Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt."

Transcript

1 liberi 1 liberi 2 3 4

2 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia dreptei determinate se numeşte direcţia segmentului (A, B). Segmentele (A, B) şi (B, A) se numesc opuse. Lungimea unui vector este numarul real şi pozitiv, care reprezintă distanţa dintre A şi B. Notăm d(ab). Două segmente (A, B) şi (C, D) se numesc egale dacă A = C şi B = D.

3 liberi Relaţia de echipolenţă Segmentele (A, B) şi (C, D) se numesc echipolente dacă segmentele orientate (A, D) şi (B, C) au acelaşi mijloc. Notăm (A, B) (C, D). Observaţii. 1. (A, A) (B, B). 2. Dacă A B atunci (A, B) (C, D) dacă şi numai dacă -d(a, B) = d(c, D) -AB CD -B şi D sunt de aceeaşi parte a dreptei AC.

4 liberi Relaţia de echipolenţă Segmentele (A, B) şi (C, D) se numesc echipolente dacă segmentele orientate (A, D) şi (B, C) au acelaşi mijloc. Notăm (A, B) (C, D). Observaţii. 1. (A, A) (B, B). 2. Dacă A B atunci (A, B) (C, D) dacă şi numai dacă -d(a, B) = d(c, D) -AB CD -B şi D sunt de aceeaşi parte a dreptei AC.

5 Vector liber liberi Relaţia de echipolenţă este o relaţie de echivalenţă, adică au loc: - (A, B) (A, B) - (A, B) (C, D) (C, D) (A, B) - dacă (A, B) (C, D) şi (C, D) (E, F) atunci (A, B) (E, F). O relaţie de echivalenţă împarte mulţimea segmentelor orientate în clase de echivalenţă, a căror mulţime o notăm V 3. O clasă de echivalenţă se numeşte vector liber şi se notează AB sau v. Vectorul liber AB este mulţimea tuturor segementelor orientate echipolenţi cu (A, B).

6 Vector liber liberi Relaţia de echipolenţă este o relaţie de echivalenţă, adică au loc: - (A, B) (A, B) - (A, B) (C, D) (C, D) (A, B) - dacă (A, B) (C, D) şi (C, D) (E, F) atunci (A, B) (E, F). O relaţie de echivalenţă împarte mulţimea segmentelor orientate în clase de echivalenţă, a căror mulţime o notăm V 3. O clasă de echivalenţă se numeşte vector liber şi se notează AB sau v. Vectorul liber AB este mulţimea tuturor segementelor orientate echipolenţi cu (A, B).

7 Vector liber liberi Relaţia de echipolenţă este o relaţie de echivalenţă, adică au loc: - (A, B) (A, B) - (A, B) (C, D) (C, D) (A, B) - dacă (A, B) (C, D) şi (C, D) (E, F) atunci (A, B) (E, F). O relaţie de echivalenţă împarte mulţimea segmentelor orientate în clase de echivalenţă, a căror mulţime o notăm V 3. O clasă de echivalenţă se numeşte vector liber şi se notează AB sau v. Vectorul liber AB este mulţimea tuturor segementelor orientate echipolenţi cu (A, B).

8 liberi Adunarea vectorilor liberi Definim adunarea a doi vectori liberi + : V 3 V 3 V 3 astfel: daţi vectorii liberi AB şi CD, vectorul suma AB + CD este clasa de echivalenţă a diagonalei paralelogramului determinat de cei doi vectori. Adunarea nu depinde de alegerea reprezentanţilor.

9 liberi Adunarea vectorilor liberi Definim adunarea a doi vectori liberi + : V 3 V 3 V 3 astfel: daţi vectorii liberi AB şi CD, vectorul suma AB + CD este clasa de echivalenţă a diagonalei paralelogramului determinat de cei doi vectori. Adunarea nu depinde de alegerea reprezentanţilor.

10 liberi Înmulţirea cu scalari Definim operaţia de înmulţire a unui vector liber cu un scalar astfel: : R V 3 V 3 astfel: pentru λ R şi AB vector liber prin înmulţirea lor înţelegem vectorul liber : AC dacă λ > 0, A, B, C coliniare, AB şi AC au aceeaşi orientare şi d(a, C) = λd(a, B). dacă λ = 0 AD dacă λ < 0, A, B, D coliniare, AD şi AB au orientări diferite şi d(d, A) = λd(a, B).

11 liberi Spaţiul vectorilor liberi Teoremă Mulţimea V 3 înzestrată cu cele două legi formează un spaţiu liniar peste R. Reper cartezian (ortogonal). Considerăm în S un triedru ortogonal Oxyz, format din 3 semidrepte Ox, Oy, Oz, astfel ca cele 3 drepte sunt ortogonale doua câte două. Fie pe cele 3 drepte punctele U 1, U 2, U 3 şi vectorii i = OU1, j = OU 2, k = OU 3 astfel ca d(ou 1 ) = d(ou 2 ) = d(ou 3 ) = 1.,

12 liberi Spaţiul vectorilor liberi Teoremă Mulţimea V 3 înzestrată cu cele două legi formează un spaţiu liniar peste R. Reper cartezian (ortogonal). Considerăm în S un triedru ortogonal Oxyz, format din 3 semidrepte Ox, Oy, Oz, astfel ca cele 3 drepte sunt ortogonale doua câte două. Fie pe cele 3 drepte punctele U 1, U 2, U 3 şi vectorii i = OU1, j = OU 2, k = OU 3 astfel ca d(ou 1 ) = d(ou 2 ) = d(ou 3 ) = 1.,

13 liberi Dimensiunea spaţiului V 3 Fie v V 3 un vector liber. Există un unic punct M astfel ca v = OM şi care se numeşte vector de poziţie. Proiectăm punctul M pe axele Ox, Oy, Oz în punctele M 1, M 2, M 3 respectiv. Avem OM 1 = x i, OM 2 = y j, OM 3 = z k. Are loc v = x i + y j + z k (1) Teoremă Mulţimea B = { i, j, k } este o bază în spaţiul V 3. Deci V 3 are dimensiunea 3.

14 Demonstraţie liberi Se arată că vectorii i, j, k sunt liniar independenţi. Fie λ 1 i + λ2 j + λ3 k = 0 şi presupunem că λ3 0 atunci are loc: λ 1 λ 2 k = i j λ 3 λ 3 ceea ce înseamnă că în particular segmentul OU 3 este paralel cu planul xoy, absurd. Dacă λ 2 = 0 atunci ar rezulta k = λ 1 λ 3 i deci OU3 ar fi paralel cu Ox, absurd. Din relaţia (1), orice sistem de forma { v, i, j, k } este liniar dependent. Notăm d(om) = OM = v şi o numim lungime sau norma vectorului.

15 Demonstraţie liberi Se arată că vectorii i, j, k sunt liniar independenţi. Fie λ 1 i + λ2 j + λ3 k = 0 şi presupunem că λ3 0 atunci are loc: λ 1 λ 2 k = i j λ 3 λ 3 ceea ce înseamnă că în particular segmentul OU 3 este paralel cu planul xoy, absurd. Dacă λ 2 = 0 atunci ar rezulta k = λ 1 λ 3 i deci OU3 ar fi paralel cu Ox, absurd. Din relaţia (1), orice sistem de forma { v, i, j, k } este liniar dependent. Notăm d(om) = OM = v şi o numim lungime sau norma vectorului.

16 Direcţie în spaţiu liberi Fie D mulţimea tuturor dreptelor din spaţiul S. Două drepte d, d sunt paralele în sens larg dacă sunt paralele sau coincid. Numim direcţie mulţimea tuturor dreptelor paralele în sens larg cu o dreaptă d.. Numim vector director al unei direcţii orice vector nenul având un reprezentant paralel cu d. Fie doi vectori directori ai aceleiaşi directţii: v = l i + m j + n k, v 1 = l 1 i + m1 j + n1 k. Atunci v 1 = α v vectorii sunt liniar dependenţi ceea ce este echivalent cu l 1 = m 1 l m = n 1 n = α.

17 Direcţie în spaţiu liberi Fie D mulţimea tuturor dreptelor din spaţiul S. Două drepte d, d sunt paralele în sens larg dacă sunt paralele sau coincid. Numim direcţie mulţimea tuturor dreptelor paralele în sens larg cu o dreaptă d.. Numim vector director al unei direcţii orice vector nenul având un reprezentant paralel cu d. Fie doi vectori directori ai aceleiaşi directţii: v = l i + m j + n k, v 1 = l 1 i + m1 j + n1 k. Atunci v 1 = α v vectorii sunt liniar dependenţi ceea ce este echivalent cu l 1 = m 1 l m = n 1 n = α.

18 Direcţie în spaţiu liberi Fie D mulţimea tuturor dreptelor din spaţiul S. Două drepte d, d sunt paralele în sens larg dacă sunt paralele sau coincid. Numim direcţie mulţimea tuturor dreptelor paralele în sens larg cu o dreaptă d.. Numim vector director al unei direcţii orice vector nenul având un reprezentant paralel cu d. Fie doi vectori directori ai aceleiaşi directţii: v = l i + m j + n k, v 1 = l 1 i + m1 j + n1 k. Atunci v 1 = α v vectorii sunt liniar dependenţi ceea ce este echivalent cu l 1 = m 1 l m = n 1 n = α.

19 liberi Fie v, w V 3 doi vectori liberi şi θ [0, π] unghiul dintre doi reprezentanţi. Definiţie Numim produs scalar numărul real dat de v w = v w cos θ. (2) Dacă unul dintre vectori este 0, atunci produsul este 0. Produsul scalar are proprietăţile produsului scalar din definiţia spaţiilor euclidiene.

20 Consecinţe liberi 1. v = v v 2. Are loc inegalitatea Cauchy Schwarz v w v w. 3. Au loc i j = 0, i k = 0, j k = 0 şi i i = 1, j j = 1, k k = 1 4. Dacă v = x i + y j + z k şi v = x i + y j + z k atunci v v = xx + yy + zz.

21 Aplicaţii liberi 1. Lungimea unui vector v = x 2 + y 2 + z 2 2. Unghiul a doi vectori cos θ = xx + yy + zz x 2 + y 2 + z 2 x 2 + y 2 + z Cosinuşii directori ai unei direcţii. Fie v = l i + m j + n k un vector director. Acestui vector i se asociază doi versori v i + m j + n k u = ± v = ±l l 2 + m 2 + n 2

22 liberi Cosinuşii directori Se numesc cosinuşi directori numerele l a = ± l 2 + m 2 + n, b = ± m 2 l 2 + m 2 + n, c = ± n 2 l 2 + m 2 + n. 2 Au loc i u = cos α, j u = cos β, k u = cos γ, unde α, β, γ sunt unghiurile pe care direcţia le face cu Ox, Oy, Oz. Deci un versor are expresia u = cos α i + cos β j + cos γ k

23 liberi 4. Teorema cosinusului. Fie triunghiul ABC şi u = AB, v = AC. Atunci BC = v u deci BC 2 = ( v u ) ( v u ) = u 2 + v 2 2 u v cos θ 5. Proiecţii. Fie v, w V 3. Proiecţia scalară a lui w pe v este prin notată pr v w. Are loc v w = v pr v w

24 liberi 4. Teorema cosinusului. Fie triunghiul ABC şi u = AB, v = AC. Atunci BC = v u deci BC 2 = ( v u ) ( v u ) = u 2 + v 2 2 u v cos θ 5. Proiecţii. Fie v, w V 3. Proiecţia scalară a lui w pe v este prin notată pr v w. Are loc v w = v pr v w

25 liberi Definiţie Fie v, w V 3. Numim produs vectorial, vectorul notat v w V3 astfel: Dacă v, w sunt coliniari, atunci v w = 0. Dacă nu sunt coliniari atunci v w are direcţia este perpendiculară pe planul celor doi vectori lungimea este aria paralelogramului construit pe cei doi vectori, adică v w sin θ sensul este dat de "regula burghiului"

26 Regula burghiului liberi Matematic regula burghiului exprimă alegerea unuia dintre cele două sensuri posibile ale vectorilor, perpendiculari pe planul paralelogramului, astfel ca determinantul matricei de trecere de la baza B = { i, j, k } la baza B = { v, w, v w } să fie pozitiv.

27 Proprietăţi liberi Au loc 1. v w = w v, v, w V 3 2. v w = 0 dacă şi numai dacă v, w sunt coliniari (liniar independenţi). 3. v ( w 1 + w 2 ) = v w 1 + v w 2 4. v (λ w ) = λ( v w ). 5. i i = 0, j j = 0, k k = 0 i j = k, j k = i, k i = j

28 liberi 6. Dacă v = x i + y j + z k şi v = x i + y j + z k atunci v v = i j k x y z x y z

29 Aplicaţii liberi 1. Aria triunghiului ABC este 2. Identitatea lui Lagrange 1 2 AB AC. ( v w ) 2 + ( v w ) 2 = v 2 w Momentul unei forţe. Fie A un punct în spaţiu şi F = PQ o forţă cu momentul de aplicaţie P. Se numeşte momentul în A al forţei F, produsul vectorial AP F.

30 liberi Definiţie Fie a, b, c V 3. Se numeşte produs mixt numărul real ( a, b, c ) = a ( b c ). Dacă a = x 1 i + y1 j + z1 k, b = x2 i + y2 j + z2 k, c = x 3 i + y3 j + z3 k atunci ( a, b, x 1 y 1 z 1 c ) = x 2 y 2 z 2 x 3 y 3 z 3.

31 Proprietăţi liberi 1. ( a, b, c ) = 0 dacă şi numai dacă vectorii sunt coplanari (liniar dependenţi). 2. ( a, b, c ) = ± volumul paralelipipedului construit pe cei trei vectori. 3. ( a, b, c ) = ( b, c, a ) = ( c, a, b ) 4. ( a, b, c ) = ( b, a, c ).

32 liberi Dublul produs vectorial Definiţie Fie a, b, c V 3. Se numeşte dublul produs vectorial, vectorul a ( b c ). Are loc formula a ( b c ) = ( a c ) b ( a b ) c = = b a b c a c.

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Lectia III Produsul scalar a doi vectori liberi

Lectia III Produsul scalar a doi vectori liberi Produsul scalar: denitie, proprietati Schimbari de repere ortonormate in plan Aplicatii Lectia III Produsul scalar a doi vectori liberi Oana Constantinescu Oana Constantinescu Lectia III Produsul scalar:

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIE. Dorel Fetcu

ELEMENTE DE GEOMETRIE. Dorel Fetcu ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

CAPITOLUL 2 VECTORI LIBERI. 2.1 Segment orientat. Vector liber

CAPITOLUL 2 VECTORI LIBERI. 2.1 Segment orientat. Vector liber Algebră liniară CAPITOLUL VECTORI LIBERI. Segment orientat. Vector liber Acest capitol este dedicat în totalitate studierii spaţiului vectorilor liberi, spaţiu cu foarte multe aplicaţii în geometrie, fizică

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Lectia VII Dreapta si planul

Lectia VII Dreapta si planul Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.

Διαβάστε περισσότερα

Cuprins. I Geometrie Analitică 9

Cuprins. I Geometrie Analitică 9 Prefaţă Cartea de faţă a fost elaborată în cadrul proiectului POSDRU/56/1.2/S/32768, Formarea cadrelor didactice universitare şi a studenţilor în domeniul utilizării unor instrumente moderne de predareînvăţare-evaluare

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

CUPRINS 2. Sisteme de forţe... 1 Cuprins..1

CUPRINS 2. Sisteme de forţe... 1 Cuprins..1 CURS 2 SISTEME DE FORŢE CUPRINS 2. Sisteme de forţe.... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 2.1. Forţa...2 Test de autoevaluare 1...3 2.2. Proiecţia forţei pe o axă. Componenta forţei

Διαβάστε περισσότερα

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 CURS 3 SISTEME DE FORŢE (continuare) CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 3.1. Momentul forţei în raport cu un punct...2 Test de autoevaluare

Διαβάστε περισσότερα

2.3 Geometria analitică liniarăînspaţiu

2.3 Geometria analitică liniarăînspaţiu 2.3 Geometria analitică liniarăînspaţiu Pentru început sădefinim câteva noţiuni de bază în geometria analitică. Definitia 2.3.1 Se numeşte reper în spaţiu o mulţime formată dintr-un punct O (numit originea

Διαβάστε περισσότερα

Cap. I NOŢIUNI FUNDAMENTALE DESPRE VECTORI

Cap. I NOŢIUNI FUNDAMENTALE DESPRE VECTORI Cap. I NOŢIUNI FUNDAMENTALE DESPRE VECTORI In mecanică există mărimi scalare sau scalari şi mărimi vectoriale sau vectori. Mărimile scalare (scalarii) sunt complet determinate prin valoarea lor numerică

Διαβάστε περισσότερα

CAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU Sisteme de coordonate în plan şi în spaţiu. I. Coordonate carteziene

CAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU Sisteme de coordonate în plan şi în spaţiu. I. Coordonate carteziene Geometrie liniară în spaţiu CAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU 6.. Sisteme de coordonate în plan şi în spaţiu I. Coordonate carteziene În cele ce urmează, notăm cu E 3 spaţiul punctual tridimensional

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

Vectori liberi-seminar 1

Vectori liberi-seminar 1 Vectori liberi-seminar ) Determinati α R astfel incat vectorii ā = m+ n si b = m+α n sa fie coliniari, unde m, n sunt necoliniari. ) Demonstrati ca urmatorii trei vectori liberi sunt coplanari: ā = ī j

Διαβάστε περισσότερα

Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ Departamentul de Informaticǎ. Simina Mariş Simona Epure Ioan Rodilǎ

Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ Departamentul de Informaticǎ. Simina Mariş Simona Epure Ioan Rodilǎ Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ Departamentul de Informaticǎ Liliana Brǎescu Eva Kaslik Simina Mariş Simona Epure Ioan Rodilǎ CURS DE GEOMETRIE Timişoara 2007

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian. Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele

Διαβάστε περισσότερα

GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE. Gabriel POPA, Paul GEORGESCU c August 20, 2009, Iaşi

GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE. Gabriel POPA, Paul GEORGESCU c August 20, 2009, Iaşi GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE Gabriel POPA, Paul GEORGESCU c August 0, 009, Iaşi Cuprins 1 SPAŢIUL VECTORILOR LIBERI. STRUCTURA AFINĂ 4 SPAŢIUL VECTORILOR LIBERI.

Διαβάστε περισσότερα

ALGEBRĂ LINEARĂ, GEOMETRIE. Valeriu Zevedei, Ionela Oancea

ALGEBRĂ LINEARĂ, GEOMETRIE. Valeriu Zevedei, Ionela Oancea ALGEBRĂ LINEARĂ, GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Valeriu Zevedei, Ionela Oancea April 9, 005 CUPRINS 1 CALCUL VECTORIAL 7 1.1 Vectori legaţi,vectori liberi... 7 1. Operaţiilinearecuvectori... 9 1..1

Διαβάστε περισσότερα

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB = Elemente de geometrie analiticã. Segmente. DistanŃa dintre douã puncte A(, ), B(, ): AB = ) + ( ) (. Panta dreptei AB: m AB = +. Coordonatele (,) ale mijlocului segmentului AB: =, =. Coordonatele punctului

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

2.3. Inegalităţi şi limite Convergenţă, monotonie, mărginire Limite remarcabile Limita unei funcţii...

2.3. Inegalităţi şi limite Convergenţă, monotonie, mărginire Limite remarcabile Limita unei funcţii... Cuprins GEOMETRIE 1 Vectori 1 11 Segmente orientate Vectori în plan 1 12 Operaţii cu vectori 3 13 Vectori coliniari 8 14 Vectori de poziţie 10 15 Drepte paralele, concurente Colinearitate 12 16 Produsul

Διαβάστε περισσότερα

3. Locuri geometrice Locuri geometrice uzuale

3. Locuri geometrice Locuri geometrice uzuale 3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

Dreapta in plan. = y y 0

Dreapta in plan. = y y 0 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice...

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice... Geometrie Afină Contents 1 Spaţii vectoriale 3 1.1 Spaţii vectoriale peste un corp K........................ 3 1.2 Exemple de spaţii vectoriale........................... 4 1.3 Dependenţă liniară de vectori..........................

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

CURS MECANICA CONSTRUCŢIILOR

CURS MECANICA CONSTRUCŢIILOR CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la

Διαβάστε περισσότερα

OANA CONSTANTINESCU. ( a carei ecuatie matriceala este data in raport cu un reper cartezian R = {O; ē 1,, ē n }.

OANA CONSTANTINESCU. ( a carei ecuatie matriceala este data in raport cu un reper cartezian R = {O; ē 1,, ē n }. ELEMENTE DE SIMETRIE ALE UNEI HIPERCUADRICE IN SPATII AFINE EUCLIDIENE OANA CONSTANTINESCU 1. Centru de simetrie pentru o hipercuadrica afina Pentru inceput cadrul de lucru este un spatiu an real de dimensiune

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

4.Inversul lui z=a+bi este nr.complex, z cu proprietatea ca zz =1, rezulta z =a/(a 2 +b 2 ) (bi)/(a 2 +b 2 ) si notam z =z -1

4.Inversul lui z=a+bi este nr.complex, z cu proprietatea ca zz =1, rezulta z =a/(a 2 +b 2 ) (bi)/(a 2 +b 2 ) si notam z =z -1 Numere complexe 1.Multimea numerelor complexe este C=RxR={(a;b)/a,b R} cu operatiile: z 1 =(a 1 ;b 1 ), z 2 =(a 2 ;b 2 ) a 1 ;b 1 ;a 2 ;b 2 R, z 1 +z 2 = (a 1 +a 2 ; b 1 +b 2 ), z 1 z 2 = (a 1 a 2 - b

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 998 Clasa a V-a. La gara Timișoara se eliberează trei bilete de tren: unul pentru Arad, altul pentru Deva și al treilea pentru Reșița. Cel pentru Deva

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

ALGEBRĂ LINIARĂ, GEOMETRIE. Culegeredeprobleme. Emil STOICA şi Mircea NEAGU

ALGEBRĂ LINIARĂ, GEOMETRIE. Culegeredeprobleme. Emil STOICA şi Mircea NEAGU ALGEBRĂ LINIARĂ, GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Culegeredeprobleme Emil STOICA şi Mircea NEAGU Cuprins 1 Spaţii vectoriale. Spaţii euclidiene 1 1.1 Elementeteoreticefundamentale................ 1

Διαβάστε περισσότερα

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Nicolae Cotfas ELEMENTE DE ALGEBRĂ LINIARĂ EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Introducere Pe parcursul acestei cărţi ne propunem să prezentăm într-un mod cât mai accesibil noţiuni si rezultate de bază

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A =

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A = Matrice, determinanti Un punct de vedere liniar independent "A judeca matematic nu înseamn a gândi losoc, a judeca losoc nu înseamn a liber, a gândi liber nu înseamn a losof " Blaise Pascal Liniar independenta:

Διαβάστε περισσότερα

CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU Curbe în plan

CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU Curbe în plan CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU 81 Curbe în plan I Definiţia analitică a curbelor plane În capitolul 7 am studiat deja câteva eemple de curbe plane, amintim aici conicele nedegenerate: elipsa, hiperbola

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

1.4 Schimbarea bazei unui spaţiu vectorial

1.4 Schimbarea bazei unui spaţiu vectorial Algebră liniară, geometrie analitică şi diferenţială. Schimbarea bazei unui spaţiu vectorial După cum s-a văzut deja, într-un spaţiu vectorial V avem mai multe baze, iar un vector x V va avea câte un sistem

Διαβάστε περισσότερα

BACALAUREAT 2007 SESIUNEA IULIE M1-1

BACALAUREAT 2007 SESIUNEA IULIE M1-1 BACALAUREAT 2007 SESIUNEA IULIE M1-1 Filiera teoretică, specializarea matematică - informatică. Filiera vocaţională, profil Militar, specializarea matematică - informatică. a) Să se calculeze modulul vectorului

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

VARIANTE PENTRU BACALAUREAT, M1-1, 2007

VARIANTE PENTRU BACALAUREAT, M1-1, 2007 VARIANTE PENTRU BACALAUREAT, M-, 27 VARIANTA SUBIECTUL I. a) Să se determine ecuația dreptei care trece prin punctul A(2; 5;3) și este paralelă cu dreapta x = y 2 4 6 = z +3 9. b) Să se determine valoarea

Διαβάστε περισσότερα

a carei ecuatie matriceala este data in raport cu R.

a carei ecuatie matriceala este data in raport cu R. POZITIA RELATIVA A UNEI DREPTE FATA DE O HIPERCUADRICA AFINA REALA. TANGENTE SI ASIMPTOTE. OANA CONSTANTINESCU Pentru studiul pozitiei relative a unei drepte fata de o hipercuadrica, remarcam ca nu mai

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

cateta alaturata, cos B= ipotenuza BC cateta alaturata AB cateta opusa AC

cateta alaturata, cos B= ipotenuza BC cateta alaturata AB cateta opusa AC .Masurarea unghiurilor intr-un triunghi dreptunghic sin B= cateta opusa ipotenuza = AC BC cateta alaturata, cos B= AB ipotenuza BC cateta opusa AC cateta alaturata AB tg B=, ctg B= cateta alaturata AB

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

, m ecuańii, n necunoscute;

, m ecuańii, n necunoscute; Sisteme liniare NotaŃii: a ij coeficienńi, i necunoscute, b i termeni liberi, i0{1,,..., n}, j0{1,,..., m}; a11 1 + a1 +... + a1 nn = b1 a11 + a +... + an n = b (S), m ecuańii, n necunoscute;... am11 +

Διαβάστε περισσότερα

O adaptare didactica a unui sistem axiomatic

O adaptare didactica a unui sistem axiomatic O adaptare didactica a unui sistem axiomatic Oana Constantinescu In acest document dorim sa prezentam o adaptare a unui sistem axiomatic semiformalizat pentru geometria in plan si in spatiu. Spunem adaptare

Διαβάστε περισσότερα

Geometria diferenţială a curbelor în spaţiu

Geometria diferenţială a curbelor în spaţiu Geometria diferenţială a curbelor în spaţiu A. U. Thor 0.1 Generalităţi Definitia 1.1 Se numeşte curbă înspaţiu dată parametric mulţimea punctelor M (x, y, z) din spaţiuacăror coordonate sunt date de x

Διαβάστε περισσότερα

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

LUCRARE DE DIPLOMĂ CENTRE REMARCABILE ÎN TRIUNGHI

LUCRARE DE DIPLOMĂ CENTRE REMARCABILE ÎN TRIUNGHI UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ SPECIALIZAREA MATEMATICI APLICATE LUCRARE DE DIPLOMĂ CENTRE REMARCABILE ÎN TRIUNGHI Conducător Ştiinţific: Lect. Dr. VĂCĂREŢU

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

CURS 9 MECANICA CONSTRUCŢIILOR

CURS 9 MECANICA CONSTRUCŢIILOR CURS 9 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA NOŢIUNI DE BAZĂ ÎN CINEMATICA Cinematica studiază mişcările mecanice ale corpurilor, fără a lua în considerare masa acestora şi

Διαβάστε περισσότερα

Matrici şi sisteme de ecuaţii liniare

Matrici şi sisteme de ecuaţii liniare Matrici şi sisteme de ecuaţii liniare 1. Matrici şi determinanţi Reamintim aici câteva proprietăţi ale matricilor şi determinanţilor. Definiţia 1.1. Fie K un corp (comutativ) şi m, n N. O funcţie A : {1,...,

Διαβάστε περισσότερα

Funcţii Ciudate. Beniamin Bogoşel

Funcţii Ciudate. Beniamin Bogoşel Funcţii Ciudate Beniamin Bogoşel Scopul acestui articol este construcţia unor funcţii neobişnuite din punct de vedere intuitiv, care au anumite proprietăţi interesante. Construcţia acestor funcţii se face

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

MATEMATICI APLICATE ECONOMIE - NOTE DE CURS - PENTRU - ÎNVǍŢǍMÂNTUL LA DISTANŢǍ-

MATEMATICI APLICATE ECONOMIE - NOTE DE CURS - PENTRU - ÎNVǍŢǍMÂNTUL LA DISTANŢǍ- UNIVERSITATEA "LUCIAN BLAGA" DIN SIBIU Dumitru Acu Petrică Dicu Mugur Acu Ana Maria Acu MATEMATICI APLICATE ÎN ECONOMIE - NOTE DE CURS - PENTRU - ÎNVǍŢǍMÂNTUL LA DISTANŢǍ- Cuprins Introducere 6. Necesitatea

Διαβάστε περισσότερα

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma

Διαβάστε περισσότερα

BISECTOAREI GLISANTE

BISECTOAREI GLISANTE ÎN LEGĂTURĂ CU TEOREMA BISECTOAREI GLISANTE de ANDREI ECKSTEIN, TIMIŞOARA În aceast articol ne propunem să reunim diverse proprietăţi cunoscute, legate de teorema bisectoarei glisante şi de bogatul ei

Διαβάστε περισσότερα

Grupul ortogonal. Mircea Crasmareanu. Facultatea de Matematică Universitatea Al. I. Cuza Iaşi,

Grupul ortogonal. Mircea Crasmareanu. Facultatea de Matematică Universitatea Al. I. Cuza Iaşi, Grupul ortogonal Mircea Crasmareanu Facultatea de Matematică Universitatea Al. I. Cuza Iaşi, 700506 România mcrasm@uaic.ro http://www.math.uaic.ro/ mcrasm Curs de Perfecţionare 2007 9 Figuri Abstract However

Διαβάστε περισσότερα

Adriana-Ioana Lefter DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs

Adriana-Ioana Lefter DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs Adriana-Ioana Lefter MATEMATICĂ (ALGEBRĂ ŞI ECUAŢII DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs Cuprins Partea 1 ALGEBRĂ 1 Capitolul 1 Matrice şi determinanţi 3 11 Corpuri 3 12 Matrice 4 13

Διαβάστε περισσότερα

2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede

2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede 2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

Geometria curbelor şi suprafeţelor 27 Mai 2014

Geometria curbelor şi suprafeţelor 27 Mai 2014 Geometria curbelor şi suprafeţelor 7 Mai 04 Mircea Crâşmăreanu ii Cuprins Introducere v Noţiunea de curbă. Geometria unei curbe Reperul Frenet şi curburi 9 3 Teorema fundamentală a curbelor 7 4 Ecuaţiile

Διαβάστε περισσότερα

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL 7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in

Διαβάστε περισσότερα

CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a X-a, MAI 2010 CLASA A IV-A

CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a X-a, MAI 2010 CLASA A IV-A Ediţia a X-a, 4 5 MAI 00 CLASA A IV-A I. Suma a două numere naturale este 75. Dacă adunăm de patru ori primul număr cu de trei ori al doilea număr obţinem 40. Aflaţi numărul cel mai mare. Eugenia Miron

Διαβάστε περισσότερα

Capitolul 1. Noțiuni Generale. 1.1 Definiții

Capitolul 1. Noțiuni Generale. 1.1 Definiții Capitolul 1 Noțiuni Generale 1.1 Definiții Forța este acțiunea asupra unui corp care produce accelerația acestuia cu condiția ca asupra corpului să nu acționeze şi alte forțe de sens contrar primeia. Forța

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

Asist. Dr. Oana Captarencu. otto/pn.html.

Asist. Dr. Oana Captarencu.  otto/pn.html. Reţele Petri şi Aplicaţii p. 1/45 Reţele Petri şi Aplicaţii Asist. Dr. Oana Captarencu http://www.infoiasi.ro/ otto/pn.html otto@infoiasi.ro Reţele Petri şi Aplicaţii p. 2/45 Evaluare Nota finala: 40%

Διαβάστε περισσότερα

3 FUNCTII CONTINUE Noţiuni teoretice şi rezultate fundamentale Spaţiul euclidian R p. Pentru p N *, p 2 fixat, se defineşte R

3 FUNCTII CONTINUE Noţiuni teoretice şi rezultate fundamentale Spaţiul euclidian R p. Pentru p N *, p 2 fixat, se defineşte R 3 FUNCTII CONTINUE 3.. Noţiuni teoretice şi rezultate fundamentale. 3... Saţiul euclidian R Pentru N *, fixat, se defineşte R = R R R = {(x, x,, x : x, x,, x R} de ori De exemlu, R = {(x, y: x, yr} R 3

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα