Η ζ-συνάρτηση του Ihara

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η ζ-συνάρτηση του Ihara"

Transcript

1 Η ζ-συνάρτηση του Ihara Αστέριος Γκαντζούνης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. Πτυχιακή Εργασία Σεπτέµβριος 2013, Η ζ-συνάρτηση του Ihara 1/56

2 Περιεχόµενα Ορισµός, Η ζ-συνάρτηση του Ihara 2/56

3 Η κλασική ζ-συνάρτηση του Riemann Η κλασική συνάρτηση του Riemann, ορίζεται για s C µε Re s > 1 ως 1 ζ(s) = = ( n s 1 1 ) 1. p s n=1 p Primes Ο Bertrand Riemann στο µνηµειώδες άρθρο του Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse επέκτεινε την παραπάνω συνάρτηση σε µια αναλυτική συνάρτηση σε όλο το µιγαδικό επίπεδο εκτός του απλού πόλου που έχει για s = 1. Επίσης έδειξε ότι υπάρχει µια συµµετρία που συνδέει την τιµή της στο s µε την τιµή της στο 1 s, που καλείται συναρτησιακή εξίσωση. ( π s s ) ( ) 2 Γ ζ(s) = π 1 s 1 s 2 Γ ζ(1 s) 2 2 Υπόθεση Riemann: Οι µη τετριµένες ϱίζες της ζ-συνάρτησης του Riemann έχουν πραγµατικό µέρος 1 2., Η ζ-συνάρτηση του Ihara 3/56

4 Η κλασική ζ-συνάρτηση του Riemann Η κλασική συνάρτηση του Riemann, ορίζεται για s C µε Re s > 1 ως 1 ζ(s) = = ( n s 1 1 ) 1. p s n=1 p Primes Ο Bertrand Riemann στο µνηµειώδες άρθρο του Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse επέκτεινε την παραπάνω συνάρτηση σε µια αναλυτική συνάρτηση σε όλο το µιγαδικό επίπεδο εκτός του απλού πόλου που έχει για s = 1. Επίσης έδειξε ότι υπάρχει µια συµµετρία που συνδέει την τιµή της στο s µε την τιµή της στο 1 s, που καλείται συναρτησιακή εξίσωση. ( π s s ) ( ) 2 Γ ζ(s) = π 1 s 1 s 2 Γ ζ(1 s) 2 2 Υπόθεση Riemann: Οι µη τετριµένες ϱίζες της ζ-συνάρτησης του Riemann έχουν πραγµατικό µέρος 1 2., Η ζ-συνάρτηση του Ihara 3/56

5 Η κλασική ζ-συνάρτηση του Riemann Η κλασική συνάρτηση του Riemann, ορίζεται για s C µε Re s > 1 ως 1 ζ(s) = = ( n s 1 1 ) 1. p s n=1 p Primes Ο Bertrand Riemann στο µνηµειώδες άρθρο του Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse επέκτεινε την παραπάνω συνάρτηση σε µια αναλυτική συνάρτηση σε όλο το µιγαδικό επίπεδο εκτός του απλού πόλου που έχει για s = 1. Επίσης έδειξε ότι υπάρχει µια συµµετρία που συνδέει την τιµή της στο s µε την τιµή της στο 1 s, που καλείται συναρτησιακή εξίσωση. ( π s s ) ( ) 2 Γ ζ(s) = π 1 s 1 s 2 Γ ζ(1 s) 2 2 Υπόθεση Riemann: Οι µη τετριµένες ϱίζες της ζ-συνάρτησης του Riemann έχουν πραγµατικό µέρος 1 2., Η ζ-συνάρτηση του Ihara 3/56

6 Η κλασική ζ-συνάρτηση του Riemann Η κλασική συνάρτηση του Riemann, ορίζεται για s C µε Re s > 1 ως 1 ζ(s) = = ( n s 1 1 ) 1. p s n=1 p Primes Ο Bertrand Riemann στο µνηµειώδες άρθρο του Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse επέκτεινε την παραπάνω συνάρτηση σε µια αναλυτική συνάρτηση σε όλο το µιγαδικό επίπεδο εκτός του απλού πόλου που έχει για s = 1. Επίσης έδειξε ότι υπάρχει µια συµµετρία που συνδέει την τιµή της στο s µε την τιµή της στο 1 s, που καλείται συναρτησιακή εξίσωση. ( π s s ) ( ) 2 Γ ζ(s) = π 1 s 1 s 2 Γ ζ(1 s) 2 2 Υπόθεση Riemann: Οι µη τετριµένες ϱίζες της ζ-συνάρτησης του Riemann έχουν πραγµατικό µέρος 1 2., Η ζ-συνάρτηση του Ihara 3/56

7 Αριθµητικά Σώµατα L O L PO L = Q e1 1 Qer r O L /Q i K O K P O K /P Για κάθε ιδεώδες Q i στην παραπάνω ανάλυση το πηλίκο O L /Q i είναι µια πεπερασµένη επέκταση του πεπερασµένου σώµατος O K /P. ηλαδή O K /P = F q και O L /Q = F q f. Τον αριθµό f που εξαρτάται από την επιλογή των P, Q ϑα τον ονοµάζουµε ϐαθµό αδράνειας του Q πάνω από το P. Ας υποθέσουµε ότι το L είναι µια αλγεβρική επέκταση του K = Q. Για κάθε ιδεώδες Q του δακτυλίου O L ορίζεται η νόρµα N(Q) = #O L /Q = p f για κάποιο πρώτο p (για τον πρώτο που γεννά το κύριο ιδεώδες P του O K = Z που ϐρίσκεται κάτω από το Q)., Η ζ-συνάρτηση του Ihara 4/56

8 ζ-συνάρτηση σώµατος αριθµών Για ένα σώµα αριθµών L ορίζεται η ζ-συνάρτησή του: ζ L (s) = A O L 1, s C, Re(s) > 1. N(A) s Αποδεικνύεται ότι η παραπάνω συνάρτηση δέχεται ένα γινόµενο Euler ζ L (s) = P πρώτο ιδεώδες 1 1 N(P) s,, Η ζ-συνάρτηση του Ihara 5/56

9 Οµάδα Ανάλυσης Στην περίπτωση που η επέκταση L/K είναι Galois µε οµάδα Galois Gal(L/K) = G, έχουµε ότι η οµάδα G δρα µεταβατικά πάνω στα πρώτα ιδεώδη Q i που ϐρίσκονται πάνω από ένα πρώτο ιδεώδες P δηλαδή για κάθε Q i, Q j υπάρχει g ij ώστε g ij Q i = Q j. Στην περίπτωση αυτή όλοι οι δείκτες e i είναι ίσοι. Στην περίπτωση των Galois ακολουθώντας τον Hilbert µπορούµε να ορίσουµε για κάθε πρώτο Q του δακτυλίου O L τις παρακάτω οµάδες : Την οµάδα ανάλυσης Την οµάδα αδράνειας G(Q) := {σ G : σ(q) = Q} I(Q) := {σ G(Q) : σ(a) a modq, a O L }, Η ζ-συνάρτηση του Ihara 6/56

10 Παρατηρούµε ότι αν P = Q O K η επέκταση OL / OK είναι Galois και η Q P οµάδα Galois της µπαίνει σε µια ϐραχεία ακριβή ακολουθία ( ) OL 1 I(Q) G(Q) Gal Q /O K 1. (1) P, Η ζ-συνάρτηση του Ihara 7/56

11 Αυτοµορφισµός Frobenius ( O Είναι γνωστό ότι η οµάδα Galois της επέκτασης Gal L / ) OK Q P είναι κυκλική. Στην περίπτωση που το πεπερασµένο σώµα OK P έχει q = ph -το πλήθος στοιχεία, και το σώµα OL Q έχει qf -το πλήθος στοιχεία, η οµάδα Galois παράγεται από ένα στοιχείο τον αυτοµορφισµό του Frobenious: ο οποίος έχει τάξη f. F : O L Q O L Q x x q,, Η ζ-συνάρτηση του Ihara 8/56

12 Θα λέµε ότι ο πρώτος Q πάνω από τον P διακλαδίζεται µε ϐαθµό διακλάδωσης e αν η οµάδα I(Q) είναι µη τετριµµένη και έχει τάξη e. Είναι γνωστό ότι σε µια επέκταση σωµάτων αριθµών υπάρχουν πεπερασµένοι πρώτοι που διακλαδίζονται. Στην περίπτωση που δεν έχουµε διακλάδωση, παρατηρούµε από την ϐραχεία ( ακριβή ακολουθία (1) ότι η οµάδα Galois της επέκτασης O Gal L / ) OK Q P είναι ισόµορφη µε µια υποοµάδα της οµάδας Gal(L/K). Στην περίπτωση αυτή µπορούµε να «σηκώσουµε» τον γεννήτορα Frobenious σε ένα µοναδικό στοιχείο της οµάδας Gal(L/K), το οποίο ϑα το συµβολίζουµε µε [L/K, Q]., Η ζ-συνάρτηση του Ihara 9/56

13 Το παραπάνω σύµβολο εξαρτάται από την επιλογή του πρώτου Q που επεκτείνει τον P. Αν έχουµε ένα διαφορετικό πρώτο Q που επεκτείνει τον P, τότε αυτός ϑα είναι της µορφής Q = gq, για κατάλληλη επιλογή g ( O Gal L / ) OK Q P και σε αυτή την περίπτωση ϑα έχουµε [ L/K, Q ] = g 1 [L/K, Q] g. Στην περίπτωση που η οµάδα Gal(L/K) είναι αβελιανή το σύµβολο είναι ανεξάρτητο της επιλογής Q., Η ζ-συνάρτηση του Ihara 10/56

14 L-σειρές του Artin Θεωρούµε µια επέκταση Galois σωµάτων αριθµών L/K µε οµάδα G και µία αναπαράσταση της G: ρ : G GL(V) επί ενός πεπερασµένης διάστασης διανυσµατικού χώρου V. Εστω V I(Q) = {v V : gv = v για κάθε g I(Q)}. ( O Στον χώρο αυτό ορίζουµε την δράση της οµάδας Gal L / ) OK Q P η οποία είναι ισόµορφη µε την G(Q)/I(Q) g modi(q) v = g v. Αν το P δεν διακλαδίζεται τότε V I(Q) = V., Η ζ-συνάρτηση του Ihara 11/56

15 L-σειρές του Artin Για κάθε πρώτο P ( P(K) ϑεωρούµε τον γεννήτορα της κυκλικής O οµάδας Galois Gal L / ) OK Q P τον οποίο ϐλέπουµε ως ένα στοιχείο φ Q/P της οµάδας πηλίκου G(Q)/I(Q). Ο ορισµός της L-σειράς του Artin δίνεται από το παρακάτω γινόµενο: L(s, ρ, L/K) = ( det 1 V NP s ρ(φ Q/P ) ) 1 V I(Q) P P(K), Η ζ-συνάρτηση του Ihara 12/56

16 Ιδιότητες Για την L-σειρά του Artin µπορούµε να αποδείξουµε τις παρακάτω ιδιότητες : 1. Η σειρά L(s, ρ, L/K) συγκλίνει απόλυτα στο ηµιεπίπεδο Re(s) > 1, και οµοιόµορφα στα συµπαγή υποσύνολά του. 2. Αν η ρ είναι µία πιστή αναπαράσταση της αβελιανής οµάδας G, και χ ο χαρακτήρας τότε η L-σειρά του Artin ταυτίζεται µε την L-σειρά του Dirichlet: L(s, ρ, L/K) = L(s, χ). 3. Στην περίπτωση που ρ είναι η τετριµµένη αναπαράσταση έχουµε ότι L(s, ρ, L/K) = ζ K (s). 4. ζ L (s) = ζ K (s) ρ Ĝ ρ Id L(s, ρ, L/K) deg ρ., Η ζ-συνάρτηση του Ihara 13/56

17 Πίνακας γειτνίασης κορυφών Ορισµός Εστω V οι κορυφές ενός γραφήµατος X και n = V(X) ο αριθµός των κορυφών του γραφήµατος. εδοµένης µίας αρίθµησης των κορυφών του γραφήµατος ο πίνακας γειτνίασης του X είναι ένας n n πίνακας µε εισόδους (i, j) 1 i, j n ο αριθµός των ακµών αν i j a ij = που συνδέουν την κορυφή i µε την κορυφή j 2 ο αριθµός των ϐρόχων στην κορυφή i αν i = j Αν επιλέξουµε µία διαφορετική αρίθµηση των κορυφών τότε για τον νέο πίνακα γειτνίασης A ισχύει A = TAT 1 όπου ο T είναι ένας πίνακας µετάθεσης., Η ζ-συνάρτηση του Ihara 14/56

18 Πίνακας γειτνίασης κορυφών Ορισµός Εστω V οι κορυφές ενός γραφήµατος X και n = V(X) ο αριθµός των κορυφών του γραφήµατος. εδοµένης µίας αρίθµησης των κορυφών του γραφήµατος ο πίνακας γειτνίασης του X είναι ένας n n πίνακας µε εισόδους (i, j) 1 i, j n ο αριθµός των ακµών αν i j a ij = που συνδέουν την κορυφή i µε την κορυφή j 2 ο αριθµός των ϐρόχων στην κορυφή i αν i = j Αν επιλέξουµε µία διαφορετική αρίθµηση των κορυφών τότε για τον νέο πίνακα γειτνίασης A ισχύει A = TAT 1 όπου ο T είναι ένας πίνακας µετάθεσης., Η ζ-συνάρτηση του Ihara 14/56

19 Παράδειγµα Παράδειγµα Ο πίνακας γειτνίασης του πλήρους γραφήµατος K 4 είναι ο (2) , Η ζ-συνάρτηση του Ihara 15/56

20 Πρώτοι σε ένα γράφηµα Εστω ένα γράφηµα X µε σύνολο ακµών E, m = E. Παίρνουµε και τις δύο κατευθύνσεις στις ακµές και τις ονοµάζουµε ως εξής e 1, e 2,..., e m, e m+1 = e 1 1,..., e 2m = e 1 m. Ενα µονοπάτι ή περίπατος C = a 1 a s, όπου a j είναι µια κατευθυνόµενη ακµή λέµε ότι έχει πισογύρισµα, αν a j+1 = a 1 j για κάποιο j = 1,..., s 1. Ενα µονοπάτι C = a 1 a s λέγεται ότι έχει ουρά αν a s = a 1 1. Ενα κλειστό µονοπάτι καλείται πρώτο µονοπάτι αν δεν έχει πισογυρίσµατα και ουρά και C D f για f > 1 και D κλειστό µονοπάτι στο X. Παίρνουµε την κλάση ισοδυναµίας [C] [C] = {a 1 a s, a 2 a s a 1,..., a s a 1 a s 1 }. Οι πρώτοι είναι κλάσεις ισοδυναµίας πρώτων µονοπατιών., Η ζ-συνάρτηση του Ihara 16/56

21 Πρώτοι σε ένα γράφηµα Εστω ένα γράφηµα X µε σύνολο ακµών E, m = E. Παίρνουµε και τις δύο κατευθύνσεις στις ακµές και τις ονοµάζουµε ως εξής e 1, e 2,..., e m, e m+1 = e 1 1,..., e 2m = e 1 m. Ενα µονοπάτι ή περίπατος C = a 1 a s, όπου a j είναι µια κατευθυνόµενη ακµή λέµε ότι έχει πισογύρισµα, αν a j+1 = a 1 j για κάποιο j = 1,..., s 1. Ενα µονοπάτι C = a 1 a s λέγεται ότι έχει ουρά αν a s = a 1 1. Ενα κλειστό µονοπάτι καλείται πρώτο µονοπάτι αν δεν έχει πισογυρίσµατα και ουρά και C D f για f > 1 και D κλειστό µονοπάτι στο X. Παίρνουµε την κλάση ισοδυναµίας [C] [C] = {a 1 a s, a 2 a s a 1,..., a s a 1 a s 1 }. Οι πρώτοι είναι κλάσεις ισοδυναµίας πρώτων µονοπατιών., Η ζ-συνάρτηση του Ihara 16/56

22 Πρώτοι σε ένα γράφηµα Εστω ένα γράφηµα X µε σύνολο ακµών E, m = E. Παίρνουµε και τις δύο κατευθύνσεις στις ακµές και τις ονοµάζουµε ως εξής e 1, e 2,..., e m, e m+1 = e 1 1,..., e 2m = e 1 m. Ενα µονοπάτι ή περίπατος C = a 1 a s, όπου a j είναι µια κατευθυνόµενη ακµή λέµε ότι έχει πισογύρισµα, αν a j+1 = a 1 j για κάποιο j = 1,..., s 1. Ενα µονοπάτι C = a 1 a s λέγεται ότι έχει ουρά αν a s = a 1 1. Ενα κλειστό µονοπάτι καλείται πρώτο µονοπάτι αν δεν έχει πισογυρίσµατα και ουρά και C D f για f > 1 και D κλειστό µονοπάτι στο X. Παίρνουµε την κλάση ισοδυναµίας [C] [C] = {a 1 a s, a 2 a s a 1,..., a s a 1 a s 1 }. Οι πρώτοι είναι κλάσεις ισοδυναµίας πρώτων µονοπατιών., Η ζ-συνάρτηση του Ihara 16/56

23 Πρώτοι σε ένα γράφηµα Εστω ένα γράφηµα X µε σύνολο ακµών E, m = E. Παίρνουµε και τις δύο κατευθύνσεις στις ακµές και τις ονοµάζουµε ως εξής e 1, e 2,..., e m, e m+1 = e 1 1,..., e 2m = e 1 m. Ενα µονοπάτι ή περίπατος C = a 1 a s, όπου a j είναι µια κατευθυνόµενη ακµή λέµε ότι έχει πισογύρισµα, αν a j+1 = a 1 j για κάποιο j = 1,..., s 1. Ενα µονοπάτι C = a 1 a s λέγεται ότι έχει ουρά αν a s = a 1 1. Ενα κλειστό µονοπάτι καλείται πρώτο µονοπάτι αν δεν έχει πισογυρίσµατα και ουρά και C D f για f > 1 και D κλειστό µονοπάτι στο X. Παίρνουµε την κλάση ισοδυναµίας [C] [C] = {a 1 a s, a 2 a s a 1,..., a s a 1 a s 1 }. Οι πρώτοι είναι κλάσεις ισοδυναµίας πρώτων µονοπατιών., Η ζ-συνάρτηση του Ihara 16/56

24 Η Ihara ζ-συνάρτηση Η Ihara ζ-συνάρτηση για ένα πεπερασµένο συνεκτικό γράφηµα (χωρίς κορυφές ϐαθµού 1) ορίζεται από την ακόλουθη συνάρτηση µιγαδικής µεταβλητής u, µε u αρκούντως µικρό ζ X (u) = ζ(u, X) = [P] (1 u v(p)) 1 όπου το γινόµενο είναι πάνω από όλους τους πρώτους [P] στο X και v(p) το µήκος του P. Ενα άπειρο γινόµενο, ωστόσο..., Η ζ-συνάρτηση του Ihara 17/56

25 Η Ihara ζ-συνάρτηση Η Ihara ζ-συνάρτηση για ένα πεπερασµένο συνεκτικό γράφηµα (χωρίς κορυφές ϐαθµού 1) ορίζεται από την ακόλουθη συνάρτηση µιγαδικής µεταβλητής u, µε u αρκούντως µικρό ζ X (u) = ζ(u, X) = [P] (1 u v(p)) 1 όπου το γινόµενο είναι πάνω από όλους τους πρώτους [P] στο X και v(p) το µήκος του P. Ενα άπειρο γινόµενο, ωστόσο..., Η ζ-συνάρτηση του Ihara 17/56

26 Η ζ-συνάρτηση Ihara ως ορίζουσα. Ο πίνακας ακµών W 1 ενός γραφήµατος X είναι ένας 2m 2m πίνακας µε είσοδο (a, b) που αντιστοιχεί στις κατευθυνόµενες ακµές a και b. Αυτή η είσοδος (a, b) ισούται µε 1 αν t(a) = o(b) δηλαδή αν η τερµατική κορυφή της ακµής a ταυτίζεται µε την αρχική κορυφή της ακµής b και b a 1 και 0 διαφορετικά. Για την Ihara ζ-συνάρτηση έχουµε ότι ζ X (u) = det(i uw 1 ) 1. ηλαδή οι πόλοι της Ihara ζ-συνάρτησης είναι τα αντίστροφα των ιδιοτιµών του πίνακα W 1, Η ζ-συνάρτηση του Ihara 18/56

27 Η ζ-συνάρτηση Ihara ως ορίζουσα. Ο πίνακας ακµών W 1 ενός γραφήµατος X είναι ένας 2m 2m πίνακας µε είσοδο (a, b) που αντιστοιχεί στις κατευθυνόµενες ακµές a και b. Αυτή η είσοδος (a, b) ισούται µε 1 αν t(a) = o(b) δηλαδή αν η τερµατική κορυφή της ακµής a ταυτίζεται µε την αρχική κορυφή της ακµής b και b a 1 και 0 διαφορετικά. Για την Ihara ζ-συνάρτηση έχουµε ότι ζ X (u) = det(i uw 1 ) 1. ηλαδή οι πόλοι της Ihara ζ-συνάρτησης είναι τα αντίστροφα των ιδιοτιµών του πίνακα W 1, Η ζ-συνάρτηση του Ihara 18/56

28 Η ζ-συνάρτηση Ihara ως ορίζουσα. Ο πίνακας ακµών W 1 ενός γραφήµατος X είναι ένας 2m 2m πίνακας µε είσοδο (a, b) που αντιστοιχεί στις κατευθυνόµενες ακµές a και b. Αυτή η είσοδος (a, b) ισούται µε 1 αν t(a) = o(b) δηλαδή αν η τερµατική κορυφή της ακµής a ταυτίζεται µε την αρχική κορυφή της ακµής b και b a 1 και 0 διαφορετικά. Για την Ihara ζ-συνάρτηση έχουµε ότι ζ X (u) = det(i uw 1 ) 1. ηλαδή οι πόλοι της Ihara ζ-συνάρτησης είναι τα αντίστροφα των ιδιοτιµών του πίνακα W 1, Η ζ-συνάρτηση του Ihara 18/56

29 Οι πόλοι της ζ-συνάρτησης του Ihara Οποτε η ακτίνα σύγκλισής της ως δυναµοσειρά γύρω από το 0 είναι R X = ρ(w 1 ) 1 όπου ρ(w 1 ) = max{ λ } µε λ ιδιοτιµή του πίνακα W 1. Ισχύει ότι u d du log ζ X(u) = m 1 N m u m. όπου N m το πλήθος των κλειστών µονοπατίων χωρίς πισογυρίσµατα και ουρές, µήκους m., Η ζ-συνάρτηση του Ihara 19/56

30 Οι πόλοι της ζ-συνάρτησης του Ihara Οποτε η ακτίνα σύγκλισής της ως δυναµοσειρά γύρω από το 0 είναι R X = ρ(w 1 ) 1 όπου ρ(w 1 ) = max{ λ } µε λ ιδιοτιµή του πίνακα W 1. Ισχύει ότι u d du log ζ X(u) = m 1 N m u m. όπου N m το πλήθος των κλειστών µονοπατίων χωρίς πισογυρίσµατα και ουρές, µήκους m., Η ζ-συνάρτηση του Ihara 19/56

31 Θεώρηµα Bass Hasimoto Εστω A ο πίνακας γειτνίασης του γραφήµατος X και Q ο διαγώνιος πίνακας µε j οστή είσοδο q j ώστε το q j + 1 να είναι ο ϐαθµός της j οστής κορυφής του X. Ας υποθέσουµε ότι το r είναι η ο ϐαθµός της ϑεµελιώδους οµάδας του X, δηλαδή r 1 = E V. Τότε έχουµε την ακόλουθη εξίσωση ζ X (u) 1 = (1 u 2 ) r 1 det(i Au + Qu 2 ). Παράδειγµα Το πλήρες γράφηµα K 4 έχει ζ-συνάρτηση του Ihara την ζ 1 K 4 = (u 1) 2 (u + 1)(2 u 1) ( 2 u 2 + u + 1 )3., Η ζ-συνάρτηση του Ihara 20/56

32 Θεώρηµα Bass Hasimoto Εστω A ο πίνακας γειτνίασης του γραφήµατος X και Q ο διαγώνιος πίνακας µε j οστή είσοδο q j ώστε το q j + 1 να είναι ο ϐαθµός της j οστής κορυφής του X. Ας υποθέσουµε ότι το r είναι η ο ϐαθµός της ϑεµελιώδους οµάδας του X, δηλαδή r 1 = E V. Τότε έχουµε την ακόλουθη εξίσωση ζ X (u) 1 = (1 u 2 ) r 1 det(i Au + Qu 2 ). Παράδειγµα Το πλήρες γράφηµα K 4 έχει ζ-συνάρτηση του Ihara την ζ 1 K 4 = (u 1) 2 (u + 1)(2 u 1) ( 2 u 2 + u + 1 )3., Η ζ-συνάρτηση του Ihara 20/56

33 Συναρτησιακές εξισώσεις Εστω X ένα q + 1-κανονικό γράφηµα µε ελάχιστο ϐαθµό κορυφών 2 και n = V. Τότε έχουµε τις ακόλουθες συναρτησιακές εξισώσεις 1. Λ X (u) (1 u 2 ) r 1+n/2 (1 q 2 u 2 ) n/2 ζ X (u) = ( 1) n Λ X (1/qu). 2. ξ X (u) (1 + u) r 1 (1 u) r 1+n (1 qu) n ζ X (u) = ξ X (1/qu). 3. Ξ X (u) (1 u 2 ) r 1 (1 + qu) n ζ X (u) = Ξ X (1/qu). Από τις παραπάνω συναρτησιακές εξισώσεις συµπεραίνουµε ότι υπάρχει συµµετρία στην κατανοµή των πόλων της ζ X (u) για κανονικά γραφήµατα, δηλαδή αν η ζ X (u) έχει ένα πόλο στο u τότε πρέπει να έχει και ένα πόλο στο 1/qu. Αν ϑέσουµε όπου u = q s οι συναρτησιακές εξισώσεις συνδέουν το s µε το 1 s κάτι που αποτελεί ανάλογο της συναρτησιακής εξίσωσης της ζ-συνάρτησης του Riemann, Η ζ-συνάρτηση του Ihara 21/56

34 Συναρτησιακές εξισώσεις Εστω X ένα q + 1-κανονικό γράφηµα µε ελάχιστο ϐαθµό κορυφών 2 και n = V. Τότε έχουµε τις ακόλουθες συναρτησιακές εξισώσεις 1. Λ X (u) (1 u 2 ) r 1+n/2 (1 q 2 u 2 ) n/2 ζ X (u) = ( 1) n Λ X (1/qu). 2. ξ X (u) (1 + u) r 1 (1 u) r 1+n (1 qu) n ζ X (u) = ξ X (1/qu). 3. Ξ X (u) (1 u 2 ) r 1 (1 + qu) n ζ X (u) = Ξ X (1/qu). Από τις παραπάνω συναρτησιακές εξισώσεις συµπεραίνουµε ότι υπάρχει συµµετρία στην κατανοµή των πόλων της ζ X (u) για κανονικά γραφήµατα, δηλαδή αν η ζ X (u) έχει ένα πόλο στο u τότε πρέπει να έχει και ένα πόλο στο 1/qu. Αν ϑέσουµε όπου u = q s οι συναρτησιακές εξισώσεις συνδέουν το s µε το 1 s κάτι που αποτελεί ανάλογο της συναρτησιακής εξίσωσης της ζ-συνάρτησης του Riemann, Η ζ-συνάρτηση του Ihara 21/56

35 Συναρτησιακές εξισώσεις Εστω X ένα q + 1-κανονικό γράφηµα µε ελάχιστο ϐαθµό κορυφών 2 και n = V. Τότε έχουµε τις ακόλουθες συναρτησιακές εξισώσεις 1. Λ X (u) (1 u 2 ) r 1+n/2 (1 q 2 u 2 ) n/2 ζ X (u) = ( 1) n Λ X (1/qu). 2. ξ X (u) (1 + u) r 1 (1 u) r 1+n (1 qu) n ζ X (u) = ξ X (1/qu). 3. Ξ X (u) (1 u 2 ) r 1 (1 + qu) n ζ X (u) = Ξ X (1/qu). Από τις παραπάνω συναρτησιακές εξισώσεις συµπεραίνουµε ότι υπάρχει συµµετρία στην κατανοµή των πόλων της ζ X (u) για κανονικά γραφήµατα, δηλαδή αν η ζ X (u) έχει ένα πόλο στο u τότε πρέπει να έχει και ένα πόλο στο 1/qu. Αν ϑέσουµε όπου u = q s οι συναρτησιακές εξισώσεις συνδέουν το s µε το 1 s κάτι που αποτελεί ανάλογο της συναρτησιακής εξίσωσης της ζ-συνάρτησης του Riemann, Η ζ-συνάρτηση του Ihara 21/56

36 Υπόθεση Riemann για Γραφήµατα - Γραφήµατα Ramanujan Υπόθεση Riemann Υποθέτουµε ότι το X είναι ένα συνεκτικό (q + 1)-κανονικό γράφηµα (χωρίς κορυφές ϐαθµού 1). Λέµε ότι η Ihara ζ-συνάρτηση ζ X (q s ) ικανοποιεί την υπόθεση Riemann ανν για 0 < Re s < 1 ζ X (q s ) 1 = 0 = Re s = 1/2. Παρατηρούµε ότι αν u = q s, Re s = 1/2 αντιστοιχεί σε u = 1/ q. Γραφήµατα Ramanujan Ενα συνεκτικό (q + 1)-κανονικό γράφηµα X λέγεται Ramanujan αν και µόνο αν για έχουµε µ 2 q. µ = max{ λ λ SpectrumA, λ q + 1}, Η ζ-συνάρτηση του Ihara 22/56

37 Υπόθεση Riemann για Γραφήµατα - Γραφήµατα Ramanujan Υπόθεση Riemann Υποθέτουµε ότι το X είναι ένα συνεκτικό (q + 1)-κανονικό γράφηµα (χωρίς κορυφές ϐαθµού 1). Λέµε ότι η Ihara ζ-συνάρτηση ζ X (q s ) ικανοποιεί την υπόθεση Riemann ανν για 0 < Re s < 1 ζ X (q s ) 1 = 0 = Re s = 1/2. Παρατηρούµε ότι αν u = q s, Re s = 1/2 αντιστοιχεί σε u = 1/ q. Γραφήµατα Ramanujan Ενα συνεκτικό (q + 1)-κανονικό γράφηµα X λέγεται Ramanujan αν και µόνο αν για έχουµε µ 2 q. µ = max{ λ λ SpectrumA, λ q + 1}, Η ζ-συνάρτηση του Ihara 22/56

38 Υπόθεση Riemann για Γραφήµατα - Γραφήµατα Ramanujan Θεώρηµα Για ένα συνεκτικό (q + 1) κανονικό γράφηµα X, η ζ X (u) ικανοποιεί την υπόθεση Riemann ανν το γράφηµα είναι Ramanujan. Τα Ramanujan γραφήµατα είναι ϐέλτιστα expander γραφήµατα δηλαδή ισχυρά συνεκτικά αλλά αραιά γραφήµατα., Η ζ-συνάρτηση του Ihara 23/56

39 Υπόθεση Riemann για Γραφήµατα - Γραφήµατα Ramanujan Θεώρηµα Για ένα συνεκτικό (q + 1) κανονικό γράφηµα X, η ζ X (u) ικανοποιεί την υπόθεση Riemann ανν το γράφηµα είναι Ramanujan. Τα Ramanujan γραφήµατα είναι ϐέλτιστα expander γραφήµατα δηλαδή ισχυρά συνεκτικά αλλά αραιά γραφήµατα., Η ζ-συνάρτηση του Ihara 23/56

40 Expanders Ορισµός Εστω S, T υποσύνολα του συνόλου των κορυφών του X, ορίζουµε E(S, T) = {e e ακµή του X µε µία κορυφή στο S και την άλλη στο T} Ορισµός Αν το S είναι ένα σύνολο από κορυφές του X ορίζουµε το σύνορο του S να είναι S = E(S, X S) Ορισµός Ενα γράφηµα X µε σύνολο κορυφών V και n = V έχει expansion ratio h(x) = S min {S V S n/2} S., Η ζ-συνάρτηση του Ihara 24/56

41 Expanders Παρατηρούµε ότι h > 0 αν και µόνο αν το X είναι συνεκτικό. Επίσης για οποιοδήποτε S µε S n/2 έχουµε ότι ϑs h S, οπότε αν το h δεν είναι µικρό το S έχει πολλούς γείτονες εκτός του S από όπου προκύπτει και το όνοµα expander (αυτό που εξαπλώνεται). Ορισµός Μία ακολουθία από k-κανονικά γραφήµατα {X j } έτσι ώστε V(X j ) για j ονοµάζεται οικογένεια expander γραφηµάτων αν υπάρχει ένα ɛ > 0 έτσι ώστε h(x j ) ɛ για κάθε j., Η ζ-συνάρτηση του Ihara 25/56

42 Expanders Θεώρηµα Dodziuk, Alon, Milman Εστω X ένα k-κανονικό συνεκτικό γράφηµα. Τότε ισχύει: k λ 1 2 h(x) 2k(k λ 1 ). όπου λ 1 είναι η δεύτερη µεγαλύτερη ιδιοτιµή του πίνακα γειτνίασης. Θεώρηµα Alon Boppana Υποθέτουµε ότι η X n είναι µία ακολουθία k-κανονικών συνεκτικών γραφηµάτων και ότι ο αριθµός των κορυφών των X n τείνει στο άπειρο καθώς το n τείνει στο άπειρο. Τότε lim inf λ 1(X n ) 2 k 1 n, Η ζ-συνάρτηση του Ihara 26/56

43 Ιδιότητες Ramanujan Γραφηµάτων Expander-mixing lemma Εστω X ένα συνεκτικό k-κανονικό µη διµερές γράφηµα µε n κορυφές και µ = max{ λ λ Spectrum A, λ k}. Τότε για όλα τα σύνολα S, T από κορυφές του X έχουµε ότι k S T E(S, T) n µ S T. Μικρή διαµέτρος Εστω το X ένα γράφηµα συνεκτικό, µη διµερές µε n κορυφές, τότε diamx 1 + log(n 1) log(k/µ)., Η ζ-συνάρτηση του Ihara 27/56

44 Ιδιότητες Ramanujan Γραφηµάτων Expander-mixing lemma Εστω X ένα συνεκτικό k-κανονικό µη διµερές γράφηµα µε n κορυφές και µ = max{ λ λ Spectrum A, λ k}. Τότε για όλα τα σύνολα S, T από κορυφές του X έχουµε ότι k S T E(S, T) n µ S T. Μικρή διαµέτρος Εστω το X ένα γράφηµα συνεκτικό, µη διµερές µε n κορυφές, τότε diamx 1 + log(n 1) log(k/µ)., Η ζ-συνάρτηση του Ihara 27/56

45 Ιδιότητες Ramanujan Γραφηµάτων-Τυχαίοι περίπατοι Ο τυχαίος περιπατητής χάνεται Εστω ένα γράφηµα X συνεκτικό µη διµερές k-κανονικό µε n κορυφές και πίνακα γειτνίασης A. Αν T = (1/k)A για κάθε αρχικό διάνυσµα πιθανότητας p (0) ισχύει ότι ( lim m p(m) = lim T m p (0) 1 = u = m n,, 1 ) t n Πόσο γρήγορα χάνεται ο περιπατητής Εστω X ένα συνεκτικό, µη διµερές k-κανονικό γράφηµα µε n κορυφές και πίνακα γειτνίασης A. Αν T = (1/k)A, για κάθε αρχικό διάνυσµα πιθανότητας p (0), έχουµε ότι T m p (0) u ( µ ) m n k, Η ζ-συνάρτηση του Ihara 28/56

46 Υπαρξη και κατασκευασιµότητα Ramanujan Γραφηµάτων Τα γραφήµατα X p,q των Lubotzky,Phillips,Sarnak (1988) Τα X p,q είναι Cayley γραφήµατα της οµάδας G = PGL(2, F q ) = GL(2, F q )/Z(GL(2, F q )) όπου GL(2, F q ) είναι η οµάδα των 2 2 αντιστρέψιµων πινάκων µε στοιχεία στο σώµα µε q στοιχεία και Z(GL(2, F q ) το κέντρο της οµάδας που είναι το σύνολο των ϐαθµωτών πολλαπλασίων του ταυτοτικού πίνακα. Επιλέγουµε έναν ακέραιο i ώστε i 2 1 mod4. {( ) a0 + ia S = 1 a 2 + ia 3 a0 2 + a2 1 + a2 2 + a2 3 = p, a } 0 > 0, a 2 + ia 3 a 0 ia 1 a 1, a 2, a 3 άρτιοι Ενα ϑεώρηµα του Jacobi λέει ότι µε αυτές τις προυποθέσεις S = p + 1. Μπορούµε να ελέγξουµε ότι το S είναι κλειστό ως προς αντιστροφή πινάκων. Το γράφηµα X p,q είναι η συνεκτική συνιστώσα του Cayley γραφήµατος X(G, S) που περιέχει το ταυτοτικό στοιχείο., Η ζ-συνάρτηση του Ihara 29/56

47 Υπαρξη και κατασκευασιµότητα Ramanujan Γραφηµάτων Τα γραφήµατα X p,q των Lubotzky,Phillips,Sarnak (1988) Τα X p,q είναι Cayley γραφήµατα της οµάδας G = PGL(2, F q ) = GL(2, F q )/Z(GL(2, F q )) όπου GL(2, F q ) είναι η οµάδα των 2 2 αντιστρέψιµων πινάκων µε στοιχεία στο σώµα µε q στοιχεία και Z(GL(2, F q ) το κέντρο της οµάδας που είναι το σύνολο των ϐαθµωτών πολλαπλασίων του ταυτοτικού πίνακα. Επιλέγουµε έναν ακέραιο i ώστε i 2 1 mod4. {( ) a0 + ia S = 1 a 2 + ia 3 a0 2 + a2 1 + a2 2 + a2 3 = p, a } 0 > 0, a 2 + ia 3 a 0 ia 1 a 1, a 2, a 3 άρτιοι Ενα ϑεώρηµα του Jacobi λέει ότι µε αυτές τις προυποθέσεις S = p + 1. Μπορούµε να ελέγξουµε ότι το S είναι κλειστό ως προς αντιστροφή πινάκων. Το γράφηµα X p,q είναι η συνεκτική συνιστώσα του Cayley γραφήµατος X(G, S) που περιέχει το ταυτοτικό στοιχείο., Η ζ-συνάρτηση του Ihara 29/56

48 Γραφήµατα Ramanujan κάθε ϐαθµού (2013) Ο Morgenstern επέκτεινε την κατασκευή των Lubotzky,Phillips,Sarnak σε p a + 1-κανονικά Ramanujan γραφήµατα όπου p πρώτος και a N. Οι Adam Marcus, Daniel Spielman και Nikhil Srivastava απέδειξαν ότι υπάρχουν άπειρες οικογένειες διµερών Ramanujan γραφηµάτων για κάθε ϐαθµό d > 2. Η απόδειξη που παρέθεσαν είναι υπαρξιακή., Η ζ-συνάρτηση του Ihara 30/56

49 Γραφήµατα Ramanujan κάθε ϐαθµού (2013) Ο Morgenstern επέκτεινε την κατασκευή των Lubotzky,Phillips,Sarnak σε p a + 1-κανονικά Ramanujan γραφήµατα όπου p πρώτος και a N. Οι Adam Marcus, Daniel Spielman και Nikhil Srivastava απέδειξαν ότι υπάρχουν άπειρες οικογένειες διµερών Ramanujan γραφηµάτων για κάθε ϐαθµό d > 2. Η απόδειξη που παρέθεσαν είναι υπαρξιακή., Η ζ-συνάρτηση του Ihara 30/56

50 Συντελεστές της αντίστροφης της ζ-συνάρτησης του Ihara ζ X (u) 1 = det(i W 1 u) = c 0 + c 1 u + c 2 u 2 + c 3 u c 2m u 2m όπου m = E ο αριθµός των ακµών του γραφήµατος X. 1. c 0 = 1 2. c 2m = ( 1) m n v i V (d(v i) 1). 3. Το c 1 ισούται µε το αρνητικό του διπλασίου του πλήθους των ϐρόχων στο X. 4. Αν X απλό το c 3 ισούται µε το αρνητικό του διπλασίου του αριθµού των τριγώνων στο X. 5. Εστω g η περιφέρεια ενός απλού συνεκτικού γραφήµατος X, τότε, c k = 0 για 1 k < g. Επιπλέον το c g είναι το αρνητίκο του διπλασίου του πλήθους των g-γώνων στο X., Η ζ-συνάρτηση του Ihara 31/56

51 Συντελεστές της αντίστροφης της ζ-συνάρτησης του Ihara Γενικότερα το c i είναι το πλήθος των υπογραφηµάτων του συµµετρικού διγραφήµατος D(X) µε i κορυφές που αποτελούνται από άρτιο αριθµό κλειστών µονοπατιών χωρίς πισογυρίσµατα, ουρές και επαναλήψεις ακµών µείον του πλήθους των υπογραφηµάτων του συµµετρικού διγραφήµατος D(X) µε i κορυφές που αποτελούνται από περιττό αριθµό κλειστών µονοπατιών χωρίς πισογυρίσµατα, ουρές και επαναλήψεις ακµών., Η ζ-συνάρτηση του Ihara 32/56

52 Παραδείγµατα Σχήµα : ύο γραφήµατα µε την ίδια ζ-συνάρτηση αλλά διαφορετικούς αριθµούς κορυφών και συνεκτικών συνιστωσών., Η ζ-συνάρτηση του Ihara 33/56

53 Παραδείγµατα Ξ Ψ Σχήµα : ύο γραφήµατα µε την ίδια ζ-συνάρτηση, το ένα έχει κύκλο Hamilton και το άλλο όχι., Η ζ-συνάρτηση του Ihara 34/56

54 Θεωρία Galois σε Γραφήµατα Αδιακλάδιστα καλύµµατα Εστω ένα γράφηµα X χωρίς πολλαπλές ακµές και ϐρόχους. Θα λέµε ότι το γράφηµα Y είναι ένα αδιακλάδιστο κάλυµµα του γραφήµατος X αν υπάρχει µία απεικόνιση επικάλυψης π : Y X που είναι µία επί απεικόνιση γραφηµάτων ώστε για καθε x X και για κάθε y π 1 (x) οι κορυφές που είναι γειτονικές στο y Y να απεικονίζονται µία προς µία επί των γειτονικών κορυφών του x X. Ορισµός Ενα µη κατευθυνόµενο πεπερασµένο γράφηµα Y είναι ένα αδιακλάδιστο κάλυµµα του µη κατευθυνόµενου γραφήµατος X αν, δίνοντας έναν αυθαίρετο προσανατολισµό στις ακµές του X υπάρχει µια επιλογή προσανατολισµού για τις ακµές του Y και µια επί απεικόνιση επικάλυψης π : Y X που στέλνει τις γειτονίες του Y επί των γειτονιών του X και διατηρεί τον προσανατολισµό των ακµών., Η ζ-συνάρτηση του Ihara 35/56

55 Θεωρία Galois σε Γραφήµατα Αδιακλάδιστα καλύµµατα Εστω ένα γράφηµα X χωρίς πολλαπλές ακµές και ϐρόχους. Θα λέµε ότι το γράφηµα Y είναι ένα αδιακλάδιστο κάλυµµα του γραφήµατος X αν υπάρχει µία απεικόνιση επικάλυψης π : Y X που είναι µία επί απεικόνιση γραφηµάτων ώστε για καθε x X και για κάθε y π 1 (x) οι κορυφές που είναι γειτονικές στο y Y να απεικονίζονται µία προς µία επί των γειτονικών κορυφών του x X. Ορισµός Ενα µη κατευθυνόµενο πεπερασµένο γράφηµα Y είναι ένα αδιακλάδιστο κάλυµµα του µη κατευθυνόµενου γραφήµατος X αν, δίνοντας έναν αυθαίρετο προσανατολισµό στις ακµές του X υπάρχει µια επιλογή προσανατολισµού για τις ακµές του Y και µια επί απεικόνιση επικάλυψης π : Y X που στέλνει τις γειτονίες του Y επί των γειτονιών του X και διατηρεί τον προσανατολισµό των ακµών., Η ζ-συνάρτηση του Ihara 35/56

56 Κατασκεύη καλυµµάτων Σχήµα : Τετράεδρο και τετραγωνικό κάλυµµα, Η ζ-συνάρτηση του Ihara 36/56

57 Κανονικά Καλύµµατα Μοναδικοτητα της ανύψωσης των µονοπατιών στα καλύµµατα. Υποθέτουµε ότι το Y είναι ένα κάλυµµα του X και C ένα µονοπάτι στο X. Τότε το C έχει µια µοναδική ανύψωση σε ένα µονοπάτι C στο Y, δεδοµένου ότι έχουµε επιλέξει την αρχική κορυφή του C. Κανονικά καλύµµατα Ενα κάλυµµα Y/X µε d-ϕύλλα και απεικόνιση επικάλυψης π : Y X λέµε ότι είναι ένα κανονικό ή Galois κάλυµµα αν υπάρχουν d αυτοµορφισµοί γραφηµάτων σ i : Y Y, i = 1,, d ώστε π σ i = π. Η οµάδα Galois G(Y/X) είναι το σύνολο των απεικονίσεων σ i µε πράξη την σύνθεση. Οταν λέµε αυτοµορφισµό γραφηµάτων εννοούµε µια ένα προς ένα και επί απεικόνιση µεταξύ των κορυφών και των κατευθυνόµενων ακµών του Y που διατηρεί τον προσανατολισµό., Η ζ-συνάρτηση του Ihara 37/56

58 Κανονικά Καλύµµατα Μοναδικοτητα της ανύψωσης των µονοπατιών στα καλύµµατα. Υποθέτουµε ότι το Y είναι ένα κάλυµµα του X και C ένα µονοπάτι στο X. Τότε το C έχει µια µοναδική ανύψωση σε ένα µονοπάτι C στο Y, δεδοµένου ότι έχουµε επιλέξει την αρχική κορυφή του C. Κανονικά καλύµµατα Ενα κάλυµµα Y/X µε d-ϕύλλα και απεικόνιση επικάλυψης π : Y X λέµε ότι είναι ένα κανονικό ή Galois κάλυµµα αν υπάρχουν d αυτοµορφισµοί γραφηµάτων σ i : Y Y, i = 1,, d ώστε π σ i = π. Η οµάδα Galois G(Y/X) είναι το σύνολο των απεικονίσεων σ i µε πράξη την σύνθεση. Οταν λέµε αυτοµορφισµό γραφηµάτων εννοούµε µια ένα προς ένα και επί απεικόνιση µεταξύ των κορυφών και των κατευθυνόµενων ακµών του Y που διατηρεί τον προσανατολισµό., Η ζ-συνάρτηση του Ihara 37/56

59 Κανονικά Καλύµµατα Μοναδικοτητα της ανύψωσης των µονοπατιών στα καλύµµατα. Υποθέτουµε ότι το Y είναι ένα κάλυµµα του X και C ένα µονοπάτι στο X. Τότε το C έχει µια µοναδική ανύψωση σε ένα µονοπάτι C στο Y, δεδοµένου ότι έχουµε επιλέξει την αρχική κορυφή του C. Κανονικά καλύµµατα Ενα κάλυµµα Y/X µε d-ϕύλλα και απεικόνιση επικάλυψης π : Y X λέµε ότι είναι ένα κανονικό ή Galois κάλυµµα αν υπάρχουν d αυτοµορφισµοί γραφηµάτων σ i : Y Y, i = 1,, d ώστε π σ i = π. Η οµάδα Galois G(Y/X) είναι το σύνολο των απεικονίσεων σ i µε πράξη την σύνθεση. Οταν λέµε αυτοµορφισµό γραφηµάτων εννοούµε µια ένα προς ένα και επί απεικόνιση µεταξύ των κορυφών και των κατευθυνόµενων ακµών του Y που διατηρεί τον προσανατολισµό., Η ζ-συνάρτηση του Ihara 37/56

60 ράση της οµάδας Galois Εστω Y/X ένα κανονικό κάλυµµα. Η οµάδα Galois G = G(Y/X) δρά µεταβατικά στα ϕύλλα του καλύµµατος. ιαλέγουµε ένα από τα ϕύλλα του Y και το ονοµάζουµε ϕύλλο 1. Η εικόνα του ϕύλλου 1 κάτω από την δράση ενός στοιχείου g G ϑα ονοµάζεται ϕύλλο g. Συνεπώς κάθε κορυφή x στο Y µπορεί να συµβολίζεται µοναδικά µε x = (x, g), όπου x = π( x) και g είναι το ϕύλλο που περιέχει το x. Η οµάδα Galois G(Y/X) δρα στα ϕύλλα του Y µέσω του g ( ϕύλλο h) = ϕύλλο(gh): g (x, h) = (x, gh) για, x X, g, h G Συνεπάγεται ότι η δράση του g κινεί ένα µονοπάτι στο Y ως εξής : g (µονοπατι από το (a, h) στο (b, j) ) = µονοπάτι από το (a, gh) στο (b, gj)., Η ζ-συνάρτηση του Ihara 38/56

61 ράση της οµάδας Galois Εστω Y/X ένα κανονικό κάλυµµα. Η οµάδα Galois G = G(Y/X) δρά µεταβατικά στα ϕύλλα του καλύµµατος. ιαλέγουµε ένα από τα ϕύλλα του Y και το ονοµάζουµε ϕύλλο 1. Η εικόνα του ϕύλλου 1 κάτω από την δράση ενός στοιχείου g G ϑα ονοµάζεται ϕύλλο g. Συνεπώς κάθε κορυφή x στο Y µπορεί να συµβολίζεται µοναδικά µε x = (x, g), όπου x = π( x) και g είναι το ϕύλλο που περιέχει το x. Η οµάδα Galois G(Y/X) δρα στα ϕύλλα του Y µέσω του g ( ϕύλλο h) = ϕύλλο(gh): g (x, h) = (x, gh) για, x X, g, h G Συνεπάγεται ότι η δράση του g κινεί ένα µονοπάτι στο Y ως εξής : g (µονοπατι από το (a, h) στο (b, j) ) = µονοπάτι από το (a, gh) στο (b, gj)., Η ζ-συνάρτηση του Ihara 38/56

62 ράση της οµάδας Galois Εστω Y/X ένα κανονικό κάλυµµα. Η οµάδα Galois G = G(Y/X) δρά µεταβατικά στα ϕύλλα του καλύµµατος. ιαλέγουµε ένα από τα ϕύλλα του Y και το ονοµάζουµε ϕύλλο 1. Η εικόνα του ϕύλλου 1 κάτω από την δράση ενός στοιχείου g G ϑα ονοµάζεται ϕύλλο g. Συνεπώς κάθε κορυφή x στο Y µπορεί να συµβολίζεται µοναδικά µε x = (x, g), όπου x = π( x) και g είναι το ϕύλλο που περιέχει το x. Η οµάδα Galois G(Y/X) δρα στα ϕύλλα του Y µέσω του g ( ϕύλλο h) = ϕύλλο(gh): g (x, h) = (x, gh) για, x X, g, h G Συνεπάγεται ότι η δράση του g κινεί ένα µονοπάτι στο Y ως εξής : g (µονοπατι από το (a, h) στο (b, j) ) = µονοπάτι από το (a, gh) στο (b, gj)., Η ζ-συνάρτηση του Ihara 38/56

63 Θεµελιώδες Θεώρηµα Galois Ορισµός Ας υποθέσουµε ότι το Y είναι ένα κάλυµµα του X µε απεικόνιση επικάλυψης π. Το γράφηµα X είναι ένα ενδιάµεσο κάλλυµα του Y/X αν το Y/ X είναι ένα κάλυµµα, το X/X είναι ένα κάλυµµα και οι προβολές επικάλυψης π 1 : X X και π2 : Y X έχουν την ιδιότητα ότι π = π 1 π 2. Ουσιαστικά, είναι η τριάδα ( X, π1, π 2 ) που ορίζει ένα ενδιάµεσο κάλυµµα., Η ζ-συνάρτηση του Ihara 39/56

64 Θεµελιώδες Θεώρηµα Galois Ορισµός Ας υποθέσουµε ότι το Y είναι ένα κάλυµµα του X µε απεικόνιση επικάλυψης π. Το γράφηµα X είναι ένα ενδιάµεσο κάλλυµα του Y/X αν το Y/ X είναι ένα κάλυµµα, το X/X είναι ένα κάλυµµα και οι προβολές επικάλυψης π 1 : X X και π2 : Y X έχουν την ιδιότητα ότι π = π 1 π 2. Ουσιαστικά, είναι η τριάδα ( X, π1, π 2 ) που ορίζει ένα ενδιάµεσο κάλυµµα., Η ζ-συνάρτηση του Ihara 39/56

65 Θεµελιώδες Θεώρηµα Galois-Ορισµοί Ορισµός Y π 2 π 2 X i π X π 1 X π 1 Ας υποθέσουµε ότι ο i είναι ένα ισοµορφισµός µεταξύ των X και X (που σηµαίνει ότι είναι ένα-προς -ένα και επί στις κορυφές και στις κατευθυνόµενες ακµές). Αν ισχύει π 1 = π 1 i ϑα λέµε ότι ο i είναι ένας ισοµορφισµός καλυµµάτων και τα X και X είναι ισόµορφα καλλύµµατα του X. Αν, επιπλέον, έχουµε ότι i π 2 = π 2 τότε λέµε ότι τα X και X είναι τα ίδια ή ίσα., Η ζ-συνάρτηση του Ihara 40/56

66 Θεµελίώδες Θεώρηµα Galois Ας υποθέσουµε ότι το Y/X είναι ένα αδιακλάδιστο κανονικό κάλυµµα µε οµάδα Galois G = G(Y/X) 1. εδοµένης µίας υποοµάδας H της G, υπάρχει ένα γράφηµα X ενδιάµεσο στο Y/X έτσι ώστε H = G(Y/ X). Γράφουµε X = X(H). 2. Εστω X να είναι ενδιάµεσο στο Y/X. Τότε υπάρχει υποοµάδα H = H( X) της G ισόµορφη µε την G(Y/ X). 3. ύο ενδιάµεσα καλλύµατα X και X είναι ίσα αν και µόνον αν το H( X) = H( X ). 4. Εχουµε ότι H( X(H)) = H και X(H( X)) = X. Οπότε γράφουµε X H για την αντιστοιχία µεταξύ των X ενδιάµεσων καλυµµάτων στο Y/X και των υποοµάδων H της Galois οµάδας G = G(Y/X). 5. Αν X1 H 1 και X2 H 2 τότε το X1 είναι ενδιάµεσο στο Y/ X2 ανν H 1 H 2., Η ζ-συνάρτηση του Ihara 41/56

67 Συζυγή ενδιάµεσα καλύµµατα Ορισµός Υποθέτουµε ότι έχουµε τις ακόλουθες αντιστοιχίες µεταξύ ενδιάµεσων καλυµµάτων και υποοµάδων του G : X H G X ghg 1 G g G τότε λέµε ότι τα X και X είναι συζυγή. Θεώρηµα Τα ενδιάµεσα καλύµµατα X και X στο Y/X µε οµάδα Galois G είναι συζυγή ανν είναι ισόµορφα. Θεώρηµα Το X είναι κανονικό κάλυµµα του X ανν η H είναι κανονική υποοµάδα της G, και σε αυτή την περίπτωση G( X/X) = G/H., Η ζ-συνάρτηση του Ihara 42/56

68 Συζυγή ενδιάµεσα καλύµµατα Ορισµός Υποθέτουµε ότι έχουµε τις ακόλουθες αντιστοιχίες µεταξύ ενδιάµεσων καλυµµάτων και υποοµάδων του G : X H G X ghg 1 G g G τότε λέµε ότι τα X και X είναι συζυγή. Θεώρηµα Τα ενδιάµεσα καλύµµατα X και X στο Y/X µε οµάδα Galois G είναι συζυγή ανν είναι ισόµορφα. Θεώρηµα Το X είναι κανονικό κάλυµµα του X ανν η H είναι κανονική υποοµάδα της G, και σε αυτή την περίπτωση G( X/X) = G/H., Η ζ-συνάρτηση του Ihara 42/56

69 Πρώτοι στα καλύµµατα Αν ο [D] είναι ένας πρώτος στο κάλυµµα Y/X µε προβολή επικάλυψης π και π(d) = C f όπου [C] είναι ένας πρώτος στο X, ϑα λέµε ότι ο [D] είναι ένας πρώτος του Y πάνω από το [C] ή, πιο απλά, ότι ο D είναι ένας πρώτος πάνω από τον C (γράφουµε D C). Το f = f(d, Y/X) ορίζεται ως ο ϐαθµός αδρανείας του D ως προς το Y/X. Αν το Y/X είναι κανονικό ο ϐαθµός του [D] πάνω από το C είναι ο ίδιος για όλα τα [D] πάνω από το C. Αυτό δεν ισχύει πάντα για µη κανονικές επεκτάσεις. Θα συµβολίσουµε µε g = g(d, Y/X) τον αριθµό των πρώτων [D] πάνω από το [C] Για κανονικά αδιακλάδιστα καλύµµατα ισχύει ότι fg = d. -, Η ζ-συνάρτηση του Ihara 43/56

70 Πρώτοι στα καλύµµατα Αν ο [D] είναι ένας πρώτος στο κάλυµµα Y/X µε προβολή επικάλυψης π και π(d) = C f όπου [C] είναι ένας πρώτος στο X, ϑα λέµε ότι ο [D] είναι ένας πρώτος του Y πάνω από το [C] ή, πιο απλά, ότι ο D είναι ένας πρώτος πάνω από τον C (γράφουµε D C). Το f = f(d, Y/X) ορίζεται ως ο ϐαθµός αδρανείας του D ως προς το Y/X. Αν το Y/X είναι κανονικό ο ϐαθµός του [D] πάνω από το C είναι ο ίδιος για όλα τα [D] πάνω από το C. Αυτό δεν ισχύει πάντα για µη κανονικές επεκτάσεις. Θα συµβολίσουµε µε g = g(d, Y/X) τον αριθµό των πρώτων [D] πάνω από το [C] Για κανονικά αδιακλάδιστα καλύµµατα ισχύει ότι fg = d. -, Η ζ-συνάρτηση του Ihara 43/56

71 Πρώτοι στα καλύµµατα Αν ο [D] είναι ένας πρώτος στο κάλυµµα Y/X µε προβολή επικάλυψης π και π(d) = C f όπου [C] είναι ένας πρώτος στο X, ϑα λέµε ότι ο [D] είναι ένας πρώτος του Y πάνω από το [C] ή, πιο απλά, ότι ο D είναι ένας πρώτος πάνω από τον C (γράφουµε D C). Το f = f(d, Y/X) ορίζεται ως ο ϐαθµός αδρανείας του D ως προς το Y/X. Αν το Y/X είναι κανονικό ο ϐαθµός του [D] πάνω από το C είναι ο ίδιος για όλα τα [D] πάνω από το C. Αυτό δεν ισχύει πάντα για µη κανονικές επεκτάσεις. Θα συµβολίσουµε µε g = g(d, Y/X) τον αριθµό των πρώτων [D] πάνω από το [C] Για κανονικά αδιακλάδιστα καλύµµατα ισχύει ότι fg = d. -, Η ζ-συνάρτηση του Ihara 43/56

72 Ο αυτοµορφισµός Frobenius Ορισµός Αυτοµορφισµού Frobenius Υποθέτουµε ότι το Y/X είναι ένα κανονικό κάλυµµα µε οµάδα Galois G = Gal(Y/X). Εστω [C] ένας πρώτος στο X, έτσι ώστε το C ξεκινά και τερµατίζει στην κορυφή a. Εστω [D] ένας πρώτος του Y πάνω από το C έτσι ώστε το D ξεκινά και τερµατίζει στην κορυφή (a, g) στο ϕύλλο g G του Y. Αν ο ϐαθµός αδρανείας του D πάνω από το C είναι f τότε το D είναι η ανύψωση του C f που ξεκινά στο ϕύλλο g. Υποθέτουµε ότι το C ανυψώνεται σε ένα µονοπάτι C του Y που ξεκινά στο ϕύλλο g στο (a, g) και τελειώνει στο ϕύλλο h του (a, h). Ορίζουµε τον αυτοµορφισµό του Frobenius να είναι ( ) Y/X [Y/X, D] = = hg 1 G. D Για να πάρουµε την κανονικοποιµένη µορφή του αυτοµορφισµού Frobenius, αρκεί να πάρουµε g = 1, το ταυτοτικό της G., Η ζ-συνάρτηση του Ihara 44/56

73 Η οµάδα ανάλυσης του D ως προς Y/X είναι Z(D) = Z(D, Y/X) = {τ G [τ D] = [D]}., Η ζ-συνάρτηση του Ihara 45/56

74 Ιδιότητες του αυτοµορφισµού Frobenius 1. Για έναν πρώτο κύκλο D στο Y πάνω από το C στο X, ο αυτοµορφισµός Frobenius είναι ανεξάρτητος της επιλογής του D στην κλάση ισοδυναµίας του [D]. Οπότε µπορούµε να ορίσουµε τον [Y/X, [D]] = [Y/X, D]. 2. Η τάξη του [Y/X, D] στην G είναι ο ϐαθµός f = f(d, Y/X). 3. Αν τ G τότε [Y/X, τ D] = τ[y/x, D]τ Αν ο D ξεκινά στο ϕύλλο 1 τότε [Y/X, D] = σ(c), ο κανονικοποιηµένος αυτοµορφισµός Frobenius. 5. Η οµάδα Z(D) είναι η κυκλική υποοµάδα της G τάξης f που παράγεται από τον [Y/X, D]. Συγκεκριµένα, η Z(D) δεν εξαρτάται από την επιλογή του D στην κλαση ισοδυναµίας του [D]., Η ζ-συνάρτηση του Ihara 46/56

75 Ιδιότητες του αυτοµορφισµού Frobenius για ενδιάµεσα καλύµµατα 1. Ας υποθέσουµε ότι το X είναι ένα ενδιάµεσο κάλυµµα του Y/X που αντιστοιχεί στην υποοµάδα H του G = G(Y/X). Εστω [D] µια κλάση ισοδυναµίας των πρώτων κύκλων του Y τέτοια ώστε το D να ϐρίσκεται πάνω από το C στο X. Εστω f = f(d, Y/X) = f1 f 2, όπου f 2 = f(d, Y/ X) και f1 = f( C, X/X). Τότε f1 είναι η ελάχιστη δύναµη του [Y/X, D] που ϐρίσκεται στην H, και έχουµε [Y/X, D] f1 = [Y/ X, D]. (3) 2. Αν, επιπλέον,το X είναι κανονικό πάνω από το X τότε ως στοιχείο του H\G έχουµε το [ X/X, C] = H[Y/X, D]., Η ζ-συνάρτηση του Ihara 47/56

76 Artin-Ihara L-σειρές Ορισµός Υποθέτουµε ότι το Y είναι ένα κανονικό αδιακλάδιστο κάλυµµα του X µε οµάδα Galois G = G(Y/X). Αν ρ είναι είναι µία αναπαράσταση του G µε ϐαθµό d = d ρ και u είναι µια µιγαδική µεταβλητή µε u αρκούντως µικρό, ορίζουµε την Artin-Ihara L-συνάρτηση L(u, ρ, Y/X) = [C] ( det I ρ([y/x, D])u v(c)) 1, όπου το γινόµενο διατρέχει τους πρώτους [C] του X και [D] είναι αυθαίρετα επιλεγµένο από τους πρώτους στο Y πάνω από το C. Εδώ [Y/X, D] είναι ο αυτοµορφισµός Frobenius και v(c) το µήκος του µονοπατιού C αντιπροσώπου του πρώτου [C] Ισχύει ότι L(u, 1, Y/X) = ζ X (u), Η ζ-συνάρτηση του Ihara 48/56

77 L-συναρτήσεις -Τύπος µε ορίζουσα Ορισµός Ορίζουµε τον Artinized πινακα γειτνίασης να είναι ο πίνακας που κατασκευάζεται από block d ρ d ρ που αντιστοιχούν στις κατευθυνόµενες ακµές e, f, όπου το block (W 1,ρ ) e,f που αντιστοιχεί στις ακµές e, f είναι το { ρ(σ(e)) αν t(e) = o(f) (W 1,ρ ) e,f = (W 1 ) e,f ρ(σ(e)) = 0 διαφορετικά, όπου ο σ(e) είναι ο κανονικοποιηµένος αυτοµορφισµός Frobenius που αντιστοιχεί στην κατευθυνόµενη ακµή e και W 1 είναι ο πίνακας ακµών του X. Θεώρηµα Ισχύει ότι L(u, ρ, Y/X) 1 = det(i uw 1,ρ )., Η ζ-συνάρτηση του Ihara 49/56

78 Ιδιότητες της Artin-Ihara L-συνάρτησης Εστω Y/X ένα κανονικό κάλυµµα µε οµάδα Galois G. Τότε: 1. L(u, ρ 1 ρ 2 ) = L(u, ρ 1 )L(u, ρ 2 ). 2. Εστω ότι X ένα ενδιάµεσο κάλυµµα στο Y/X και υποθέτουµε ότι X/X είναι κανονικό, G = Gal(Y/X), H = Gal(Y/ X). Εστω ρ η αναπαράσταση της G/H = Gal( X/X). Οπότε η ρ µπορεί να ειδωθεί ως µία αναπαράσταση της G (η ανύψωση της ρ). Τότε L(u, ρ, Y/X) = L(u, ρ, X/X) 3. (επαγωγική ιδιότητα) Αν X είναι ένα ενδιάµεσο κάλυµµα στο κανονικό κάλυµµα Y/X και ρ είναι µία αναπαράσταση του H = Gal(Y/ X) ϑα συµβολίζουµε µε ρ # = Ind G H ρ την αναπαράσταση που επάγεται από την ρ από την H στην G. Τότε L(u, ρ #, Y/X) = L(u, ρ, Y/ X) Εδώ δεν υποθέτουµε ότι το X είναι κανονικό πάνω από το X., Η ζ-συνάρτηση του Ihara 50/56

79 Η παραγοντοποίηση της ζ-συνάρτησης του Ihara Πόρισµα Υποθέτουµε ότι το Y/X είναι κανονικό µε Galois οµάδα G = G(Y/X). Εστω Ĝ να είναι ένα πλήρες σύνολο από µη ισοδύναµες ανάγωγες µοναδιαίες αναπαραστάσεις της G. Τότε ζ Y (u) = L(u, 1, Y/Y) = ρ Ĝ L(u, ρ, Y/X) dρ., Η ζ-συνάρτηση του Ihara 51/56

80 Artinized πίνακας γειτνίασης Για σ, τ G και κορυφές a, b X, ορίζουµε τον πίνακα A(σ, τ) να είναι ο n n πίνακας µε στοιχείο A(σ, τ) a,b ίσο µε τον αριθµό των κατευθυνόµενων ακµών στο Y από το (a, σ) στο (b, τ). Εδώ σε κάθε µη κατευθυνόµενη ακµή του Y δίνουµε και τις δύο κατευθύνσεις. A(σ, τ) = A(1, σ 1 τ) A(σ 1 τ) Για µία αναπαράσταση ρ της G(Y/X), ορίζουµε τον Artinized πίνακα γειτνίασης A ρ ως A ρ = σ G A(σ) ρ(σ). επίσης ϑέτουµε Q ρ = Q I d, όπου Q είναι ο V(X) V(X) διαγώνιος πίνακας µε στοιχεία της διαγωνίου που αντιστοιχούν στις ενδιάµεσες ακµές που αντιστοιχούν στο a X και δίνονται απο το q a = (ϐαθµος του a) 1 και d είναι ο ϐαθµός της ρ., Η ζ-συνάρτηση του Ihara 52/56

81 Artinized πίνακας γειτνίασης Για σ, τ G και κορυφές a, b X, ορίζουµε τον πίνακα A(σ, τ) να είναι ο n n πίνακας µε στοιχείο A(σ, τ) a,b ίσο µε τον αριθµό των κατευθυνόµενων ακµών στο Y από το (a, σ) στο (b, τ). Εδώ σε κάθε µη κατευθυνόµενη ακµή του Y δίνουµε και τις δύο κατευθύνσεις. A(σ, τ) = A(1, σ 1 τ) A(σ 1 τ) Για µία αναπαράσταση ρ της G(Y/X), ορίζουµε τον Artinized πίνακα γειτνίασης A ρ ως A ρ = σ G A(σ) ρ(σ). επίσης ϑέτουµε Q ρ = Q I d, όπου Q είναι ο V(X) V(X) διαγώνιος πίνακας µε στοιχεία της διαγωνίου που αντιστοιχούν στις ενδιάµεσες ακµές που αντιστοιχούν στο a X και δίνονται απο το q a = (ϐαθµος του a) 1 και d είναι ο ϐαθµός της ρ., Η ζ-συνάρτηση του Ihara 52/56

82 ϑεώρηµα Ihara-Bass για L-συναρτήσεις Η block διαγωνόποίηση του πίνακα γειτνίασης ενός κανονικού καλύµµατος Υποθέτουµε ότι το Y/X είναι κανονικό µε οµάδα Galois G = G(Y/X). Εστω Ĝ ένα πλήρες σύνολο από µη ισοδύναµες, ανάγωγες, µοναδιαίες αναπαραστάσεις του G. Τότε µπορούµε να γράψουµε τον πίνακα γειτνίασης του Y ως block διαγώνιο πίνακα µε block τους πίνακες A ρ, ο καθένας επαναλαµβανόµενος d ρ ϕορές καθώς οι ρ διατρέχουν το Ĝ Θεώρηµα Με τις παραπάνω υποθέσεις και όρισµους έχουµε L(u, ρ, Y/X) 1 = (1 u 2 ) r 1 det(i A ρ + Q ρ u 2 ). Εδώ r είναι ο ϐαθµός της ϑεµελιώδους οµάδας του X, Η ζ-συνάρτηση του Ihara 53/56

83 Η περίπτωση των 2-καλλυµάτων Αν το Y/X είναι ένα 2-κάλυµµα τότε ο πίνακας γειτνίασης A Y µπορεί να γραφεί ως διαγώνιος δύο block πίνακας, ένα block το A X (ο πίνακας γειτνίασης του X) και ένα άλλο block το A A. Ο πίνακας A A έχει ως στοιχεία που αντιστοιχουν σε δύο κορυφές a, b του X τα: αν οι a και b ενώνονται µε µία ακµή στο X η οποία (A A ) a,b = +1 1 ανυψώνεται σε µία ακµή του Y της οποίας τα άκρα ϐρίσκονται στο ίδιο ϕύλλο αν οι a και b ενώνονται µε µία ακµή στο X η οποία ανυψώνεται σε µία ακµή του Y της οποίας τα άκρα ϐρίσκονται σε διαφορετικό ϕύλλο 0 αν οι a και b δεν ενώνονται µε ακµή στο X, Η ζ-συνάρτηση του Ihara 54/56

84 Εικασία των Bilu, Linial Κάθε d-κανονικό γράφηµα X έχει ένα 2-κάλυµµα Y έτσι ώστε SpectrumA Y SpectrumA X [ 2 d 1, 2 d 1 ] όπου A Y είναι ο πίνακας γειτνίασης του Y. Μία εικασία που αφορά το ϕάσµα ιδιοτιµών του πίνακα A A. Για διµερή γραφήµατα Απρίλιος (2013) από τους οι Adam Marcus, Daniel Spielman και Nikhil Srivastava κάτι που αποδεικνύει ότι υπάρχουν άπειρες οικογένειες Ramanujan γραφηµάτων για κάθε d ξεκινώντας από το πλήρες d-κανονικό διµερές γράφηµα, που ως γνωστόν είναι Ramanujan αφού οι ιδιοτιµές του εκτός των d και d είναι 0, και ανυψώνοντας κατάλληλα. Ωστόσο η απόδειξη που έδωσαν είναι υπαρξιακή και έτσι δεν µας δείνει ακόµα αλγόριθµο για αυτό., Η ζ-συνάρτηση του Ihara 55/56

85 Εικασία των Bilu, Linial Κάθε d-κανονικό γράφηµα X έχει ένα 2-κάλυµµα Y έτσι ώστε SpectrumA Y SpectrumA X [ 2 d 1, 2 d 1 ] όπου A Y είναι ο πίνακας γειτνίασης του Y. Μία εικασία που αφορά το ϕάσµα ιδιοτιµών του πίνακα A A. Για διµερή γραφήµατα Απρίλιος (2013) από τους οι Adam Marcus, Daniel Spielman και Nikhil Srivastava κάτι που αποδεικνύει ότι υπάρχουν άπειρες οικογένειες Ramanujan γραφηµάτων για κάθε d ξεκινώντας από το πλήρες d-κανονικό διµερές γράφηµα, που ως γνωστόν είναι Ramanujan αφού οι ιδιοτιµές του εκτός των d και d είναι 0, και ανυψώνοντας κατάλληλα. Ωστόσο η απόδειξη που έδωσαν είναι υπαρξιακή και έτσι δεν µας δείνει ακόµα αλγόριθµο για αυτό., Η ζ-συνάρτηση του Ihara 55/56

86 Εικασία των Bilu, Linial Κάθε d-κανονικό γράφηµα X έχει ένα 2-κάλυµµα Y έτσι ώστε SpectrumA Y SpectrumA X [ 2 d 1, 2 d 1 ] όπου A Y είναι ο πίνακας γειτνίασης του Y. Μία εικασία που αφορά το ϕάσµα ιδιοτιµών του πίνακα A A. Για διµερή γραφήµατα Απρίλιος (2013) από τους οι Adam Marcus, Daniel Spielman και Nikhil Srivastava κάτι που αποδεικνύει ότι υπάρχουν άπειρες οικογένειες Ramanujan γραφηµάτων για κάθε d ξεκινώντας από το πλήρες d-κανονικό διµερές γράφηµα, που ως γνωστόν είναι Ramanujan αφού οι ιδιοτιµές του εκτός των d και d είναι 0, και ανυψώνοντας κατάλληλα. Ωστόσο η απόδειξη που έδωσαν είναι υπαρξιακή και έτσι δεν µας δείνει ακόµα αλγόριθµο για αυτό., Η ζ-συνάρτηση του Ihara 55/56

87 Ερευνητικές Προτάσεις. 1. Γενίκευση Εικασίας Bilu-Linial- Ανάλογη απόδειξη-καλύµµατα µε κυκλικές ή τάξης πρώτου οµάδες Galois- Κατασκευασιµότητα- ιερεύνηση της ύπαρξης k-κανονικών Ramanujan γραφηµάτων για πλήθος κορυφών > k Αν εξειδικεύσω τις ακµές της edge ζ-συνάρτησης κατά στήλες έχω πλήρη αναλοίωτη; 3. Τυπικά Απειρογινόµενα- Ερωτήσεις -Ramanujan γραφήµατα 4. Μεταφορά Θεωρίας Number Fields-Function Fields σε γραφήµατα (π.χ. Νοµος τετραγωνικής Αντιστροφής -Κυκλοτοµικά καλύµµατα κτλ.) 5. Αρθρο Cioba-Murty Expander graphs and gaps between primes και ϕραγµένα διαστήµατα διαδοχικών πρώτων (Κατασκευαστική)., Η ζ-συνάρτηση του Ihara 56/56

88 Ερευνητικές Προτάσεις. 1. Γενίκευση Εικασίας Bilu-Linial- Ανάλογη απόδειξη-καλύµµατα µε κυκλικές ή τάξης πρώτου οµάδες Galois- Κατασκευασιµότητα- ιερεύνηση της ύπαρξης k-κανονικών Ramanujan γραφηµάτων για πλήθος κορυφών > k Αν εξειδικεύσω τις ακµές της edge ζ-συνάρτησης κατά στήλες έχω πλήρη αναλοίωτη; 3. Τυπικά Απειρογινόµενα- Ερωτήσεις -Ramanujan γραφήµατα 4. Μεταφορά Θεωρίας Number Fields-Function Fields σε γραφήµατα (π.χ. Νοµος τετραγωνικής Αντιστροφής -Κυκλοτοµικά καλύµµατα κτλ.) 5. Αρθρο Cioba-Murty Expander graphs and gaps between primes και ϕραγµένα διαστήµατα διαδοχικών πρώτων (Κατασκευαστική)., Η ζ-συνάρτηση του Ihara 56/56

89 Ερευνητικές Προτάσεις. 1. Γενίκευση Εικασίας Bilu-Linial- Ανάλογη απόδειξη-καλύµµατα µε κυκλικές ή τάξης πρώτου οµάδες Galois- Κατασκευασιµότητα- ιερεύνηση της ύπαρξης k-κανονικών Ramanujan γραφηµάτων για πλήθος κορυφών > k Αν εξειδικεύσω τις ακµές της edge ζ-συνάρτησης κατά στήλες έχω πλήρη αναλοίωτη; 3. Τυπικά Απειρογινόµενα- Ερωτήσεις -Ramanujan γραφήµατα 4. Μεταφορά Θεωρίας Number Fields-Function Fields σε γραφήµατα (π.χ. Νοµος τετραγωνικής Αντιστροφής -Κυκλοτοµικά καλύµµατα κτλ.) 5. Αρθρο Cioba-Murty Expander graphs and gaps between primes και ϕραγµένα διαστήµατα διαδοχικών πρώτων (Κατασκευαστική)., Η ζ-συνάρτηση του Ihara 56/56

90 Ερευνητικές Προτάσεις. 1. Γενίκευση Εικασίας Bilu-Linial- Ανάλογη απόδειξη-καλύµµατα µε κυκλικές ή τάξης πρώτου οµάδες Galois- Κατασκευασιµότητα- ιερεύνηση της ύπαρξης k-κανονικών Ramanujan γραφηµάτων για πλήθος κορυφών > k Αν εξειδικεύσω τις ακµές της edge ζ-συνάρτησης κατά στήλες έχω πλήρη αναλοίωτη; 3. Τυπικά Απειρογινόµενα- Ερωτήσεις -Ramanujan γραφήµατα 4. Μεταφορά Θεωρίας Number Fields-Function Fields σε γραφήµατα (π.χ. Νοµος τετραγωνικής Αντιστροφής -Κυκλοτοµικά καλύµµατα κτλ.) 5. Αρθρο Cioba-Murty Expander graphs and gaps between primes και ϕραγµένα διαστήµατα διαδοχικών πρώτων (Κατασκευαστική)., Η ζ-συνάρτηση του Ihara 56/56

91 Ερευνητικές Προτάσεις. 1. Γενίκευση Εικασίας Bilu-Linial- Ανάλογη απόδειξη-καλύµµατα µε κυκλικές ή τάξης πρώτου οµάδες Galois- Κατασκευασιµότητα- ιερεύνηση της ύπαρξης k-κανονικών Ramanujan γραφηµάτων για πλήθος κορυφών > k Αν εξειδικεύσω τις ακµές της edge ζ-συνάρτησης κατά στήλες έχω πλήρη αναλοίωτη; 3. Τυπικά Απειρογινόµενα- Ερωτήσεις -Ramanujan γραφήµατα 4. Μεταφορά Θεωρίας Number Fields-Function Fields σε γραφήµατα (π.χ. Νοµος τετραγωνικής Αντιστροφής -Κυκλοτοµικά καλύµµατα κτλ.) 5. Αρθρο Cioba-Murty Expander graphs and gaps between primes και ϕραγµένα διαστήµατα διαδοχικών πρώτων (Κατασκευαστική)., Η ζ-συνάρτηση του Ihara 56/56

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( , c Ε. Γαλλόπουλος) ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Ε. Γαλλόπουλος. ΤΜΗΥΠ Πανεπιστήµιο Πατρών. ιαφάνειες διαλέξεων 28/2/12

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( , c Ε. Γαλλόπουλος) ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Ε. Γαλλόπουλος. ΤΜΗΥΠ Πανεπιστήµιο Πατρών. ιαφάνειες διαλέξεων 28/2/12 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ε. Γαλλόπουλος ΤΜΗΥΠ Πανεπιστήµιο Πατρών ιαφάνειες διαλέξεων 28/2/12 Μαθηµατική Οµάδα Οµάδα είναι ένα σύνολο F µαζί µε µία πράξη + : F F F έτσι ώστε (Α1) α + (β + γ) = (α + β) + γ για

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι Χρησιµοποιώντας το θεώρηµα του Weddebu για ηµιαπλούς δακτυλίους αναπτύσσουµε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασµένων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z).

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z). Παράρτηµα Α 11.1 Εισαγωγή Οπως έχει αναφερθεί ήδη προοδευτικά στο δεύτερο µέρος του παρόντος συγγράµµατος χρησιµοποιούνται ϐασικές έννοιες άλγεβρας. Θεωρούµε ότι οι έννοιες αυτές είναι ήδη γνωστές από

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας Δώδεκα Αποδείξεις του Θεμελιώδους Θεωρήματος της Άλγεβρας Mία εκδοχή της αρχικής απόδειξης του Gauss f ( z) = T ( z) + iu ( z) T = r cos φ + Ar 1 cos(( 1) φ + α) + + L cosλ U = r si φ + Ar 1 si(( 1) φ

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις

Διαβάστε περισσότερα

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( ) Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Bursde Θα αποδείξουµε εδώ ότι κάθε οµάδα τάξης a q b (, q πρώτοι) είναι επιλύσιµη. Το θεώρηµα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιµοποίησε τη νέα τότε

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 2.1 Συνάρτηση Η έννοια της συνάρτησης είναι ϐασική σ όλους τους κλάδους των µαθη- µατικών, αλλά και πολλών άλλων επιστηµών. Ο λόγος είναι, ότι µορφοποιεί τη σχέση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Παναγιώτης Ψαρράκος Αν. Καθηγητής Ανάλυση Πινάκων Κεφάλαιο 1: Νόρμες Διανυσμάτων και Πινάκων Παναγιώτης Ψαρράκος Αν. Καθηγητής Δ.Π.Μ.Σ. Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών

Διαβάστε περισσότερα

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs) Μη κατευθυνόµενα γραφήµατα Στοιχεία Θεωρίας Γραφηµάτων (1) Απλό µη κατευθυνόµενο γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E) µε σύνολο κορυφών/κόµβων V Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων,

Διαβάστε περισσότερα

Κυρτή Ανάλυση. Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Κυρτή Ανάλυση. Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Υποοµάδες και το Θεώρηµα του Lagrange Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 210 2. Υποοµάδες και το Θεώρηµα

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Σύγκλιση και Συνέχεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα. Κατευθυνόµενα γραφήµατα Απλό κατευθυνόµενο Γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E), µε: Στοιχεία Θεωρίας Γραφηµάτων (1) σύνολο κορυφών / κόµβων V, Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων,

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γραφηµάτων (1)

Στοιχεία Θεωρίας Γραφηµάτων (1) Στοιχεία Θεωρίας Γραφηµάτων (1) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 1 / 23 Μη κατευθυνόµενα γραφήµατα

Διαβάστε περισσότερα

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1) Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων

Διαβάστε περισσότερα

Οµάδες Κοτσίδων και δράσεις της απόλυτης οµάδας Galois

Οµάδες Κοτσίδων και δράσεις της απόλυτης οµάδας Galois Οµάδες Κοτσίδων και δράσεις της απόλυτης οµάδας Galois Αριστείδης Κοντογεώργης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. Συνέδριο Αλγεβρας Θεσσαλονίκη 2-3 Μαΐου 2014 Η παρούσα έρευνα έχει συγχρηµατοδοτηθεί

Διαβάστε περισσότερα

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]} 7 ΙΙΙ Ολοκληρωτικός Λογισµός πολλών µεταβλητών Βασικές έννοιες στη µια µεταβλητή Έστω f :[ ] φραγµένη συνάρτηση ( Ρ = { t = < < t = } είναι διαµέριση του [ ] 0 ( Ρ ) = Μ ( ) όπου sup f ( t) : t [ t t]

Διαβάστε περισσότερα

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n Κεφάλαιο 8 Η οµάδα S n Στο κεφάλαιο αυτό ϑα µελετήσουµε την οµάδα µεταθέσεων ή συµµετρική οµάδα S n εφαρµόζοντας τη ϑεωρία που αναπτύχθηκε στα προηγούµενα κε- ϕάλαια. Η σηµαντικότητα της S n εµφανίστηκε

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 7 Πινακες και Γραµµικες Απεικονισεις Στα προηγούµενα

Διαβάστε περισσότερα

Κανόνες παραγώγισης ( )

Κανόνες παραγώγισης ( ) 66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών

Διαβάστε περισσότερα

1 Το ϑεώρηµα του Rademacher

1 Το ϑεώρηµα του Rademacher Το ϑεώρηµα του Rademacher Νικόλαος Μουρδουκούτας Περίληψη Σε αυτήν την εργασία ϑα αποδείξουµε το ϑεώρηµα του Rademacher, σύµφωνα µε το οποίο κάθε Lipschiz συνάρτηση f : R m είναι διαφορίσιµη σχεδόν παντού.

Διαβάστε περισσότερα

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x Ευκλείδειοι Χώροι Ορίζουµε ως R, όπου N, το σύνολο όλων διατεταµένων -άδων πραγµατικών αριθµών x, x,, x ) Tο R λέγεται ευκλείδειος -χώρος και τα στοιχεία του λέγονται διανύσµατα ή σηµεία Το x i λέγεται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ), Α Δ Ι Α - Φ 4 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 15 Νοεμβρίου

Διαβάστε περισσότερα

Οµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών

Οµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών Κεφάλαιο 6 Οµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών Στο παρόν Κεφάλαιο ϑα µελετήσουµε τις ϐασικές ιδιότητες της οµάδας πηλίκο µιας οµάδας ως προς µια κανονική υποµάδα, ϑα αποδείξουµε τα ϐασικά ϑεωρήµατα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιµοποιώντας τανυστικά γινόµενα και εφαρµόζοντας το θεώρηµα των Wedderbur-rt ( 33) θα αποδείξουµε δύο θεµελιώδη θεωρήµατα που αφορούν κεντρικές απλές άλγεβρες *

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους

Διαβάστε περισσότερα

u v 4 w G 2 G 1 u v w x y z 4

u v 4 w G 2 G 1 u v w x y z 4 Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι Χρησιμοποιώντας το θεώρημα του Weddebu για ημιαπλούς δακτυλίους, αναπτύσσουμε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασμένων

Διαβάστε περισσότερα

2 ) d i = 2e 28, i=1. a b c

2 ) d i = 2e 28, i=1. a b c ΑΣΚΗΣΕΙΣ ΘΕΩΡΙΑΣ ΓΡΑΦΩΝ (1) Εστω G απλός γράφος, που έχει 9 κορυφές και άθροισμα βαθμών κορυφών μεγαλύτερο του 7. Αποδείξτε ότι υπάρχει μια κορυφή του G με βαθμό μεγαλύτερο ή ίσο του 4. () Αποδείξτε ότι

Διαβάστε περισσότερα

w S n lim (n 1)! = x(x + q)(x + q + q 2 ) (x + q + q q n 1 ),

w S n lim (n 1)! = x(x + q)(x + q + q 2 ) (x + q + q q n 1 ), Ασκήσεις #1 1. Εστω a(n, k) το πλήθος των υποσυνόλων του {1, 2,..., n} με k στοιχεία τα οποία δεν περιέχουν διαδοχικούς ακεραίους. (α) Δείξτε ότι το a(n, k) είναι ίσο με το πλήθος των συνθέσεων (r 0, r

Διαβάστε περισσότερα

Αριθµοί Liouville. Ιωάννης Μπαρµπαγιάννης

Αριθµοί Liouville. Ιωάννης Μπαρµπαγιάννης Αριθµοί Liouville Ιωάννης Μπαρµπαγιάννης Εισαγωγή Η ϑεωρία των υπερβατικών αριθµών έχει ως αφετηρία µια ϕηµισµένη εργασία του Liouville, το 844, ο οποίος περιέγραψε µια κλάση πραγµατικών αριθµών οι οποίοι

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )

Διαβάστε περισσότερα

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Οµοµορφισµοί Οµάδων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 287 13. Οµοµορφισµοί Οµάδων Στην παρούσα ενότητα

Διαβάστε περισσότερα

ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2. Μάθηµα 5.1: Παραστάσεις Γραφηµάτων. ηµήτρης Ψούνης

ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2. Μάθηµα 5.1: Παραστάσεις Γραφηµάτων. ηµήτρης Ψούνης ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2 Μάθηµα 5.1: Παραστάσεις Γραφηµάτων ηµήτρης Ψούνης 2 ΠΕΡΙΕΧΟΜΕΝΑ Α. Σκοπός του Μαθήµατος Β.Θεωρία 1. Πίνακας Γειτνίασης 1. Ορισµός για µη κατευθυνόµενα γραφήµατα 2.

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n 236 5. Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες, τις υποοµάδες τους, και τους γεννήτο- ϱές τους. Οι ταξινοµήσεις αυτές ϑα ϐασιστούν στην

Διαβάστε περισσότερα

L 2 -σύγκλιση σειρών Fourier

L 2 -σύγκλιση σειρών Fourier Κεφάλαιο 7 L -σύγκλιση σειρών Fourier 7.1 Χώροι Hilbert 7.1.1 Χώροι µε εσωτερικό γινόµενο και χώροι Hilbert Ορισµός 7.1.1. Εστω X γραµµικός χώρος πάνω από το K. Μια συνάρτηση, : X X K λέγεται εσωτερικό

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt01b/nt01b.html Πέµπτη 1 Οκτωβρίου 01 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει

Διαβάστε περισσότερα

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β) Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε

Διαβάστε περισσότερα

Αλγεβρικές Δομές Ι. 1 Ομάδα I

Αλγεβρικές Δομές Ι. 1 Ομάδα I Αλγεβρικές Δομές Ι 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω G μια προσθετική ομάδα S ένα μη κενό σύνολο και M(S G το σύνολο όλων των συναρτήσεων f : S G. Δείξτε ότι το σύνολο M(S G είναι ομάδα με πράξη την πρόσθεση

Διαβάστε περισσότερα

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών 54 ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών ιαφόριση συναρτήσεων πολλών µεταβλητών Ένας στέρεος ορισµός της παραγώγισης για συναρτήσεις πολλών µεταβλητών ανάλογος µε τον ορισµό για συναρτήσεις µιας µεταβλητής

Διαβάστε περισσότερα

Κεφάλαιο 6. Πεπερασµένα παραγόµενες αβελιανές οµάδες. Z 4 = 1 και Z 2 Z 2.

Κεφάλαιο 6. Πεπερασµένα παραγόµενες αβελιανές οµάδες. Z 4 = 1 και Z 2 Z 2. Κεφάλαιο 6 Πεπερασµένα παραγόµενες αβελιανές οµάδες Στο κεφάλαιο αυτό ϑα ταξινοµήσουµε τις πεπερασµένα παραγόµενες αβελιανές οµάδες. Αυτές οι οµάδες είναι από τις λίγες περιπτώσεις οµάδων µε µία συγκεκριµένη

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι R διάστηµα και f : Ι R συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f (

Διαβάστε περισσότερα

(β) Θεωρούµε µια ακολουθία Nθετικών ακεραίων η οποία περιέχει ακριβώς

(β) Θεωρούµε µια ακολουθία Nθετικών ακεραίων η οποία περιέχει ακριβώς Θέµα (Αρχή του Περιστερώνα, 8 µονάδες) (α) Επιλέγουµε αυθαίρετα φυσικούς αριθµούς από το σύνολο {,,3,, 3, } Να δείξετε ότι µεταξύ των αριθµών που έχουµε επιλέξει υπάρχει πάντα ένα ζευγάρι όπου ο µεγαλύτερος

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 13 Οκτωβρίου 016 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα

Κυρτές Συναρτήσεις και Ανισώσεις Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο e-mail: zenon7@otenetgr Ιούλιος-Αύγουστος 2004 Περίληψη Το σχολικό ϐιβλίο της Γ Λυκείου ορίζει σαν κυρτή (αντ κοίλη)

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml

Διαβάστε περισσότερα

Οµάδες Μεταθέσεων. Κεφάλαιο Συνοπτική Θεωρία. S(X ) = { f : X X f : απεικόνιση «1-1» και «επί» }

Οµάδες Μεταθέσεων. Κεφάλαιο Συνοπτική Θεωρία. S(X ) = { f : X X f : απεικόνιση «1-1» και «επί» } Κεφάλαιο 4 Οµάδες Μεταθέσεων 4.1 Συνοπτική Θεωρία Οι οµάδες µεταθέσεων επί ενός συνόλου και ιδιαίτερα επί του πεπερασµένου συνόλου { 12 n } αποτελούν µια από τις ϐασικότερες κλάσεις οµάδων. Στην παρούσα

Διαβάστε περισσότερα

Σύγκλιση σειρών Fourier σε χώρους L p

Σύγκλιση σειρών Fourier σε χώρους L p Σύγκλιση σειρών Fourier σε χώρους L p Μιχάλης Σαράντης και Κωνσταντίνος Τσίνας Βασικά αποτελέσµατα από την ανάλυση Fourier Ορισµός.. Ο n-οστός πυρήνας του Dirichlet ορίζεται ως (.) D n (y) Πρόταση.. Για

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

Αριθµητική Ανάλυση 1 εκεµβρίου / 43 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 1 / 43 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Αντίστοιχη βαθμολογικά και ποιοτικά με την

Διαβάστε περισσότερα

7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ. και σε κάθε γειτονιά του z

7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ. και σε κάθε γειτονιά του z 7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ Ένα σημείο λέγεται ανώμαλο σημείο της συνάρτησης f( ) αν η f( ) δεν είναι αναλυτική στο και σε κάθε γειτονιά του υπάρχει ένα τουλάχιστον

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συµπάγεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 236 5. Ταξινόµηση

Διαβάστε περισσότερα

4 Συνέχεια συνάρτησης

4 Συνέχεια συνάρτησης 4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της

Διαβάστε περισσότερα

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50 Αριθµητική Γραµµική Αλγεβρα Κεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ΕΚΠΑ 2 Απριλίου 205 Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα

Διαβάστε περισσότερα

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης. Παράρτηµα Α Στοιχεία θεωρίας µέτρου και ολοκλήρωσης Α Χώροι µέτρου Πέραν της «διαισθητικής» περιγραφής του µέτρου «σχετικά απλών» συνόλων στο από το µήκος τους (όπως πχ είναι τα διαστήµατα, ενώσεις/τοµές

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 1η Διάλεξη Θεωρία Γραφημάτων η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 206 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Συναρτήσεις, Ορια, Συνέχεια ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των συναρτήσεων,

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: Εισαγωγικές Εννοιες Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Bursde a b Θα αποδείξουμε εδώ ότι κάθε ομάδα τάξης pq ( p, q πρώτοι) είναι επιλύσιμη Το θεώρημα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιμοποίησε τη νέα

Διαβάστε περισσότερα

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Γράφοι Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο πλευρές (ακµές) και κορυφές (κόµβους). Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Graph Drawing 4 πιθανές αναπαραστάσεις

Διαβάστε περισσότερα

Οι πραγµατικοί αριθµοί

Οι πραγµατικοί αριθµοί Οι πραγµατικοί αριθµοί Προλεγόµενα Η ανάγκη απαρίθµησης αντικειµένων, οδήγησε στην εισαγωγή του συνόλου των φυσικών αριθµών Η ανάγκη µέτρησης µεγεθών, οδήγησε στην εισαγωγή του συνόλου των ρητών αριθµών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα