2 Lagrangian and Green functions in d dimensions

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "2 Lagrangian and Green functions in d dimensions"

Transcript

1 Renormalzaton of φ scalar feld theory December 6 Pdf fle generated on February 7, 8. TODO Examne ε n the two-pont functon cf Sterman. Lagrangan and Green functons n d dmensons In these notes, we ll use η =.. Lagrangan, counterterms, and Feynman rules Consder the scalar lagrangan wth cubc nteracton L = φ m φ 6 d gµ 6 φ. where φ s the renormalzed fnte feld, and m and g renormalzed fnte parameters, but not drectly dentfable as physcal parameters. It also depends on d to regularze the loop ampltudes, and a scale µ to make the couplngs dmensonless n d dmensons. The counterterm lagrangan L c.t. = δz φ δm φ 6 d δgµ 6 φ δτφ. contans poles n ɛ and also depends on arbtrarly chosen fnte constants c. Addng the counterterm Lagrangan to the orgnal lagrangan, we obtan the full Lagrangan L = L + L c.t. = + δz φ m + δm φ 6 d g + δgµ 6 φ δτφ. Renormalzed ampltudes are fnte as ɛ, but depend on m and g, as well as µ and c. The choce of c s determned by the renormalzaton scheme. If we choose an on-shell scheme, m and g wll be drectly related to physcal propertes. The c wll nvolve log µ, and the ampltudes wll be ndependent of µ. Alternatvely, n an MS or MS scheme, the c only cancel poles and do not depend on µ. Physcal couplngs are functons of m, g, and µ. Ignorng the tadpole counterterm for now, we can defne φ = + δz / φ, m = + δz m + δm, g = µ 6 d + δz / g + δg.4 and then rewrte L = φ m φ 6 g φ.5 showng that physcal quanttes depend only on two parameters m and g. Ths then can be used to derve renormalzaton group equatons.

2 The propagator and three-pont vertex are gven by p m + ε, wth counterterms δm + δz p, 6 d gµ.6 δg µ 6 d.7. Two-pont functon We now construct the two-pont Green functon T φφ = p m + Σ δm + δz p p m p m + = + Σ + δm δz p + p m p m = Σ + δm δz p p m p m = p m Σ δm + δz p = Γ p where Σ s the self energy dagram, and Γ p the PI two-pont functon. Expandng.8 Σp = Σm p + Σ m pp m p + Op m p.9 about the physcal mass m p, we fnd that the denomnator of the two-pont Green functon s m p m Σm p δm + δz m p + Σ m p + δzp m p + Op m p. The physcal mass s determned by the solutons of and the two-pont functon at the pole s gven by m p m Σm p δm + δz m p =. T φφ = R p m p where the fnte feld renormalzaton s gven by R = Σ m p + δz.. Now make the one-loop approxmaton, settng m p = m n the terms that are already frst order, to fnd m p = m + Σm + δm δz m.4 R = + Σ m δz.5

3 . Self energy The one-loop self energy s Σp, m = gµ 6 d d d l π d l m + ε l + p m + ε.6 evdently UV dvergent for d 4 and IR dvergent for m = for d. Σp, m = g µ 6 d I = g µ 6 d = g µ 6 d m d 4 d 4 Γ 4 d 4π d/ Γ 6 d 4π d/ = g µ 6 d p d 4 Γ 6 d d 44π d/ dx m x xp ε d 4 dx x x p m dx x x m d 4 p d 4.7 wth the expected UV poles n d = 4, 6,. In the massless lmt we have d 4 dxx x = Γ d /Γd so Σp, = g µ 6 d p d 4 d 4 Γ 6 d d Γ 4π d/ Γd.8 wth the IR pole at d =. We also obtan p p, m = g µ 6 d m d 6 Γ 6 d 4π d/ = g µ 6 d p d 6 Γ 6 d 4π d/ dx x x x x p m d 6 dx x x x x m p d 6.9 In the massless lmt we have d 6 p p, = g µ 6 d p Γ 6 d 4π d/ Γd Γ d.

4 .4 Three-pont functon The three-pont functon s Γ p, p = g + δgµ 6 d + gµ 6 d = g + δgµ 6 d + d d l π d l + p m + ε l + p + p m + ε l m + ε gµ 6 d I p, p, p p. Ths has a UV dvergence for d 6. From the loop ntegral notes, we have so I p, p, p = Γ p, p = µ 6 d 6 d Γ 4π d/ g + δg + g µ 6 d Γ 6 d 4π d/ wth the expected UV poles at d = 6, 8,. dβ dβ dβ δ β m β β p β β p + p β β p d/. dβ dβ dβ δ β m β β p β β p + p β β p In the massless m = lmt, and wth two legs onshell p = p =, we have Γ p, p = µ 6 d = µ 6 d = µ 6 d g + δg + g µ 6 d d 6 p + p 4π d/ Γ 6 d dβ β d 6 g + δg + g µ 6 d d 6 p + p 4π d/ Γ 6 d d 4 g + δg + g µ 6 d Γ 6 d d 4 d Γ Γ 4π d/ p + p d 4Γd β d/. dβ β d 6 dβ β d 6 β d 4.4 For l = l + p, the denomnator goes as l l p l p, gvng an IR dvergence n d = 4. In fact, looks lke a double pole, suggestng also a collnear dvergence?.5 Four-pont functon The PI four-pont functon has contrbutons from three topologcally-dstnct box functons Γ 4 = Bs, t + Bt, u + Bu, s.5 4

5 where where Bs, t = = gµ 6 d gµ 6 d I 4 s, t = 4 d d l π d l m + ε l + p m + ε l + p + p m + ε l + p + p + p m + ε 4 I4 s, t.6 8 d Γ 4π d/ 4 j= δ 4 d j c jβ j j j β dβ j m j β j <j β β j P j 4 d/.7 We see the expected UV dvergence for d 8. Choosng c =, and lettng external legs be on-shell P = P = P 4 = P 4 = m I 4 s, t = 8 d Γ 4π d/ 4 j= dβ j δ j β j m β β β β β β 4 β 4 β β β t β β 4 s 4 d/.8 In the massless lmt I 4 s, t = 8 d Γ 4π d/ 4 j= dβ j δ j β j β β t β β 4 s 4 d/.9 If the external legs are on-shell, then n the l lmt, the denomnator goes to l l p l p 4 and thus has an IR dvergence n d = 4..6 Four-pont scatterng ampltude Frst we compute the sum of all one-loop truncated dagrams M = Γ 4 + Γ s Γ s Γ s + Γ t Γ t Γ t + Γ u Γ u Γ u = Γ 4 Γ s Γ s Γ t Γ t Γ u Γ u The one-loop external leg correctons yeld 4 Rm p Γ 4 Γ s m Γ s Γ t Γ t Γ u Γ u =.. 5

6 LSZ tells us to multply ths by 4 = p m Rm. to obtan the scatterng ampltude M = Rm Γ 4 Γ s Γ s Γ t Γ t Γ u Γ u. 6

7 Renormalzaton n sx dmensons For convenence, defne F x x p m.. Self energy n sx dmensons Evaluate eq..7 near sx dmensons d = 6 ɛ, expandng n ɛ to wrte Thus usng we obtan Σp, m = Σp, m = In the massless lmt m so g Γ + ɛ 4π ɛ ɛ = g 4π 4πµ ɛ dx m F ɛ m ɛ γ + + log dx m F = dx 4πµ m dx m F ɛ log F + Oɛ. m x xp = m p g m 4π p 4πµ ɛ γ + + log m m dx F log F p Σp, = dx x x g 4π Also evaluatng eq..9 near d = 6 ɛ p p, m = g Γ + ɛ 4π ɛ log p m p ɛ γ log 4πµ ɛ dx x xf ɛ m + logx x = p log 4πµ p dx F log F + Oɛ = g 4πµ 4π ɛ γ + log dx x x ɛ log F + Oɛ m = g 4πµ 4π ɛ γ + log + m whch we could also have obtaned by takng the dervatve of eq..4 above...4 p 5 6 p m.5.6 dx x x log F + Oɛ.7 7

8 The massless lmt can alternatvely be obtaned by evaluatng eqs..8 and. near sx dmensons Σp, = g µ ɛ p ɛ ΓɛΓ ɛ ɛ 4π ɛ Γ4 ɛ = g p 4π ɛ γ + 8 p log 4πµ p p, = g µ ɛ p ɛ ΓɛΓ ɛ 4π ɛ Γ4 ɛ = g 4π ɛ γ + 5 p log 4πµ.8.9. Sx dmensonal wavefuncton and mass counterterms To render the feld renormalzaton R = + Σ m δz fnte, we choose the counterterm δz = g 4π ɛ + c φ. n order to absorb the UV pole n Σ m cf. eq..7. We evaluate where to obtan and thus dx x x log F = p m, m = g dx x x log x + x = π 7 8 g 4π R = + 4π F F p =m = x + x. ɛ γ + log c φ + γ log 4πµ m 4πµ m + π π note that π 6.. R s now UV fnte, but stll has an IR dvergence when m. Ths means we wll not be able to do on-shell renormalzaton for the massless theory. Equaton.4 mples the mass counterterm must satsfy δm /ɛ = Σm /ɛ + m δz /ɛ so δm = g m 4π ɛ + c m.5 Then usng eq.. and = dx log F = dx F log F = log x + x dx = π x + x log x + x dx = π

9 we evaluate Σm, m = m g 4π 5 ɛ γ + log 4πµ m + π From ths we can evaluate the physcal mass m p = m + Σm + δm δz m namely m p = m { + g 4π c φ c m + 5 γ + log 4πµ m } + π Renormalzed two-pont functon n sx dmensons Fnally, we evaluate the renormalzed two-pont functon n sx dmensons T φφ = where Γ p = p m + g m 4π p δz = Usng eq.. and m g 4π p m Σ δm + δz p = dx x x log F + Γ p 4πµ m dx F log F + c m + γ log m 4πµ p c φ + γ log, m 4πµ c φ + γ log dx F log F = m π p π m.9.. we can also wrte these expressons as Γ p = p m + g m F dx F log + c 4π m + γ + π 4πµ m F log m c φ + γ + π 4πµ p log, m 4πµ p δz = g 4π F dx x x log + c φ + γ + π 7 F log m. 9

10 In the massless m lmt m F dx F log so that F p = p log dx x x log p m p m + 4 π Γ p p g log p + c 4π 4πµ φ + γ 8 Wth on shell renormalzaton.8 ths agrees wth Srednck eq... x x + log x + x..4 Alternatvely, usng eqs..8 and.9 n the massless lmt, wth δz gven by eq.. and δm absent Γ p = p g p log + c 4π 4πµ φ + γ 8 p δz = g p log + c 4π 4πµ φ + γ 5.5 In the MS scheme, we have c m = γ + log 4π and c φ = γ + log 4π so cf Srednck eq. 7.4 Γ p = p m + g m µ m dx F log F + log 4π m p p δz = g dx x x log F µ 4π log.6 m For the massless theory, MS gves Γ p = p g p δz = g 4π p log 8 4π µ p log 5 µ.7 On-shell renormalzaton, only avalable for m, mples R = 4πµ c φ + γ log = 7 π m Thus p δz = g 4π = g 4π dx x x log F + 7 π 6 F dx x x log F.8.9

11 whch vanshes at p = m. On-shell renormalzaton also mples m p = m so c φ + γ log 4πµ m c m + γ log 4πµ m 4πµ c m + γ log so that the nverse propagator wth on-shell renormalzaton s Γ p = p m + g m π dx F log F + 4π = p m + g m 4π F dx F log F m = π 4 6 = 5 6π 8 m + + p m agreeng wth Srednck eq. 4.4 whch manfestly vanshes at p = m. Accordng to Srednck, p. 4, dx F log F = m p m S tanh whch I verfed numercally. Mathematca gves dx F log F = p 5y 4 8 whch agrees numercally wth Srednck. Hence Γ p = p m + g π m + 4π + 4 y / tan y 4 y y.4 Three-pont functon n sx dmensons. π 4 p 6., S = 4m. S p π 9 p p 6 6 S tanh y = p m..4 S Evaluatng the three-pont functon n d = 6 ɛ, we get Γ p, p = µ ɛ g + δg + g µ ɛ Γɛ dβ dβ dβ δ β 4π ɛ ɛ m β β p β β p + p β β p = µ ɛ g + δg + g 4π ɛ + Oɛ.5 Choose the counterterm g δg = 4π ɛ + c g.6

12 to cancel the UV dvergence Γ p, p = µ ɛ g + g cg + Oɛ 4π.7 Instead evaluate the massless three-pont functon.4 wth two on-shell legs n sx dmensons Γ p, p = µ ɛ g + δg + g 4π ɛ log p + p γ + 4πµ = µ ɛ g + g c 4π g log p + p γ +.8 4πµ MS renormalzaton wth c g = γ + log 4π gves Γ p, p = µ ɛ g + g log p + p 4π µ Four-pont functon n sx dmensons Recall that Γ 4 = Bs, t + Bt, u + Bu, s.4 where Bs, t = g 4 I 4 s, t.4 and I 4 s, t = 4π 4 j= dβ j δ j β j m β β β β β β 4 β 4 β β β t β β 4 s.4 In the massless lmt, ths s accordng to Srednck.7 gven by Bs, t g4 4π 4 j= dβ j δ j β j β β t β β 4 s = g4 4π s π + log s + t t.4 I checked ths result numercally..6 Four-pont massless scatterng ampltude n sx dmensons The scatterng ampltude s M = Rm Γ 4 Γ s Γ s Γ t Γ t Γ u Γ u.44

13 where Rm = + g 4πµ c 4π φ + γ log + π 7 = + g m m 6 4π log + const µ.45 Rm has an IR dvergence as m but the expresson n brackets n eq..44 does not. Thus we can evaluate t n the massless lmt n MS renormalzaton Γ s log g s Γ s g 4π µ = s log g g g s 8 s 4π log sµ π µ and Bs, t Thus the scatterng ampltude s { M = Rm g g s 4π g t g u g4 π 4π u + s log.47 t log sµ + t log + π u 5 9 g 4π log t + u µ log + π s 5 9 g 4π log uµ + s log + π t 5 } 9.48 Ths s consstent wth Srednck.9. Fnally, wth s t u, and neglectng constants, ths together wth eq..45 gves M = g s g t g + g u 4π log sµ + 6 m log.49 µ.7 Infrared dvergences from collnear partcles Srednck very clearly explans how the emsson of collnear scalar partcles gves rse to IR dvergences such that eq. 6.4 M obs = M + g δ 4π log s.5 m Combnng ths wth the result above M obs = g s g t g + g u 4π 6 log sµ + m log µ + δ log s m.5

14 we see that the log m dependences cancels gvng M obs = g s g t g + g u 4π log sµ + log δ.5 whch s fnte n the m lmt, but depends on the resoluton of the detector. Ths equaton can be used to derve the one-loop beta functon. 4

15 4 Renormalzaton n four dmensons 4. Four dmensonal self energy As before, defne F x x p 4. m Evaluate eq..7 near four dmensons d = 4 ɛ, expandng n ɛ to wrte Thus Σp, m = g µ Γ + ɛ 4π ɛ If p <, we can recast = g µ 4π Σp, m = g µ 4π 4πµ ɛ dx F ɛ m ɛ γ + log ɛ γ + log 4πµ dx ɛ log F + Oɛ 4. m 4πµ m dx log F + Oɛ 4. p F = x x m p = m p m 4 S y, y = x, S = 4m > 4.4 p then p dx log F = log + Thus for p <, dx log F = m / / dy log S + y + log S y p = log + y=/ S + y log S + y S y log S y y m y= / p S S + y S y=/ = log + m log + y log S y 4 y y y= / p S + S = log + S log + log m S 4 S + = S log 4.5 S 4m p 4m + p log 4m p 5 { log p /m, p p < p /6m, p 4.6

16 If < p < 4m, we can analytcally contnue S = p 4m p = eα T, α = ± π, T = mplyng that ndependently of α + S dx log F = S log = e α + e α T log T = e S α T T p 4m p, < T < 4.7 arctan T 4.8 Thus for < p < 4m 4m dx log F = p p arcsn p 4m { p /6m, p + + π m 4m p, p 4m 4.9 In the massless m lmt so dx log F dx log Σp, = g µ 4π p m + logx x = log ɛ γ + + log Equvalently we could evaluate eq..8 at d = 4 ɛ p 4. m 4πµ + Oɛ 4. p Σp, = g µ 4πµ ɛ Γ + ɛγ ɛ 4π p ɛγ ɛ 4. and expand to obtan the same result. Also evaluatng eq..9 near d = 4 ɛ p p, m = g µ 4π m = g 4π µ m 4πµ ɛ Γ + ɛ dx x xf ɛ dx m x x F 4. whch s the dervatve of the expresson above. Takng the massless lmt we get p p, = g µ 4.4 4π p 6

17 4. Four dmensonal wavefuncton and mass counterterms Snce Σ p s UV fnte, so s the counterterm δz = g µ c φ 4π m 4.5 For m =, we must choose c φ =. Evaluatng x x x x dx = dx F x + x = π we obtan p m, m = g µ 4π m π so the feld strength renormalzaton R = + Σ m δz s R = + g µ 4π m π c φ Equaton.4 mples the mass counterterm must satsfy δm /ɛ = Σm /ɛ + m δz /ɛ so Next we evaluate dx log F = δm = g µ 4π ɛ + c m 4.9 dx log x + x = π to obtan Σm, m = g µ 4π ɛ γ + log 4πµ + π + Oɛ 4. m Now we can evaluate the physcal mass m p = m + Σm + δm δz m to be m p = m + g µ c 4π φ + c m + γ log 4πµ m + π 4. 7

18 4. Renormalzed two-pont functon n four dmensons Fnally, we evaluate the renormalzed two-pont functon T φφ = p m Σ δm + δz p = Γ p 4. where Also Γ p = p m + g µ 4πµ p c 4π m γ + log + c m φ m p δz = g µ c 4π m φ dx x x F dx log F + Oɛ In the massless lmt, wth c φ =, we have usng logx x dx = Γ p = p + g µ 4πµ c 4π m γ + + log + Oɛ 4.6 p On-shell renormalzaton mples R = so Thus p δz = whch vanshes at p = m. c φ = π g µ + π 4π m On-shell renormalzaton also mples m p = m so 4πµ c m + γ log m dx x x F = c φ π + = 5π so that Γ p = p m + g µ 4π whch vanshes at p = m. 5π + π p m dx log F + Oɛ 4. 8

19 4.4 Three-pont functon n four dmensons The three-pont functon n d = 4 ɛ s Γ p, p = µ 6 d g + δg + g µ 6 d Γ 6 d 4π d/ = µ +ɛ g + δg + g µ +ɛ 4π Γ + ɛ ɛ dβ dβ dβ δ β m β β p β β p + p β β p dβ dβ dβ δ β m β β p β β p + p β β p d/ +ɛ 4. Ths s fnte for m so we can set ɛ = : Γ p, p = µ g + δg + g µ dβ dβ dβ δ β 4. 4π m β β p β β p + p β β p In the massless lmt, and wth p = p =, we have Γ p, p = µ +ɛ g + δg + g µ +ɛ Γ + ɛ 4π ɛ p + p = µ +ɛ g + δg + g µ 4π ɛ p + p Ths s also the result obtaned from eq Four-pont functon n four dmensons +ɛ ɛ γ γ ɛ + π β dβ β ɛ dβ β ɛ 4. The PI four-pont functon has contrbutons from three topologcally-dstnct box functons where Γ 4 = Bs, t + Bt, u + Bu, s 4.4 Lettng external legs be on-shell P = P = P 4 = P 4 = m I 4 s, t = Γ 4π 4 j= Bs, t = gµ +ɛ 4 I4 s, t 4.5 dβ j δ j β j m β β β β β β 4 β 4 β β β t β β 4 s 4.6 9

20 In the massless lmt I 4 s, t = 8 d Γ 4π d/ 4 j= dβ j δ j β j β β t β β 4 s 4.7 If the external legs are on-shell, then n the l lmt, the denomnator goes to l l p l p 4 and thus has an IR dvergence n d = 4. Need to study ths!

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Constant Elasticity of Substitution in Applied General Equilibrium

Constant Elasticity of Substitution in Applied General Equilibrium Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

LECTURE 4 : ARMA PROCESSES

LECTURE 4 : ARMA PROCESSES LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Journal of Theoretics Vol.4-5

Journal of Theoretics Vol.4-5 Journal of Theoretcs Vol.4- A Unfed Feld Theory Peter Hckman peter.hckman@ntlworld.com Abstract: In ths paper, the extenson of Remann geometry to nclude an asymmetrc metrc tensor s presented. A new co-varant

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Solutions for Mathematical Physics 1 (Dated: April 19, 2015) Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Solution Set #2

Solution Set #2 . For the followng two harmon waves: (a) Show on a phasor dagram: 05-55-007 Soluton Set # phasor s the omplex vetor evaluated at t 0: f [t] os[ω 0 t] h f [t] 7os ω 0 t π f [t] exp[ 0] + 0 h f [t] 7exp

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Phasor Diagram of an RC Circuit V R

Phasor Diagram of an RC Circuit V R ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα, ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and

Διαβάστε περισσότερα

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές 8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ ICA: συναρτήσεις κόστους & εφαρμογές ΚΎΡΤΩΣΗ (KUROSIS) Αθροιστικό (cumulant) 4 ης τάξεως μίας τ.μ. x με μέσο όρο 0: kurt 4 [ x] = E[ x ] 3( E[ y ]) Υποθέτουμε διασπορά=: kurt[ x]

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής

Διαβάστε περισσότερα

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.

Διαβάστε περισσότερα

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

Derivation for Input of Factor Graph Representation

Derivation for Input of Factor Graph Representation Dervaton for Input of actor Graph Representaton Sum-Product Prmal Based on the orgnal LP formulaton b x θ x + b θ,x, s.t., b, b,, N, x \ b x = b we defne V as the node set allocated to the th core. { V

Διαβάστε περισσότερα

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckret SVCL-TR 007-0 v Aprl 007 Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R.

Διαβάστε περισσότερα

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey THE SECOND WEIGHTED MOMENT OF ζ by S. Bettn & J.B. Conrey Abstract. We gve an explct formula for the second weghted moment of ζs) on the crtcal lne talored for fast computatons wth any desred accuracy.

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα