ρεφανίδης Γιάννης. Οκτώβριος 2011. http://users.uom.gr/~yrefanid/courses/neuralnetworks/

Ρεφανίδης Γιάννης. Οκτώβριος 2011. http://users.uom.gr/~yrefanid/courses/neuralnetworks/ Νευρωνικά Δίκτυα Ρεφανίδης Γιάννης Οκτώβριος 2011 Γενικά Σελίδα μαθήματος: http://users.uom.gr/~yrefanid/courses/neuralnetworks/ Συγγράμματα: Πανεπιστημιακές παραδόσεις για Νευρωνικά Δίκτυα και Εξελικτικούς

Διαβάστε περισσότερα

Κλινικές Μελέτες. Αναπληρώτρια Καθηγήτρια Ιατρικής Σχολής Πανεπιστημίου Αθηνών

Κλινικές Μελέτες. Αναπληρώτρια Καθηγήτρια Ιατρικής Σχολής Πανεπιστημίου Αθηνών Κλινικές Μελέτες Δέσποινα Ν. Περρέα Αναπληρώτρια Καθηγήτρια Ιατρικής Σχολής Πανεπιστημίου Αθηνών Διευθύντρια Εργαστηρίου Πειραματικής Χειρουργικής και Χειρουργικής Ερεύνης «Ν.Σ. Χρηστέας» Κλινικές Μελέτες

Διαβάστε περισσότερα

Μεθοδολογίες Αξιοποίησης Δεδομένων

Μεθοδολογίες Αξιοποίησης Δεδομένων Μεθοδολογίες Αξιοποίησης Δεδομένων Βλάχος Σ. Ιωάννης Λέκτορας 407/80, Ιατρικής Σχολής Πανεπιστημίου Αθηνών Εργαστήριο Πειραματικής Χειρουργικής και Χειρουργικής Ερεύνης «Ν.Σ. Σ Χρηστέας» Στάδια Αξιοποίησης

Διαβάστε περισσότερα

Στόχος της εργασίας και ιδιαιτερότητες του προβλήματος

Στόχος της εργασίας και ιδιαιτερότητες του προβλήματος ΑΝΑΠΤΥΞΗ ΟΠΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΑΡΜΟΣΤΙΚΟΥ ΕΛΕΓΧΟΥ ΚΑΤΕΡΓΑΣΙΑΣ ΥΛΙΚΩΝ Κουλουμέντας Παναγιώτης Σχολή Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Χανιά,Νοέμβριος 2014 Επιτροπή: Ζερβάκης Μιχάλης (επιβλέπων)

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ. Διπλωματική Εργασία Μεταπτυχιακού Διπλώματος Ειδίκευσης

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ. Διπλωματική Εργασία Μεταπτυχιακού Διπλώματος Ειδίκευσης ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Διπλωματική Εργασία Μεταπτυχιακού Διπλώματος Ειδίκευσης «Αναγνώριση μερών του λόγου σε ελληνικά κείμενα με τεχνικές

Διαβάστε περισσότερα

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ.Χατζόπουλος 2 Δένδρο αναζήτησης είναι ένας ειδικός τύπος δένδρου που χρησιμοποιείται για να καθοδηγήσει την αναζήτηση μιας

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 15: O αλγόριθμος SIMPLE Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε τις θέσεις που

Διαβάστε περισσότερα

Σχήμα Χαμηλοδιαβατά φίλτρα:

Σχήμα Χαμηλοδιαβατά φίλτρα: ΦΙΛΤΡΑ 6.. ΦΙΛΤΡΑ Το φίλτρο είναι ένα σύστημα του οποίου η απόκριση συχνότητας παίρνει σημαντικές τιμές μόνο για συγκεκριμένες ζώνες του άξονα συχνοτήτων. Στο Σχήμα 6.6 δείχνουμε την απόκριση συχνότητας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ... 11. Κεφάλαιο 2 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ: BΑΣΙΚΕΣ ΕΝΝΟΙΕΣ... 29

Περιεχόμενα. Κεφάλαιο 1 ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ... 11. Κεφάλαιο 2 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ: BΑΣΙΚΕΣ ΕΝΝΟΙΕΣ... 29 Περιεχόμενα Πρόλογος 5 Κεφάλαιο ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα βελτιστοποίησης Γραμμικά προγράμματα Ακέραια προγράμματα Τετραγωνικά προγράμματα Διατύπωση προβλήματος Σύμβαση λύσης Κεφάλαιο ΓΡΑΜΜΙΚΟΣ

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το

Διαβάστε περισσότερα

ΕΡΕΥΝΑ Ο ΝΟΥ Γ Α ΤΗΝ ΑΝΑ Υ ΩΣΗ ΣΥΣ ΕΥΑΣ ΩΝ

ΕΡΕΥΝΑ Ο ΝΟΥ Γ Α ΤΗΝ ΑΝΑ Υ ΩΣΗ ΣΥΣ ΕΥΑΣ ΩΝ ΕΡΕΥΝΑ Ο ΝΟΥ Γ Α ΤΗΝ ΑΝΑ Υ ΩΣΗ ΣΥΣ ΕΥΑΣ ΩΝ Ταυτότητα Έρευνας ΕΤΑΙΡΕΙΑ ΤΥΠΟΣ: ALCO ΠΟΣΟΤΙΚΗ (ΤΗΛΕΦΩΝΙΚΕΣ ΣΥΝΕΝΤΕΥΞΕΙΣ ΣΤΑ ΣΠΙΤΙΑ ΤΩΝ ΕΡΩΤΩΜΕΝΩΝ) ΔΕΙΓΜΑ: 1000 ΑΤΟΜΑ, 30% ΑΝΔΡΕΣ ΚΑΙ 70% ΓΥΝΑΙΚΕΣ ΗΛΙΚΙΑΣ 25-65

Διαβάστε περισσότερα

Θέμα: Φαινολικό & αρωματικό δυναμικό των οίνων της ποικιλίας ξινόμαυρο. Περίληψη

Θέμα: Φαινολικό & αρωματικό δυναμικό των οίνων της ποικιλίας ξινόμαυρο. Περίληψη φαινολικό και αρωματικό δυναμικό των οίνων της ποικιλίας ξινόμαυρο Μαρία Κυραλέου Yποψήφια Διδάκτωρ Οινολογίας Tμήμα Eπιστήμης και Τεχνολογίας Τροφίμων Γεωπονικό Πανεπιστήμιο Αθηνών τηλ. 215294719 mkyrleou@u.gr

Διαβάστε περισσότερα

ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης

ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Ονοµατεπώνυµο: Αριθµός Μητρώου: Επαναληπτική Εξέταση (3 ώρες) Ηµεροµηνία:

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

Γραφικά και Εικονική Πραγματικότητα Απαλλακτική εργασία 2012. Παπαπαύλου Χρήστος ΑΜ: 6609

Γραφικά και Εικονική Πραγματικότητα Απαλλακτική εργασία 2012. Παπαπαύλου Χρήστος ΑΜ: 6609 Γραφικά και Εικονική Πραγματικότητα Απαλλακτική εργασία 2012 0B Παπαπαύλου Χρήστος ΑΜ: 6609 Περιεχόμενα Πίνακας Περιεχομένων...2 Περιεχόμενα...2 Προγραμματιστικές λεπτομέρειες υλοποίησης...3 geom.h...3

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ

ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ Υπό ΘΕΟΔΩΡΟΥ ΑΡΤΙΚΗ, ΑΝΑΣΤΑΣΙΟΥ ΣΟΥΓΙΑΝΝΗ ΚΑΙ ΓΕΩΡΓΙΟΥ ΑΡΤ1ΚΗ Ανωτάτη Βιομηχανική Σχολή Πειραιά 1. ΕΙΣΑΓΩΓΗ Τα συνήθη κριτήρια αξιολόγησης επενδύσεων βασίζονται

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Γεσθημανή Μηντζιώρη MD, MSc, PhD Μονάδα Ενδοκρινολογίας της Αναπαραγωγής, Α Μαιευτική και Γυναικολογική

Διαβάστε περισσότερα

Osmotic effects of hard spheres on star polymer glasses Οσμωτικές επιδράσεις σκληρών σφαιρών σε υάλους ατεροειδών πολυμερών

Osmotic effects of hard spheres on star polymer glasses Οσμωτικές επιδράσεις σκληρών σφαιρών σε υάλους ατεροειδών πολυμερών Osmotic effects of hard spheres on star polymer glasses Οσμωτικές επιδράσεις σκληρών σφαιρών σε υάλους ατεροειδών πολυμερών Τελική έκθεση προόδου Επιστημονικός Υπεύθυνος: Δ. Βλασσόπουλος Συνεργάτες: D.

Διαβάστε περισσότερα

Ευθυγράμμιση τρισδιάστατων ιατρικών εικόνων με χρήση ελαστικού μετασχηματισμού

Ευθυγράμμιση τρισδιάστατων ιατρικών εικόνων με χρήση ελαστικού μετασχηματισμού ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ Ευθυγράμμιση τρισδιάστατων ιατρικών εικόνων με χρήση ελαστικού μετασχηματισμού ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

Αξιολόγηση Εκτελεστικών Λειτουργιών

Αξιολόγηση Εκτελεστικών Λειτουργιών Αξιολόγηση Εκτελεστικών Λειτουργιών Εισαγωγή: οκιμασίες Εκτελεστικών Λειτουργιών και η Συμβολή τους στην Επαγγελματική σας Επιλογή Η σημασία της αξιολόγησης των γνωστικών δεξιοτήτων Οι γνωστικές ικανότητες

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων

Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιγραφή

Διαβάστε περισσότερα

Πως μπορούν να χρησιμοποιηθούν ιστορικά δεδομένα για την κατασκευή

Πως μπορούν να χρησιμοποιηθούν ιστορικά δεδομένα για την κατασκευή ΜΕΡΟΣ Α ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 1 Εξόρυξη Δεδομένων 22 Η επανάσταση του ΚΡΙΟΥ 1.1 Εισαγωγή Το Data Mining αποτελεί μια νέα ερευνητική περιοχή, ραγδαία εξελισσόμενη, που είναι η τομή πολλών θεωριών και επιστημών,

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Παράδειγμα. Στις χρονοσειρές σημαντικό ρόλο παίζει η αυτοσυσχέτιση: η αυτοσυσχέτιση. (lag k) ισούται με όπου γ

Παράδειγμα. Στις χρονοσειρές σημαντικό ρόλο παίζει η αυτοσυσχέτιση: η αυτοσυσχέτιση. (lag k) ισούται με όπου γ MCMC Η Monte Carlo μεθοδολογία για την δημιουργία αριθμητικών προσεγγίσεων διαφόρων τιμών της εκ των υστέρων κατανομής, όπως του μέσου και της τυπικής απόκλισης, στηρίζεται στους Ασθενείς Νόμους των Μεγάλων

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΠΡΟΔΙΑΓΡΑΦΗ ΔΙΠΛΩΤΙΚΗΣ ΜΗΧΑΝΗΣ

ΤΕΧΝΙΚΗ ΠΡΟΔΙΑΓΡΑΦΗ ΔΙΠΛΩΤΙΚΗΣ ΜΗΧΑΝΗΣ Α. ΕΙΣΑΓΩΓΗ ΤΕΧΝΙΚΗ ΠΡΟΔΙΑΓΡΑΦΗ ΔΙΠΛΩΤΙΚΗΣ ΜΗΧΑΝΗΣ Όροι και τεχνικές προδιαγραφές για την προμήθεια μιας (1) διπλωτικής μηχανής εντύπων για την παραγωγή διπλωμένων τυπογραφικών τευχών σε 4σέλιδα, 8σέλιδα,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014 Γενικές οδηγίες για την εργασία Τέταρτη Γραπτή Εργασία Όλες οι ερωτήσεις

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος των BellmanFord Ο αλγόριθµος του Dijkstra ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 61

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

Έρευνα Καταναλωτικής Εμπιστοσύνης

Έρευνα Καταναλωτικής Εμπιστοσύνης Έρευνα Καταναλωτικής Εμπιστοσύνης 1 ΤΥΠΟΣ ΕΡΕΥΝΑΣ ΠΕΡΙΟΧΗ ΕΡΕΥΝΑΣ ΠΟΣΟΤΙΚΗ ΕΡΕΥΝΑ ΜΕ ΤΗ ΧΡΗΣΗ ΔΟΜΗΜΕΝΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΕΝΤΡΙΚΗ ΜΑΚΕΔΟΝΙΑ ΠΕΡΙΟΔΟΣ ΕΡΕΥΝΑΣ Ιανουάριος Μάρτιος 2013 ΜΕΘΟΔΟΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ

Διαβάστε περισσότερα

Περιγραφή Κυκλωμάτων με χρήση της VHDL. Δομική περιγραφή και περιγραφή Μηχανών Πεπερασμένων Καταστάσεων

Περιγραφή Κυκλωμάτων με χρήση της VHDL. Δομική περιγραφή και περιγραφή Μηχανών Πεπερασμένων Καταστάσεων Περιγραφή Κυκλωμάτων με χρήση της VHDL Δομική περιγραφή και περιγραφή Μηχανών Πεπερασμένων Καταστάσεων Οργάνωση Παρουσίασης Περιγραφή Δομής σε VHDL (Structural Description) Μηχανές Πεπερασμένων Καταστάσεων

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Περιεχόμενα Μαθήματος Εισαγωγή στο Πρόβλημα. Monte Carlo Εκτιμητές. Προσομοίωση. Αλυσίδες Markov. Αλγόριθμοι MCMC (Metropolis Hastings & Gibbs Sampling).

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Βασίλης Κουϊκόγλου. Καθηγητής. Επιστημονικά υπεύθυνος ΓΔΣ του Πολυτεχνείου Κρήτης

ΠΡΟΛΟΓΟΣ. Βασίλης Κουϊκόγλου. Καθηγητής. Επιστημονικά υπεύθυνος ΓΔΣ του Πολυτεχνείου Κρήτης ΠΡΟΛΟΓΟΣ Το Γραφείο Διασύνδεσης & Σταδιοδρομίας (ΓΔΣ) του Πολυτεχνείου Κρήτης διεξήγαγε το 2011 έρευνα απασχόλησης αποφοίτων των ετών 2001 2006 των τμημάτων Ηλεκτρονικών Μηχανικών & Μηχανικών Ηλεκτρονικών

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

Μέτρηση Ρίψεων σε Αγώνες Αντισφαίρισης Ξυλορακέτας

Μέτρηση Ρίψεων σε Αγώνες Αντισφαίρισης Ξυλορακέτας Μέτρηση Ρίψεων σε Αγώνες Αντισφαίρισης Ξυλορακέτας 1. Εισαγωγή Το παρόν κείμενο περιγράφει την τεχνολογική προσέγγιση που ακολουθείται για την μέτρηση των ρίψεων και τον υπολογισμό της βαθμολογίας στα

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Έρευνα Καταναλωτικής Εμπιστοσύνης

Έρευνα Καταναλωτικής Εμπιστοσύνης Έρευνα Καταναλωτικής Εμπιστοσύνης ΚΕΝΤΡΙΚΗ ΜΑΚΕΔΟΝΙΑ Οκτώβριος Ιούλιος Οκτώβριος 1 ΤΑΥΤΟΤΗΤΑ ΕΡΕΥΝΑΣ ΤΥΠΟΣ ΕΡΕΥΝΑΣ ΠΕΡΙΟΧΗ ΕΡΕΥΝΑΣ ΠΟΣΟΤΙΚΗ ΕΡΕΥΝΑ ΜΕ ΤΗ ΧΡΗΣΗ ΔΟΜΗΜΕΝΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΕΝΤΡΙΚΗ ΜΑΚΕΔΟΝΙΑ

Διαβάστε περισσότερα

GoDigital.Store E-Commerce Platform

GoDigital.Store E-Commerce Platform GoDigital.Store E-Commerce Platform Πλήρης διαχείριση καταλόγου και καταστήματος banet Α.Ε. Βαλαωρίτου 20 54625 Θεσσαλονίκη Τ.2310253999 F.2310253998 www.banet.gr info@banet.gr GoDigital.Store Γενική περιγραφή

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος ΑΛΓΟΡΙΘΜΟΙ Στο σηµείωµα αυτό αρχικά εξηγείται η έννοια αλγόριθµος και παραθέτονται τα σπουδαιότερα κριτήρια που πρέπει να πληρεί κάθε αλγόριθµος. Στη συνέχεια, η σπουδαιότητα των αλγορίθµων συνδυάζεται

Διαβάστε περισσότερα

Χρηματοοικονομική ανάλυση των ΜΜΕ

Χρηματοοικονομική ανάλυση των ΜΜΕ Χρηματοοικονομική ανάλυση των ΜΜΕ Ανάλυση λογιστικών καταστάσεων Ένας από τους σκοπούς της χρηματοοικονομικής επιστήμης αποτελεί η αξιολόγηση και αξιοποίηση των στοιχείων που έχουν συγκεντρωθεί και καταγραφεί

Διαβάστε περισσότερα

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Κρυπτανάλυση 21

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Κρυπτανάλυση 21 Κατάλογος Σχηµάτων Κατάλογος Πινάκων ix xiv xvi I Κρυπτανάλυση 21 1 Βασικές αρχές κρυπτανάλυσης 23 1.1 Εισαγωγή....................... 24 1.2 Βασικές επιθέσεις................... 25 1.3 Η επίθεση του Hellman-TMTO............

Διαβάστε περισσότερα

Αφαίρεση του Φαινομένου του Μικροφωνισμού σε Ακουστικά Βαρηκοΐας

Αφαίρεση του Φαινομένου του Μικροφωνισμού σε Ακουστικά Βαρηκοΐας Αφαίρεση του Φαινομένου του Μικροφωνισμού σε Ακουστικά Βαρηκοΐας Νιαβής Παναγιώτης Επιβλέπων: Καθ. Γ. Μουστακίδης Περιεχόμενα Εισαγωγή Μικροφωνισμός σε ακουστικά βαρηκοΐας Προσαρμοστική αναγνώριση συστήματος

Διαβάστε περισσότερα

Β Γυμνασίου 22/6/2015. Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής

Β Γυμνασίου 22/6/2015. Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής Β Γυμνασίου /6/05 Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής Β Γυμνασίου /6/05 Δείκτες Επιτυχίας (Γνώσεις και υπό έμφαση ικανότητες) Παρεμφερείς Ικανότητες (προϋπάρχουσες

Διαβάστε περισσότερα

Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ

Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ 1 Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ Οι αντηλιακές µεµβράνες 3M Scotchtint της εταιρίας 3Μ µελετήθηκαν

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Γραμμές Παραγωγής Εκτίμηση Ελαττωματικών Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Παρουσίαση χαρακτηριστικών γραμμών παραγωγής Παραδείγματα σε παραγωγή

Διαβάστε περισσότερα

Στρατηγική Επιλογή. Η Λογιστική Σουίτα ΙΙ αποτελείται από:

Στρατηγική Επιλογή. Η Λογιστική Σουίτα ΙΙ αποτελείται από: Στρατηγική Επιλογή Οι απαιτήσεις του συνεχώς μεταβαλλόμενου οικονομικού - φοροτεχνικού περιβάλλοντος σε συνδυασμό με τις αυξανόμενες ανάγκες πληροφόρησης των επιχειρήσεων, έχουν αυξήσει ραγδαία τον όγκο

Διαβάστε περισσότερα