Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 Η ΙΟ ΟΣ ΕΠΑΦΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 Η ΙΟ ΟΣ ΕΠΑΦΗΣ"

Transcript

1 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 1 Η ΙΟ ΟΣ ΕΠΑΦΗΣ Κατά τη δηµιουργία µιας -n επαφής αρχικά υπάρχουν µόνο οπές στην -περιοχή και µόνο ηλεκτρόνια στην n-περιοχή. Οι οπές µε τα αρνητικά ιόντα της πρόσµιξης που δρουν ως αποδέκτες ηλεκτρονίων στην -περιοχή και τα ηλεκτρόνια µε τα θετικά φορτισµένα ιόντα της πρόσµιξης που δρουν ως δότες ηλεκτρονίων στην n-περιοχή εξασφαλίζουν την ηλεκτρική ουδετερότητα στις δύο αυτές περιοχές. Λόγω όµως της ύπαρξης βαθµίδας συγκέντρωσης τόσο για τις οπές όσο και για τα ηλεκτρόνια οι οπές αρχίζουν να κινούνται προς την n-περιοχή και τα ηλεκτρόνια προς την -περιοχή. Με τον τρόπο αυτό, στην περιοχή της επαφής τα ηλεκτρόνια επανασυνδέονται µε τις οπές στις δύο πλευρές της επαφής µε αποτέλεσµα να δηµιουργούνται τελικά δύο στενές περιοχές µε ακάλυπτα φορτία (µη αντισταθµισµένα ηλεκτρικά από ελεύθερους φορείς), αρνητικά στην - περιοχή και θετικά στην n-περιοχή (Σχήµα 1). Τα φορτία αυτά χαρακτηρίζονται ως ακάλυπτα (unneutralized ή uncovered) επειδή δεν αντισταθµίζονται πια από ελεύθερους φορείς. Η περιοχή αυτή των δύο λεπτών ζωνών κοντά στην επαφή λόγω της απουσίας ελευθέρων φορέων χαρακτηρίζεται ως περιοχή διακένωσης (deletion region) ή περιοχή φορτίων χώρου (sace-charge region) ή µεταβατική περιοχή (transition region). Το εύρος της περιοχής αυτής είναι της τάξης του µήκους κύµατος του ορατού φωτός (0.5µm) και στο σχήµα 1 παρουσιάζεται εκτός κλίµακας σε µεγέθυνση. Και ενώ στην περιοχή διακένωσης δεν υπάρχουν ελεύθεροι φορείς, στα αριστερά αυτής (στην -περιοχή) η συγκέντρωση ελευθέρων φορέων είναι N A και στα δεξιά (στην n- περιοχή) είναι n N D.

2 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) Σχήµα 1. ιάγραµµα µιας -n επαφής στο οποίο η περιοχή φορτίων χώρου παρουσιάζεται σε µεγέθυνση. Παρουσιάζονται επίσης η πυκνότητα φορτίου, η ένταση του ηλεκτρικού πεδίου, το ηλεκτροστατικό δυναµικό και η ενέργεια των ηλεκτρονίων. Η ενέργεια των οπών είναι ανάλογη του δυναµικού.

3 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 3 Σχήµα. ιάγραµµα ενεργειακών ζωνών σε µια -n επαφή υπό συνθήκες ανοικτού κυκλώµατος. Οι ενεργειακές ζώνες αντιστοιχούν στη δυναµική ενέργεια των ηλεκτρονίων. Στο σχήµα παρουσιάζεται το διάγραµµα ενεργειακών ζωνών που αντιστοιχούν στη δυναµική ενέργεια των ηλεκτρονίων σε µια -n επαφή υπό συνθήκες ανοικτού κυκλώµατος (όπως στο σχήµα 1). Κάτω από αυτές τις συνθήκες, στην κατάσταση ισορροπίας η ενέργεια Fermi παραµένει σταθερή σε ολόκληρη την έκταση της διόδου. Αν κάτι τέτοιο δεν ίσχυε αυτό θα σήµαινε ότι ηλεκτρόνια από τη µια µεριά της επαφής θα είχαν υψηλότερη µέση ενέργεια από τη µέση ενέργεια των ηλεκτρονίων στην άλλη µεριά της επαφής µε αποτέλεσµα να υπάρχει µια κίνηση ηλεκτρονίων και µεταφορά ενέργειας έτσι ώστε τελικά η στάθµη της ενέργειας Fermi στις δύο περιοχές να εξισωθεί.

4 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 4 Η µετατόπιση Ej των ενεργειακών ζωνών κατά τη µετάβαση από την n στην περιοχή µπορεί να υπολογιστεί ως εξής: [ ] E j = a+b = EG / ( EF EV) + EG / ( ECn EF) E j = EG ( EF EV) ( ECn EF) (1) είναι όµως : E G = kt N N ln C V ni N ECn EF = ktln N N EF EV = ktln N C D V A οπότε, λαµβάνοντας υπόψη τις εξ., 3 και 4 η εξίσωση 1 γράφεται : E j NCNV NV N C = kt ln ln ln ni NA ND 1 1 NCN V N V N C Ej = ktln ni NA N D E j = kt N N D A ln ni () (3) (4) (5) Αξίζει στο σηµείο αυτό να σηµειωθεί ότι η µετατόπιση ενέργειας Ej δεν εξαρτάται από το πλήθος των φορτίων χώρου που συσσωρεύονται

5 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 5 στην περιοχή διακένωσης, εξαρτάται µόνο από τις συγκεντρώσεις ισορροπίας. Αν µάλιστα ληφθεί υπόψη ότι στην κατάσταση ισορροπίας ισχύουν: Για n-τύπου ηµιαγωγό n = n, nn0 n n i N, D n0 n N i D Για -τύπου ηµιαγωγό n = n, 0 i N, A n 0 n N i A η µετατόπιση ενέργειας όπως εκφράζεται από την εξίσωση 5 µπορεί να γραφεί και ως: n Ej = ktln = ktln n 0 n0 n0 0 (6) όπως αποδείχτηκε και στην ενότητα ηµιαγωγοί. Στα σχήµατα 3 και 4 παρουσιάζεται ο διαχωρισµός στάθµης της ενέργειας Fermi στην -περιοχή από την αντίστοιχη στάθµη στην n- περιοχή σε συνθήκες ανάστροφης και ορθής πόλωσης αντίστοιχα. Στην ανάστροφη πόλωση µια εξωτερική πηγή τάσης V εξ τοποθετείται έτσι ώστε το υψηλό της δυναµικό να συνδέεται µε την n-περιοχή της διόδου και το χαµηλό της δυναµικό µε την -περιοχή. Στην ανάστροφη πόλωση το ενεργειακό φράγµα στην κίνηση των ηλεκτρονίων αυξάνεται κατά qv εξ έναντι αυτού που αναπτύσσεται υπό συνθήκες ανοικτού κυκλώµατος. Αντίθετα στην ορθή πόλωση µειώνεται κατά την ίδια ποσότητα.

6 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 6 Σχήµα 3. ιάγραµµα ενεργειακών ζωνών σε µια -n επαφή υπό συνθήκες ανάστροφης πόλωσης. Οι ενεργειακές ζώνες αντιστοιχούν στη δυναµική ενέργεια των ηλεκτρονίων. Το ενεργειακό φράγµα αυξάνεται και ισούται µε Ε j + qv εξ.

7 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 7 Σχήµα 4. ιάγραµµα ενεργειακών ζωνών σε µια -n επαφή υπό συνθήκες ορθής πόλωσης. Οι ενεργειακές ζώνες αντιστοιχούν στη δυναµική ενέργεια των ηλεκτρονίων. Το ενεργειακό φράγµα µειώνεται και ισούται µε Ε j - qv εξ.

8 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 8 Σχήµα 5. Κατανοµή της συγκέντρωσης φορέων µειονότητας σε µια -n δίοδο επαφής σα συνάρτηση της απόστασης x από την επαφή σε συνθήκες: (α) ορθής πόλωσης και (β) ανάστροφης πόλωσης. Η περιοχή διακένωσης θεωρείται πολύ µικρή σε σχέση µε το µήκος διάχυσης και για το λόγο αυτό δεν παρουσιάζεται στο σχήµα. Κατά την ορθή πόλωση της διόδου, όπως φαίνεται στο σχήµα 4, το φράγµα δυναµικού χαµηλώνει µε αποτέλεσµα οπές από την -περιοχή να εισέρχονται στην n-περιοχή και ηλεκτρόνια από την n-περιοχή να εισέρχονται στην -περιοχή. Παρατηρείται λοιπόν έγχυση φορέων µειονότητας τόσο στην -περιοχή όσο και στην n-περιοχή (σχήµα 5α). Αντίθετα κατά την ανάστροφη πόλωση το φράγµα δυναµικού µεγαλώνει έναντι της τιµής που είχε υπό συνθήκες ανοικτού κυκλώµατος µε αποτέλεσµα η συγκέντρωση των φορέων µειονότητας να πέφτει κάτω από τις τιµές n 0 και n0 που έχει αντίστοιχα ο κάθε τύπος ηµιαγωγού πριν την επίτευξη της επαφής (σχήµα 5β).

9 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 9 Σχήµα 6. Οι συνιστώσες του ρεύµατος διάχυσης για τις οπές και τα ηλεκτρόνια συναρτήσει της απόστασης σε µια -n δίοδο επαφής. Η περιοχή θεωρείται πολύ περισσότερο ντοπαρισµένη από την n περιοχή. Η έκταση της περιοχής φορτίων χώρου στην επαφή θεωρείται αµελητέα και δεν φαίνεται στο σχήµα.

10 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 10 Σχήµα 7. Ρεύµατα µειονότητας (κόκκινες καµπύλες) και πλειονότητας (πράσινες καµπύλες) συναρτήσει της απόστασης σε µια -n δίοδο επαφής. Στην πολύ στενή περιοχή διακένωσης έχει θεωρηθεί ότι δε συµβαίνει επανασύνδεση φορέων. Στο σχήµα 6 παρουσιάζονται τα ρεύµατα διάχυσης που οφείλονται στην περίσσεια φορέων µειονότητας που εγχέονται έξω από τα δύο όρια της περιοχής διακένωσης κατά την ορθή πόλωση της διόδου. Η ένταση του ρεύµατος διάχυσης οπών που διέρχονται µέσα από µια επιφάνεια διατοµής Α λόγω ύπαρξης διαφοράς συγκέντρωσης [ύπαρξη µεταβλητής συγκέντρωσης (x)] µεταβάλλεται µε την απόσταση x και είναι ανάλογη της κλίσης της κατανοµής της συγκέντρωσης (x): d( x) I( x) = AJ( x) = AqD dx (7)

11 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 11 Η κατανοµή των φορέων µειονότητας που εγχέονται έχει την ακόλουθη εκθετική µορφή µείωσης (βλ. Παράρτηµα): x 0 x 0 x L ( ) = + ( ) = + (0)ex( / ) (8) και το αντίστοιχο ρεύµα διάχυσης γράφεται: [ ] AqD (0) AqD (0) I x x L x L 0 ( ) = ex( / ) = ex( / ) L L επειδή µάλιστα πρόκειται για ρεύµα φορέων µειονότητας, χρησιµοποιείται διπλός δείκτης για το ρεύµα όπου ο πρώτος αναφέρεται στο είδος των φορέων ενώ ο δεύτερος στον τύπο αγωγιµότητας του ηµιαγωγού µέσα στον οποίο αυτές εγχέονται: [ ] AqD (0) AqD (0) I x x L x L n n n0 n( ) = ex( / ) = ex( / ) L L.(9) (10) Στο σηµείο της επαφής (x=0) η εξίσωση 10 παίρνει τη µορφή: I n (0) [ (0) ] AqD n n0 = (11) L Λαµβάνοντας υπόψη την εξίσωση Boltzmann: (0) ex( V / V ) = (1) n n0 T το ρεύµα των εγχεόµενων οπών στα όρια της επαφής γράφεται: I n (0) [ (0) ] [ ex( / ) ] AqD AqD V V n n0 n0 T n0 = = L L I AqD = [ V V ] (13) n0 n(0) ex( / T ) 1 L

12 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 1 Με παρόµοια διαδικασία προκύπτει για τα ηλεκτρόνια που εγχέονται στην -περιοχή: I AqD n = [ V V ] (14) n 0 n (0) ex( / T ) 1 Ln Το άθροισµα όµως των ρευµάτων διάχυσης στα όρια της περιοχής διακένωσης ισούται µε το συνολικό ρεύµα Ι που διαρρέει τη δίοδο (σχήµα 7) οπότε: I = I + I D = Aq D n + V V [ ] n0 n 0 n(0) n (0) ex( / T ) 1 L L n.(15) Η εξίσωση 15 είναι ουσιαστικά η χαρακτηριστική εξίσωση ρεύµατοςτάσης της διόδου: [ ] I = I ex( / ) 1 0 V V T (16) όπου το ανάστροφο ρεύµα Ι 0 έχει την ακόλουθη µορφή που εκφράζεται συναρτήσει των χαρακτηριστικών των υλικών που συνενώθηκαν για να σχηµατιστεί η -n επαφή: D D n D D I0 = Aq + = Aq + n n0 n 0 n i L Ln LND LnNA (17) Με δεδοµένο τώρα ότι για τη συγκέντρωση ελευθέρων φορέων σε ενδογενή ηµιαγωγό ισχύει: n = AT ex( E / kt) = AT ex( V / V ) (18) 3 3 i 0 G 0 G T και ότι για το Ge είναι D 1/ 0 1 ex( G / ) T και D 1/ T n έπεται ότι: I = CT E kt (19)

13 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 13 Για το πυρίτιο, λόγω της γένεσης και επανασύνδεσης φορέων στην περιοχή φορτίων χώρου ισχύει για µικρά ρεύµατα [ η ] I = I ex( / ) 1 0 V V T µε η ενώ επίσης έχει βρεθεί ότι I n 0 i οπότε τελικά για το πυρίτιο ισχύει: I = C T E kt. (0) 3/ 0 ex( G / ) υναµική αντίσταση διόδου. Η δυναµική αντίσταση της διόδου µπορεί να προκύψει µε παραγώγιση της χαρακτηριστικής εξίσωσης ρεύµατος-τάσης της διόδου: 1 di I ex( V / ηv ) I + I I = I0 V VT = = = r dv ηv ηv r 0 T 0 [ ex( / η ) 1] ηv ηv I + I I T = 0 T T (1) T Η σηµασία του φορτίου που εγχέεται και η απλή σχέση του µε το ρεύµα της διόδου. Όπως προκύπτει από τα σχήµατα 4 και 5 στην ορθή πόλωση της διόδου το φράγµα δυναµικού χαµηλώνει µε αποτέλεσµα οπές από την -περιοχή να εισέρχονται στην n-περιοχή και ηλεκτρόνια από την n-περιοχή να εισέρχονται στην -περιοχή. Παρατηρείται λοιπόν έγχυση φορέων µειονότητας τόσο στην -περιοχή όσο και στην n-περιοχή, σύµφωνα και µε το σχήµα 5α. Για απλούστευση των πράξεων µπορούµε να θεωρήσουµε ότι η -περιοχή είναι πολύ περισσότερο ντοπαρισµένη από την n µε αποτέλεσµα η ποσότητα των ηλεκτρονίων που εγχέονται στην - περιοχή να είναι αµελητέα σε σχέση µε τις οπές που εγχέονται στην n-

14 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 14 περιοχή. Κατά συνέπεια το ολικό φορτίο, Q, που εγχέεται θα οφείλεται αποκλειστικά στις οπές και θα προκύπτει από την ολοκλήρωση της κατανοµής των φορέων µειονότητας που εγχύθηκαν (σκιασµένη περιοχή) εντός της n-περιοχής (το σκιασµένο αυτό εµβαδό δίνει τη συγκέντρωση φορέων µειονότητας ανά µονάδα επιφάνειας) και τον πολλαπλασιασµό µε την επιφάνεια Α της επαφής: Q= Aq (0)ex( x/ L ) dx= AqL (0) () 0 Συνδυάζοντας τώρα την έκφραση για το ολικό εγχεόµενο φορτίο Q µε το αντίστοιχο ρεύµα : AqD n(0) I = In(0) = L (3) προκύπτει µια πολύ απλή έκφραση µε µορφή λόγου φορτίου προς χρόνο, το µέσο χρόνο ζωής των οπών τ : I Q τ = όπου τ = L D (4) Κατά συνέπεια, το ρεύµα Ι της διόδου παρέχει φορείς µειονότητας στην n-περιοχή µε έναν ρυθµό ίσο µε την ταχύτητα µε την οποία αυτοί οι φορείς εξαφανίζονται λόγω επανασύνδεσης. Η µεθοδολογία αυτή έκφρασης του ρεύµατος Ι της διόδου συναρτήσει του φορτίου Q των εγχεόµενων φορέων µπορεί να υιοθετηθεί και στην περίπτωση της ανάστροφης πόλωσης. Στην περίπτωση αυτή λαµβάνεται υπόψη το σκιασµένο εµβαδόν του σχήµατος 5β, το οποίο είναι αρνητικό αφού εκφράζει µείωση φορτίου σε σχέση µε τις συγκεντρώσεις σε θερµική ισορροπία απουσία εξωτερικής τάσης. Το ρεύµα αυτό ισούται µε το ανάστροφο ρεύµα που διαρρέει τη δίοδο σε ανάστροφη πόλωση.

15 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 15 Το σηµαντικό πλεονέκτηµα της έκφρασης του ρεύµατος της διόδου συναρτήσει του φορτίου Q είναι η απλή µαθηµατική σχέση σε αντίθεση µε την εκθετική σχέση που ισχύει όταν εκφράζεται το ρεύµα Ι της διόδου συναρτήσει της τάσης V. Χωρητικότητα διάχυσης, C D. Η χωρητικότητα διάχυσης οφείλεται στο φορτίο για το οποίο έγινε λόγος στην προηγούµενη παράγραφο. Φορτίο Q, που εγχέεται και παραµένει κοντά στην n επαφή έξω από τα όρια της περιοχής διακένωσης κατά την ορθή πόλωση αυτής (diffusion ή storage caacitance). Λαµβάνοντας υπόψη τις εκφράσεις για το ρεύµα της διόδου συναρτήσει του εγχεόµενου φορτίου Q και τη δυναµική αντίσταση της διόδου r: I Q τ =, r V T η I = (5) η χωρητικότητα διάχυσης προσδιορίζεται ως εξής: C dq di τ dv dv r D = = τ = C τ I D = (6) ηvt Παρατηρούµε ότι η χωρητικότητα διάχυσης είναι ανάλογη του ρεύµατος Ι της διόδου. Στην περίπτωση τώρα που και το ρεύµα των φορέων µειονότητας στην -περιοχή (ηλεκτρονίων) είναι σηµαντικό ισχύει µε την ίδια λογική µια παρόµοια έκφραση και για τα ηλεκτρόνια µε αποτέλεσµα η συνολική χωρητικότητα διάχυσης να ισούται µε το άθροισµα των δύο επιµέρους χωρητικοτήτων.

16 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 16 Χωρητικότητα περιοχής φορτίων χώρου, C SC ή C T ή C J. Σχήµα 8. ίοδος -n µε οµοιόµορφη κατανοµή φορτίων στην και την n περιοχή (ste-graded junction). Παρουσιάζονται, η πυκνότητα φορτίου, η ένταση του ηλεκτρικού πεδίου και η µεταβολή του δυναµικού µε την απόσταση x από την επαφή.

17 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 17 Συνήθως οι -n επαφές δηµιουργούνται ασύµµετρες µε τη µια περιοχή περισσότερο ντοπαρισµένη (η περιοχή στο παράδειγµα του σχήµατος 8) από την άλλη. Λόγω του ότι το συνολικό φορτίο στην περιοχή διακένωσης πρέπει να είναι µηδέν θα ισχύει: NW = NW (7) A D n Για απλούστευση των πράξεων αλλά χωρίς µείωση της γενικότητας του τελικού αποτελέσµατος (όπως θα φανεί στη συνέχεια) µπορεί να θεωρηθεί ότι Ν Α >>Ν D οπότε και W << Wn W H θεώρηση αυτή µας επιτρέπει αρχικά να δεχθούµε ότι η συγκέντρωση δοτών είναι αµελητέα όπως αµελητέο είναι και το ηλεκτρικό πεδίο και το δυναµικό στο τµήµα της περιοχής φορτίων χώρου αριστερά της επαφής. Κατά συνέπεια από την εξίσωση Poisson προκύπτει: dv dx = ρ qn D ε = ε (8) Ολοκληρώνοντας και θεωρώντας (µε βάση τις υποθέσεις που έγιναν) ότι το ηλεκτρικό πεδίο είναι ουσιαστικά µηδέν για x < 0 και για x > Wn W προκύπτει ότι το ηλεκτρικό πεδίο θα δίδεται από την ακόλουθη γραµµική σχέση: dv qn E = = D ( x W) (9) dx ε Με νέα ολοκλήρωση και θεωρώντας ότι V(x=0)=0 προκύπτει εξάρτηση δευτέρου βαθµού του δυναµικού από την απόσταση x: qn V = D ( x Wx) (30) ε

18 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 18 Θέτοντας στην τελευταία αυτή εξίσωση x = W και θεωρώντας τη µεταβλητή V εξ θετική ποσότητα θα πρέπει να προκύπτει το φράγµα δυναµικού (V=V j +V εξ ) και κατά συνέπεια: qndw + = Vj V εξ ε ε W = ( Vj + Vεξ ) qn D (31) Η εξίσωση αυτή επιβεβαιώνει το γεγονός ότι όταν αυξάνει η τάση της ανάστροφης πόλωσης αυξάνει το εύρος της περιοχής φορτίων χώρου, κάτι που φαίνεται και στην ανάλυση µε τις ενέργειες Fermi (σύγκριση σχηµάτων & 3). Το συνολικό φορτίο στην περιοχή φορτίων χώρου σε µια έκταση W και µε την επιφάνεια της επαφής θεωρούµενη ίση µε Α θα είναι: Q= qn WA (3) D οπότε η χωρητικότητα της περιοχής διακένωσης (αλλιώς γνωστή και ως χωρητικότητα φορτίων χώρου, χωρητικότητα περιοχής µετάβασης ή χωρητικότητα επαφής) θα είναι ίση µε : C J dq = = dv εξ qn A D dw dv εξ (33) H παραγώγιση της εξίσωσης που δίνει το δυναµικό φράγµατος συναρτήσει του W δίνει: dw/dvεξ =ε/(qn D W) οπότε τελικά : C J dq = = dv εξ εα W (34) που πρόκειται για τη γνωστή έκφραση που δίνει τη χωρητικότητα δύο παράλληλων φορτισµένων οπλισµών επιφάνειας Α που βρίσκονται σε απόσταση W µεταξύ τους και στο χώρο ανάµεσά τους υπάρχει διηλεκτρικό µε διηλεκτρική σταθερά ε.

19 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 19 Η εξίσωση αυτή ισχύει για την χωρητικότητα της περιοχής φορτίων χώρου ακόµη και στην περίπτωση που η συγκέντρωση των δοτών, Ν D, δε θεωρείται αµελητέα. Στην περίπτωση αυτή µε µια παρόµοια ανάλυση µπορούµε να φτάσουµε στο ίδιο αποτέλεσµα µε τη διαφορά ότι τώρα στο εύρος της περιοχής διακένωσης συνεισφέρει εκτός από το τµήµα πάχους W n και το τµήµα πάχους W για τα οποία µε τις καινούργιες οριακές συνθήκες προκύπτουν τα ακόλουθα (το W αντικαθίσταται από τα γινόµενα W W και W Wn αντίστοιχα): ε W Wn = ( Vj + Vεξ ) qn ε W W = ( Vj + Vεξ ) qn D A Προσθέτοντας κατά µέλη και λαµβάνοντας υπόψη ότι n (35) (36) W = W + W (37) Προκύπτει για το συνολικό εύρος της περιοχής φορτίων χώρου : W = W + Wn = ε ( V ) 1 1 j + Vεξ + q NΑ N D (38) Το ισοδύναµο κύκλωµα της διόδου Λαµβάνοντας υπόψη τις χωρητικότητες διάχυσης και επαφής το ισοδύναµο κύκλωµα της διόδου µπορεί να οριστεί σαν αυτό που παρουσιάζεται στο σχήµα 9. Στο ισοδύναµο αυτό κύκλωµα

20 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 0 περιλαµβάνονται οι χωρητικότητες επαφής C J και διάχυσης C D καθώς και οι ακόλουθες αντιστάσεις: η αντίσταση του σώµατος της διόδου Rs που είναι της τάξης των µερικών Ω, η αντίσταση διαρροής r L της τάξης των µερικών ΜΩ η µη γραµµική στατική αντίσταση της διόδου Rd (=V Q /I Q ) όπως αυτή καθορίζεται από το σηµείο λειτουργίας πάνω στην I-V χαρακτηριστική. Σχήµα 9. Ισοδύναµο κύκλωµα διόδου που περιλαµβάνει και τις χωρητικότητες επαφής και διάχυσης. Σε συνθήκες ανάστροφης πόλωσης η δυναµική αντίσταση της διόδου γίνεται πάρα πολύ µεγάλη µε αποτέλεσµα η χωρητικότητα C D να γίνεται

21 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 1 πολύ µικρή, τόσο ώστε να θεωρείται αµελητέα συγκριτικά µε τη χωρητικότητα C J. Αντίθετα σε συνθήκες ορθής πόλωσης η C D είναι συνήθως πολύ µεγαλύτερη της C J. ΤΟ ΙΠΟΛΙΚΟ ΤΡΑΝΖΙΣΤΟΡ ΕΠΑΦΗΣ Σχήµα 10. Σχηµατική παράσταση ενός συµµετρικού n τρανζίστορ όπου εικονίζεται το δυναµικό και η συγκέντρωση των φορέων µειονότητας σε συνθήκες ανοικτού κυκλώµατος. Οι περιοχές φορτίων χώρου στις επαφές J E και J C παρουσιάζονται εκτός κλίµακας, σε µεγέθυνση.

22 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) Ένα n τρανζίστορ µπορεί να θεωρηθεί ως µια n δίοδος σε σειρά µε µια n δίοδο και κατά συνέπεια τα όσα αναφέρθηκαν στις προηγούµενες παραγράφους για τη συµπεριφορά της διόδου µπορούν να αξιοποιηθούν και για την περιγραφή της συµπεριφοράς του τρανζίστορ. Στο σχήµα 10 παρουσιάζεται η περίπτωση όπου στο τρανζίστορ δεν εφαρµόζονται κάποιες εξωτερικές πηγές τάσης πόλωσης. Με δεδοµένο λοιπόν ότι οι ακροδέκτες του τρανζίστορ είναι ελεύθεροι δε θα πρέπει να υπάρχει ροή ρεύµατος στο τρανζίστορ. Τα δυναµικά επαφής που αναπτύσσονται στις δύο επαφές, την επαφή εκποµπού-βάσης (συµβολίζεται µε J E ) και την επαφή βάσης-συλλέκτη (συµβολίζεται µε J C ) είναι τέτοια ώστε να µην επιτρέπουν στους ελεύθερους φορείς να διασχίσουν τις επαφές. Στην περίπτωση ενός συµµετρικού τρανζίστορ όπου οι δύο -περιοχές έχουν τις ίδιες διαστάσεις και το ίδιο επίπεδο ντοπαρίσµατος αναµένεται τα δύο δυναµικά επαφής να έχουν την ίδια τιµή (Vj) όπως φαίνεται στο σχήµα 10. Κάτω από αυτές τις συνθήκες, η συγκέντρωση των φορέων µειονότητας µένει σταθερή σε κάθε περιοχή και ισούται µε την αντίστοιχη τιµή σε συνθήκες θερµικής ισορροπίας ( n0 στην n-τύπου βάση και n 0 στους -τύπου εκποµπό και συλλέκτη). Στο σχήµα 11 παρουσιάζονται τόσο το δυναµικό όσο και η συγκέντρωση των φορέων µειονότητας για την περίπτωση που το τρανζίστορ λειτουργεί στην ενεργό περιοχή. Όταν δηλαδή η επαφή εκποµπού-βάσης είναι ορθά πολωµένη και η επαφή βάσης-συλλέκτη ανάστροφα. Παρατηρούµε ότι το φράγµα δυναµικού στην επαφή του εκποµπού ελαττώνεται τόσο όσο είναι το µέγεθος της τάσης ορθής πόλωσης V EB ενώ το φράγµα δυναµικού στην επαφή του συλλέκτη αυξάνεται κατά το µέγεθος της τάσης ανάστροφης πόλωσης V CB. Για το λόγο αυτό παρατηρείται εκατέρωθεν της επαφής του εκποµπού (J E ) έγχυση φορέων µειονότητας ενώ εκατέρωθεν της επαφής του συλλέκτη

23 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 3 (J C ) µειώνεται η αντίστοιχη συγκέντρωση κάτω από τα επίπεδα της θερµικής ισορροπίας. Σχήµα 11. Σχηµατική παράσταση ενός n τρανζίστορ όπου εικονίζεται το δυναµικό και η συγκέντρωση των φορέων µειονότητας σε συνθήκες λειτουργίας στην ενεργό περιοχή. Η επαφή J E είναι ορθά πολωµένη ενώ η J C ανάστροφα.

24 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 4 Στο σχήµα 11 φαίνεται επίσης ο τρόπος µε τον οποίο αλλάζει η έκταση των δύο περιοχών φορτίων χώρου όταν από την κατάσταση ανοικτού κυκλώµατος (όρια µε διακεκοµµένες γραµµές) το τρανζίστορ µεταβαίνει στην κατάσταση ενεργούς λειτουργίας (περιοχές χρωµατισµένες µε κίτρινο χρώµα). Παρατηρούµε ότι λόγω της ορθής πόλωσης στην επαφή του εκποµπού συρρικνώνεται η έκταση της περιοχής φορτίων χώρου ενώ αντίθετα στην ανάστροφα πολωµένη επαφή του συλλέκτη η περιοχή φορτίων χώρου διευρύνεται (σε συµφωνία µε την εξίσωση 38). Οι οπές που εγχέονται από τον εκποµπό προς τη βάση συναντούν µηδενικό ηλεκτρικό πεδίο εντός της βάσης και κινούνται λόγω διάχυσης φτάνοντας µέχρι την επαφή του συλλέκτη όπου το ηλεκτρικό πεδίο της αντίστοιχης περιοχής διακένωσης τις επιταχύνει. Ουσιαστικά πέφτουν στο πηγάδι δυναµικού και καταλήγουν στο συλλέκτη. ε φτάνουν όµως όλες οι οπές στο συλλέκτη. Η πλειοψηφία τους ρεύµα αι Ε (στο σχήµα 1) φτάνει στο συλλέκτη, ένα ποσοστό όµως από τις οπές που εγχέονται στη βάση από τον εκποµπό επανασυνδέονται µε τα ηλεκτρόνια της βάσης ρεύµα (1-α)Ι Ε. Τα ηλεκτρόνια που χάνονται µέσα στη βάση λόγω της επανασύνδεσης αναπληρώνονται από την πηγή V EB µε τη βοήθεια του ρεύµατος βάσης. Επίσης εντός της περιοχής του εκποµπού υπάρχει ένα ρεύµα ηλεκτρονίων µειονότητας που οδεύουν µε διάχυση προς τον ακροδέκτη του εκποµπού. Η βάση έχει σκόπιµα µικρό πλάτος και χαµηλά επίπεδα ντοπαρίσµατος έτσι ώστε τόσο η επανασύνδεση των οπών µε τα ηλεκτρόνια στη βάση να είναι αµελητέα και να οδεύει η πλειοψηφία των οπών στο συλλέκτη όσο και το ρεύµα διάχυσης των ηλεκτρονίων στον εκποµπό να θεωρείται αµελητέο. Το ρεύµα της διόδου κάτω από αυτές τις συνθήκες είναι ένα ρεύµα οπών. Το ρεύµα του συλλέκτη αποτελείται από το ρεύµα αι Ε και από ένα ρεύµα Ι CB0 που οφείλεται στη θερµική γένεση ζευγών οπών και ηλεκτρονίων στις περιοχές του συλλέκτη και της βάσης. Το ρεύµα αυτό είναι

25 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 5 ουσιαστικά το ανάστροφο ρεύµα Ι 0 (για το οποίο έγινε λόγος και στη δίοδο) το οποίο είναι ανεξάρτητο της τάσης V CB. Τα ρεύµατα αυτά παρουσιάζονται στο σχήµα 1. Σχήµα 1. Συνοπτική µορφή παρουσίασης των ρευµάτων σε ένα n τρανζίστορ. Οι περιοχές φορτίων χώρου δεν εικονίζονται λόγω του πολύ µικρού τους εύρους. Σύµφωνα µε τις φορές ρευµάτων του σχήµατος 1, για τον κόµβο του συλλέκτη ισχύει: IC + aie ICB0 = 0 IC = aie + ICB0 (39)

26 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 6 για τον κόµβο της βάσης ισχύει: I + (1 a) I + I = 0 B E CB0 1 1 I = I I E 0 1 a B 1 a CB (40) Ο συντελεστής α. του τρανζίστορ. Από την εξίσωση 39 προκύπτει ότι η παράµετρος α µπορεί να εκφραστεί ως εξής: I I I I a = = I I 0 C CB0 C CB0 E E (41) η εξίσωση 41 υποδηλώνει και έναν ορισµό που χρησιµοποιείται για την παράµετρο α µε βάση τον οποίο η παράµετρος αυτή εκφράζει το αντίθετο του λόγου της αύξησης του ρεύµατος του συλλέκτη (I C ) σε σχέση µε την τιµή του στην αποκοπή (στην αποκοπή I C = I CΒ0 ) προς την αντίστοιχη αύξηση του ρεύµατος του εκποµπού (I Ε ) σε σχέση µε την τιµή της αποκοπής (στην αποκοπή I Ε =0). Αν θεωρηθεί αµελητέα η τιµή του ανάστροφου ρεύµατος I CΒ0, προκύπτει η προσεγγιστική σχέση: a I I C E (4) Η τιµή του α κυµαίνεται στην περιοχή και το πρόσηµό του είναι θετικό µια και τα ρεύµατα I C και I Ε είναι αντίθετα µεταξύ τους.

27 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 7 Ο συντελεστής β του τρανζίστορ. Από τις σχέσεις 39 και 40 προκύπτει ότι: 1 IC = a IB + ICB0 (43) 1 a 1 a Ο συντελεστής του ρεύµατος Ι Β ορίζεται ως συντελεστής β του τρανζίστορ και αποτελεί και αυτός µια πολύ βασική παράµετρο του τρανζίστορ: β = a 1 a (44) Λύνοντας την εξίσωση 44 ως προς α (α = β/(β+1)) είναι δυνατό να εκφραστούν τα ρεύµατα σε εκποµπό και συλλέκτη σα συνάρτηση της παραµέτρου β του τρανζίστορ: I = ( β + 1) I Ε ( β + 1) I (45) C B CB0 B CB0 I = β I + ( β + 1) I (46) Αναλυτικότερη περιγραφή των ρευµάτων του τρανζίστορ. Στο σχήµα 13 γίνεται µια αναλυτικότερη παρουσίαση των ρευµάτων εντός του τρανζίστορ, ενώ ακολουθεί και αναλυτικότερη περιγραφή αυτών.

28 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 8 Σχήµα 13. Αναλυτική µορφή παρουσίασης των ρευµάτων σε ένα n τρανζίστορ. Οι περιοχές φορτίων χώρου δεν εικονίζονται λόγω του πολύ µικρού τους εύρους. I E : ρεύµα οπών, πρόκειται για τις οπές που διασχίζουν την επαφή εκποµπού-βάσης και οδεύουν προς τη βάση. Είναι λοιπόν το ρεύµα διάχυσης των οπών µέσα στη βάση (φορείς µειονότητας στη βάση) και το µέγεθός του είναι ανάλογο της κλίσης της κατανοµής n (x) στο σηµείο της επαφής, J E. I ne : ρεύµα ηλεκτρονίων, ηλεκτρόνια που κινούνται από τη βάση στον εκποµπό (στο σχήµα φαίνεται η συµβατική φορά). Είναι λοιπόν το ρεύµα διάχυσης των ηλεκτρονίων µέσα στον εκποµπό (φορείς µειονότητας στον εκποµπό) και το µέγεθός του

29 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 9 είναι ανάλογο της κλίσης της κατανοµής n (x) στο σηµείο της επαφής, J E. Πρόκειται λοιπόν για τα ρεύµατα διάχυσης φορέων µειονότητας κατ αντιστοιχία προς τα I n (0) και I n (0) που αναφέρθηκαν στην περίπτωση της µελέτης της n επαφής διόδου. Κατά συνέπεια, όπως για τη δίοδο το συνολικό ρεύµα ισούται µε Ι= I n (0) + I n (0) έτσι και για το ρεύµα εκποµπού θα ισχύει: I E = I ne + I E. I C : ρεύµα οπών, πρόκειται για τις οπές που προέρχονται από τον εκποµπό και καταφέρνουν να διασχίσουν τη βάση και να περάσουν στο συλλέκτη. To ρεύµα αυτό συνήθως εκφράζεται ως κλάσµα του συνολικού ρεύµατος εκποµπού: I C = α I Ε, όπου α η παράµετρος του τρανζίστορ µε τιµές στην περιοχή I E - I C : πρόκειται για το ρεύµα οπών εξέρχεται από τη βάση και οφείλεται σε οπές που επανασυνδέονται µε ηλεκτρόνια της βάσης. Στην πραγµατικότητα, ηλεκτρόνια από το εξωτερικό κύκλωµα εισέρχονται στη βάση για να αναπληρώσουν τα ηλεκτρόνια που χάθηκαν κατά την επανασύνδεση µε οπές που διήλθαν από τον εκποµπό στη βάση. I CB0 : πρόκειται ουσιαστικά για το ανάστροφο ρεύµα κόρου που παρατηρείται αν αφήσουµε ανοικτό το κύκλωµα του εκποµπού και διατηρήσουµε ανάστροφα πολωµένη την επαφή βάσης-συλλέκτη. Αποτελείται από δύο συνιστώσες, τις:

30 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 30 I CB0 που οφείλεται στη µικρή συγκέντρωση οπών που γεννούνται θερµικά µέσα στη βάση και διασχίζουν την επαφή του συλλέκτη, J C, κινούµενες από τη βάση προς το συλλέκτη (το άθροισµα I C + I CB0 εκφράζει το συνολικό ρεύµα διάχυσης οπών που διασχίζουν την επαφή J C προερχόµενες από τη βάση) και I ncb0 που οφείλεται στα ηλεκτρόνια που διασχίζουν την επαφή του συλλέκτη από την -περιοχή (το συλλέκτη) προς την n-περιοχή (τη βάση). Λόγω της φοράς που έχει αποδοθεί στο ανάστροφο ρεύµα I CB0, ώστε να είναι οµόρροπο µε αυτό του συλλέκτη όπως εικονίζεται στο εξωτερικό κύκλωµα, είναι προφανές ότι θα ισχύει: ICB0 = InCB0 + ICB0 (47) Στην περίπτωση ορθής πόλωσης της επαφής του εκποµπού και ανάστροφης πόλωσης της επαφής του συλλέκτη το ρεύµα του συλλέκτη θα είναι (σε συµφωνία και µε την εξίσωση 39): IC = ICB0 I C = ICB0 aie (48) Η εξίσωση αυτή έχει ισχύ µόνο για την ενεργό περιοχή λειτουργίας του τρανζίστορ, όπου η επαφή του εκποµπού (επαφή εκποµπού-βάσης) είναι ορθά πολωµένη και η επαφή του συλλέκτη (επαφή βάσης-συλλέκτη) είναι ανάστροφα πολωµένη.

31 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 31 Γενικευµένη εξίσωση ρεύµατος τρανζίστορ. Για τον προσδιορισµό µιας γενικευµένης έκφρασης για το ρεύµα του συλλέκτη ενός τρανζίστορ η οποία να µην ισχύει µόνο για τις περιπτώσεις όπου η επαφή του συλλέκτη, J C, είναι ανάστροφα πολωµένη αρκεί να ληφθεί υπόψη η εξίσωση τάσηςρεύµατος µιας n διόδου η οποία θα αναφέρεται ουσιαστικά στην επαφή βάσης-συλλέκτη. Έτσι, στην εξίσωση 48 που ισχύει για την ενεργό περιοχή λειτουργίας του τρανζίστορ αρκεί να αντικατασταθεί το ανάστροφο ρεύµα Ι CB0 µε το ρεύµα µιας διόδου ICB0 I CB0 1 ex( VCn / VT ) όπου το δυναµικό V Cn εκφράζει την πτώση τάσης στην επαφή του συλλέκτη, J C, από την -περιοχή στην n-περιοχή, για να προκύψει τελικά: IC = aie + I CB0 1 ex( VCn / VT) (49) AC ρεύµατα στο τρανζίστορ. Στην περίπτωση όπου σε σειρά µε την DC τάση πόλωσης V BE εφαρµοστεί και µια εναλλασσόµενη τάση το τρανζίστορ θα διαρρέεται από χρονικά µεταβαλλόµενα ρεύµατα (σχήµα 14).

32 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 3 Σχήµα 14. DC και AC συνιστώσες των ρευµάτων ενός τρανζίστορ

33 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 33 Σε µια τέτοια κατάσταση, για τα ολικά ρεύµατα σε συλλέκτη και εκποµπό θα ισχύει µια εξίσωση παρόµοια µε την εξίσωση 39, µόνο που τώρα η νέα εξίσωση θα συνδέει τα ολικά ρεύµατα σε συλλέκτη και εκποµπό : ic = aie + ICB0 (50) ή ισοδύναµα, i = I + i = a( I + i ) + I (51) C C C( AC) E E( AC) CB0 Λαµβάνοντας υπόψη την εξίσωση 39 η οποία συνδέει τις DC συνιστώσες από την εξίσωση 51 προκύπτει: i = ai (5) C( AC) E( AC) Με παρόµοιο σκεπτικό προκύπτουν και οι ακόλουθες σχέσεις που συνδέουν µεταξύ τους τις AC συνιστώσες: i C( AC) βi Β ( AC) = (53) i = ( β + 1) i (54) Ε( AC) Β( AC) Στα σχήµατα 15 και 16 εικονίζονται τα AC ρεύµατα και η µεταξύ τους σχέση σε ένα nn και ένα n τρανζίστορ αντίστοιχα καθώς και η φορά του συνολικού ρεύµατος που διαρρέει το τρανζίστορ από τον εκποµπό ως το συλλέκτη. Τα ρεύµατα σε συλλέκτη και εκποµπό είναι στην πραγµατικότητα οµόρροπα (σε αντίθεση µε την κατά συνθήκη θεώρησή τους ως αντίρροπα). Στην περίπτωση του nn τρανζίστορ, στην -τύπου βάση εγχέονται ηλεκτρόνια η πλειοψηφία των οποίων φτάνει στο

34 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 34 συλλέκτη. Η κίνηση λοιπόν των φορέων είναι και πάλι από τον εκποµπό προς το συλλέκτη, απλά επειδή πρόκειται για ηλεκτρόνια (αρνητικά φορτία) η συµβατική φορά του ρεύµατος είναι αντίθετη προς την κίνησή τους και για το λόγο αυτό η κόκκινη γραµµή στο σχήµα 15 κατευθύνεται από το συλλέκτη στον εκποµπό. Αντίθετα, στο σχήµα 16 - στο n τρανζίστορ- οι οπές που κινούνται από τον εκποµπό στο συλλέκτη ισοδυναµούν µε θετικά φορτία µε αποτέλεσµα η συµβατική φορά του ρεύµατος να είναι οµόρροπη προς την φορά της κίνησής τους και στην κόκκινη γραµµή να καταδεικνύεται µια φορά από τον εκποµπό στο συλλέκτη (δικαιολογώντας εν τέλει και τις ονοµασίες των δύο αυτών ακροδεκτών). Σχήµα 15. AC ρεύµατα σε nn τρανζίστορ. Στην πραγµατικότητα το ρεύµα του συλλέκτη είναι οµόρροπο µε το ρεύµα εκποµπού. Η κόκκινη γραµµή υποδηλώνει τη ροή του συνολικού ρεύµατος σύµφωνα µε τη συµβατική φορά (αντίθετη προς την πραγµατική φορά κίνησης των ηλεκτρονίων).

35 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 35 Σχήµα 16. AC ρεύµατα σε n τρανζίστορ. Στην πραγµατικότητα το ρεύµα του συλλέκτη είναι οµόρροπο µε το ρεύµα εκποµπού. Η κόκκινη γραµµή υποδηλώνει τη ροή του συνολικού ρεύµατος σύµφωνα µε τη συµβατική φορά (οµόρροπη προς την πραγµατική φορά κίνησης των οπών). Το µέγεθος του συνολικού αυτού ρεύµατος, που στο µεγαλύτερό του µέρος (µε τις προϋποθέσεις που ήδη συζητήθηκαν) καταλήγει από τον εκποµπό στο συλλέκτη χωρίς σηµαντικές απώλειες, µπορεί να ρυθµιστεί τόσο µε την αλλαγή του ρεύµατος βάσης όσο και (πιο άµεσα) µε την αλλαγή της τάσης που εφαρµόζεται µεταξύ βάσης και εκποµπού. Τόσο η αλλαγή του ρεύµατος βάσης όσο και η αλλαγή της εφαρµοζόµενης διαφοράς δυναµικού µεταξύ βάσης και εκποµπού αλλάζουν το ύψος του φράγµατος δυναµικού στην επαφή του εκποµπού µε αποτέλεσµα να ρυθµίζεται η ποσότητα των φορέων µειονότητας που εγχέονται στη βάση από τον

36 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 36 εκποµπό. Η δράση αυτή του ρεύµατος βάσης µπορεί να γίνει κατανοητή αν ληφθεί υπόψη ότι µεταξύ του ρεύµατος βάσης και της διαφοράς δυναµικού µεταξύ βάσης και εκποµπού ισχύει η γνωστή σχέση ρεύµατος-τάσης που ισχύει και για µια απλή δίοδο n επαφής. ΠΑΡΑΡΤΗΜΑ Βασικές εξισώσεις που ισχύουν στους ηµιαγωγούς. Νόµος διατήρησης φορτίου Εξίσωση συνέχειας. 0 1 J = t τ q x (Π1) n n n0 n 1 J = + n t τ q x (Π) Η εξίσωση της συνέχειας εκφράζει την αρχή διατήρησης του φορτίου και π.χ για τις οπές µέσω της εξίσωσης Π1 ουσιαστικά αναλύεται η συνολική µεταβολή φορτίου ανά µονάδα όγκου στις εξής συνιστώσες: το πλήθος των οπών ανά µονάδα όγκου που δηµιουργούνται κάθε δευτερόλεπτο λόγω θερµικής γένεσης 0 τ το πλήθος των οπών ανά µονάδα όγκου που χάνονται κάθε δευτερόλεπτο λόγω επανασύνδεσης τ και

37 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 37 τη µεταβολή της συγκέντρωσης των οπών ανά µονάδα όγκου σε κάθε δευτερόλεπτο λόγω της ύπαρξης ροής ρεύµατος πυκνότητας J P. Για τις πυκνότητες ρεύµατος στη γενικότερη περίπτωση λαµβάνονται υπόψη δύο συνιστώσες, αυτή του ρεύµατος µετατόπισης λόγω ύπαρξης ηλεκτρικού πεδίου και αυτή του ρεύµατος διάχυσης που οφείλεται στην ύπαρξη χωρικής διαφοράς συγκέντρωσης. Έτσι τόσο για τις οπές όσο και για τα ηλεκτρόνια ισχύουν αντίστοιχα (όπως παρουσιάστηκε και στο κεφάλαιο ηµιαγωγοί): = J qµ E qd x n Jn = qnµ ne+ qdn x (Π3) (Π4) όπου Ε το ηλεκτρικό πεδίο µ και µ n οι ευκινησίες οπών και ηλεκτρονίων και D και D n οι συντελεστές διάχυσης οπών και ηλεκτρονίων αντίστοιχα. Εξίσωση Poisson. Η ένταση Ε του ηλεκτρικού πεδίου σχετίζεται µε την πυκνότητα φορτίου ρ, µέσα από το νόµο του Poisson: x E V ρ q = = = + N D n N A x ε ε ( ) (Π5)

38 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 38 Γενικά σε έναν ηµιαγωγό είναι ρ=0. Σε µια n επαφή, η περιοχή φορτίων χώρου είναι µια περιοχή που δεν ισχύει η ηλεκτρική ουδετερότητα και είναι ρ 0. Το τελευταίο µέλος της ισότητας στην εξίσωση Π5 έχει τη µορφή αυτή µε την προϋπόθεση ότι όλες οι προσµίξεις είναι ιονισµένες. Γενική διαφορική εξίσωση για τη συγκέντρωση ελευθέρων φορέων. Αντικαθιστώντας τις εκφράσεις των πυκνοτήτων ρεύµατος (Π3 & Π4) στις αντίστοιχες εκφράσεις της εξίσωσης της συνέχειας (Π1 & Π) προκύπτουν αντίστοιχα: ( ) (Π6) 0 E = µ + D t τ x x n n ( ) (Π7) n 0 ne n = + µ n + Dn t τ n x x Παράδειγµα Η εξίσωση Π6 µπορεί να εφαρµοστεί για τον προσδιορισµό της κατανοµής των οπών που εγχέονται από την στην n-περιοχή (φορείς µειονότητας) µιας διόδου κατά την ορθή πόλωση αυτής µε µια DC διαφορά δυναµικού. Στην περίπτωση αυτή, έξω από την περιοχή διακένωσης και εντός της n-περιοχής µιας διόδου (ή της βάσης ενός n τρανζίστορ) το ηλεκτρικό πεδίο είναι µηδέν και η συγκέντρωση

39 Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 39 των φορέων µειονότητας είναι ανεξάρτητη του χρόνου t = 0. Κατά συνέπεια, η εξίσωση Π6 απλοποιείται και n παίρνει την ακόλουθη µορφή: 0 ( 0) 0 µ D τ x x = + d d = = n n0 n n n0 n D dx τ dx D τ d n n0 n = dx L (Π8) όπου βέβαια η µερική παράγωγος αντικαταστάθηκε από απλή λόγω έλλειψης εξάρτησης από το χρόνο, και L = Dτ το µήκος διάχυσης για τις οπές. Το µήκος διάχυσης εκφράζει την απόσταση στην οποία η συγκέντρωση των ελευθέρων φορέων που εγχύθηκαν πέφτει στο 1/e της τιµής που έχει για x=0. Η λύση αυτής της Ε (παρουσιάστηκε ήδη και στην εξίσωση 8) είναι η ακόλουθη: ( x) = + ( x) = + (0)ex( x/ L ) (Π9) n n0 n n0 n (0) = (0). όπου βέβαια n n n0

ΤΡΑΝΖΙΣΤΟΡ ΕΠΙ ΡΑΣΗΣ ΠΕ ΙΟΥ (FET)

ΤΡΑΝΖΙΣΤΟΡ ΕΠΙ ΡΑΣΗΣ ΠΕ ΙΟΥ (FET) Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 ΤΡΑΝΖΙΣΤΟΡ ΕΠΙ ΡΑΣΗΣ ΠΕ ΙΟΥ (FET) ΤΡΑΝΖΙΣΤΟΡ ΕΠΙ ΡΑΣΗΣ ΠΕ ΙΟΥ ΕΠΑΦΗΣ (JFET) Τα τρανζίστορ επίδρασης πεδίου είναι ηλεκτρονικά στοιχεία στα οποία οι φορείς του ηλεκτρικού

Διαβάστε περισσότερα

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική 1 Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική Οµοιοπολικοί δεσµοί στο πυρίτιο Κρυσταλλική δοµή Πυριτίου ιάσταση κύβου για το Si: 0.543 nm Εισαγωγή στη Μικροηλεκτρονική

Διαβάστε περισσότερα

Περιεχόμενο της άσκησης

Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις Επαφή p- Στάθμη Fermi Χαρακτηριστική ρεύματος-τάσης Ορθή και ανάστροφη πόλωση Περιεχόμενο της άσκησης Οι επαφές p- παρουσιάζουν σημαντικό ενδιαφέρον επειδή βρίσκουν εφαρμογή στη

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ ΧΑΤΖΟΠΟΥΛΟΣ ΑΡΓΥΡΗΣ ΚΟΖΑΝΗ 2005 ΕΙΣΑΓΩΓΗ ΣΥΜΒΟΛΙΣΜΟΙ Για τον καλύτερο προσδιορισµό των µεγεθών που χρησιµοποιούµε στις εξισώσεις, χρησιµοποιούµε τους παρακάτω συµβολισµούς

Διαβάστε περισσότερα

Εισαγωγή στη Μικροηλεκτρονική (ETY-482) 1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΤΑΣΗΣ-ΡΕΥΜΑΤΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΕΥΘΕΙΑ ΦΟΡΤΟΥ

Εισαγωγή στη Μικροηλεκτρονική (ETY-482) 1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΤΑΣΗΣ-ΡΕΥΜΑΤΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΕΥΘΕΙΑ ΦΟΡΤΟΥ Εισαγωγή στη Μικροηλεκτρονική (ETY-482) 1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΤΑΣΗΣ-ΡΕΥΜΑΤΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΕΥΘΕΙΑ ΦΟΡΤΟΥ Σχήµα 1. Κύκλωµα DC πόλωσης ηλεκτρονικού στοιχείου Στο ηλεκτρονικό στοιχείο του σχήµατος

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Ηµιαγωγοί VLSI T echnol ogy ogy and Computer A r A chitecture Lab Γ Τσ ιατ α ο τ ύχ ύ α χ ς ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Ηµιαγωγοί VLSI T echnol ogy ogy and Computer A r A chitecture Lab Γ Τσ ιατ α ο τ ύχ ύ α χ ς ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Ηµιαγωγοί VSI Techology ad Comuter Archtecture ab Ηµιαγωγοί Γ. Τσιατούχας ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Διάρθρωση. Φράγμα δυναμικού. Ενεργειακές ζώνες Ημιαγωγοί

Διαβάστε περισσότερα

http://www.electronics.teipir.gr /personalpages/papageorgas/ download/3/

http://www.electronics.teipir.gr /personalpages/papageorgas/ download/3/ Δίοδος επαφής 1 http://www.electronics.teipir.gr /personalpages/papageorgas/ download/3/ 2 Θέματα που θα καλυφθούν Ορθή πόλωση Forward bias Ανάστροφη πόλωση Reverse bias Κατάρρευση Breakdown Ενεργειακά

Διαβάστε περισσότερα

Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ

Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ 1. ΓΕΝΙΚΑ Τα ηλιακά στοιχεία χρησιμοποιούνται για τη μετατροπή του φωτός (που αποτελεί μία μορφή ηλεκτρομαγνητικής ενέργειας) σε ηλεκτρική ενέργεια. Κατασκευάζονται από

Διαβάστε περισσότερα

Ηλεκτρονική Φυσική (Εργαστήριο) ρ. Κ. Ι. ηµητρίου ΙΟ ΟΙ

Ηλεκτρονική Φυσική (Εργαστήριο) ρ. Κ. Ι. ηµητρίου ΙΟ ΟΙ Ηλεκτρονική Φυσική (Εργαστήριο) ρ. Κ. Ι. ηµητρίου ΙΟ ΟΙ Για να κατανοήσουµε τη λειτουργία και το ρόλο των διόδων µέσα σε ένα κύκλωµα, θα πρέπει πρώτα να µελετήσουµε τους ηµιαγωγούς, υλικά που περιέχουν

Διαβάστε περισσότερα

αγωγοί ηµιαγωγοί µονωτές Σχήµα 1

αγωγοί ηµιαγωγοί µονωτές Σχήµα 1 Η2 Μελέτη ηµιαγωγών 1. Σκοπός Στην περιοχή της επαφής δυο ηµιαγωγών τύπου p και n δηµιουργούνται ορισµένα φαινόµενα τα οποία είναι υπεύθυνα για τη συµπεριφορά της επαφής pn ή κρυσταλλοδιόδου, όπως ονοµάζεται,

Διαβάστε περισσότερα

Διπολικά τρανζίστορ (BJT)

Διπολικά τρανζίστορ (BJT) Διπολικά τρανζίστορ (BJT) Το τρανζίστορ npn Εκπομπός Σλλέκτης Βάση Σχηματική παράσταση το τρανζίστορ npn Περιοχές λειτοργίας διπολικού τρανζίστορ Περιοχή EBJ BJ Αποκοπή Ανάστροφα Ανάστροφα Εγκάρσια τομή

Διαβάστε περισσότερα

3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1. Kρυσταλλοδίοδος ή δίοδος επαφής. ίοδος: συνδυασµός ηµιαγωγών τύπου Ρ και Ν ΤΕΙ ΧΑΛΚΙ ΑΣ

3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1. Kρυσταλλοδίοδος ή δίοδος επαφής. ίοδος: συνδυασµός ηµιαγωγών τύπου Ρ και Ν ΤΕΙ ΧΑΛΚΙ ΑΣ 3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 3. ΙΟ ΟΣ ΚΑΙ ΚΥΚΛΩΜΑΤΑ ΙΟ ΩΝ Kρυσταλλοδίοδος ή δίοδος επαφής ίοδος: συνδυασµός ηµιαγωγών τύπου Ρ και Ν 3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ. διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και. 2. τρανζίστορ πυριτίου (Si ).

ΤΕΙ - ΧΑΛΚΙ ΑΣ. διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και. 2. τρανζίστορ πυριτίου (Si ). 7. Εισαγωγή στο διπολικό τρανζίστορ-ι.σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 7. TΟ ΙΠΟΛΙΚΟ ΤΡΑΝΖΙΣΤΟΡ Ανάλογα µε το υλικό διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και 2. τρανζίστορ πυριτίου

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7. Θερµοϊονικό φαινόµενο - ίοδος λυχνία

ΑΣΚΗΣΗ 7. Θερµοϊονικό φαινόµενο - ίοδος λυχνία ΑΣΚΗΣΗ 7 Θερµοϊονικό φαινόµενο - ίοδος λυχνία ΣΥΣΚΕΥΕΣ : Πηγή συνεχούς 0-50 Volts, πηγή 6V/2A, βολτόµετρο συνεχούς, αµπερόµετρο συνεχούς, βολτόµετρο, ροοστάτης. ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ Όταν η θερµοκρασία ενός

Διαβάστε περισσότερα

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6. Σχ.6.1. Απλή συνδεσµολογία καθρέπτη ρεύµατος.

ΚΕΦΑΛΑΙΟ 6. Σχ.6.1. Απλή συνδεσµολογία καθρέπτη ρεύµατος. ΚΕΦΑΛΑΙΟ 6 6.1 ΚΑΘΡΕΠΤΕΣ ΡΕΥΜΑΤΟΣ Σε ένα καθρέπτη ρεύµατος, το ρεύµα του κλάδου της εξόδου είναι πάντα ίσο µε το ρεύµα του κλάδου της εισόδου, αποτελεί δηλαδή το είδωλο του. Μία τέτοια διάταξη δείχνει

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΗΜΙΑΓΩΓΙΚΗ ΙΟ ΟΣ 1

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΗΜΙΑΓΩΓΙΚΗ ΙΟ ΟΣ 1 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΗΜΙΑΓΩΓΙΚΗ ΙΟ ΟΣ 1 1-1 Ενεργειακές Ζώνες 3 1-2 Αµιγείς και µη Αµιγείς Ηµιαγωγοί 5 ότες 6 Αποδέκτες 8 ιπλοί ότες και Αποδέκτες 10 1-3 Γένεση, Παγίδευση και Ανασύνδεση Φορέων 10 1-4 Ένωση pn

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ Ηλεκτρικό κύκλωμα ονομάζεται μια διάταξη που αποτελείται από ένα σύνολο ηλεκτρικών στοιχείων στα οποία κυκλοφορεί ηλεκτρικό ρεύμα. Τα βασικά ηλεκτρικά στοιχεία είναι οι γεννήτριες,

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις 1-4 να βρείτε τη σωστή απάντηση. Α1. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

Φωτοδίοδος. 1.Σκοπός της άσκησης. 2.Θεωρητικό μέρος

Φωτοδίοδος. 1.Σκοπός της άσκησης. 2.Θεωρητικό μέρος Φωτοδίοδος 1.Σκοπός της άσκησης Ο σκοπός της άσκησης είναι να μελετήσουμε την συμπεριφορά μιας φωτιζόμενης επαφής p-n (φωτοδίοδος) όταν αυτή είναι ορθά και ανάστροφα πολωμένη και να χαράξουμε την χαρακτηριστική

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ 4. ΕΙ ΙΚΕΣ ΙΟ ΟΙ. ίοδος zener. Χαρακτηριστική καµπύλη διόδου zener. Χαρακτηριστική καµπύλη διόδου Zener

ΤΕΙ - ΧΑΛΚΙ ΑΣ 4. ΕΙ ΙΚΕΣ ΙΟ ΟΙ. ίοδος zener. Χαρακτηριστική καµπύλη διόδου zener. Χαρακτηριστική καµπύλη διόδου Zener 4. Ειδικές ίοδοι - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 4. ΕΙ ΙΚΕΣ ΙΟ ΟΙ ίοδος zener Χαρακτηριστική καµπύλη διόδου zener Τάση Zener ( 100-400 V για µια απλή δίοδο) -V Άνοδος Ι -Ι Κάθοδος V Τάση zener V Z I Ζ 0,7V

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ 1. Σκοπός Το φωτοβολταϊκό στοιχείο είναι μία διάταξη ημιαγωγών η οποία μετατρέπει την φωτεινή ενέργεια που προσπίπτει σε αυτήν σε ηλεκτρική.. Όταν αυτή φωτιστεί με φωτόνια κατάλληλης συχνότητας

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΚΕΦΑΛΑΙΟ 3ο ΚΡΥΣΤΑΛΛΟΔΙΟΔΟΙ Επαφή ΡΝ Σε ένα κομμάτι κρύσταλλο πυριτίου προσθέτουμε θετικά ιόντα 5σθενούς στοιχείου για τη δημιουργία τμήματος τύπου Ν από τη μια μεριά, ενώ από την

Διαβάστε περισσότερα

Περιεχόμενο της άσκησης

Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις Ημιαγωγοί Θεωρία ζωνών Ενδογενής αγωγιμότητα Ζώνη σθένους Ζώνη αγωγιμότητας Προτεινόμενη βιβλιογραφία 1) Π.Βαρώτσος Κ.Αλεξόπουλος «Φυσική Στερεάς Κατάστασης» 2) C.Kittl, «Εισαγωγή

Διαβάστε περισσότερα

V CB V BE. Ορθό ρεύμα έγχυσης οπών. Συλλέκτης Collector. Εκπομπός Emitter. Ορθό ρεύμα έγχυσης ηλεκτρονίων. Ανάστροφο ρεύμα κόρου.

V CB V BE. Ορθό ρεύμα έγχυσης οπών. Συλλέκτης Collector. Εκπομπός Emitter. Ορθό ρεύμα έγχυσης ηλεκτρονίων. Ανάστροφο ρεύμα κόρου. ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ ιπολικό Τρανζίστορ Επαφής Επα φής Ι VLS Technology and omputer Archtecture Lab ιπολικό ΤρανζίστορΓ. Επαφής Τσιατούχας 1 ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Διάρθρωση

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ Υποθέστε ότι έχουμε μερικά ακίνητα φορτισμένα σώματα (σχ.). Τα σώματα αυτά δημιουργούν γύρω τους ηλεκτρικό πεδίο. Αν σε κάποιο σημείο Α του ηλεκτρικού πεδίου τοποθετήσουμε ένα

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν

ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν 1. Εισαγωγικά στοιχεία ηλεκτρονικών - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 1. ΘΕΜΕΛΙΩ ΕΙΣ ΕΝΝΟΙΕΣ ΚΑΙ ΕΙΣΑΓΩΓΙΚΑ ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Ηλεκτρικό στοιχείο: Κάθε στοιχείο που προσφέρει, αποθηκεύει και καταναλώνει

Διαβάστε περισσότερα

Επαφή / ίοδος p- n. Σχήµα 1: Επαφή / ίοδος p-n

Επαφή / ίοδος p- n. Σχήµα 1: Επαφή / ίοδος p-n Επαφή / ίοδος p- n 1. ΥΛΟΠΟΙΗΣΗ ΙΟ ΟΥ p-n ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΡΙΣΜΟΙ Επαφή p-n ή ένωση p-n δηµιουργείται στην επιφάνεια επαφής ενός ηµιαγωγού-p µε έναν ηµιαγωγό-n. ίοδος p-n ή κρυσταλλοδίοδος είναι το ηλεκτρονικό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2Η ΕΝΟΤΗΤΑ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Τι είναι ; Ηλεκτρικό ρεύμα ονομάζεται η προσανατολισμένη κίνηση των ηλεκτρονίων ή γενικότερα των φορτισμένων σωματιδίων Που μπορεί να

Διαβάστε περισσότερα

6η Εργαστηριακή Άσκηση Μέτρηση διηλεκτρικής σταθεράς σε κύκλωµα RLC

6η Εργαστηριακή Άσκηση Μέτρηση διηλεκτρικής σταθεράς σε κύκλωµα RLC 6η Εργαστηριακή Άσκηση Μέτρηση διηλεκτρικής σταθεράς σε κύκλωµα RLC Θεωρητικό µέρος Αν µεταξύ δύο αρχικά αφόρτιστων αγωγών εφαρµοστεί µία συνεχής διαφορά δυναµικού ή τάση V, τότε στις επιφάνειές τους θα

Διαβάστε περισσότερα

HY121-Ηλεκτρονικά Κυκλώματα

HY121-Ηλεκτρονικά Κυκλώματα HY121-Ηλεκτρονικά Κυκλώματα Συνοπτική παρουσίαση της δομής και λειτουργίας του MOS τρανζίστορ Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Η δομή του τρανζίστορ Όπως ξέρετε υπάρχουν

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) 2007 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α

ΗΛΕΚΤΡΟΛΟΓΙΑ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) 2007 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α ΗΛΕΚΤΡΟΛΟΓΙΑ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) 2007 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις παρακάτω προτάσεις, Α.. έως και Α.4., να γράψετε στο τετράδιό σας τον αριθµό της πρότασης

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 2.4 Παράγοντες από τους οποίους εξαρτάται η αντίσταση ενός αγωγού Λέξεις κλειδιά: ειδική αντίσταση, μικροσκοπική ερμηνεία, μεταβλητός αντισ ροοστάτης, ποτενσιόμετρο 2.4 Παράγοντες που επηρεάζουν την

Διαβάστε περισσότερα

ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ Ο ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΟΙ ΕΚ ΟΧΕΣ ΤΟΥ

ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ Ο ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΟΙ ΕΚ ΟΧΕΣ ΤΟΥ η ΠΕΡΙΠΤΩΣΗ ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ Ο ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΟΙ ΕΚ ΟΧΕΣ ΤΟΥ ΣΥΝΤΟΝΙΣΜΟΣ ΣΕ ΚΥΚΛΩΜΑ -L-C ΣΕ ΣΕΙΡΑ Κύκλωµα που αποτελείται από ωµική αντίσταση,ιδανικό πηνίο µε συντελεστή αυτεπαγωγής L

Διαβάστε περισσότερα

οµές MOSFET (Metal Oxide Semiconductor Field Effect Transistor).

οµές MOSFET (Metal Oxide Semiconductor Field Effect Transistor). Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 οµές MOSFET (Metal Oxide Semiconductor Field Effect Transistor). Τα τρανζίστορ MOSFET είναι διατάξεις ελεγχόµενες από τάση οι οποίες δεν απαιτούν µεγάλα ρεύµατα

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΙΚΑ ΣΤΟΙΧΕΙΑ ΚΑΙ ΚΥΚΛΩΜΑΤΑ Ένα ηλεκτρικό κύκλωμα αποτελείται από ένα σύνολο

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

U I = U I = Q D 1 C. m L

U I = U I = Q D 1 C. m L Από την αντιστοιχία της µάζας που εκτελεί γ.α.τ. µε περίοδο Τ και της εκφόρτισης πυκνωτή µέσω πηνίου L, µπορούµε να ανακεφαλαιώσουµε τις αντιστοιχίες των µεγεθών τους. Έχουµε: ΜΑΖΑ ΠΟΥ ΕΚΤΕΛΕΙ γ.α.τ..

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ 1ο ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Η αντίσταση ενός µεταλλικού αγωγού που

Διαβάστε περισσότερα

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ΘΕΜΑ 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το

Διαβάστε περισσότερα

τα μεταλλικά Μια στρώμα. Για την έννοια πως αν και νανοσωματίδια (με εξάχνωση Al). πρέπει κανείς να τοποθετήσει τα μερικές δεκάδες nm πράγμα

τα μεταλλικά Μια στρώμα. Για την έννοια πως αν και νανοσωματίδια (με εξάχνωση Al). πρέπει κανείς να τοποθετήσει τα μερικές δεκάδες nm πράγμα Φραγή Coulomb σε διατάξεις που περιέχουν νανοσωματίδια. Ι. Φραγή Coulomb σε διατάξεις που περιέχουν μεταλλικά νανοσωματίδια 1. Περιγραφή των διατάξεων Μια διάταξη που περιέχει νανοσωματίδια μπορεί να αναπτυχθεί

Διαβάστε περισσότερα

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει:

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο 1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 10 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: (α)

Διαβάστε περισσότερα

ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ

ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΚΕΦΑΛΑΙΟ 3 3.1 ΕΙΣΑΓΩΓΗ Μια ηλεκτρική µηχανή συνεχούς ρεύµατος χρησιµοποιείται ως γεννήτρια, όταν ο άξονάς της στρέφεται από µια κινητήρια µηχανή (prim movr). Η κινητήρια µηχανή

Διαβάστε περισσότερα

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας.

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ο πυκνωτής Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. Η απλούστερη μορφή πυκνωτή είναι ο επίπεδος πυκνωτής, ο οποίος

Διαβάστε περισσότερα

Σεµινάριο Αυτοµάτου Ελέγχου

Σεµινάριο Αυτοµάτου Ελέγχου ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτοµατισµού Σεµινάριο Αυτοµάτου Ελέγχου Ειδικά θέµατα Ανάλυσης συστηµάτων Σύνθεσης συστηµάτων ελέγχου Μελέτης στοχαστικών συστηµάτων. Καλλιγερόπουλος Σεµινάριο Αυτοµάτου Ελέγχου Ανάλυση

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ (DC) (ΚΕΦ 26)

ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ (DC) (ΚΕΦ 26) ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ (DC) (ΚΕΦ 26) ΒΑΣΗ για την ΑΝΑΛΥΣΗ: R = V/I, V = R I, I = V/R (Νόμος Ohm) ΙΔΑΝΙΚΟ ΚΥΚΛΩΜΑ: Αντίσταση συρμάτων και Aμπερομέτρου (A) =, ενώ του Βολτομέτρου (V) =. Εάν η εσωτερική

Διαβάστε περισσότερα

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις)

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ΘΕΜΑ 1 ο Στις παρακάτω ερωτήσεις 1 4 επιλέξτε τη σωστή πρόταση 1. Ένα σώμα μάζας

Διαβάστε περισσότερα

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Επικ. καθηγητής

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Επικ. καθηγητής ΦΩΤΟΒΟΛΤΑΪΚΑ Γ. Λευθεριώτης Επικ. καθηγητής Αγωγοί- μονωτές- ημιαγωγοί Ενεργειακά διαγράμματα ημιαγωγού Ηλεκτρόνια (ΖΑ) Οπές (ΖΣ) Ενεργειακό χάσμα και απορρόφηση hc 1,24 Eg h Eg ev m max max Χρειάζονται

Διαβάστε περισσότερα

Θέµατα που θα καλυφθούν

Θέµατα που θα καλυφθούν Ηµιαγωγοί Semiconductors 1 Θέµατα που θα καλυφθούν Αγωγοί Conductors Ηµιαγωγοί Semiconductors Κρύσταλλοι πυριτίου Silicon crystals Ενδογενείς Ηµιαγωγοί Intrinsic semiconductors ύο τύποι φορέων για το ρεύµασεηµιαγωγούς

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση

ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ Θεωρητικη αναλυση μεταλλα Έχουν κοινές φυσικές ιδιότητες που αποδεικνύεται πως είναι αλληλένδετες μεταξύ τους: Υψηλή φυσική αντοχή Υψηλή πυκνότητα Υψηλή ηλεκτρική και θερμική

Διαβάστε περισσότερα

Φαινόμενα μεταφοράς φορέων

Φαινόμενα μεταφοράς φορέων Φαινόμενα μεταφοράς φορέων 1. Ολίσθηση φορέων (ρεύμα αγωγιμότητας). Διάχυση φορέων (ρεύμα διάχυσης) 3. Έγχυση φορέων 4. Δημιουργία-επανασύνδεση φορέων 1 Φαινόμενα Μεταφοράς και Σκέδασης Φορέων στους Ημιαγωγούς

Διαβάστε περισσότερα

l R= ρ Σε ηλεκτρικό αγωγό µήκους l και διατοµής A η αντίσταση δίνεται από την εξίσωση: (1)

l R= ρ Σε ηλεκτρικό αγωγό µήκους l και διατοµής A η αντίσταση δίνεται από την εξίσωση: (1) ΑΓΩΓΙΜΟΤΗΤΑ ΗΕΚΤΡΟΥΤΩΝ Θέµα ασκήσεως Μελέτη της µεταβολής της αγωγιµότητας ισχυρού και ασθενούς ηλεκτρολύτη µε την συγκέντρωση, προσδιορισµός της µοριακής αγωγιµότητας σε άπειρη αραίωση ισχυρού οξέος,

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α I A. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα

Διαβάστε περισσότερα

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής 3 Ενισχυτές Μετρήσεων 3.1 Ο διαφορικός Ενισχυτής Πολλές φορές ένας ενισχυτής σχεδιάζεται ώστε να αποκρίνεται στη διαφορά µεταξύ δύο σηµάτων εισόδου. Ένας τέτοιος ενισχυτής ονοµάζεται ενισχυτής διαφοράς

Διαβάστε περισσότερα

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος 2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος Όπως είναι γνωστό από την καθημερινή εμπειρία τα περισσότερα σώματα που χρησιμοποιούνται στις ηλεκτρικές ηλεκτρονικές

Διαβάστε περισσότερα

ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ;

ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ; ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ; Ηλεκτρονικοί Υπολογιστές Κινητά τηλέφωνα Τηλεπικοινωνίες Δίκτυα Ο κόσμος της Ηλεκτρονικής Ιατρική Ενέργεια Βιομηχανία Διασκέδαση ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΗΛΕΚΤΡΟΝΙΚΗ Τι περιέχουν οι ηλεκτρονικές

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Γ ΓΥΜΝΑΣΙΟΥ - ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΑΣΚΗΣΕΙΣ Γ ΓΥΜΝΑΣΙΟΥ - ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΑΣΚΗΣΕΙΣ Γ ΓΥΜΝΑΣΙΟΥ - ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ 1. Ένα ραδιόφωνο αυτοκινήτου διαρρέεται από ηλεκτρικό ρεύµα έντασης I = 0,3 Α. Να υπολογίσετε: α. το φορτίο που διέρχεται µέσα από το ραδιόφωνο του αυτοκινήτου σε

Διαβάστε περισσότερα

Μαγνητικό Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ

Μαγνητικό Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Μαγνητικό Πεδίο Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Προτεινόμενη βιβλιογραφία: SERWAY, Physics for scientists and engineers YOUNG H.D., University

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ. 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες... 7

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ. 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες... 7 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 Φυσικά µεγέθη... 1 1.2 ιανυσµατική άλγεβρα... 2 1.3 Μετατροπές συντεταγµένων... 6 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες...

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Α) Η επιφάνεια Gauss έχει ακτίνα r μεγαλύτερη ή ίση της ακτίνας του κελύφους, r α.

Α) Η επιφάνεια Gauss έχει ακτίνα r μεγαλύτερη ή ίση της ακτίνας του κελύφους, r α. 1. Ένα σφαιρικό κέλυφος που θεωρούμε ότι έχει αμελητέο πάχος έχει ακτίνα α και φέρει φορτίο Q, ομοιόμορφα κατανεμημένο στην επιφάνειά του. Βρείτε την ένταση του ηλεκτρικού πεδίου στο εξωτερικό και στο

Διαβάστε περισσότερα

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014 Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία Ιωάννης Γκιάλας 7 Μαρτίου 14 Άσκηση: Ηλεκτρικό πεδίο διακριτών φορτίων Δύο ίσα θετικά φορτία q βρίσκονται σε απόσταση α μεταξύ τους. Να βρεθεί η ακτίνα του κύκλου,

Διαβάστε περισσότερα

ΤΕΙ ΑΘΗΝΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER

ΤΕΙ ΑΘΗΝΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΕΙ ΑΘΗΝΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΑΣΚΗΣΗ ΝΟ6 ΜΕΛΕΤΗ ΦΩΤΟΗΛΕΚΤΡΙΚΟΥ ΦΑΙΝΟΜΕ- ΝΟΥ ΜΕ ΧΡΗΣΗ ΦΩΤΟΕΚΠΕΜΠΟΥΣΩΝ ΙΟ ΩΝ (LEDS) Γ. Μήτσου Α. Θεωρία 1. Εισαγωγή

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23)

ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23) ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23) Υπενθύμιση/Εισαγωγή: Λέμε ότι ένα πεδίο δυνάμεων είναι συντηρητικό (ή διατηρητικό) όταν το έργο που παράγεται από το πεδίο δυνάμεων κατά τη μετατόπιση ενός σώματος από μία

Διαβάστε περισσότερα

Κυκλώµατα µε αντίσταση και πυκνωτή ή αντίσταση και πηνίο σε σειρά και πηγή συνεχούς τάσης

Κυκλώµατα µε αντίσταση και πυκνωτή ή αντίσταση και πηνίο σε σειρά και πηγή συνεχούς τάσης Κυκλώµατα µε αντίσταση και πυκνωτή ή αντίσταση και πηνίο σε σειρά και πηγή συνεχούς τάσης Το κύριο χαρακτηριστικό των κυκλωµάτων αυτών είναι ότι ο χρόνος στον οποίο η τάση, ή η ένταση παίρνει ορισµένη

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΜΑΪΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΥΚΛΩΜΑΤΑ AC-DC ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ Βασικά στοιχεία κυκλωμάτων Ένα ηλεκτρονικό κύκλωμα αποτελείται από: Πηγή ενέργειας (τάσης ή ρεύματος) Αγωγούς Μονωτές

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΤΡΗΣΕΩΝ ΦΥΛΛΟ ΕΡΓΟΥ ΑΣΚΗΣΗ 1 ΜΕΤΡΗΣΕΙΣ ΜΕ ΠΟΛΥΜΕΤΡΟ (ΣΥΜΠΛΗΡΩΜΑΤΙΚΗ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ

ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΤΡΗΣΕΩΝ ΦΥΛΛΟ ΕΡΓΟΥ ΑΣΚΗΣΗ 1 ΜΕΤΡΗΣΕΙΣ ΜΕ ΠΟΛΥΜΕΤΡΟ (ΣΥΜΠΛΗΡΩΜΑΤΙΚΗ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΤΡΗΣΕΩΝ ΗΜΕΡΑ ΩΡΑ.. ΟΜΑΔΑ ΚΑΘΗΓΗΤΗΣ. ΦΥΛΛΟ ΕΡΓΟΥ ΑΣΚΗΣΗ 1 ΜΕΤΡΗΣΕΙΣ ΜΕ ΠΟΛΥΜΕΤΡΟ (ΣΥΜΠΛΗΡΩΜΑΤΙΚΗ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ.. Μέτρηση αντιστάσεων με ωμόμετρο 1. Ρυθμίζουμε το πολύμετρο

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Ηλεκτρονικής

ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Ηλεκτρονικής ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Ηλεκτρονικής Ηλεκτρονική Ι Εαρινό εξάµηνο 2005 Πρακτική ανάλυση ενισχυτή κοινού εκποµπού Τransstors βασικές αρχές Τι κάνουν τα transstors Πώς αναλύoνται τα κυκλώµατα των transstors Μικρά

Διαβάστε περισσότερα

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά µεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη µονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό.

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά µεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη µονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 5 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα

Διαβάστε περισσότερα

ΤΡΑΝΖΙΣΤΟΡΣ 1. ΟΜΗ ΚΑΙ ΑΡΧΗ ΛΕΙΤΟΥΡΓΙΑΣ ΤΟΥ ΙΠΟΛΙΚΟΥ ΤΡΑΝΖΙΣΤΟΡ

ΤΡΑΝΖΙΣΤΟΡΣ 1. ΟΜΗ ΚΑΙ ΑΡΧΗ ΛΕΙΤΟΥΡΓΙΑΣ ΤΟΥ ΙΠΟΛΙΚΟΥ ΤΡΑΝΖΙΣΤΟΡ ΤΡΑΝΖΙΣΤΟΡΣ 1. ΟΜΗ ΚΑΙ ΑΡΧΗ ΛΕΙΤΟΥΡΓΙΑΣ ΤΟΥ ΙΠΟΛΙΚΟΥ ΤΡΑΝΖΙΣΤΟΡ ΟΜΗ Το διπολικό τρανζίστορ (bipolar junction transistor-bjt) είναι ένας κρύσταλλος µε τρεις περιοχές εµπλουτισµένες µε προσµίξεις, δηλ. αποτελείται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑΤΑ ΚΑΙ ΛΥΕΙ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΕΩΝ 004 ΦΥΙΚΗ ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ ΘΕΜΑ ο Για τις ερωτήσεις -4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΙΣΟΡΡΟΠΙΑ ΔΥΝΑΜΕΩΝ ΣΕ ΕΝΑΝ ΑΠΕΙΡΟΣΤΟ ΟΓΚΟ ΡΕΥΣΤΟΥ Στο κεφάλαιο αυτό θα εξετάσουμε την ισορροπία των δυνάμεων οι οποίες ασκούνται σε ένα τυχόν σωματίδιο ρευστού.

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης ύναµη σε ρευµατοφόρους αγωγούς (β) Ο αγωγός δεν διαρρέεται από ρεύμα, οπότε δεν ασκείται δύναμη σε αυτόν. Έτσι παραμένει κατακόρυφος. (γ) Το µαγνητικό

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. 1-3 Κέρδος Τάσης του ιαφορικού Ενισχυτή µε FET s 8

ΠΕΡΙΕΧΟΜΕΝΑ. 1-3 Κέρδος Τάσης του ιαφορικού Ενισχυτή µε FET s 8 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΙΑΦΟΡΙΚΟΣ ΕΝΙΣΧΥΤΗΣ 1 1-1 Κέρδος Τάσης του ιαφορικού Ενισχυτή µε BJT s 1 και ιπλή Έξοδο Ανάλυση µε το Υβριδικό Ισοδύναµο του Τρανζίστορ 2 Ανάλυση µε βάση τις Ενισχύσεις των Βαθµίδων CE- 4

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

ΘΕΜΑ : ΗΛΕΚΤΡΟΝΙΚΑ ΔΙΑΡΚΕΙΑ: 2 περιόδους

ΘΕΜΑ : ΗΛΕΚΤΡΟΝΙΚΑ ΔΙΑΡΚΕΙΑ: 2 περιόδους ΘΕΜΑ : ΗΛΕΚΤΡΟΝΙΚΑ ΔΙΑΡΚΕΙΑ: 2 περιόδους 11/10/2011 08:28 καθ. Τεχνολογίας Τι είναι Ηλεκτρισμός Ηλεκτρισμός είναι η κατευθυνόμενη κίνηση των ηλεκτρονίων μέσα σ ένα σώμα το οποίο χαρακτηρίζεται σαν αγωγός

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ΚΑΙ ΑΠΩΛΕΙΕΣ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ΚΑΙ ΑΠΩΛΕΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ΚΑΙ ΑΠΩΛΕΙΕΣ Υ πάρχει µεγάλη διαφορά σε µια ηλεκτρική εγκατάσταση εναλλασσόµενου (AC) ρεύµατος µεταξύ των αντιστάσεων στο συνεχές ρεύµα (DC) των διαφόρων κυκλωµάτων ηλεκτρικών στοιχείων

Διαβάστε περισσότερα

Ηλεκτρονικά Ισχύος. ίοδος

Ηλεκτρονικά Ισχύος. ίοδος Ηλεκτρονικά Ισχύος Πρόκειται για στοιχεία κατασκευασμένα από υλικά με συγκεκριμένες μη γραμμικές ηλεκτρικές ιδιότητες (ημιαγωγά στοιχεία) Τα κυριότερα από τα στοιχεία αυτά είναι: Η δίοδος Το thyristor

Διαβάστε περισσότερα

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m ΑΡΧΗ 1 ΗΣ ΣΕΛΙ ΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α : Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής αρκεί να γράψετε

Διαβάστε περισσότερα

( ) Στοιχεία που αποθηκεύουν ενέργεια Ψ = N Φ. διαφορικές εξισώσεις. Πηνίο. μαγνητικό πεδίο. του πηνίου (κάθε. ένα πηνίο Ν σπειρών:

( ) Στοιχεία που αποθηκεύουν ενέργεια Ψ = N Φ. διαφορικές εξισώσεις. Πηνίο. μαγνητικό πεδίο. του πηνίου (κάθε. ένα πηνίο Ν σπειρών: Στοιχεία που αποθηκεύουν ενέργεια Λέγονται επίσης και δυναμικά στοιχεία Οι v- χαρακτηριστικές τους δεν είναι αλγεβρικές, αλλά ολοκληρο- διαφορικές εξισώσεις. Πηνίο: Ουσιαστικά πρόκειται για έναν περιεστραμμένο

Διαβάστε περισσότερα

Το μηδέν και το τετράγωνο.

Το μηδέν και το τετράγωνο. Το μηδέν και το τετράγωνο. Στο κύκλωµα του σχήµατος, ο διακόπτης (δ ) είναι κλειστός ενώ ο (δ ) ανοικτός. Θεωρούµε γνωστές τις τιµές της ΗΕ της πηγής Ε, των αντιστάσεων,, του συντελεστή αυτεπαγωγής του

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ 12. ΤΡΑΝΖΙΣΤΟΡ ΕΠΙ ΡΑΣΗΣ ΠΕ ΙΟΥ (FET) Tρανζίστορ στο οποίο το ρεύµα εξόδου ελέγχεται όχι από το ρεύµα αλλά από την τάση εισόδου.

ΤΕΙ - ΧΑΛΚΙ ΑΣ 12. ΤΡΑΝΖΙΣΤΟΡ ΕΠΙ ΡΑΣΗΣ ΠΕ ΙΟΥ (FET) Tρανζίστορ στο οποίο το ρεύµα εξόδου ελέγχεται όχι από το ρεύµα αλλά από την τάση εισόδου. 12. ΤΟ ΤΡΑΝΖΙΣΤΟΡ ΕΠΙ ΡΑΣΗΣ ΠΕ ΙΟΥ (FET)-Ι.Σ. ΧΑΛΚΙΑ ΗΣ ιαφάνεια 1 12. ΤΡΑΝΖΙΣΤΟΡ ΕΠΙ ΡΑΣΗΣ ΠΕ ΙΟΥ (FET) Tρανζίστορ στο οποίο το ρεύµα εξόδου ελέγχεται όχι από το ρεύµα αλλά από την τάση εισόδου. Αρχή

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα

Διαβάστε περισσότερα

2. Ο βαθµός απόδοσης µιας ηλεκτρικής µηχανής που λειτουργεί, είναι: α. η<1 β. η>1 γ. η=0 δ. 1<η<2

2. Ο βαθµός απόδοσης µιας ηλεκτρικής µηχανής που λειτουργεί, είναι: α. η<1 β. η>1 γ. η=0 δ. 1<η<2 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 13 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : 2010-2011 Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 13.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : 2010-2011 Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 13. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 00-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 3. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 00-0 opyrigh ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 00. Με επιφύλαξη

Διαβάστε περισσότερα

ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ 1 ΠΥΚΝΩΤΗ :

ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ 1 ΠΥΚΝΩΤΗ : ΤΕΙ ΧΑΛΚΙΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Α/Α ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ : ΑΣΚΗΣΗ 5 η Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΧΩΡΗΤΙΚΟΤΗΤΑΣ ΜΕ ΑΜΕΣΕΣ ΚΑΙ ΕΜΜΕΣΕΣ ΜΕΘΟΔΟΥΣ Θεωρητική Ανάλυση Πυκνωτής

Διαβάστε περισσότερα

ΣΥΓΧΡΟΝΕΣ ΓΕΝΝΗΤΡΙΕΣ

ΣΥΓΧΡΟΝΕΣ ΓΕΝΝΗΤΡΙΕΣ ΣΥΓΧΡΟΝΕΣ ΓΕΝΝΗΤΡΙΕΣ Για τη λειτουργία των σύγχρονων γεννητριών (που ονομάζονται και εναλλακτήρες) απαραίτητη προϋπόθεση είναι η τροοδοσία του τυλίγματος του δρομέα με συνεχές ρεύμα Καθώς περιστρέεται

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια 1 ΘΕΜΑ 1 ο Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ 1. οχείο σταθερού όγκου περιέχει ορισµένη ποσότητα ιδανικού αερίου. Αν θερµάνουµε το αέριο µέχρι να τετραπλασιαστεί η απόλυτη θερµοκρασία

Διαβάστε περισσότερα

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing).

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Κεφάλαιο 4 Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Οι ενδείξεις (τάσεις εξόδου) των θερμοζευγών τύπου Κ είναι δύσκολο να

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Σχ.7.1. Σύµβολο κοινού τελεστικού ενισχυτή και ισοδύναµο κύκλωµα.

ΚΕΦΑΛΑΙΟ 7. Σχ.7.1. Σύµβολο κοινού τελεστικού ενισχυτή και ισοδύναµο κύκλωµα. ΚΕΦΑΛΑΙΟ 7 7. ΤΕΛΕΣΤΙΚΟΙ ΕΝΙΣΧΥΤΕΣ Ο τελεστικός ενισχυτής εφευρέθηκε κατά τη διάρκεια του δεύτερου παγκοσµίου πολέµου και. χρησιµοποιήθηκε αρχικά στα συστήµατα σκόπευσης των αντιαεροπορικών πυροβόλων για

Διαβάστε περισσότερα

Κεφάλαιο Η3. Ηλεκτρικό δυναµικό

Κεφάλαιο Η3. Ηλεκτρικό δυναµικό Κεφάλαιο Η3 Ηλεκτρικό δυναµικό Ηλεκτρικό δυναµικό Σε προηγούµενα κεφάλαια συνδέσαµε τη µελέτη του ηλεκτροµαγνητισµού µε τις προγενέστερες γνώσεις µας σχετικά µε τις δυνάµεις. Σε αυτό το κεφάλαιο, θα συνδέσουµε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β' ΛΥΚΕΙΟΥ 2004

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β' ΛΥΚΕΙΟΥ 2004 ΦΥΙΚΗ ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Β' ΛΥΚΕΙΟΥ 004 ΕΚΦΩΝΗΕΙ ΘΕΜΑ ο Για τις ερωτήσεις - 4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Μια

Διαβάστε περισσότερα

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΒΙΒΛΙΟΓΡΑΦΙΑ H.D. H.D. Young Πανεπιστημιακή Φυσική Εκδόσεις Παπαζήση Alonso Alonso / Finn Θεμελιώδης Πανεπιστημιακή Φυσική Α. Φίλιππας, Λ. Ρεσβάνης (Μετ.) R. A. Seway Φυσική

Διαβάστε περισσότερα