Σύγχρονος Αυτόματος Έλεγχος. (Π3) Η «ιδιότητα του τριγώνου»: για οποιαδήποτε διανύσματα ισχύει x, y ότι

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σύγχρονος Αυτόματος Έλεγχος. (Π3) Η «ιδιότητα του τριγώνου»: για οποιαδήποτε διανύσματα ισχύει x, y ότι"

Transcript

1 Σύγχρονος Αυτόματος Έλεγχος 1.Ορισμοί και Χρήσιμες Ιδιότητες (Π1) λ(a) είναι το διάνυσμα ιδιοτιμών του πίνακα Α (Π) x = x 1 + x xn (Π3) Η «ιδιότητα του τριγώνου»: για οποιαδήποτε διανύσματα ισχύει x, y ότι 1 1 x y x + y (Π4) Ένας τετραγωνικός πίνακας Α ονομάζεται θετικά ορισμένος (συμβολικά Α>0) όταν ισχύει η παρακάτω συνθήκη (Π5) Ένας τετραγωνικός πίνακας Α ονομάζεται θετικά ημι-ορισμένος (συμβολικά Α 0) όταν ισχύει η παρακάτω συνθήκη (Π6) Ιδιότητες Θετικά Ορισμένων και Ημι-Ορισμένων Πινάκων: (Π6.1) Αν ο Α είναι θετικά ορισμένος, τότε όλες οι ιδιοτιμές του είναι πραγματικές και θετικές. (Π6.) Αν ο Α είναι θετικά ορισμένος, τότε είναι αντιστρέψιμος και A 1 > 0. (Π6.3) Αν ο Α είναι θετικά ημι-ορισμένος, τότε όλες οι ιδιοτιμές του είναι πραγματικές και μη-αρνητικές. (Π6.4) Αν ο Α είναι θετικά ορισμένος ή ημι-ορισμένος ισχύει ότι λ ( A) x x Ax λ ( A) x, x, όπου λ A), λ ( A) είναι η ελάχιστη min ( ) A > 0 x Ax > 0, x 0 A 0 x Ax 0, x 0 max min ( max και η μέγιστη αντίστοιχα ιδιοτιμή του πίνακα Α [Τι πρόσημο έχουν οι ιδιοτιμές λ A), λ ( A) και γιατί;]. min ( max (Π6.5) Αν ο Α είναι θετικά ορισμένος τότε λ( A ) = λ( A) (Π7) Για δυό πίνακες A, B έχουμε ότι ( AB ) = B A. 1

2 .Ευστάθεια και Ευρωστία Ελεγκτών Θεώρημα Lyapunov Έστω το σύστημα x = f ( x, w), x R n, w R m όπου x, w είναι το διάνυσμα κατάστασης και εξωγενών διαταραχών, αντίστοιχα. Το διάνυσμα εξωγενών διαταραχών μπορεί να είναι χρονικά μεταβαλλόμενο αλλά πεπερασμένο, δηλαδή w max = max w( t) <. t Αν υπάρχει μια συνάρτηση (συνάρτηση Lyapunov) ικανοποιεί τις παρακάτω ιδιότητες: 1. V ( x) > 0 x 0, V (0) = 0 x = 0. V ( x) x V ( x) 3. V ( x) = f ( x, w) < 0, x ℵ, w, όπου το ℵ x n του R το οποίο εμπεριέχει το σημείο x = 0. V ( x), V : R n R, η οποία είναι ένα κλειστό υποσύνολο Τότε, ισχύει ότι για κάθε αρχική τιμή x (0), το διάνυσμα κατάστασης x (t ) θα εισέλθει στο υποσύνολο ℵ και θα παραμείνει εκεί για πάντα. Ευρωστία Ελεγκτών σε Γραμμικά Χρονικά Αμετάβλητα Συστήματα Βαθμωτό Σύστημα Έστω το βαθμωτό σύστημα x = ( a + a) x + ( b + b) u + w όπου όλες οι ποσότητες στην παραπάνω εξίσωση είναι ΒΑΘΜΩΤΑ μεγέθη. Οι παράμετροι a, b αντιστοιχούν στις ονομαστικές (γνωστές) παραμέτρους του συστήματος, οι παράμετροι a, b αντιστοιχούν στις (άγνωστες αλλά σταθερές) παραμετρικές αβεβαιότητες του συστήματος, ενώ το (άγνωστο και χρονικά μεταβαλλόμενο) μέγεθος w αντιστοιχεί στις εξωγενείς διαταραχές. Το ερώτημα που τίθεται είναι αν σχεδιασθεί ένας ελεγκτής για το «ονομαστικό» σύστημα x = ax + bu (1)

3 κατά πόσο αυτός ο ελεγκτής θα είναι αποτελεσματικός για το «πραγματικό» σύστημα (1). Έστω λοιπόν ο ελεγκτής u = Kx ο οποίος, για να είναι αποτελεσματικός για το «ονομαστικό» σύστημα, θα πρέπει το κέρδος του Κ να ικανοποιεί την παρακάτω σχέση [γιατί;] ( a bk) < 0 Η ανάλυση της αποτελεσματικότητας του παραπάνω ελεγκτή για το πραγματικό σύστημα θα γίνει μέσω της παρακάτω συνάρτησης Lyapunov [γιατί η παρακάτω συνάρτηση είναι συνάρτηση Lyapunov;] Έχουμε ότι 1 V = x ( a + a bk bk ) x wx V = + Κάνοντας χρήση της ιδιότητας (Π3), έχουμε ότι V ( a + a bk bk ) 1 Φx + w max 1 x + x 1 + w 1 = a + a + bk bk x 1 + w 1 όπου Φ = a + a + bk bk. Για να ισχύει το Εύρωστο Θεώρημα Lyapunov, θα πρέπει Φ < 0. Σε αυτήν την περίπτωση (δηλαδή αν Φ < 0) έχουμε ότι (σύμφωνα με το Εύρωστο Θεώρημα Lyapunov) η κατάσταση x θα εισέλθει και θα παραμείνει για wmax πάντα στο σύνολο ℵ = x : x. Φ [γιατί;] 3

4 Ευρωστία Ελεγκτών σε Γραμμικά Χρονικά Αμετάβλητα Συστήματα Πολυδιάστατο Σύστημα Τώρα εξετάζουμε την επέκταση των παραπάνω σε μη-βαθμωτά συστήματα. Παρόμοια με την παράγραφο υποθέτουμε ότι το πραγματικό σύστημα είναι το παρακάτω: x n m = ( A + A) x + ( B + B) u + w, x R, u R, Όπως και στην παράγραφο 1.3.1, οι πίνακες (γνωστές) παραμέτρους του συστήματος, οι πίνακες w R n () A, B αντιστοιχούν στις ονομαστικές A, B αντιστοιχούν στις (άγνωστες αλλά σταθερές) παραμετρικές αβεβαιότητες του συστήματος, ενώ το (άγνωστο και χρονικά μεταβαλλόμενο) διάνυσμα w αντιστοιχεί στις εξωγενείς διαταραχές. Το ερώτημα που τίθεται και εδώ είναι αν σχεδιασθεί ένας ελεγκτής για το «ονομαστικό» σύστημα x = Ax + Bu κατά πόσο αυτός ο ελεγκτής θα είναι αποτελεσματικός για το «πραγματικό» σύστημα (). Έστω λοιπόν ο ελεγκτής u = Kx ο οποίος, για να είναι αποτελεσματικός για το «ονομαστικό» σύστημα, θα πρέπει ο πίνακας κέρδους να ικανοποιεί την παρακάτω σχέση [γιατί;] ( A BK) P + ( A BK) P = Q για κάποιους θετικά ορισμένους πίνακες P και Q. Συνέπεια της παραπάνω σχέσης είναι ότι αν ορίσουμε σαν συνάρτηση Lyapunov την συνάρτηση [γιατί η παρακάτω συνάρτηση είναι συνάρτηση Lyapunov;] V = x τότε (για την περίπτωση του ονομαστικού συστήματος) έχουμε ότι [γιατί;] V = x Τώρα, για την περίπτωση του πραγματικού συστήματος έχουμε ότι Px Qx 4

5 V = = = = = (( A + A) x ( B + B) Kx + w) Px + x P( ( A + A) x ( B + B) Kx + w) (( A + A) x ( B + B) Kx) Px + x P( ( A + A) x ( B + B) Kx) + w Px (( A + A ) x) Px + x P( ( A + A ) x) + w Px + x {( A + A ) P + P( A + A )} x + w Px + x x {( A + A ) P + P( A + A )} x + w Px + x x {( A + A ) P + P( A + A )} x+ w + P x ( A + A ) P + P( A + A ) + P I x+ w { } = x Φx+ w + x x Pw Pw x Pw Pw ( Π7) ( Π3) όπου Φ = {( A + A ) P + P( A + A ) + P I} Για να ισχύει το Εύρωστο Θεώρημα Lyapunov, θα πρέπει Φ < 0 (δηλαδή ο πίνακας Φ θα πρέπει να είναι θετικά ορισμένος). Σε αυτήν την περίπτωση (δηλαδή αν Φ < 0) έχουμε ότι (σύμφωνα με το Εύρωστο Θεώρημα Lyapunov) η κατάσταση x θα εισέλθει και θα παραμείνει για πάντα στο σύνολο ℵ = x : x w λ max min. ( Φ) [γιατί;] 5

6 3.Γραμμικός Τετραγωνικός Έλεγχος (ΓΤΕ) Για το σύστημα Ο έλεγχος που ελαχιστοποιεί το κριτήριο x = Ax + Bu J = (x (s)qx(s) + u (s)ru(s))ds 0 όπου Q, R είναι θετικά ορισμένοι πίνακες, δίνεται από τη σχέση u = Kx, K = R 1 B P όπου ο πίνακας P είναι ένας θετικά ορισμένος πίνακας, που υπολογίζεται ως η λύση της παρακάτω αλγεβρικής εξίσωσης Riccati: Α Τ P + PA PBR 1 B P = Q Η παραπάνω εξίσωση μπορεί να λυθεί κάνοντας χρήση της συνάρτησης care της matlab. 4.Παρατηρητής Θεωρείστε το Γραμμικό Χρονικά Αμετάβλητο (ΓΑΧ) σύστημα n m x = Ax + Bu, x R, u R k y = Cx, y R Παρατηρήστε ότι στο παραπάνω σύστημα, το διάνυσμα κατάστασης δεν είναι διαθέσιμο. Ένας παρατηρητής για το παραπάνω σύστημα είναι ο παρακάτω: xˆ = ( A + L C) xˆ + Bu + Ly 1 L = Φ CX 1 Ψ = XA A X + XC Φ CX όπου οι πίνακες Φ και Ψ είναι θετικά ορισμένοι πίνακες σχεδιασμού. Η επίλυση της τελευταίας εξίσωσης (αλγεβρική εξίσωση Riccati) μπορεί να επιλυθεί κάνοντας χρήση της συνάρτησης care της matlab. Στην περίπτωση που το διάνυσμα κατάστασης δεν είναι διαθέσιμο, ο ελεγκτής θα πάρει τη μορφή (Ε) όπου όλες οι ποσότητες έχουν ορισθεί παραπάνω. 6

7 5. Ανάλυση Ευστάθειας και Ευρωστίας ΓΤΕ και Παρατηρητή Για την ανάλυση ευστάθειας και ευρωστίας ελεγκτή που σχεδιάστηκε βάσει της θεωρίας ΓΤΕ, χρησιμοποιούμε την συνάρτηση Lyapunov V = x Px. Για την ανάλυση ευστάθειας και ευρωστίας παρατηρητή που σχεδιάστηκε βάσει της θεωρίας ΓΤΕ, χρησιμοποιούμε την συνάρτηση Lyapunov W = (x x ) X(x x ). Και στις δύο περιπτώσεις, για την ανάλυση θα χρειασθεί ότι οι πίνακες PBR 1 B P και XΧC Φ 1 C είναι θετικά ημιορισμένοι. Επίσης θα χρειαστεί το παρακάτω αποτέλεσμα: Ψ = XA A X + XC Φ CX Ψ = A X XA + C Φ 1 1 CXX Στην περίπτωση του ελεγκτή (Ε), για την ανάλυση ευστάθειας και ευρωστίας χρησιμοποιούμε την συνάρτηση Lyapunov V = x Px + (x x ) X(x x ). 7

8 6. Έλεγχος σε σταθερό σημείο (set point regulation) Στην περίπτωση που επιθυμούμε ο έλεγχος αντί να οδηγήσει το διάνυσμα κατάστασης στο 0, να το οδηγήσει σε ένα σταθερό σημείο x*, μπορούμε να εφαρμόσουμε Γραμμικό Τετραγωνικό Έλεγχο με τις παρακάτω αλλαγές: 1. Ορίζουμε το νέο διάνυσμα z = x x και "σπάμε" τον έλεγχο ως εξής: u = u 1 + u όπου Bu = Ax. Μπορούμε να δούμε ότι η καταστατική εξίσωση του συστήματος x = Ax + Bu μπορεί να γραφεί ως z = Az + Bu 1 (αποδείξτε το!).. Ο Γραμμικός Τετραγωνικός Έλεγχος είναι τώρα εφαρμόσιμος για το νέο σύστημα z = Az + Bu 1 (θα πρέπει το κριτήριο κόστους J = (x (s)qx(s) + 0 u (s)ru(s))ds να αλλάξει για να είναι συνάρτηση μόνο των z, u 1. 8

9 Σχεδιασμός Ελεγκτή: Η Γενική Περίπτωση Σχεδιάζουμε καταρχάς τον ελεγκτή, εφαρμόζοντας ΓΤΕ (βλ. κεφάλαιο 3) και θεωρώντας ότι (Υπόθεση 1) το διάνυσμα κατάστασης x είναι διαθέσιμο (δηλαδή ότι y=x) (Υπόθεση ) ο σκοπός του ελέγχου είναι να φέρουμε το διάνυσμα κατάστασης x ασυμπτωτικά στο 0. Ελέγχουμε την ευστάθεια και την ευρωστία του συστήματος κλειστού βρόχου (βλ. κεφάλαιο και κεφάλαιο 5). Αν η απάντηση δεν είναι ικανοποιητική, μεταβάλουμε τους πίνακες σχεδιασμού Q, R. Αφαιρούμε την Υπόθεση, κάνοντας χρήση του Κεφαλαίου 6. Αφαιρούμε την Υπόθεση 1, κάνοντας χρήση παρατηρητή (Κεφαλαίου 5). Ελέγχουμε την ευστάθεια και την ευρωστία του συστήματος κλειστού βρόχου (βλ. κεφάλαιο και κεφάλαιο 5). Αν η απάντηση δεν είναι ικανοποιητική, μεταβάλουμε τους πίνακες σχεδιασμού Q, R, Φ και Ψ. 9

10 10

11 Άσκηση 1 Θεωρείστε το σύστημα με συνάρτηση μεταφοράς: Y ( s) = a s a3s + a s + a 0 U ( s) όπου οι αριθμοί α ι αντιστοιχούν στους αντίστοιχους αριθμούς των 4 πρώτων γραμμάτων του επιθέτου σας (π.χ. για το επίθετο Κοσματόπουλος, οι αριθμοί α ι θα είναι a 4 = 10, a3 = 15, a = 18, a0 = 1 ). 1. Να βρείτε τις καταστατικές εξισώσεις του συστήματος στην μορφή x = Ax + Bu. Να αναπτύξετε πηγαίο κώδικα σε matlab ο οποίος, δεδομένου ενός θετικά ορισμένου πίνακα Q, να παράγει έναν ελεγκτή u = Kx ο οποίος να ικανοποιεί την παρακάτω εξίσωση Lyapunov ( A BK) P + ( A BK) P = Q 3. Να εξετάσετε την ευρωστία του ελεγκτή αν το πραγματικό σύστημα είναι το παρακάτω: όπου x n m = ( A + A) x + ( B + B) +, R, R, u w x A < 1, B < 0.3, w < 0.3 u w R και να «βελτιστοποιήστε» το ελεγκτή έτσι ώστε η κατάσταση του συστήματος να συγκλίνει σε τιμές x < Να προσομοιώστε το σύστημα όταν επιδρά σε αυτό ο παραπάνω ελεγκτής. 5. Υποθέστε ότι στο παραπάνω σύστημα, μόνο η 1 η από τις καταστάσεις είναι διαθέσιμη για μέτρηση. Να σχεδιάστε ένα παρατηρητή για το σύστημα και να προσομοιώστε το σύστημα όταν επιδρά σε αυτό ο συνδυασμένος παρατηρητής/ελεγκτής. n 11

12 Άσκηση :Σχεδιασμός Ελεγκτή για Προσέγγιση Στόχου Το πρόβλημα: Ένα ελεγχόμενο όχημα που βρίσκεται στο σημείο x = (x 1, x ), επιθυμούμε να πάει στη θέση του στόχου x = (x 1, x ). Οι δυναμικές εξισώσεις του οχήματος είναι οι εξής: x = Ax + Bu (Ο) Σε αντίθεση όμως με άλλα κλασικά προβλήματα αυτόματου ελέγχου, το πρόβλημα εδώ είναι ότι δεν είναι γνωστή η θέση του στόχου. Αυτό που είναι γνωστό σε κάθε χρονική στιγμή είναι η απόσταση d = (x 1 x 1 ) + (x x ) του οχήματος από τον στόχο Άρα η εφαρμογή κλασσικών μεθόδων αυτόματου ελέγχου δεν είναι δυνατή, καθώς η έξοδος του συστήματος είναι μη γραμμική συνάρτηση. Λύση: Για να εφαρμόσουμε τα εργαλεία αυτόματου ελέγχου, θα πρέπει να "φέρουμε" το σύστημα στην μορφή καταστατικών εξισώσεων (state-space equations): x = Ax + Bu + ξ (A) y = Cx + w όπου ξ, w είναι εξωγενείς παράγοντες (προσοχή: οι όροι x,y, A, B,... δεν είναι απαραίτητα οι ίδιοι με αυτούς των εξισώσεων του οχήματος που δίνονται από την σχέση (Ο)) Βήμα 1ο: Σαν πρώτο βήμα πάντα ξεκινάμε από την εξίσωση εξόδου του συστήματος. Διαλέγουμε σαν έξοδο την συνάρτηση ( ) y=d = (x 1 x 1 ) + (x x ) Βήμα ο: Γραμματικοποιούμε την παραπάνω εξίσωση, κάνοντας χρήση της προσέγγισης κατά aylor: f ( x ) f x f x f x x x x x! 0 ( ) = ( 0) + ( 0)( 0) + ( 0) +... Το πρόβλημα με την προσέγγιση κατά aylor είναι ότι πρέπει να επιλεγεί σωστά το σημείο x 0. Επιλέγουμε διαφορετικά σημεία και ελέγχουμε τις εξισώσεις που προκύπτουν. Για παράδειγμα: (Επιλογή 1) Έστω ότι x 0 =(0,0). Τότε το ανάπτυγμα aylor γίνεται: 1

13 y = f( x) = (0 x ) + (0 x ) + (( x x ) ) x + (( x x ) ) x +... * * * * x1= 0 1 x= 0 ή, ισοδύναμα * * * * y = x1 + x x1 x1 x x + w (1) όπου w είναι το σφάλμα προσέγγισης, το οποίο μπορούμε να θεωρήσουμε εξωγενή παράγοντα. (Επιλογή ) Έστω ότι x 0 =(x 1, x ). Σε αυτή την περίπτωση έχουμε ότι y = 0+ 0x + 0x + w 1 () Η διαφορά των εξισώσεων (1) και () είναι ότι ενώ η πρώτη είναι γραμμική συνάρτηση ως προς το x = (x 1, x ), η δεύτερη είναι εντελώς ανεξάρτητη από το x = (x 1, x ). Επιλέγουμε την Επιλογή 1, για δυο λόγους: (a) επιθυμούμε μια συνάρτηση της μορφής y = Cx + w. Προφανώς, αυτή η απαίτηση ικανοποιείται με τη σχέση (1), ως εξής: * * x1 y = [ x1 x ] + [0] u+ y0 + w όπου y0 = x1* + x* x (3) (b) Ο εξωγενής παράγοντας w είναι πολύ μικρότερος στην Επιλογή 1 από ότι στην Επιλογή (γιατί;) Βήμα 3ο: Το πρόβλημα με την σχέση (3) είναι ότι δεν είναι στην μορφή y = Cx + w γιατί υπάρχει στη σχέση (3) και ο σταθερός όρος y 0. Προχωράμε σε μετασχηματισμό των μεταβλητών της σχέσης (3), για να απαλλαγούμε από τον σταθερό όρο: x1 x Ορίζουμε: x = 1 = x1+ a1 x1 = x1 a1 Όπου x x = x + a x = x a και συνεπώς η σχέση (3) γίνεται: * * * * (3) y = x1 + x x1 ( x1 a1) x ( x a) + w ή * * * * * * y= x1 + x xx 1 1+ xa 1 1 x x + xa + w Επιλέγουμε τους όρους α 1, α έτσι ώστε να "φεύγει" ο σταθερός όρος: 1 * α1 = x1 * * * * x1 + x = xa 1 1 xa 1 * α = x και τελικά καταλήγουμε στην παρακάτω σχέση 1 y [ x1*, x* ] x = + w x 13, 1 x1 x1* x = 1 x x* y = Cx + w ή

14 (4) Βήμα 4ο: Η εξίσωση εξόδου (4) έχει την μορφή που επιθυμούμε, αλλά με μεταβλητή κατάστασης το διάνυσμα x. Θα πρέπει να βρούμε και την αντίστοιχη διαφορική εξίσωση για αυτό το διάνυσμα. Παρατηρώντας ότι 1 * x1+ x1 x= x + a = 1 * x + x έχουμε x = Ax + Bu x = ( x a) = x = A( x + a) + Bu 14

15 u 1 = k(x x ) (7) όπου ο πίνακας κέρδους k είναι αυτός του υπο-βήματος 5.α και x δηλώνει το επιθυμητό σημείο στο οποίο επιθυμούμε να βρεθεί το σύστημά μας (δηλαδή το διάνυσμα x θα πρέπει να είναι τέτοιο ώστε όταν x = x, τότε ο στόχος του ελεγκτή έχει επιτευθεί. Προφανώς, ο στόχος του ελεγκτή έχει επιτευχθεί όταν x = x ή, ισοδύναμα, όταν x = x α και άρα x =[ 1 x 1 1 x ] Υπο-βήμα 5.γ: "Αφαιρούμε" και την Υπόθεση 1. Προφανώς, η υλοποίηση του ελεγκτή (7) απαιτεί γνώση της θέσης του στόχου (παρατηρήστε ότι και τα δύο διανύσματα x, x εξαρτώνται από την θέση του στόχου. Επειδή, όμως η θέση του στόχου δεν είναι γνωστή, απαιτείται ο σχεδιασμός ενός παρατηρητή που θα εκτιμά την άγνωστη αυτή θέση. Η μορφή αυτού του παρατηρητή είναι ως εξής: Παρατηρητής-Εκτιμητής xˆ = Axˆ+ Bu + L( y yˆ) yˆ = Cxˆ 15

16 f( z) = z1 f( z01) f( z0) z 1 y = f( z0) + ( z1 + z01) + ( z + z0) + w z 1 z f ( z ) = z z z01 = 1 z0 = z0 = = f( z ) + z ( z z ) + z ( z z ) + w = + ( z 1) + ( z 1) + w 1 1 = z + z + w z1 y = [, ] w z + Ή y = Cz + w z 16

17 Κώδικας matlab Ο παρακάτω κώδικας matlab μπορεί να χρησιμοποιηθεί ως παράδειγμα για την ανάπτυξη κώδικα που επιλύει προβλήματα σχεδιασμού ελεγκτών. clear all close all %% Basics in CS sys=tf([1],[1,0.4,1]); % Frequency domain H(s)=1/(s^+0.4*s+1) ss(sys) %System overview [A,B,C,D]=tfss([1],[1,0.4,1]); %transfer function to state space conversion. [NUM,DEN]=sstf(A,B,C,D); %State-space to transfer function conversion. [Z,P,~] = tfzp([1],[ ]); %ransfer function to zero-pole conversion % System Response (step, imapulse), fixed time step(sys) impulse(sys) %% LQR %definition A=[0 1 0; 0 0 1; ]; B=[ ]'; C=[1 0 0]; D=0; sys1=ss(a,b,c,d); %Find the max-real eigenvalue. max(real(eig(a)))<0 %Define simulation time,u, start point t = 0:0.001:50; u=zeros(size(t)); x0 = [ ]; %Simulate time response of LI models to arbitrary inputs lsim(sys1,u,t,x0); %Q R matrices Q=eye(size(A)); R=1; 17

18 %Compute K,L. Linear-quadratic regulator design for state space systems [K L P]=lqr(A,B,Q,R); %Define closed-loop system sys=ss(a-b*k,[0 0 0]',C,D); %Find the max-real eigenvalue. max(real(eig(a-k*b)))<0 %Simulate time response for closed-loop system lsim(sys,u,t,x0); %% Q R matrices analysis %fine-tuning --> Q,R matrices (HOW???) Q=[ ; ; ]; R=3; [K L P]=lqr(A,B,Q,R); dt=0.1; x =[3*rand-1.7 3*rand-1.7 3*rand-1.7]'; for i = 1:00 x=x+dt*(a-b*k)*x; if abs(-k*x)>1 break; end; end %% sub-optimal controller j=0; for g=0.01:0.01:5 if max(real(eig(a-g*b*k))) >= 0 j=j+1; pos(j,1:)=[max(real(eig(a-g*b*k))) g]; else neg(round(g*100-j),1:)=[max(real(eig(a-g*b*k))) g]; end end hold on plot(pos(:,),pos(:,1),'r',neg(:,),neg(:,1),'g') plot(pos(j,),pos(j,1),'ob'); h = legend('max_eigvalue > 0','max_eigvalue < 0',); set(h,'interpreter','none') grid on 18

19 title('maximum eigvalue of the system with g'); xlabel('g'); ylabel('maximum eigvalue'); hold off neg(1,:) 19

Σύγχρονος Αυτόματος Έλεγχος. είναι το διάνυσμα ιδιοτιμών του πίνακα Α (Π2)

Σύγχρονος Αυτόματος Έλεγχος. είναι το διάνυσμα ιδιοτιμών του πίνακα Α (Π2) Σύγχρονος Αυτόματος Έλεγχος.Ορισμοί και Χρήσιμες Ιδιότητες (Π) (A) είναι το διάνυσμα ιδιοτιμών του πίνακα Α (Π) x x x... xn (Π3) Η «ιδιότητα του τριγώνου»: για οποιαδήποτε διανύσματα ισχύει x, y ότι x

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ. Άσκηση. γραμμάτων του επιθέτου σας (π.χ. για το επίθετο Κοσματόπουλος, οι αριθμοί α ι θα είναι a

Συστήματα Αυτομάτου Ελέγχου ΙΙ. Άσκηση. γραμμάτων του επιθέτου σας (π.χ. για το επίθετο Κοσματόπουλος, οι αριθμοί α ι θα είναι a Συστήματα Αυτομάτου Ελέγχου ΙΙ Άσκηση Θεωρείστε το σύστημα με συνάρτηση μεταφοράς: Y ( s) a s 4 3 a3s a U ( s) s a όπου οι αριθμοί α ι αντιστοιχούν στους αντίστοιχους αριθμούς των 4 πρώτων γραμμάτων του

Διαβάστε περισσότερα

Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1

Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1 Ψηφιακός Έλεγχος 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης Ψηφιακός Έλεγχος Μέθοδος μετατόπισης ιδιοτιμών Έστω γραμμικό χρονικά αμετάβλητο σύστημα διακριτού χρόνου: ( + ) = + x k Ax k Bu k Εφαρμόζουμε γραμμικό

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 5: Το γραμμικό τετραγωνικό πρόβλημα ρύθμισης (LQ Regulators) Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 6: Το γραμμικό τετραγωνικό πρόβλημα βέλτιστης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 11

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 11 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 11 Πάτρα 2008 Προσαρμοστικός LQ έλεγχος για μη ελαχίστης

Διαβάστε περισσότερα

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016 ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 016 Θέμα 1. α) (Μον.1.5) Αποδείξτε ότι αν το σύστημα στο χώρο

Διαβάστε περισσότερα

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 20. Παρατηρητής Κατάστασης Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ο Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου

Ο Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου Ο Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου Για την ανεύρεση της µορφής των λύσεων στρεφόµαστε προς τις αναγκαίες συνθήκες, αρχικά στις Εξισώσεις Euler-Lagrange: Τ Τ Τ! f d! f = 0 t t0, t

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 11: Στοχαστικός βέλτιστος έλεγχος γραμμικών συστημάτων με χρήση τετραγωνικών κριτηρίων (LQG Problem) Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Έλεγχος «Ελάχιστης Ενέργειας»

Έλεγχος «Ελάχιστης Ενέργειας» Έλεγχος «Ελάχιστης Ενέργειας» Σε πολλές εφαρµογές, τόσο της αεροδιαστηµικής όσο και άλλων µορφών της τεχνολογίας µεταφορών κλπ, η βελτιστοποίηση επικεντρώνεται στο ζήτηµα της ενέργειας κατά την επίτευξη

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου. Νίκος Καραμπετάκης Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Άσκηση 3. Έλεγχος ανατροφοδότησης κατάστασης dc κινητήρα. Έλεγχος ανατροφοδότησης κατάστασης

Άσκηση 3. Έλεγχος ανατροφοδότησης κατάστασης dc κινητήρα. Έλεγχος ανατροφοδότησης κατάστασης Άσκηση 3 Έλεγχος ανατροφοδότησης κατάστασης dc κινητήρα Έλεγχος ανατροφοδότησης κατάστασης Ένα γραμμικό χρονικά αμετάβλητο (LTI) σύστημα όπως γνωρίζουμε, μπορεί να περιγραφεί στο πεδίο του χρόνου μέσω

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 13

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 13 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 13 Πάτρα 28 Προσαρμοστικός έλεγχος με μοντέλο αναφοράς

Διαβάστε περισσότερα

Ενότητα 10: Γραμμικό Τετραγωνικό Πρόβλημα. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 10: Γραμμικό Τετραγωνικό Πρόβλημα. Νίκος Καραμπετάκης Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10: Γραμμικό Τετραγωνικό Πρόβλημα Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Βιομηχανικοί Ελεγκτές

Βιομηχανικοί Ελεγκτές ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #10: Μοντέρνες Μέθοδοι Αναλογικού Ελέγχου Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Η Πολυεδρική Προσέγγιση στην Ανάλυση και Σύνθεση Συστηµάτων Ελέγχου. Εργαστήριο Συστηµάτων Αυτοµάτου Ελέγχου

Η Πολυεδρική Προσέγγιση στην Ανάλυση και Σύνθεση Συστηµάτων Ελέγχου. Εργαστήριο Συστηµάτων Αυτοµάτου Ελέγχου Η Πολυεδρική Προσέγγιση στην Ανάλυση και Σύνθεση Συστηµάτων Ελέγχου Εργαστήριο Συστηµάτων Αυτοµάτου Ελέγχου Η Τετραγωνική Προσέγγιση Ευκλείδια Απόσταση (Eucldean dstance) Ευκλείδια νορµ (Eucldean norm)

Διαβάστε περισσότερα

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ . ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ. Μέγιστα και Ελάχιστα Συναρτήσεων Χωρίς Περιορισμούς Συναρτήσεις μιας Μεταβλητής Εστω f ( x) είναι συνάρτηση μιας μόνο μεταβλητής. Εστω επίσης ότι x είναι ένα σημείο στο πεδίο ορισμού

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 9: Αρχή της Βελτιστοποίησης-Θεωρία Hamilton Jacobi Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Περιγραφή και Ανάλυση Συστημάτων Ελέγχου στο Χώρο Κατάστασης Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος , 8ο Εξάμηνο. Ρομποτική II. Ευφυή και Επιδέξια Ρομποτικά Συστήματα

Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος , 8ο Εξάμηνο. Ρομποτική II. Ευφυή και Επιδέξια Ρομποτικά Συστήματα Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 009-0, 8ο Εξάμηνο Ρομποτική II Ευφυή και Επιδέξια Ρομποτικά Συστήματα Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και

Διαβάστε περισσότερα

Ενότητα 11: Βέλτιστος Έλεγχος με φραγμένη είσοδο - Αρχή ελαχίστου του Pontryagin. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 11: Βέλτιστος Έλεγχος με φραγμένη είσοδο - Αρχή ελαχίστου του Pontryagin. Νίκος Καραμπετάκης Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11: Βέλτιστος Έλεγχος με φραγμένη είσοδο - Αρχή ελαχίστου του Pontryagin Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Σχεδίαση Συστημάτων Αυτομάτου Ελέγχου με χρήση Αλγεβρικών Τεχνικών

Σχεδίαση Συστημάτων Αυτομάτου Ελέγχου με χρήση Αλγεβρικών Τεχνικών ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Σχεδίαση Συστημάτων Αυτομάτου Ελέγχου με χρήση Αλγεβρικών Τεχνικών (Συνοπτικές σημειώσεις με παραδείγματα) ( Επίκουρος Καθηγητής

Διαβάστε περισσότερα

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 17. Ανάδραση του ανύσματος κατάστασης και επανατοποθέτηση πόλων του συστήματος Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ορισμοί (Σημείο ισορροπίας - Ευστάθεια κατά Lyapunov)

Ορισμοί (Σημείο ισορροπίας - Ευστάθεια κατά Lyapunov) Ορισμοί (ημείο ισορροπίας - Ευστάθεια κατά Lyapuo) Έστω ότι στη γενική περίπτωση το σύστημα περιγράφεται στο χώρο κατάστασης με το μαθηματικό πρότυπο: = f(, t), (t 0 ) = 0 () όπου είναι ένα διάστατο διάνυσμα

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Αυτόματος Έλεγχος. Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών. Παναγιώτης Σεφερλής

Αυτόματος Έλεγχος. Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών. Παναγιώτης Σεφερλής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

2. Η μέθοδος του Euler

2. Η μέθοδος του Euler 2. Η μέθοδος του Euler Ασκήσεις 2.5 Έστω a = t 0 < t 1 < < t N = b ένας διαμερισμός του [a, b]. Υποθέστε ότι ο διαμερισμός είναι ημιομοιόμορφος, ότι υπάρχει δηλαδή θετική σταθερά µ, ανεξάρτητη του N, τέτοια

Διαβάστε περισσότερα

(1) L{a 1 x 1 + a 2 x 2 } = a 1 L{x 1 } + a 2 L{x 2 } (2) x(t) = δ(t t ) x(t ) dt x[i] = δ[i i ] x[i ] (3) h[i, i ] x[i ] (4)

(1) L{a 1 x 1 + a 2 x 2 } = a 1 L{x 1 } + a 2 L{x 2 } (2) x(t) = δ(t t ) x(t ) dt x[i] = δ[i i ] x[i ] (3) h[i, i ] x[i ] (4) Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων Γραμμικά χρονικά μεταβαλλόμενα συστήματα Συνάρτηση συστήματος Ένα σύστημα L απεικονίζει κάθε σήμα εισόδου x σε ένα σήμα εξόδου y, δηλ., συνεχής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΧΩΡΟ ΚΑΤΑΣΤΑΣΗΣ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14 1 Λ. Ζαχείλας Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας Οικονομική Δυναμική Κατηγορίες f.p. σε γραμμικά διαφορικά συστήματα 1 ης τάξης Έστω το γενικό

Διαβάστε περισσότερα

Ψηφιακός Έλεγχος. 11 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1

Ψηφιακός Έλεγχος. 11 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1 Ψηφιακός Έλεγχος η διάλεξη Ψηφιακός Έλεγχος Άσκηση 3 Θεωρούμε το σύστημα διακριτού χρόνου της μορφής με A R, B R, C R nxn nx xn ( + ) + Cx( k) x k Ax k Bu k y k Υποθέτουμε ότι το διάνυσμα κατάστασης x(k)

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης

Διαβάστε περισσότερα

Έλεγχος «Ελάχιστης Ενέργειας»

Έλεγχος «Ελάχιστης Ενέργειας» Έλεγχος «Ελάχιστης Ενέργειας» Σε πολλές εφαρµογές, τόσο της αεροδιαστηµικής όσο και άλλων µορφών της τεχνολογίας µεταφορών κλπ, η βελτιστοποίηση επικεντρώνεται στο ζήτηµα της ενέργειας κατά την επίτευξη

Διαβάστε περισσότερα

. Οι ιδιοτιμές του 3 3 canonical-πίνακα είναι οι ρίζες της. , β) η δεύτερη είσοδος επηρεάζει μόνο το μεσαίο 3 3 πίνακα και

. Οι ιδιοτιμές του 3 3 canonical-πίνακα είναι οι ρίζες της. , β) η δεύτερη είσοδος επηρεάζει μόνο το μεσαίο 3 3 πίνακα και ο ΘΕΜΑ [6. βαθμοί] 5 u x x + u Ax + Bu Έστω συνεχές σύστημα 4 5 3 u3 y [ ] x. [ β] Ποιες είναι οι ιδιοτιμές του πίνακα Α; 5 Με το ακόλουθο partinioning του πίνακα A οι ιδιοτιμές του είναι 4 5 eig(a) eig(

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (http://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη

Διαβάστε περισσότερα

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x) [] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16. Ανάστροφο εκκρεμές (ανάδραση κατάστασης) Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 1: Εισαγωγή Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη του Ηλεκτρολόγου Μηχανικού (και στην Τεχνολογία Υπολογιστών;)

Εισαγωγή στην Επιστήμη του Ηλεκτρολόγου Μηχανικού (και στην Τεχνολογία Υπολογιστών;) Εισαγωγή στην Επιστήμη του Ηλεκτρολόγου Μηχανικού (και στην Τεχνολογία Υπολογιστών;) Τι είναι αυτό; 1. Διαλέξεις; 2. Σεμινάριο; 3. Μάθημα; 4. Αλλο; Θεωρία Συστημάτων, Θεωρία Αποφάσεων και (αυτόματος) Έλεγχος

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 9

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 9 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 9 Πάτρα 2008 Ρύθμιση ελαχίστης διασποράς Η στρατηγική

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 2: Εισαγωγή στον βέλτιστο έλεγχο Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

Μέθοδος αιχμηρής εκτίμησης σε ασταθή γραμμικά μοντέλα

Μέθοδος αιχμηρής εκτίμησης σε ασταθή γραμμικά μοντέλα Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 216-217 Μέθοδος αιχμηρής εκτίμησης σε ασταθή γραμμικά μοντέλα (Ridge regression) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα Ιδιάζουσες τιμές πίνακα Επειδή οι πίνακες που παρουσιάζονται στις εφαρμογές είναι μη τετραγωνικοί, υπάρχει ανάγκη να βρεθεί μία μέθοδος που να «μελετά» τους μη τετραγωνικούς με «μεθόδους και ποσά» που

Διαβάστε περισσότερα

3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON

3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON 3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPRON 3. ΕΙΣΑΓΩΓΗ: Το Perceptron είναι η απλούστερη μορφή Νευρωνικού δικτύου, το οποίο χρησιμοποιείται για την ταξινόμηση ενός ειδικού τύπου προτύπων, που είναι γραμμικά διαχωριζόμενα.

Διαβάστε περισσότερα

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές

Διαβάστε περισσότερα

f f 2 0 B f f 0 1 B 10.3 Ακρότατα υπό συνθήκες Πολλαπλασιαστές του Lagrange

f f 2 0 B f f 0 1 B 10.3 Ακρότατα υπό συνθήκες Πολλαπλασιαστές του Lagrange Μέγιστα και ελάχιστα 39 f f B f f yx y x xy Οι ιδιοτιμές του πίνακα Β είναι λ =-, λ =- και οι δυο αρνητικές, άρα το κρίσιμο σημείο (,) είναι σημείο τοπικού μεγίστου. Εφαρμογή 6: Στο παράδειγμα 3 ο αντίστοιχος

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ ΣΧΕΔΙΑΣΗΣ & ΠΑΡΑΓΩΓΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Αν Καθ: Δ ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Επικ Καθ: Σ ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.

Διαβάστε περισσότερα

Το μοντέλο Perceptron

Το μοντέλο Perceptron Το μοντέλο Perceptron Αποτελείται από έναν μόνο νευρώνα McCulloch-Pitts w j x x 1, x2,..., w x T 1 1 x 2 w 2 Σ u x n f(u) Άνυσμα Εισόδου s i x j x n w n -θ w w 1, w2,..., w n T Άνυσμα Βαρών 1 Το μοντέλο

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Η χρησιμότητα της Γραμμικής Άλγεβρας είναι σχεδόν αυταπόδεικτη. Αρκεί μια ματιά στο πρόγραμμα σπουδών, σχεδόν κάθε πανεπιστημιακού τμήματος θετικών επιστημών, για να διαπιστώσει κανείς την παρουσία

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

όπου Η μήτρα ή πίνακας του συστήματος

όπου Η μήτρα ή πίνακας του συστήματος Έστω το γραμμικό σύστημα: Το ίδιο σύστημα σε μορφή πινάκων: 3 5 7 3 2 y x y x B X y x 3 7 5 3 2 όπου Η μήτρα ή πίνακας του συστήματος B Η μήτρα ή πίνακας των σταθερών όρων X Η μήτρα ή πίνακας των αγνώστων

Διαβάστε περισσότερα

x (t) u (t) = x 0 u 0 e 2t,

x (t) u (t) = x 0 u 0 e 2t, Κεφάλαιο 7 Η ΕΝΝΟΙΑ ΤΗΣ ΕΥΣΤΑΘΕΙΑΣ Η ευαισθησία της λύσης μιας ΔΕ σε μεταβολές της αρχικής τιμής είναι έ- να θεμελιώδες ζήτημα στη θεωρία αλλά και στις εφαρμογές των διαφορικών εξισώσεων. Παράδειγμα 7.0.3.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Χώρος Κατάστασης. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Χώρος Κατάστασης. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Χώρος Κατάστασης Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Από τις Καταστατικές Εξισώσεις στη Συνάρτηση Μεταφοράς bx x y bx I X b I Y Καταστατικές

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 10. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 10. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 10 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Προσομοίωση απόκρισης συστήματος στο MATLAB μέσω της συνάρτησης ode45 (Runge-Kutta) Προσομοίωση απόκρισης

Διαβάστε περισσότερα

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις ẋ 1 f 1 (x 1 x 2 ) ẋ 2 f 2 (x 1 x 2 ) (501) Το σύστημα αυτό γράφεται σε διανυσματική

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο συμβολίζουμε με Σε αυτό το σύνολο γνωρίζουμε

Διαβάστε περισσότερα

Non Linear Equations (2)

Non Linear Equations (2) Non Linear Equations () Τρίτη, 17 Φεβρουαρίου 015 5:14 μμ 15.0.19 Page 1 15.0.19 Page 15.0.19 Page 3 15.0.19 Page 4 15.0.19 Page 5 15.0.19 Page 6 15.0.19 Page 7 15.0.19 Page 8 15.0.19 Page 9 15.0.19 Page

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

Το πρόβλημα του φιλτραρίσματος είναι να υπολογιστεί η βέλτιστη εκτίμηση. μέχρι και τη χρονική στιγμή k. Η εκτίμηση είναι:

Το πρόβλημα του φιλτραρίσματος είναι να υπολογιστεί η βέλτιστη εκτίμηση. μέχρι και τη χρονική στιγμή k. Η εκτίμηση είναι: 1 2. ΦΙΛΤΡΟ KALMAN 2.1.ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΟ ΦΙΛΤΡΟ KALMAN Το πρόβλημα του φιλτραρίσματος είναι να υπολογιστεί η βέλτιστη εκτίμηση (φιλτράρισμα) x( k / k ) της κατάστασης τη χρονική στιγμή δεδομένου του

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0.

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0. ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου 8:-: ΑΠΑΝΤΗΣΕΙΣ Θέμα (Α) ( 5 μονάδες) Δίδονται οι πίνακες Α=,

Διαβάστε περισσότερα

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20 Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων Ισαάκ Η Λαγαρής 1 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιον Ιωαννίνων 1 Με υλικό από το υπό προετοιμασία βιβλίο των: Βόγκλη,

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) 1 Πόλος στην αρχή των αξόνων: 2 Πόλος στον αρνητικό πραγματικό ημιάξονα: 3 Πόλος στον θετικό πραγματικό ημιάξονα: 4 Συζυγείς πόλοι πάνω

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 10, 12 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Παρεμβολή 2. Παράσταση και υπολογισμός του πολυωνύμου παρεμβολής

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017 Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Διδάσκων: Γεώργιος Μήτσης, Λέκτορας, Τμήμα ΗΜΜΥ Γραφείο: 401 Πράσινο Άλσος Ώρες γραφείου: Οποτεδήποτε (κατόπιν επικοινωνίας) Ηλ. Ταχ.: : gmitsis@ucy.ac.cy Ιωάννης Τζιώρτζης

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (hhp://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγή στο Χώρο

Διαβάστε περισσότερα

(sensitivity analysis, postoptimality analysis).

(sensitivity analysis, postoptimality analysis). Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 7 Ανάλυση ευαισθησίας Παραμετρική ανάλυση Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 11 Φεβρουαρίου 2016 Α.

Διαβάστε περισσότερα

Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ

Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {, 2, 3, 4, }. Με Z θα συμβολίζουμε το σύνολο των ακεραίων αριθμών, δηλ. Z = N {0,, 2, 3, 4, }. Με Q θα συμβολίζουμε

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy 4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των

Διαβάστε περισσότερα

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015 Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 20 ΘΕΜΑ Ο (4,0 μονάδες). Να προσδιοριστεί η συνάρτηση μεταφοράς / του συστήματος που περιγράφεται από το δομικό (λειτουργικό) διάγραμμα. (2,0

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 2: Δομικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ

ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Γ. ΑΓΓΕΛΟΥ ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

[A I 3 ] [I 3 A 1 ].

[A I 3 ] [I 3 A 1 ]. ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΣΕΠΤΕΜΒΡΙΟΥ 9 (α) Να ϐρεθεί ο αντίστροφος του πίνακα A = 6 4 (ϐ) Εστω b, b, b στο R Να λύθεί το σύστηµα x = b 6x + x + x = b x

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 00 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ9) Ηράκλειο, 7 Ιανουαρίου 00 Θέμα. (μονάδες.5) α) [μονάδες:.0]. Υπολογίστε

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Βασίζεται στην εφαρμογή των παρακάτω βημάτων:. Το φυσικό πεδίο αναπαριστάται με ένα σύνολο απλών γεωμετρικών σχημάτων που ονομάζονται Πεπερασμένα Στοιχεία.. Σε κάθε στοιχείο

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς

Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων

Διαβάστε περισσότερα

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 1: ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Ακαδηµαϊκό Έτος 5 6, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το τρέχον έγγραφο αποτελεί υπόδειγµα

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 2

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 2 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 2 Πάτρα 2008 Εμπειρικός προσδιορισμός συνάρτησης μεταφοράς

Διαβάστε περισσότερα