ΠΑΡΑΜΕΤΡΙΚΗ ΜΕΛΕΤΗ ΚΛΑΣΣΙΚΟΥ ΠΤΕΡΥΓΙΣΜΟΥ ΜΕ ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΕΡΟΕΛΑΣΤΟΔΥΝΑΜΙΚΗ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΡΑΜΕΤΡΙΚΗ ΜΕΛΕΤΗ ΚΛΑΣΣΙΚΟΥ ΠΤΕΡΥΓΙΣΜΟΥ ΜΕ ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΕΡΟΕΛΑΣΤΟΔΥΝΑΜΙΚΗ"

Transcript

1 ΠΑΡΑΜΕΤΡΙΚΗ ΜΕΛΕΤΗ ΚΛΑΣΣΙΚΟΥ ΠΤΕΡΥΓΙΣΜΟΥ ΜΕ ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΕΡΟΕΛΑΣΤΟΔΥΝΑΜΙΚΗ Α. Μπαξεβάνου και Ν. Βλάχος Εργαστήριο Ρευστομηχανικής & Στροβιλομηχανών Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας, Πανεπιστήμιο Θεσσαλίας Λεωφ. Αθηνών, Πεδίο Άρεως, 8 4 Βόλος E-ml: web: htt://www.me.th.g/lbs/flds ΠΕΡΙΛΗΨΗ H παρούσα εργασία αφορά στη μελέτη με υπολογιστική αεροελαστοδυναμική κλασσικού πτερυγισμού ενός πτερυγίου ανεμογεννήτριας. Περιγράφεται το αριθμητικό μοντέλο το οποίο περιλαμβάνει ένα επιλυτή Nve-Stokes για την πρόβλεψη της ροής γύρω από την αεροτομή, σε συνδυασμό με τις ελαστικές εξισώσεις για την δομή του πτερυγίου, καθώς και η μέθοδος σύζευξής τους. Το αεροδυναμικό μοντέλο, υπό μορφή κώδικα υπολογιστικής ρευστοδυναμικής πεπερασμένων όγκων, επιλύει Δ ελλειπτικά πεδία ροής χρησιμοποιώντας δομημένο πλέγμα, ομόθετη (collocted) αποθήκευση και καμπυλόγραμμο μη-ορθογωνικό σύστημα συντεταγμένων. Η ελαστική συμπεριφορά της αεροτομής προσομοιώνεται με απλουστευμένο μοντέλο ελατηρίων με τρεις βαθμούς ελευθερίας στη γενική περίπτωση. Το αεροδυναμικό και το δομικό μοντέλο συζευγνύονται με πεπλεγμένη μέθοδο. Παρουσιάζονται αποτελέσματα μίας παραμετρικής μελέτης κλασσικού πτερυγισμού για αεροτομή πτερυγίου ανεμογεννήτριας. Μελετάται η αεροελαστική συμπεριφορά αεροτομής NACA5, σταθερής χορδής, τοποθετημένη σε τέσσερις διαφορετικές ακτινικές θέσεις περιστρεφόμενου πτερυγίου, υποκείμενη σε κλασσικό πτερυγισμό. Εξετάζονται περιπτώσεις ευσταθούς και ασταθούς αεροελαστικής συμπεριφοράς και εξάγονται χρήσιμα συμπεράσματα. Λέξεις κλειδιά: Υπολογιστική αεροελαστικότητα, CFD, κλασσικός πτερυγισμός, ανεμογεννήτριες, ευστάθεια. ΕΙΣΑΓΩΓΗ Η τάση για χρήση όλο και μεγαλύτερων ανεμογεννητριών (Α/Γ), συνδυασμένη με την μείωση του βάρους των πτερυγίων και την ανάγκη για Α/Γ ικανές να λειτουργήσουν και να επιβιώσουν σε ακραίες συνθήκες, καθώς και η ανάγκη ελέγχου της παραγόμενης ισχύος με παθητικά μέσα ανανέωσαν το ενδιαφέρον για τη μελέτη της αεροελαστικής συμπεριφοράς των πτερυγίων Α/Γ. Αν και δεν έχει παρατηρηθεί αστοχία πτερυγίων που να οφείλεται σε κλασσικό πτερυγισμό μελετάται συνήθως προκειμένου να αξιολογηθεί η ικανότητα των διαφόρων μοντέλων να προσομοιώσουν με ακρίβεια την αεροελαστική συμπεριφορά ενός πτερυγίου. Στα πλαίσια αυτά, στην παρούσα εργασία περιγράφεται ένα αριθμητικό μοντέλο υπολογισμού αεροελαστικής συμπεριφοράς πτερυγίου που υπόκειται σε κλασσικό πτερυγισμό και παρουσιάζεται μια παραμετρική μελέτη για αεροτομή σε τέσσερις διαφορετικές ακτινικές θέσεις. Στο Σχήμα δίνεται η γενική γεωμετρία του προβλήματος, το οποίο αντιμετωπίζεται ως δισδιάστατο. Πρόκειται για αεροτομή η οποία στη γενική περίπτωση έχει τρεις βαθμούς ελευθερίας (εγκάρσια κίνηση-fl, διαμήκη κίνηση-edge και συστροφή-tch) αν και στην περίπτωση του κλασσικού πτερυγισμού θα ληφθούν υπόψη μόνο οι δύο (εγκάρσια κίνηση και συστροφή).

2 Σχήμα. Γενική γεωμετρία του προβλήματος. ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ Το αεροελαστικό μοντέλο αποτελείται από το αεροδυναμικό μέρος που προσδιορίζει τα αεροδυναμικά φορτία και το ελαστικό το οποίο προσδιορίζει την απόκριση της δομής στα φορτία αυτά. Για τον υπολογισμό των αεροδυναμικών φορτίων επιλύονται, στη συντηρητική τους μορφή, οι Reynolds Aveged Nve Stokes (RANS) εξισώσεις, Fezge (996). Εφόσον το πρόβλημα του κλασσικού πτερυγισμού εμφανίζεται σε χαμηλές γωνίες πρόσπτωσης, ως μοντέλο τύρβης χρησιμοποιείται το μοντέλο k-ω hgh Reynolds του Wlcox (994) με συναρτήσεις τοίχου, το οποίο δίνει συγκρίσιμα αποτελέσματα με αυτά των μοντέλων που ολοκληρώνουν μέχρι το στερεό όριο αλλά με πολύ μικρότερο υπολογιστικό κόστος, κυρίως λόγω των μικρότερων απαιτήσεων σε υπολογιστικό πλέγμα, Bxevno & Vlchos (4).. Αεροελαστικές εξισώσεις Για τη γενική περίπτωση και λαμβάνοντας υπόψη τρεις βαθμούς ελευθερίας, οι εξισώσεις κίνησης προκύπτουν από τις εξισώσεις Lgnge, Bxevno (4). Η αδιάστατη μορφή τους, Chvoolos (999), με σύστημα συντεταγμένων στην πλήμνη της Α/Γ, για αεροτομή σε ακτίνα R, περιστρεφόμνη με σταθερή γωνιακή ταχύτητα (=Ω) είναι: fl: *' ' ' ' * D*' * R f C () edge : w*'' - '' z * + xdwwwkw*' - w* k + z * k + ww w* k = Rf Cw + x * k () tch : '' * + * '' x *- w* '' z * + xd wk' * + wk z * + w k * = RfCM () όπου, * : αδιαστατοποίηση ως προς τη χορδή (/c) : παραγώγιση ως προς τον αδιάστατο χρόνο τ : αδιάστατη στατική ροπή αδράνειας (S /m) : αδιάστατη αξονική ροπή αδράνειας (I /m) D D D, : αδιάστατος συντελεστής δομικής απόσβεσης m (= c U ): αδιάστατη συχνότητα περιστροφής R f (= c m ): κλάσμα μάζας C : αεροδυναμικοί συντελεστές ( ) : ιδιοσυχνότητα της αεροτομής ως προς την κίνηση Ut c: αδιάστατος χρόνος και, U ταχύτητα ανέμου, c χορδή της αεροτομής, D, D w και D α, συντελεστές δομικής απόσβεσης, και w, εγκάρσια και διαμήκης μετατόπιση, αντίστοιχα,, γωνία συστροφής, m, μάζα αεροτομής ανά μονάδα μήκους, S, στατική ροπή αδράνειας ως προς ελαστικό άξονα, k, συντελεστές δυσκαμψίας, I, αξονική ροπή αδράνειας, F, αεροδυναμικά φορτία, η, άξονας παράλληλος τον ελαστικό άξονα του

3 πτερυγίου, ξ, άξονας παράλληλος στην κύρια κατεύθυνση του ανέμου και, παράλληλος στο επίπεδο περιστροφής. Λαμβάνοντας υπόψη μόνο δύο βαθμούς ελευθερίας (εγκάρσια κίνηση και συστροφή) και θεωρώντας μηδενική δομική απόσβεση, οι εξισώσεις κίνησης παίρνουν την μορφή: fl : *' ' ' ' * * R f C (4) tch : ' ' * *' ' * * R C f M (5). ΑΡΙΘΜΗΤΙΚΟ ΜΟΝΤΕΛΟ Τα αεροδυναμικά φορτία υπολογίζονται λύνοντας τις RANS εξισώσεις με μέθοδο πεπερασμένων όγκων. Το αεροδυναμικό τμήμα του μοντέλου βασίζεται στον κώδικα CAFFA του Pec (Fezge & Pec (996)), ο οποίος τροποποιήθηκε κατάλληλα και εξελίχθηκε ούτως ώστε να συμπεριλάβει περισσότερα σχήμα διακριτοποίησης και μοντέλα τύρβης, Bxevno (4). Ο κώδικας αυτός επιλύει τις Nve-Stokes εξισώσεις για δισδιάστατη, ασυμπίεστη ροή χρησιμοποιώντας μέθοδο πεπερασμένων όγκων και δομημένο, ομόθετο καμπυλόγραμμο πλέγμα. Χρησιμοποιεί τον αλγόριθμο SIMPLE και επιλύει τα προκύπτοντα αλγεβρικά συστήματα εξισώσεων με τη μέθοδο SIP. Το ελαστικό τμήμα του μοντέλου προσομοιώνει τις ελαστικές ιδιότητες της αεροτομής με απλοποιημένα ελατήρια, λαμβάνοντας υπόψη στη γενική περίπτωση τρεις βαθμούς ελευθερίας αν και στην περίπτωση του κλασσικού πτερυγισμού η διαμήκης κίνηση αγνοείται. Οι ελαστικές εξισώσεις επιλύονται με τη μέθοδο Newmk. Στη συνέχεια περιγράφονται τα χαρακτηριστικά των σχημάτων διακριτοποίησης και ζεύξης καθώς και το πλέγμα που χρησιμοποιήθηκαν για την παρούσα παραμετρική μελέτη.. Σχήμα διακριτοποίησης Οι Bxevno & Vlchos (4) απέδειξαν ότι τα πλέον κατάλληλα σχήματα διακριτοποίησης για υπολογισμό ροής γύρω από αεροτομή είναι τα σχήματα TVD. Στην παρούσα εργασία έχει επιλεχθεί το Hten-Yee ανάντη TVD σχήμα (Peyet (996), Hsch (99), Hoffmn (998)) για τους όρους συναγωγής στις εξισώσεις ορμής, το ανάντη σχήμα για τους όρους συναγωγής στις εξισώσεις μεταφοράς της τύρβης και το σχήμα κεντρικών διαφορών για τους όρους διάχυσης. Τέλος, η διακριτοποίηση στο χρόνο γίνεται με πεπλεγμένο σχήμα τριών βημάτων με αδιαστατοποιημένο χρονικό βήμα dτ=.. Σύμφωνα με το TVD σχήμα η τιμή μιας μεταβλητής στην επιφάνεια του υπολογιστικού κελιού υπολογίζεται από την σχέση:, e e fe P fe E xe (6) Fe όπου, χ e = συντελεστής με τιμή χ e = f e για Fe> και χ e = -f e F e < = flx vecto lmte στην επιφάνεια μεταξύ των όγκων και + ανηγμένος στη μάζα,e G G (7) με, = ιδιοτιμή της Ιακωβιανής του συστήματος RANS X ` Fst ow όπου, φ = το σχετικό βαθμωτό μέγεθος (φ =, v, φ) X = δεξιό ιδιοδιάνυσμα της Ιακωβιανής του συστήματος RANS Ψ( ) = διόρθωση που επιβάλλει η συνθήκη εντροπίας G G (8) (9)

4 4 *, mn, *, mn, * mx bs bs bs G αν αλλιώς G = () και, *, mn, *, mn, * mx bs bs bs G αν αλλιώς G+= (b). Οριακές συνθήκες Το αεροδυναμικό μοντέλο επικοινωνεί με το ελαστικό μέσω των αεροδυναμικών συντελεστών και το ελαστικό με το αεροδυναμικό μέσω της ενεργού γωνίας πρόσπτωσης, της ταχύτητας και της επιτάχυνση της αεροτομής. Εφόσον το πρόβλημα αντιμετωπίζεται ως δισδιάστατο, η αεροτομή θεωρείται ακίνητη σε ένα ρεύμα αέρος το οποίο προσπίπτει με μεταβαλλόμενη γωνία. Η ενεργός γωνία πρόπτωσης υπολογίζεται κάθε φορά λαμβάνοντας υπόψη τη γωνία συστροφής της αεροτομής και τις ταχύτητες της αεροτομής στην εγκάρσια και τη διαμήκη κατεύθυνση ως ακολούθως: V x V y eff ng tn () όπου, w R ng U EI BE AB OA V x sn () w R ng U ZK O V y sn sn () : αρχική γωνία συστροφής Η δεύτερη πληροφορία που περνάει από το ελαστικό στο αεροδυναμικό μοντέλο είναι η ταχύτητα συστροφής της αεροτομής η οποία τροποποιεί τις συνθήκες μη-ολίσθησης και μηεισχώρησης εφόσον η σχετική ταχύτητα της αεροτομής ως προς το ρευστό δε θεωρείται πλέον μηδέν αλλά έχει τιμή η οποία στη θέση ως προς τον ελαστικό άξονα δίνεται από τη σχέση: x y I (4) Τέλος, όταν η αεροτομή επιταχύνεται ασκεί μια δύναμη στο ρευστό που την περιβάλλει. Η συνολική γραμμική επιτάχυνση ενός σημείου Ι της επιφάνειας της αεροτομής στη θέση ως προς τον ελαστικό άξονα δίνεται από τη σχέση: w v y x x y I (5) Σχήμα. Τροποποίηση της ενεργού γωνίας πρόσπτωσης λόγω αρχικής γωνίας συστροφής, ταχυτήτων στην εγκάρσια και διαμήκη κατεύθυνση, γωνίας συστροφής και ταχύτητας περιστροφής πτερυγίου

5 . Σχήμα σύζευξης Το σύστημα των αεροελαστικών εξισώσεων επιλύεται χρησιμοποιώντας τη μέθοδο Newmk, Zenkewcz (998), και συγκεκριμένα την tncted Tylo sees collocton αλγόριθμο (GN). Οι μετατοπίσεις, ταχύτητες και επιταχύνσεις υπολογίζονται στο χρονικό βήμα n+ χρησιμοποιώντας τις τιμές τους στο χρονικό βήμα n και τις τιμές των εξωτερικών φορτίων στα χρονικά βήματα n και n+. Όμως οι τιμές των εξωτερικών φορτίων στο χρονικό βήμα n+ είναι άγνωστες εφόσον οι τελευταίες εξαρτώνται από τις οριακές συνθήκες, οι οποίες με τη σειρά τους εξαρτώνται από τις μετατοπίσεις, ταχύτητες και επιταχύνσεις της αεροτομής. Για να αντιμετωπιστεί το πρόβλημα χρησιμοποιείται η ακόλουθη επαναληπτική τακτική αναφερόμενη ως nd-n σχήμα ζεύξης, Bxevno(4). Σε κάθε επανάληψη του χρονικού βήματος n+ του ελαστικού τμήματος του μοντέλου τα αεροδυναμικά φορτία υπολογίζονται ως ακολούθως, Chvoolos (996): n n n n n F n n F F F (6) n n n όπου, F F F (7) n n Οι τιμές αυτές επιστρέφουν στην + επανάληψη του n+ χρονικού βήματος του αεροδυναμικού τμήματος του μοντέλου, τα αεροδυναμικά φορτία υπολογίζονται με τις νέες οριακές συνθήκες και με τη σειρά τους χρησιμοποιούνται για νέους υπολογισμούς των μετατοπίσεων, ταχυτήτων και επιταχύνσεων της + επανάληψης του n+ χρονικού βήματος του ελαστικού μοντέλου. Αν η διαφορά ανάμεσα στις τιμές της και της + επανάληψης είναι μικρότερη από έναν προκαθορισμένο αριθμό, το σχήμα θεωρείται ότι έχει συγκλίνει και η λύση συνεχίζεται στο επόμενο χρονικό βήμα, διαφορετικά η διαδικασία επαναλαμβάνεται..4 Υπολογιστικό πλέγμα Χρησιμοποιήθηκε υπολογιστικό πλέγμα τύπου C στο κέντρο του οποίου βρίσκεται η αεροτομή ενώ τα όρια του εκτείνονται σε απόσταση χορδών. Το μέγεθος του πλέγματος είναι 4x6 (=464) κελιά, με 6 κελιά πάνω στην αεροτομή εφόσον χρησιμοποιήθηκε το k-ω hgh Re μοντέλο με συναρτήσεις τοίχου. Για να ικανοποιηθεί η απαίτηση ο πρώτος υπολογιστικός όγκος να βρίσκεται στην περιοχή <y + <4, Snk(997), το πλέγμα κατασκευάστηκε έτσι ώστε να εξασφαλίζεται y + =9 για τον πρώτο υπολογιστικό όγκο της ακμής προσβολής και y + =8 για την ακμή φυγής..5 Οριακές και αρχικές συνθήκες Σε όλο το καμπύλο εξωτερικό όριο του πλέγματος εφαρμόζονται οριακές συνθήκες εισόδου προδιαγράφοντας τις τιμές των μεταβλητών, ενώ στο οπίσθιο κάθετο μέρος του εξωτερικού ορίου του εφαρμόζεται οριακή συνθήκη εξόδου με σταθερή κλίση πίεσης. Πάνω στην αεροτομή εφαρμόζονται οριακές συνθήκες τοίχου τροποποιημένες σύμφωνα με την παράγραφο.. Για να δημιουργηθεί ένα αρχικό πεδίο ως αρχική συνθήκη των υπολογισμών, πραγματοποιήθηκε προσομοίωση ροής γύρω από την αεροτομή εκτεθειμένη σε ρεύμα αέρα με Re=x 6, διατηρώντας σταθερή γωνία πρόσπτωσης 6 ο για χρονικό διάστημα αρκετό ώστε να αποκατασταθεί το οριακό στρώμα γύρω από την αεροτομή. Στα Σχήματα και 4 δίνονται οι μεταβολές των αεροδυναμικών συντελεστών άνωσης και οπισθέλκουσας ως προς τον αδιάστατο χρόνο τ. Παρατηρείται ότι ένα χρονικό διάστημα τ=5 είναι αρκετό για να δημιουργηθεί ένα αρχικό πεδίο για τους αεροελαστικούς υπολογισμούς. Σχήμα. Εξέλιξη του συντελεστή C L (NACA5, Re=x 6, α=6 ο ) Σχήμα 4. Εξέλιξη του συντελεστή C D (NACA5, Re=x 6, α=6 ο ) 5

6 4. ΠΑΡΑΜΕΤΡΙΚΗ ΜΕΛΕΤΗ 4. Αναλυτική μελέτη Για την αναλυτική παραμετρική μελέτη η ίδια αεροτομή NACA5 θεωρείται σε τέσσερις διαφορετικές ακτινικές θέσεις ενός πτερυγίου Α/Γ που περιστρέφεται με σταθερή γωνιακή ταχύτητα Ω. Η προσομοίωση έγινε με μεταβολή της αδιάστατης συχνότητας κ για τον υπολογισμό της οποίας χρησιμοποιείται η σχετική ταχύτητα πρόσπτωσης του αέρα: V R U (8) όπου, R η ακτίνα στην οποία βρίσκεται η αεροτομή και U η επ άπειρο ταχύτητα. Για σταθερή χορδή, η αδιάστατη συχνότητα κ μειώνεται καθώς η ακτίνα R αυξάνει. Επιπλέον, αν η χορδή θεωρηθεί σταθερή, οι υπόλοιπες αδιάστατες χαρακτηριστικές ποσότητες μπορεί να θεωρηθούν σταθερές. Επιλέγοντας R f =.4, 4, 7 και αναλύοντας την αεροελαστική ευστάθεια σύμφωνα με τον Dowell (995), το πολυώνυμο B - 4AC θα πρέπει να παίρνει θετικές τιμές προκειμένου να έχουμε ευσταθή κίνηση, όπου: A (9) mi S CL CL B m K qse Kh I SqS () CL C K h K qse για q>q D () C Παίρνοντας L (για χαμηλές γωνίες πρόσπτωσης), e = -.5, c =, ρ =, V =, S = και q V. 5, το παραπάνω πολυώνυμο δίνεται στο Σχήμα 5. Σχήμα 5. Πρόσημο χαρακτηριστικού πολυωνύμου B -4AC Με βάση το Σχήμα 5 κατασκευάζεται ο ακόλουθος πίνακας παραμετρικής μελέτης που αφορά την αεροτομή NACA5, κείμενη σε ρεύμα αέρα υπό γωνία πρόσπτωσης 6 ο, με Re=x 6. Ως αρχικές συνθήκες λαμβάνονται o = o = o = α o = α o =, και α ο = 6 ο. Πίνακας. Παραμετρική μελέτη κ R f Αναμενόμενη συμπεριφορά Περίπτωση ασταθής Περίπτωση ασταθής Περίπτωση ευσταθής Περίπτωση ευσταθής 6

7 4. Αριθμητική μελέτη Στα Σχήματα 6 και 7 δίνονται οι μετατοπίσεις στην εγκάρσια και στρεπτική κατεύθυνση, αντίστοιχα, για την Περίπτωση. Από τη χρονική εξέλιξη των μετατοπίσεων προκύπτει ότι η συμπεριφορά είναι ασταθής όπως αναμενόταν από την αναλυτική μελέτη. Σχήμα 6. Εγκάρσια μετατόπιση Περίπτωση Σχήμα 7. Στρεπτική μετατόπιση Περίπτωση Στα Σχήματα 8 και 9 δίνονται οι ίδιες μετατοπίσεις για την Περίπτωση. Και πάλι από τη χρονική εξέλιξη η περίπτωση αυτή προκύπτει ασταθής σε συμφωνία με την γραμμικοποιημένη αναλυτική πρόβλεψη. Σχήμα 8. Εγκάρσια μετατόπιση Περίπτωση Σχήμα 9. Στρεπτική μετατόπιση Περίπτωση Στα Σχήματα και δίνονται οι εγκάρσιες και στρεπτικές μετατοπίσεις για την Περίπτωση. Με την πάροδο του χρόνου παρατηρείται ότι το εύρος της ταλάντωσης μειώνεται κάτι που συνεπάγεται ευσταθή συμπεριφορά όπως προβλέπει η αναλυτική μελέτη. Σχήμα. Εγκάρσια μετατόπιση Περίπτωση Σχήμα. Στρεπτική μετατόπιση Περίπτωση 7

8 Τέλος, στα Σχήματα και δίνονται οι ίδιες μετατοπίσεις για την Περίπτωσης 4. Με βάση την ίδια συλλογιστική η κίνησηςκρίνεται ευσταθής και πάλι σε συμφωνία με την αναλυτική μελέτη. Σχήμα. Εγκάρσια μετατόπιση περίπτωση 4 Σχήμα. Στρεπτική μετατόπιση περίπτωση 4 5. ΣΥΜΠΕΡΑΣΜΑΤΑ ΚΑΙ ΠΡΟΤΑΣΕΙΣ H αναλυτική και αριθμητική παραμετρική μελέτη επιβεβαιώνει τις προβλέψεις της θεωρίας ότι η μείωση της αδιάστατης συχνότητας περιστροφής, οδηγεί την αεροτομή σε ασταθή κίνηση. Η μείωση αυτή μπορεί να προέρχεται είτε από αύξηση της ταχύτητας του προσπίπτοντος ανέμου είτε από αύξηση του μεγέθους της ανεμογεννήτριας. Και οι δύο λόγοι είναι σύγχρονες κατασκευαστικές τάσεις των ανεμογεννητριών. Το αεροελαστικό μοντέλο αποδεικνύεται ικανό να προσομοιώσει με ακρίβεια την φύση της αεροελαστικής κίνησης σε ότι αφορά την ευστάθεια, κάτι που επιβεβαιώνει την επιλογή του μοντέλου τύρβης, των σχημάτων διακριτοποίησης και του σχήματος ζεύξης. Επίσης επιβεβαιώνεται η επιλογή του υπολογιστικού πλέγματος καθώς και του χρονικού βήματος dτ=. ως ικανοποιητική για υπολογισμούς κλασσικού πτερυγισμού. ΒΙΒΛΙΟΓΡΑΦΙΑ. Fezge, J.H. nd M. Pec, Comttonl Methods fo Fld Dynmcs, Snge, 996. Wlcox, D.C., Tblence modelng fo CFD, DCW Indstes, Inc, 994. Bxevno, A.C. nd S.N., Vlchos, A comtve stdy of nmecl schemes nd tblence models fo wnd tbne eodynmc modellng, Wnd Engneeng, Vol. 8(),. 75-9, 4 4. Bxevno, A.C., Develoment of Nve-Stokes model fo the eoelstc nlyss of wnd tbne bldes, PhD thess, Unv. of Thessly, 4 5. Chvoolos, P.K., Fl/led-lg eoelstc stblty of wnd tbne blde sectons, Wnd Enegy, Vol.,. 99-, Peyet, R., Hndbook of Comttonl Fld Mechncs, Acdemc Pess, London, Hsch, C., Nmecl comtton of ntenl nd extenl flows Vol. : Comttonl methods fo nvscd nd vs flows, Wley, Englnd, Hoffmn, A.K. nd S.T. Chng, Comttonl Fld Dynmcs Volme II, Engneeng Edcton System, Wcht Knss, Zenkewcz, O.C. nd R.L. Tylo, The Fnte Element Method. Volme. Sold nd Fld Mechncs nd Non-lnety, McGw-Hll, London, 998. Chvoolos, P.K., Develoment of stte-of-the-t eoelstc smlto fo hozontl xs wnd tbnes. Pt :Stctl sects, Wnd Engneeng, Vol.,. 45-4, 996. Snk, T., Sye, P.G. nd S.M. Fse, Flow smlton st xsymmetc bodes sng fo dffeent tblence models, Aled Mthemtcl Modellng, Vol.,.78-79, 997. Dowell, E.H., Cwley, E.F., Cts J., H.C., Petes, D.A., Scnln, R.H. nd F. Ssto, A moden e n eoelstcty, Klwe, London, 995 8

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 15: O αλγόριθμος SIMPLE Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε τις θέσεις που

Διαβάστε περισσότερα

Πίνακας Περιεχομένων 7

Πίνακας Περιεχομένων 7 Πίνακας Περιεχομένων Πρόλογος...5 Πίνακας Περιεχομένων 7 1 Εξισώσεις Ροής- Υπολογιστική Μηχανική Ρευστών...15 1.1 ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ.....15 1.1.1 Γενικά θέματα. 15 1.1.2 Υπολογιστικά δίκτυα...16

Διαβάστε περισσότερα

ΥδροδυναµικέςΜηχανές

ΥδροδυναµικέςΜηχανές ΥδροδυναµικέςΜηχανές Τρίγωνα ταχυτήτων στροβιλοµηχανών Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Κυλινδρικέςσυντεταγµένες Στα σχήµατα παριστάνονται αξονικές τοµές και όψεις

Διαβάστε περισσότερα

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Κεφάλαιο 7 Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 7. Εξισώσεις κύματος ης ης τάξης Οι κλασσικές αντιπροσωπευτικές εξισώσεις της κατηγορίας των υπερβολικών εξισώσεων είναι οι

Διαβάστε περισσότερα

Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ Δημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

Εργ.Αεροδυναμικής,ΕΜΠ. Καθ. Γ.Μπεργελές

Εργ.Αεροδυναμικής,ΕΜΠ. Καθ. Γ.Μπεργελές Η Τεχνολογία των Ελικοπτέρων Τι είναι τα ελικόπτερα Κατηγορίες Ελικοπτέρων Τυπικό ελικόπτερο Υβριδικό αεροσκάφος Tilt-rotor Πως λειτουργεί μιά έλικα Ι U = ταχύτητα πτήσης η σχετική ταχύτητα του αέρα ως

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 11 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 11 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηγητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Ολοκληρώσαμε

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 3 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Επανάληψη: Διακριτά στοιχεία μηχανικών δυναμικών συστημάτων Δυναμικά

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 5. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 5. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 5 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα: Μοντελοποίηση Μηχανικών- Ηλεκτρικών-Υδραυλικών-Θερμικών Συστημάτων Επανάληψη: Εξισώσεις Lagrange σε συστήματα

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΙΣΟΡΡΟΠΙΑ ΔΥΝΑΜΕΩΝ ΣΕ ΕΝΑΝ ΑΠΕΙΡΟΣΤΟ ΟΓΚΟ ΡΕΥΣΤΟΥ Στο κεφάλαιο αυτό θα εξετάσουμε την ισορροπία των δυνάμεων οι οποίες ασκούνται σε ένα τυχόν σωματίδιο ρευστού.

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Θέμα 1 ο ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Στα ερωτήματα 1 5 του πρώτου θέματος, να μεταφέρετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα της απάντησης που θεωρείτε

Διαβάστε περισσότερα

Αιολική Ενέργεια & Ενέργεια του Νερού

Αιολική Ενέργεια & Ενέργεια του Νερού Αιολική Ενέργεια & Ενέργεια του Νερού Ενότητα 7: Λειτουργία α/γ για ηλεκτροπαραγωγή Γεώργιος Λευθεριώτης, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Συντελεστής ισχύος C

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΣΤΗΝ ΠΡΟΣΟΜΟΙΩΣΗ ΕΠΙΠΤΩΣΕΩΝ ΜΕΓΑΛΩΝ ΑΤΥΧΗΜΑΤΩΝ

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΣΤΗΝ ΠΡΟΣΟΜΟΙΩΣΗ ΕΠΙΠΤΩΣΕΩΝ ΜΕΓΑΛΩΝ ΑΤΥΧΗΜΑΤΩΝ Industrial Safety for the onshore and offshore industry ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΣΤΗΝ ΠΡΟΣΟΜΟΙΩΣΗ ΕΠΙΠΤΩΣΕΩΝ ΜΕΓΑΛΩΝ ΑΤΥΧΗΜΑΤΩΝ Μ.Ν. Χριστόλη, Πολ. Μηχ. Περ/γου DEA Ν.Χ. Μαρκάτου, Ομότ.

Διαβάστε περισσότερα

Ρευστoμηχανική Εισαγωγικές έννοιες. Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών

Ρευστoμηχανική Εισαγωγικές έννοιες. Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών Ρευστoμηχανική Εισαγωγικές έννοιες Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών Εισαγωγή Περιεχόμενα μαθήματος Βασικές έννοιες, συνεχές μέσο, είδη, μονάδες διαστάσεις

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Μοντελοποίηση Mηχανικών Συστημάτων Ι: Μηχανικά Συστήματα σε Μεταφορική Κίνηση

Δυναμική Μηχανών I. Μοντελοποίηση Mηχανικών Συστημάτων Ι: Μηχανικά Συστήματα σε Μεταφορική Κίνηση Δυναμική Μηχανών I 3 2 Μοντελοποίηση Mηχανικών Συστημάτων Ι: Μηχανικά Συστήματα σε Μεταφορική Κίνηση 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΙ ΣΤΙΓΜΙΑΙΩΝ ΔΥΝΑΜΕΩΝ ΚΑΙ ΡΟΠΩΝ ΣΕ ΕΜΒΟΛΟΦΟΡΟ ΚΙΝΗΤΗΡΑ 1 ΚΙΝΗΜΑΤΙΚΗ ΤΟΥ ΕΜΒΟΛΟΦΟΡΟΥ ΚΙΝΗΤΗΡΑ

ΥΠΟΛΟΓΙΣΜΟΙ ΣΤΙΓΜΙΑΙΩΝ ΔΥΝΑΜΕΩΝ ΚΑΙ ΡΟΠΩΝ ΣΕ ΕΜΒΟΛΟΦΟΡΟ ΚΙΝΗΤΗΡΑ 1 ΚΙΝΗΜΑΤΙΚΗ ΤΟΥ ΕΜΒΟΛΟΦΟΡΟΥ ΚΙΝΗΤΗΡΑ ΥΠΟΛΟΓΙΣΜΟΙ ΣΤΙΓΜΙΑΙΩΝ ΔΥΝΑΜΕΩΝ ΚΑΙ ΡΟΠΩΝ ΣΕ ΕΜΒΟΛΟΦΟΡΟ ΚΙΝΗΤΗΡΑ Aπό τo βιβλίο Heinz Grohe: Otto und Dieselmotoren. 9 Auflage, Vogel Buchverlag 1990. Kεφάλαιο 2: Mechanische Grundlagen Επιμέλεια μετάφρασης:

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης 3o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 7. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 7. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 7 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Επανάληψη 1 ου μέρους μαθήματος: Μοντελοποίηση & Κατάστρωση Δυναμικών Εξισώσεων Εισαγωγή 2 ου μέρους μαθήματος:

Διαβάστε περισσότερα

Καβάλα, Οκτώβριος 2013

Καβάλα, Οκτώβριος 2013 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΑΝ.ΜΑΚΕ ΟΝΙΑΣ - ΘΡΑΚΗΣ Επιχειρησιακό Πρόγραµµα "Ψηφιακή Σύγκλιση" Πράξη: "Εικονικά Μηχανολογικά Εργαστήρια", Κωδικός ΟΠΣ: 304282 «Η Πράξη συγχρηµατοδοτείται από το Ευρωπαϊκό

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

Mάθημα: Θερμικές Στροβιλομηχανές. Εργαστηριακή Ασκηση. Μέτρηση Χαρακτηριστικής Καμπύλης Βαθμίδας Αξονικού Συμπιεστή

Mάθημα: Θερμικές Στροβιλομηχανές. Εργαστηριακή Ασκηση. Μέτρηση Χαρακτηριστικής Καμπύλης Βαθμίδας Αξονικού Συμπιεστή Ε.Μ. ΠΟΛΥΤΕΧΝΕIΟ ΕΡΓΑΣΤΗΡIΟ ΘΕΡΜIΚΩΝ ΣΤΡΟΒIΛΟΜΗΧΑΝΩΝ ΤΟΜΕΑΣ ΡΕΥΣΤΩΝ Mάθημα: Θερμικές Στροβιλομηχανές Εργαστηριακή Ασκηση Μέτρηση Χαρακτηριστικής Καμπύλης Βαθμίδας Αξονικού Συμπιεστή Κ. Μαθιουδάκη Καθηγητή

Διαβάστε περισσότερα

Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας.

Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας. ΔΙΑΛΕΞΗ η : Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας Στόχος: Στο μάθημα αυτό θα ασχοληθούμε με την αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας, ενώ αργότερα θα γενικεύσουμε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2002 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. 1. Γενικά... 2. 2. Γεωμετρία κάτοψης ορόφων... 2. 3. Ορισμός "ελαστικού" άξονα κτιρίου... 2. 4. Προσδιορισμός του κυρίου συστήματος...

ΠΕΡΙΕΧΟΜΕΝΑ. 1. Γενικά... 2. 2. Γεωμετρία κάτοψης ορόφων... 2. 3. Ορισμός ελαστικού άξονα κτιρίου... 2. 4. Προσδιορισμός του κυρίου συστήματος... ΠΕΡΙΕΧΟΜΕΝΑ 1. Γενικά... 2 2. Γεωμετρία κάτοψης ορόφων... 2 3. Ορισμός "ελαστικού" άξονα κτιρίου.... 2 4. Προσδιορισμός του κυρίου συστήματος.... 3 5. Στρεπτική ευαισθησία κτιρίου... 3 6. Εκκεντρότητες

Διαβάστε περισσότερα

Χειμερινό εξάμηνο 2007 1

Χειμερινό εξάμηνο 2007 1 ΜΜΚ 31 Μεταφορά Θερμότητας Εξαναγκασμένη Συναγωγή και Σφαίρες ΜΜΚ 31 Μεταφορά Θερμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 και Σφαίρες (flow across cylinders

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΟ ΜΟΝΤΕΛΟ ΕΠΙΚΑΘΙΣHΣ ΣΤΑΓΟΝΙΔΙΩΝ ΚΑΙ ΑΠΕΛΕΥΘΕΡΩΣΗΣ ΦΑΡΜΑΚΟΥ ΣΤΗΝ ΡΙΝΙΚΗ ΚΟΙΛΟΤΗΤΑ

ΥΠΟΛΟΓΙΣΤΙΚΟ ΜΟΝΤΕΛΟ ΕΠΙΚΑΘΙΣHΣ ΣΤΑΓΟΝΙΔΙΩΝ ΚΑΙ ΑΠΕΛΕΥΘΕΡΩΣΗΣ ΦΑΡΜΑΚΟΥ ΣΤΗΝ ΡΙΝΙΚΗ ΚΟΙΛΟΤΗΤΑ ΥΠΟΛΟΓΙΣΤΙΚΟ ΜΟΝΤΕΛΟ ΕΠΙΚΑΘΙΣHΣ ΣΤΑΓΟΝΙΔΙΩΝ ΚΑΙ ΑΠΕΛΕΥΘΕΡΩΣΗΣ ΦΑΡΜΑΚΟΥ ΣΤΗΝ ΡΙΝΙΚΗ ΚΟΙΛΟΤΗΤΑ Αλεξόπουλος, A., Καρακώστα Π., και Κυπαρισσίδης Κ. * Τμήμα Χημικών Μηχανικών, Αριστοτέλειο Πανεπιστήμιο, 54006

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηγητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Επαναληπτικά Θέµατα ΟΕΦΕ 007 Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ZHTHMA Στις ερωτήσεις έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. Η δύναμη είναι ένα διανυσματικό μέγεθος. Όταν κατά την κίνηση ενός σώματος η δύναμη είναι μηδενική

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1

ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1 ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1 1.1 Εισαγωγή... 1 1.2 Λύση ΔΕ, αντίστροφο πρόβλημα αυτής... 3 Ασκήσεις... 10 1.3 ΔΕ πρώτης τάξης χωριζομένων μεταβλητών... 12 Ασκήσεις... 15 1.4 Ομογενείς

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Μοντελοποίηση της Αλληλεπίδρασης. Συστήματος με το Περιβάλλον του

Δυναμική Μηχανών I. Μοντελοποίηση της Αλληλεπίδρασης. Συστήματος με το Περιβάλλον του Δυναμική Μηχανών I Μοντελοποίηση της Αλληλεπίδρασης 3 4 Συστήματος με το Περιβάλλον του 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους Συνοχή (c) Γωνία τριβής (φ ο ) 2. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΥΠΟΛΟΓΙΣΤΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΤΡΙΣΔΙΑΣΤΑΤΗΣ ΡΟΗΣ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ ΕΡΓΑΣΙΑΣ (Ε.Ε.) 5

ΕΝΟΤΗΤΑ ΕΡΓΑΣΙΑΣ (Ε.Ε.) 5 ΕΝΟΤΗΤΑ ΕΡΓΑΣΙΑΣ (Ε.Ε.) 5 Μοντελοποίηση της ροής σε ένα πόρο μεταβλητής γεωμετρίας και σε τρισδιάστατα δίκτυα παρουσία νερού ή οργανικής φάσης Ε.Ε. 5.1. : Μοντελοποίηση της ροής σε ένα πόρο απλής και μεταβλητής

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ Θέμα1: Α. Η ταχύτητα διάδοσης ενός ηλεκτρομαγνητικού κύματος: α. εξαρτάται από τη συχνότητα ταλάντωσης της πηγής β. εξαρτάται

Διαβάστε περισσότερα

r r r r r r r r r r r

r r r r r r r r r r r ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

Ανάπτυξη Μεθοδολογίας και του Αντίστοιχου Λογισμικού για την Παραμετρική Σχεδίαση Πτερυγίων Ανεμογεννητριών

Ανάπτυξη Μεθοδολογίας και του Αντίστοιχου Λογισμικού για την Παραμετρική Σχεδίαση Πτερυγίων Ανεμογεννητριών Πολυτεχνείο Κρήτης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ανάπτυξη Μεθοδολογίας και του Αντίστοιχου Λογισμικού για την Παραμετρική Σχεδίαση Πτερυγίων Ανεμογεννητριών Διατριβή που υπεβλήθη για τη μερική

Διαβάστε περισσότερα

Μονάδες 5. Α2. Τα ηλεκτρομαγνητικά κύματα

Μονάδες 5. Α2. Τα ηλεκτρομαγνητικά κύματα ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 26 ΜΑÏΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Πτυχιακή εργασία. Μελέτη και σχεδιασμός πτερύγωσης ανεμογεννήτριας. Νουχάι Εσμεράλντ (AM: 5245) E-mail: themis_89@hotmail.gr.

Πτυχιακή εργασία. Μελέτη και σχεδιασμός πτερύγωσης ανεμογεννήτριας. Νουχάι Εσμεράλντ (AM: 5245) E-mail: themis_89@hotmail.gr. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Πτυχιακή εργασία Μελέτη και σχεδιασμός πτερύγωσης ανεμογεννήτριας Νουχάι Εσμεράλντ (AM: 5245) E-mail: themis_89@hotmail.gr

Διαβάστε περισσότερα

ΔΙΑΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ. Οι εφαρμογές της διαστατικής ανάλυσης είναι:

ΔΙΑΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ. Οι εφαρμογές της διαστατικής ανάλυσης είναι: ΔΙΑΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ Χρήσεις της διαστατικής ανάλυσης Η διαστατική ανάλυση είναι μία τεχνική που κάνει χρήση της μελέτης των διαστάσεων για τη λύση των προβλημάτων της Ρευστομηχανικής. Οι εφαρμογές της διαστατικής

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση Hamilton:, όπου κάποια σταθερά και η κανονική θέση και ορµή

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΑΣΚΗΣΗ 1 d x dx Η διαφορική εξίσωση κίνησης ενός ταλαντωτή δίνεται από τη σχέση: λ μx. Αν η μάζα d d του ταλαντωτή είναι ίση με =.5 kg, τότε να διερευνήσετε την κίνηση

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012. Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό.

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012. Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό. ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 Α) γ Α) β Α)γ Α4) γ Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό ΘΕΜΑ Β n a n ( ύ) a n (), ( ύ ) n

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ Θέµα Α ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β ΜΑΪΟΥ 03 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση, η οποία συµπληρώνει

Διαβάστε περισσότερα

Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα.

Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα. Δίσκος Σύνθετη Τρίτη 01 Μαϊου 2012 ΑΣΚΗΣΗ 5 Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα. ΠΕΙΡΑΜΑ Α Θα εκτοξευθεί με ταχύτητα από τη βάση του κεκλιμένου

Διαβάστε περισσότερα

Πρόλογος... 15. Οι συγγραφείς... 18

Πρόλογος... 15. Οι συγγραφείς... 18 Περιεχόμενα Πρόλογος... 15 Οι συγγραφείς... 18 1 Θεμελιώδεις έννοιες... 19 1.1 ΕΙΣΑΓΩΓΗ... 19 1.2 ΙΣΤΟΡΙΚΟ... 19 1.3 ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ... 20 1.4 ΤΑΣΕΙΣ ΚΑΙ ΙΣΟΡΡΟΠΙΑ... 20 1.5 ΣΥΝΟΡΙΑΚΕΣ ΣΥΝΘΗΚΕΣ...

Διαβάστε περισσότερα

Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής

Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής 1.Σκοπός Άσκηση 9 Προσδιορισμός του συντελεστή εσωτερικής τριβής υγρών Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός του συντελεστή εσωτερικής τριβής (ιξώδες) ενός υγρού. Βασικές θεωρητικές γνώσεις.1

Διαβάστε περισσότερα

= x. = x1. math60.nb

= x. = x1. math60.nb MH ΓΡΑΜΜΙΚΑ ΑΥΤΟΝΟΜΑ ΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΙΑΣΤΑΣΕΩΝ Χώρος Φάσεων : Επίπεδο (, Φασικές Τροχιές : Επίπεδες µονοπαραµετρικές καµπύλες (t (t χωρίς εγκάρσιες τοµές. Οι φασικές τροχιές µπορούν να υπολογιστούν από

Διαβάστε περισσότερα

ΚΑΙΝΟΤΟΜΕΣ ΜΕΘΟΔΟΙ ΠΑΡΑΓΩΓΗΣ ΕΝΕΡΓΕΙΑΣ. Στην περιοχή της παραγωγής ενέργειας με καινοτόμους μεθόδους, δίδονται 5 Διπλωματικές Εργασίες (Δ.Ε.

ΚΑΙΝΟΤΟΜΕΣ ΜΕΘΟΔΟΙ ΠΑΡΑΓΩΓΗΣ ΕΝΕΡΓΕΙΑΣ. Στην περιοχή της παραγωγής ενέργειας με καινοτόμους μεθόδους, δίδονται 5 Διπλωματικές Εργασίες (Δ.Ε. ΚΑΙΝΟΤΟΜΕΣ ΜΕΘΟΔΟΙ ΠΑΡΑΓΩΓΗΣ ΕΝΕΡΓΕΙΑΣ Στην περιοχή της παραγωγής ενέργειας με καινοτόμους μεθόδους, δίδονται 5 Διπλωματικές Εργασίες (Δ.Ε.): Δ.Ε.-1: Παραγωγή Ενέργειας από Έγχυση Στροβίλων (στο πλαίσιο

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά Ακτίνες Χ (Roentgen) Είναι ηλεκτρομαγνητικά κύματα με μήκος κύματος μεταξύ 10 nm και 0.01 nm, δηλαδή περίπου 10 4 φορές μικρότερο από το μήκος κύματος της ορατής ακτινοβολίας. ( Φάσμα ηλεκτρομαγνητικής

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες:

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες: Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες:. Η εξέταση διαρκεί 5 h (πέντε ώρες). Υπάρχουν τρεις ερωτήσεις και κάθε μια από αυτές βαθμολογείται με 0 βαθμούς.. Χρησιμοποιήστε μόνο το στυλό που υπάρχει

Διαβάστε περισσότερα

ΑΠΟΘΗΚΕΥΣΗ ΘΕΡΜΟΤΗΤΑΣ

ΑΠΟΘΗΚΕΥΣΗ ΘΕΡΜΟΤΗΤΑΣ ΑΠΟΘΗΚΕΥΣΗ ΘΕΡΜΟΤΗΤΑΣ Σύνοψη δραστηριοτήτων Σύνοψη δραστηριοτήτων 0-04-2009 ΣΥΝΑΝΤΗΣΕΙΣ ΓΝΩΡΙΜΙΑΣ ΙΠΤΑ Γενικά Στοιχεία Αναγκαιότητα για γιααποθήκευση Θερμοτητας (ΑΘ) (ΑΘ): : Ηλιακή ακτινοβολία :: Παρέχεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9 ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/011 ΚΕΦ. 9 1 ΓΩΝΙΑΚΗ ΚΙΝΗΣΗ: ΟΡΙΣΜΟΙ Περιστροφική κινηματική: περιγράφει την περιστροφική κίνηση. Στερεό Σώμα: Ιδανικό μοντέλο σώματος που έχει τελείως ορισμένα

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΠΥΡΓΟΥ ΣΤΗΡΙΞΗΣ- ΠΤΕΡΥΓΙΩΝ ΑΝΕΜΟΓΕΝΝΗΤΡΙΑΣ

ΜΕΛΕΤΗ ΤΗΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΠΥΡΓΟΥ ΣΤΗΡΙΞΗΣ- ΠΤΕΡΥΓΙΩΝ ΑΝΕΜΟΓΕΝΝΗΤΡΙΑΣ ΜΕΛΕΤΗ ΤΗΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΠΥΡΓΟΥ ΣΤΗΡΙΞΗΣ- ΠΤΕΡΥΓΙΩΝ ΑΝΕΜΟΓΕΝΝΗΤΡΙΑΣ Βασίλης Π. Καµπάνης, Ερρίκος Σταπουντζής, Γιώργος Γιαννακίδης Εργ. Ρευστοµηχανικής & Στροβιλοµηχανών, Τµ. Μηχ/γων Μηχ/κών Βιοµηχανίας,

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ ΜΑΪΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ)

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων

Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι. Όλο το εκπαιδευτικό υλικό του μαθήματος θα αναρτάται στην ιστοσελίδα: http://courseware.mech.ntua.gr/ml23065/

ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι. Όλο το εκπαιδευτικό υλικό του μαθήματος θα αναρτάται στην ιστοσελίδα: http://courseware.mech.ntua.gr/ml23065/ ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι ΔΙΔΑΣΚΟΝΤΕΣ: Δρ. Ιωάννης Αντωνιάδης, Αν.Καθηγητής Τομέας Μηχανολογικών Κατασκευών και Αυτομάτου Ελέγχου Εργαστήριο Δυναμικής και Κατασκευών Διευθυντής Γραφείο: Κτήριο (Ε), 3 ος όροφος,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία συμπληρώνει σωστά την

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

-Ο δροµέας αλλάζει την κατεύθυνση της δέσµης του νερού, µε αποτέλεσµα να αναπτύσσεται ροπή. Η κινητική ενέργεια της δέσµης µετατρέπεται σε έργο.

-Ο δροµέας αλλάζει την κατεύθυνση της δέσµης του νερού, µε αποτέλεσµα να αναπτύσσεται ροπή. Η κινητική ενέργεια της δέσµης µετατρέπεται σε έργο. Ανάπτυξη τεχνογνωσίας για τη βέλτιστη σχεδίαση υδροστροβίλων Ανάπτυξη τεχνογνωσίας για τη βέλτιστη σχεδίαση υδροστροβίλων ΕΡΓΑΣΤΗΡΙΟ Υ ΡΟ ΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΙΑΓΩΝΙΣΜΑ 1 Ηµεροµηνία: Τετάρτη 7 Ιανουαρίου 015 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ στο µάθηµα των Υδροδυναµικών Μηχανών Ι

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ στο µάθηµα των Υδροδυναµικών Μηχανών Ι ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ TOMEAΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ Υ ΡΟ ΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ στο µάθηµα των Υδροδυναµικών Μηχανών Ι ΣΚΟΠΟΣ ΤΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ Σκοπός της Εργαστηριακής

Διαβάστε περισσότερα

Ανεµογεννήτριες. Γιάννης Κατσίγιαννης

Ανεµογεννήτριες. Γιάννης Κατσίγιαννης Ανεµογεννήτριες Γιάννης Κατσίγιαννης Ισχύςαέριαςδέσµης Ηισχύς P air µιαςαέριαςδέσµηςείναιίσηµε: P air 1 = ρ 2 A V 3 όπου: ρ: πυκνότητααέρα Α: επιφάνεια (για µια ανεµογεννήτρια αντιστοιχεί στην επιφάνεια

Διαβάστε περισσότερα

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Εφαρμογές Θεωρίας 1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Έστω ότι η συνάρτηση ζήτησης για την κατανάλωση του νερού ενός φράγματος (εκφρασμένη σε ευρώ) είναι q = 12-P και το οριακό κόστος

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΟΥΝΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός

Διαβάστε περισσότερα

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i. Στροφορμή στερεού q Η στροφορµή του στερεού γράφεται σαν: q Αλλά ο τανυστής αδράνειας έχει οριστεί σαν: q H γωνιακή ταχύτητα δίνεται από: ω = 2 l = m a ra ω ω ra ω e a ΦΥΣ 211 - Διαλ.31 1 r a I j = m a

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΜΑΪΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Μαθηματικά μοντέλα συστημάτων

Μαθηματικά μοντέλα συστημάτων Μαθηματικά μοντέλα συστημάτων 1. Γενικά Για να κατανοήσουμε και να ελέγξουμε διάφορα πολύπλοκα συστήματα πρέπει να καταφύγουμε σε κάποιο ποσοτικό μοντέλο των συστημάτων αυτών. Έτσι, είναι απαραίτητο να

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης ΕργαστηριακήΆσκηση 3 η Σκοπός Σκοπός του πειράµατος είναι ηκατανόησητωνδιαδικασιώνκατάτηκαταπόνησηστρέψης, η κατανόηση του διαγράµµατος διατµητικής τάσης παραµόρφωσης η ικανότητα

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ Θέμα Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 9 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ

ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ 1 ο ΘΕΜΑ (1,5 Μονάδες) Στην παράδοση είχε παρουσιαστεί η αριθµητική επίλυση της εξίσωσης «καθαρής συναγωγής» σε µία διάσταση, η µαθηµατική δοµή της οποίας είναι

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

ΓΕΝΕΣΗ ΕΠΙΦΑΝΕΙΑΚΩΝ ΠΛΕΓΜΑΤΩΝ

ΓΕΝΕΣΗ ΕΠΙΦΑΝΕΙΑΚΩΝ ΠΛΕΓΜΑΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΓΕΝΕΣΗ ΕΠΙΦΑΝΕΙΑΚΩΝ ΠΛΕΓΜΑΤΩΝ Κυριάκος Χ. Γιαννάκογλου Kαθηγητής ΕΜΠ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα

Διαβάστε περισσότερα