ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ"

Transcript

1 «Αρχή σοφίς φόος Κυρίου» ( Ψλµός 110, 10.) ΓΥΜΝΑΣΙΟ: ΤΑΞΗ : Γ ΓΥΜΝΑΣΙΟΥ ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ: ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ ΟΙ ΜΑΘΗΤΕΣ ΠΡΕΠΕΙ: Ν γνωρίζουν πότε µι ισότητ λέγετι τυτότητ. Ν γνωρίζουν τις σικές τυτότητες κι ν µπορούν ν τις ποδεικνύουν κι ν τις εφρµόζουν. Ν µπορούν ν τις διτυπώνουν (µετφράζουν) τις λγερικές ισότητες στην κθοµιλουµένη γλώσσ κι ντίστροφ. Ν εξσκηθούν στην ποδεικτική διδικσί. 1 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ [ΜΙΑ (1) Ι ΑΚΤΙΚΗ ΩΡΑ] ΡΑΣΤΗΡΙΟΤΗΤΑ 1 η : Ν συµπληρώσετε την ισότητ (+) =... Τους φήνουµε λεπτά κι είνι σχεδόν έιο ότι πολλοί µθητές θ την συµπληρώσουν σωστά (ΦΡΟΝΤΙΣΤΗΡΙΑ) κθώς επίσης ότι πολλοί µθητές θ την συµπληρώσουν ως εξής: (+) = + κι ότι πολλοί µθητές δεν θ την συµπληρώσουν. εν σχολιάζουµε τις πντήσεις λλά προχωράµε σε ριθµητικά πρδείγµτ δηλδή ζητάµε πό τους µθητές ν υπολογίσουν τ πρκάτω: Ν γίνουν οι πράξεις: (+3) =(..) =.. +3 =..+..=.. Η ισότητ (+3) = +3 είνι ΣΩΣΤΗ ή ΛΑΘΟΣ (κυκλώστε) κι άρ γενικά η ισότητ (+) = + είνι ΣΩΣΤΗ ή ΛΑΘΟΣ (κυκλώστε)!!! ΑΡΑ ΜΕ ΤΙ ΙΣΟΥΤΑΙ ΤΟ (+) =.; Χωρίς ν δώσουµε πάντηση προχωράµε στην γεωµετρική πόδειξη ως εξής : 1

2 ΡΑΣΤΗΡΙΟΤΗΤΑ η : Γεωµετρική πόδειξη - Ορισµός τυτότητς Tο εµδό του ορθογωνίου του διπλνού σχήµτος που έχει πλευρές, είνι Ε=. Tο εµδό του τετργώνου του διπλνού σχήµτος που έχει πλευρά είνι Ε= =... = Tο εµδό του µεγάλου τετργώνου που ρίσκετι ριστερά της ισότητς κι που έχει πλευρά +, είνι: Ε=(+) (+) =(+) (1) Όµως το εµδό του τετργώνου που έχει πλευρά +, ισούτι κι µε το άθροισµ των εµδών των σχηµάτων που ρίσκοντι δεξιά της ισότητς κι που είνι το τετράγωνο µε πλευρά µε εµδό, δυο ίσ ορθογώνι µε πλευρές, που έχουν εµδό κι τ δυο µζί += κι του τετργώνου µε πλευρά µε εµδό. ηλδή είνι: Ε= +..+ () Από τις σχέσεις (1), () προκύπτει ότι: (+) = (3) Αν τώρ ντικτστήσουµε στην (3) το µε το δηλδή γι = κι το µε το 3 δηλδή γι =3 τότε: (+) = (+3) =. =. κι ++ = = =. Ν άλετε στην θέση των µετλητών, δυο οποιoσδήποτε δικούς σς ριθµούς (κλύτερ µικρούς κι θετικούς) δηλδή: γι =.. κι = τότε: (+) = (.+. ) =. =. κι ++ = = =.

3 Υποθέτουµε οτι η ισότητ (+) = ++ τιµές των µετλητών,. θ πρέπει µάλλον ν ισχύει γι όλες τις Θυµηθείτε ότι η εξίσωση 0 x = 0 που έχει λύσεις όλες τις τιµές του x λέγετι., άρ κι µι ισότητ σν την (+) = ++ που θ ισχύει γι όλες τις τιµές των µετλητών, θ λέγετι κι υτή...!!! ΟΡΙΣΜΟΣ: Τυτότητ λέγετι κάθε ισότητ που περιέχει κι ληθεύει γι τις τιµές των µετλητών της. ΡΑΣΤΗΡΙΟΤΗΤΑ 3 η : Αλγερική πόδειξη της τυτότητς (+) = ++ Πρτηρήστε ότι η πόδειξη που κάνµε µε τ εµδά είνι χρονοόρ κι σε µερικές τυτότητες είνι πολύ δύσκολ τ σχήµτ κι ότι προφνώς δεν µπορούµε ν δοκιµάζουµε συνεχώς την λήθει της τυτότητς µε τυχίους ριθµούς, οπότε θ την ποδείξουµε κι µε ένν άλλο τρόπο πιο γενικό κι πιο σύντοµο. Πρώτ όµως θ θυµηθούµε την επιµεριστική ιδιότητ κι κάποιες πράξεις µε µονώνυµ. (προπιτούµεν) Ν συµπληρώσετε τις πρκάτω ισότητες της επιµεριστικής ιδιότητς: (+γ)=, (+) (γ+δ)=.. Ν συµπληρώσετε τις πρκάτω ισότητες: + =., =., ++ =., =., +=.., + =.. Στη συνέχει προχωράµε σε λγερική πόδειξη ως εξής: Ν ποδείξετε ότι: (+) = ++. ΑΠΟ ΕΙΞΗ Αφού =, Τότε (+) =(+) (+) ( Ξεκινάµε πό το πρώτο µέλος κι επιµεριστική ιδιότητ) = +++ (νγωγές οµοίων όρων) = ++. Κάνοντς την πόδειξη λγερικά (δηλδή µε πράξεις) κτλήγουµε στο ίδιο συµπέρσµ που είχµε κτλήξει κάνοντς την πόδειξη γεωµετρικά (µε σχήµτ). Όµως η λγερική πόδειξη είνι προτιµότερη σν πιο σύντοµη κι πιο γενική κι έτσι στη συνέχει θ κάνουµε τις ποδείξεις γι τις άλλες τυτότητες µόνο µε την λγερική πόδειξη. 3

4 ΤΙ ΕΝΝΟΟΥΜΕ ΟΜΩΣ ΓΕΝΙΚΑ ΟΤΑΝ ΛΕΜΕ ΟΤΙ ΚΑΝΟΥΜΕ ΑΠΟ ΕΙΞΗ Η έννοι της «πόδειξης» Όπως είδµε προηγουµένως γι ν ποδείξουµε µι τυτότητ π.χ την (+) = ++ που είνι της µορφής Α=Β, όπου Α=(+) κι Β= ++ εργζόµστε ως εξής: Ξεκινάµε πό το 1ο µέλος της ισότητς που ρίσκετι ριστερά της, δηλδή το Α κι κάνοντς πράξεις κτλήγουµε στο ο µέλος της ισότητς που ρίσκετι δεξιά της δηλδή το Β. ή Ξεκινάµε πό το ο µέλος της ισότητς κι κτλήγουµε στο 1ο µέλος. ( Συνήθως ξεκινάµε πό το πιο πολύπλοκο µέλος) Η διδικσί υτή λέγετι: «ευθεί πόδειξη» Πράδειγµ: Ν ποδείξετε ότι: (++γ) = + +γ ++γ+γ ΑΠΟ ΕΙΞΗ Αφού =, Τότε (++γ) =(++γ) (++γ) (Ξεκινάµε πό το πρώτο µέλος κι επιµεριστική ιδιότητ) = ++γ ++ + γ +γ + γ +γ o o (νγωγές οµοίων όρων) = + +γ ++γ+γ. ΡΑΣΤΗΡΙΟΤΗΤΑ 4 η : ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΤΑΥΤΟΤΗΤΑΣ (+) = ++. Προπιτούµεν: υνάµεις- πράξεις µε µονώνυµ 1) Ν συµπληρώσετε τ πρκάτω: () = =., (3 ) =.., (5x y) (3xy 3 ) =.., ( ) 3 =. ΟΡΙΣΜΟΣ: Το ++ λέγετι νάπτυγµ του (+) ) Ν υπολογιστεί το νάπτυγµ του (3x+4y). ( 3x+4y) = ( 3x) + 3x 4y+ ( 4y) ( + ) = + + =

5 3) Ν υπολογιστεί το νάπτυγµ του ( +3). ( +3) =( ) +..+(..) =.+.+. ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΣΠΙΤΙ ΑΠΟ ΤΟ ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ ΣΕΛΙ Α 47 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ. i), ii) ΣΕΛΙ Α 49 ΑΣΚΗΣΕΙΣ 1. ), γ), θ), ι). 4. ) 5

6 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ [ΜΙΑ (1) Ι ΑΚΤΙΚΗ ΩΡΑ] ΡΑΣΤΗΡΙΟΤΗΤΑ 5 η : Απόδειξη της τυτότητς (-) = Έχουµε ποδείξει ότι (+) = +..+, µπορείτε ν µντέψετε το νάπτυγµ της τυτότητς (-) = ; Προπιτούµεν: Κνόνες πρoσήµων στον πολλπλσισµό κι επιµεριστική ιδιότητ Ν συµπληρώσετε τ πρκάτω: (+)(+) =.., (-)(-) =.., (+)(-) =.., (-)(+) =.. (-γ) =.., (-) (γ-δ) =.. Ν υπολογιστεί το νάπτυγµ του (-) Αφού =, Τότε (-) =(-) (-) (Ξεκινάµε πό το πρώτο µέλος κι επιµεριστική ιδιότητ) = -- (νγωγές οµοίων όρων) = - +. Άρ τελικά (-) = -+ ΡΑΣΤΗΡΙΟΤΗΤΑ 6 η : ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΤΑΥΤΟΤΗΤΑΣ (-) = -+. Το -+ λέγετι. του (-) 1) Ν υπολογιστεί το νάπτυγµ του (κ-3λ). ( κ 3λ) = ( κ) κ 3λ+ ( 3λ) ( ) = + =

7 ) Ν υπολογιστεί το νάπτυγµ του ( 3-3 ). ( 3-3 ) =( 3 ) - +(..) =.-..+ ΡΑΣΤΗΡΙΟΤΗΤΑ 7 η : Απόδειξη της τυτότητς (+) 3 = Ν ποδείξετε ότι: (+) 3 = ΑΠΟ ΕΙΞΗ Αφού 3 =, Τότε (+) 3 =(+) (+) ( Ξεκινάµε πό το πρώτο µέλος) =( +..+ ) (+) [ νάπτυγµ του (+) κι επιµεριστική ιδιότητ ] = (νγωγές οµοίων όρων) = Το λέγετι νάπτυγµ του (+) 3 1) Ν υπολογιστεί το νάπτυγµ του (x+3y) 3 ( x+3y) = ( x) +3 ( x) y+3 ( x) ( 3y) + ( 3y) ( + ) = = = ) Ν υπολογιστεί το νάπτυγµ του ( +) 3. ( +) 3 =( ) (..) ( ) + (..) 3 =. = 7

8 ΡΑΣΤΗΡΙΟΤΗΤΑ 8 η : Απόδειξη της τυτότητς (-) 3 = Ν ποδείξετε ότι: (-) 3 = ΑΠΟ ΕΙΞΗ Αφού 3 =, Τότε (-) 3 =(-) (-) =( -.+ )(-) ( Ξεκινάµε πό το πρώτο µέλος) [ νάπτυγµ του (-) κι επιµεριστική ιδιότητ] = (νγωγές οµοίων όρων) = Το λέγετι νάπτυγµ του (-) 3 Ν υπολογιστεί το νάπτυγµ του (x -3y) x 3y = x 3 x 3y+3 3 ( x) ( 3y) ( 3y) ( ) = = = ) Ν υπολογιστεί το νάπτυγµ του ( -3 ) 3. ( -3 ) 3 =( ) 3-3 (..) ( ) - (..) 3 =. =. 8

9 ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΣΠΙΤΙ ΑΠΟ ΤΟ ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ 1) ΣΕΛΙ Α 47 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ. iii) ) ΣΕΛΙ Α 48 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ 4. i), ii) 3) ΣΕΛΙ Α 49 ΑΣΚΗΣΗ 5. στ), ι) 4) ΣΕΛΙ Α 50 ΑΣΚΗΣΗ 11. ε) 9

10 3 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ [ΜΙΑ (1) Ι ΑΚΤΙΚΗ ΩΡΑ] ΡΑΣΤΗΡΙΟΤΗΤΑ 9 η : Απόδειξη της τυτότητς (-) (+)= -. ΑΠΟ ΕΙΞΗ (-) (+) = ( Ξεκινάµε πό το πρώτο µέλος, κάνουµε την = - επιµεριστική ιδιότητ κι νγωγές οµοίων όρων) ΡΑΣΤΗΡΙΟΤΗΤΑ 10 η : ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΤΑΥΤΟΤΗΤΑΣ (-)(+)= -. 1) Ν υπολογιστεί το γινόµενο (3x+4y)(3x-4y) Μπορούµε ν κάνουµε τις πράξεις (επιµεριστική ιδιότητ) λλά µπορούµε ν εφρµόσουµε κι την τυτότητ (-) (+)= - ως εξής: ( 3x+ 4y) ( 3x 4y) = ( 3x) ( 4y) ( + ) ( - ) = = ) Ν υπολογιστεί το γινόµενο (x 3-5 ) (x 3 +5 ) (x 3-5 ) (x 3 +5 ) = ( ) - ( ) = - 3) Ν γίνει γινόµενο η πράστση x - 9 Την τυτότητ (-) (+)= -, µπορούµε ν την δούµε κι ως εξής: - =(-) (+) x 9= x 3 = = ( x+ 3) ( x 3) ( + ) ( ) 4) Ν γίνει γινόµενο η πράστση - 4y -4y =(.) -(.) =(.+.) (.+.) 10

11 ΡΑΣΤΗΡΙΟΤΗΤΑ 11 η : Απόδειξη της τυτότητς (-) ( ++ )= 3-3 ΑΠΟ ΕΙΞΗ (-) ( ++ ) = ( Ξεκινάµε πό το πρώτο µέλος, κάνουµε την = επιµεριστική ιδιότητ κι νγωγές οµοίων όρων) ΡΑΣΤΗΡΙΟΤΗΤΑ 1 η :ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΤΑΥΤΟΤΗΤΑΣ (-) ( ++ )= 3-3 1) Ν υπολογιστεί το γινόµενο (x-3)(x +3x+9) Μπορούµε ν κάνουµε τις πράξεις (επιµεριστική ιδιότητ) λλά µπορούµε ν εφρµόσουµε κι την τυτότητ (-)( ++ )= 3-3 ως εξής: ( x 3) x +3x+9 = ( x 3) ( ) x +3x = 3 3 ) Ν γίνει γινόµενο η πράστση x 3-8 x3 3 3 = =... Την τυτότητ (-) ( ++ ) = 3-3, µπορούµε ν την δούµε κι ως εξής: 3-3 =(-)( ++ ) x 3 8= x 3 3 = 3 3 = ( ) x x + x + = (...) (...) ( ) + 3) Ν γίνει γινόµενο η πράστση =(.) 3 -(.) 3 =( -...)[(..) ] =( -...)( ) 11

12 ΡΑΣΤΗΡΙΟΤΗΤΑ 13 η : Απόδειξη της τυτότητς (+) ( -+ )= ΑΠΟ ΕΙΞΗ (+) ( -+ ) = ( Ξεκινάµε πό το πρώτο µέλος, κάνουµε την = επιµεριστική ιδιότητ κι νγωγές οµοίων όρων) ΡΑΣΤΗΡΙΟΤΗΤΑ 14 η :ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΤΑΥΤΟΤΗΤΑΣ (+) ( -+ )= ) Ν υπολογιστεί το γινόµενο (x+1) (4x -x+1) Μπορούµε ν κάνουµε τις πράξεις (επιµεριστική ιδιότητ) λλά µπορούµε ν εφρµόσουµε κι την τυτότητ (+)( -+ )= ως εξής: ( x+ 1) 4x x+ 1 = ( x+ 1) ( x) ( x) 1+ 1 = ( x) + = ( + ) ) Ν γίνει γινόµενο η πράστση y = Την τυτότητ (+)( -+ )= 3 + 3, µπορούµε ν την δούµε κι ως εξής: =(+)( -+ ) y3 +1= y3 +1 3= = ( y+1) y y 1+1 = (...)(...) ( + ) + 1

13 ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΣΠΙΤΙ ΑΠΟ ΤΟ ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ 1) ΣΕΛΙ Α 48 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ 6. i), ii), iii), iv), v) ) ΣΕΛΙ Α 49 ΑΣΚΗΣΗ 6. η), θ) 3) ΣΕΛΙ Α 49 ΑΣΚΗΣΗ 9. ), γ) 3) ΣΕΛΙ Α 50 ΑΣΚΗΣΗ 11. στ) 13

14 4 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ [ΜΙΑ (1) Ι ΑΚΤΙΚΗ ΩΡΑ] ΡΑΣΤΗΡΙΟΤΗΤΑ 15 η : Η ΑΠΟ ΕΙΞΗ ΓΕΝΙΚΑ ΘΑ ΑΠΟ ΕΙΞΟΥΜΕ ΤΗΝ ΑΣΚΗΣΗ 1 ε) ΑΠΟ ΤΟ ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ ΣΕΛΙ Α 50 Μάθµε ότι στην «ευθεί πόδειξη» γι ν ποδείξουµε µι ισότητ Α=Β, µπορούµε ν εργστούµε ως εξής: Ξεκινάµε πό το 1ο µέλος της ισότητς κι κτλήγουµε στο ο µέλος ή Ξεκινάµε πό το ο µέλος της ισότητς κι κτλήγουµε στο 1ο µέλος. ( Συνήθως ξεκινάµε πό το πιο πολύπλοκο ) ΑΠΟ ΕΙΞΗ Ξεκινάµε πό το 1ο µέλος της ισότητς το οποίο γράφετι: (-4) + (-3) = () = = -0+ Πρτηρούµε ότι δεν κτλήξµε στο ο µέλος της ισότητς. Ξεκινάµε πό το ο µέλος της τυτότητς το οποίο γράφετι: + (-5) = +() = = Πρτηρούµε ότι δεν κτλήξµε στο 1ο µέλος της ισότητς. Όµως πρτηρούµε ότι πό όποιο µέλος κι ν ξεκινήσουµε κτλήγουµε στο ίδιο ποτέλεσµ Η έννοι της «έµµεσης πόδειξης» Γι ν ποδείξουµε µι ισότητ Α=Β, µπορούµε ν εργστούµε κι ως εξής: Ξεκινάµε πό το 1ο µέλος της ισότητς κι κτλήγουµε σε µι ισότητ Α=Γ. Ξεκινάµε πό το ο µέλος της ισότητς κι κτλήγουµε σε µι ισότητ Β=Γ. Αφού Α=Γ κι Β=Γ συµπερίνουµε ότι Α=Β Η διδικσί υτή λέγετι: «έµµεση πόδειξη» Στην προκειµένη περίπτωση συµπερίνουµε ότι: (-4) + (-3) = + (-5) 14

15 ) Στο τρίγωνο ΑΒΓ του διπλνού σχήµτος είνι: ΑΒ = 4x, AΓ = 4x 1, BΓ = 4x + 1 Ν ποδείξετε ότι το τρίγωνο είνι ορθογώνιο. (ΒΙΒΛΙΟ ΕΚΠ/ΚΟΥ ΣΕΛΙ Α 30) ΑΠΟ ΕΙΞΗ B 4x 4x +1 A 4x -1 Γ Γι ν ποδείξουµε ότι το τρίγωνο είνι ορθογώνιο ρκεί ν δείξουµε ότι ισχύει το ντίστροφο του Πυθγορείου θεωρήµτος δηλδή ότι: ΒΓ = ΑΒ + ΑΓ ΒΓ =(4x +1) =.. ΑΒ + ΑΓ =(4x) +(4x -1) =.. 3) Ν ποδείξετε ότι (x + y) (y x)(y + x) + (x y) = 9x + 4y (ΒΙΒΛΙΟ ΕΚΠ/ΚΟΥ ΣΕΛΙ Α 30) ΑΠΟ ΕΙΞΗ Ξεκινάµε πό το 1ο µέλος (πολύπλοκο) το οποίο γράφετι: (x + y) (y x)(y + x) + (x y) = =... 15

16 ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΣΠΙΤΙ ΑΠΟ ΤΟ ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ 1) ΣΕΛΙ Α 49 ΑΣΚΗΣΗ 7 ) ΣΕΛΙ Α 50 ΑΣΚΗΣΗ 1. στ) 3) ΣΕΛΙ Α 50 ΑΣΚΗΣΗ 15 16

17 5 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ [ΜΙΑ (1) Ι ΑΚΤΙΚΗ ΩΡΑ] Τ µθηµτικά µπορούµε ν τ δούµε κι σν την εκµάθηση µις γλώσσς, δηλδή πρέπει ν κάνουµε µετάφρση πό την κθοµιλουµένη γλώσσ στην γλώσσ των µθηµτικών που έχει µθηµτικά σύµολ κι ντίστροφ ν µετφράζουµε τ µθηµτικά σύµολ στην κθοµιλουµένη γλώσσ Λεκτική διτύπωση των τυτοτήτων - επνάληψη ΡΑΣΤΗΡΙΟΤΗΤΑ 16 η : ΛΕΚΤΙΚΗ ΙΑΤΥΠΩΣΗ ΤΩΝ ΤΑΥΤΟΤΗΤΩΝ Γι δυο οποιοσδήποτε ριθµούς, ν επιλέξετε σύµολ γι τις πρκάτω φράσεις: 1.Το άθροισµ τους είνι: Α. +. Β. -. Γ... :. Η διφορά τους είνι: Α. +. Β. -. Γ Το διπλάσιο γινόµενο τους είνι: Α. (). Β. (-). Γ... : 4. Το άθροισµ των τετργώνων τους είνι: Α.. Β. +. Γ. (+ ) Το τετράγωνο του θροίσµτος τους είνι: Α. +. Β. (). Γ. (+ ) Το άθροισµ των κύων τους είνι: Α. +. Β. () 3 Γ. (+ ) Ο κύος του θροίσµτος τους είνι: Α Β. (-) 3 Γ. (+ ) Η διφορά των κύων τους είνι: Α Β. (-) 3 Γ. (+ ) Ο κύος της διφοράς τους είνι: Α Β. (-) 3 Γ. (+ ) Η τυτότητ (+) = ++ µπορεί ν διτυπωθεί λεκτικά ως εξής: Το τετράγωνο του. δυο ριθµών ισούτι µε το άθροισµ των. των δυο ριθµών συν το γινόµενο τους. Tην τυτότητ (+) = ++ την ονοµάζουµε: τετράγωνο του θροίσµτος 11. Η τυτότητ (-) = -+ µπορεί ν διτυπωθεί λεκτικά ως εξής: Το τετράγωνο της. δυο ριθµών ισούτι µε το άθροισµ των.. των δυο ριθµών µείον το.. γινόµενο τους. Tην τυτότητ (-) = -+ την ονοµάζουµε: τετράγωνο της διφοράς 17

18 1. Η τυτότητ (-)(+) = - µπορεί ν διτυπωθεί λεκτικά ως εξής: Το γινόµενο του. δυο ριθµών επί τη τους ισούτι µε το τετράγωνο του µειωτέου µείον το.του φιρετέου. Tην τυτότητ (-) (+)= - την ονοµάζουµε: γινόµενο θροίσµτος επί διφορά 13. Η τυτότητ (+) 3 = µπορεί ν διτυπωθεί λεκτικά ως εξής: O Κύος του.. δυο ριθµών ισούτι µε το άθροισµ των.. των δυο ριθµών συν το τριπλάσιο γινόµενο του κθενός πό υτούς µε το τετράγωνο του άλλου. Tην τυτότητ (+) 3 = την ονοµάζουµε: κύος του θροίσµτος 14. Η τυτότητ (-) 3 = µπορεί ν διτυπωθεί λεκτικά ως εξής: O Κύος της. δυο ριθµών ισούτι µε την διφορά των.. των δυο ριθµών µείον το τριπλάσιο γινόµενο του τετργώνου του πρώτου µε τον δεύτερο συν το τριπλάσιο γινόµενο του πρώτου µε το τετράγωνο του δεύτερου. Tην τυτότητ (-) 3 = την ονοµάζουµε: κύος της διφοράς 15. Η τυτότητ (-)( ++ )= 3-3 µπορεί ν διτυπωθεί λεκτικά ως εξής: Το γινόµενο της. δυο ριθµών επί το άθροισµ των τετργώνων τους συν το διπλάσιο.. τους ισούτι µε την των κύων τους. Tην τυτότητ (-) ( ++ )= 3-3 την ονοµάζουµε: διφορά κύων 16. Η τυτότητ (+)( -+ )= µπορεί ν διτυπωθεί λεκτικά ως εξής: Το γινόµενο του. δυο ριθµών επί το άθροισµ των τετργώνων τους µείον το διπλάσιο.. τους ισούτι µε το των κύων τους. Tην τυτότητ (+) ( -+ )= την ονοµάζουµε: άθροισµ κύων ΑΣΚΗΣΗ ΓΙΑ ΤΟ ΣΠΙΤΙ ΑΠΟ ΤΟ ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ ΣΕΛΙ Α 50 ΑΣΚΗΣΗ 16 18

19 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΑΠΟ ΤΟ ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ ΣΕΛΙ Α 50 ΑΣΚΗΣΕΙΣ 13, 14, 17 ΑΝΑΚΕΦΑΛΑΙΩΣΗ Οι ισότητες που περιέχουν µετλητές κι οι οποίες ληθεύουν γι όλες τις τιµές των µετλητών τους ονοµάζοντι. ΟΙ ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΕΙΝΑΙ: τετράγωνο θροίσµτος: τετράγωνο διφοράς : κύος του θροίσµτος: κύος της διφοράς: (+) =. (-) =.. (+) 3 =. (-) 3 =.. γινόµενο θροίσµτος επί διφορά: (-) (+)=. άθροισµ κύων: διφορά κύων: (+) ( -+ )= (-) ( ++ )=.. «Όσοι το χάλκεον χέρι ρύ του φόου ισθάνοντι ζυγό δουλείς ς έχωσι, θέλει ρετή κι τόλµη η ελευθερί» (Α. Κάλος) 19

20 ΣΧΕ ΙΟ ΚΡΙΤΗΡΙOY ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΟ 1ο ΚΕΦΑΛΑΙΟ ΤΑΞΗ : Γ ΓΥΜΝΑΣΙΟΥ ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ:. Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ: ΤΑΥΤΟΤΗΤΕΣ (νκεφλιωτικό) ιάρκει: 1 διδκτική ώρ Θέµτ: 5 ΒΑΘΜΟΛΟΓΙΑ 1 µονάδ 1 µονάδ 1 µονάδ 1 µονάδ 1 µονάδ ΘΕΜΑΤΑ 1 ο. Ν συµπληρώσετε τις πρκάτω ισότητες ώστε ν προκύψουν τυτότητες: ) (+) =.. ) (+) 3 =.. γ) (+) ( -+ )= ο. ) Τυτότητ λέγετι κάθε ισότητ που περιέχει µετλητές κι ληθεύει µόνο γι κάποιες πό τις τιµές των µετλητών της. Σ (σωστό) ή Λ (λάθος) ) Tην τυτότητ: (-) 3 = την ονοµάζουµε: διφορά κύων Σ (σωστό) ή Λ (λάθος) 5 µονάδες 3 ο. Ν ποδείξετε την τυτότητ: (-) 3 = µονάδες 4 ο. (πό το σχολικό ιλίο άσκηση 11 η) σελίδ 50) Ν κάνετε τις πράξεις : (4-1) 3 -(8+1)(8-1) 5 µονάδες 5 ο. Ν ποδείξετε ότι έν τρίγωνο ΑΒΓ που έχει πλευρές = µ +ν, =µ -ν, γ=µν (µ,ν θετικοί κέριοι ριθµοί µε µ>ν) είνι ορθογώνιο µε υποτείνουσ την. 0

21 ΓΕΝΙΚΗ ΠΡΟΤΑΣΗ: ΕΠΕΙ Η ΤΩΡΑ ΠΛΕΟΝ ΤΑ ΤΜΗΜΑΤΑ ΕΙΝΑΙ ΤΟΥΛΑΧΙΣΤΟΝ 5ΜΕΛΗ, ΚΑΛΟ ΕΙΝΑΙ ΝΑ ΧΩΡΙΖΟΥΜΕ ΤΗΝ ΤΑΞΗ ΣΕ ΟΜΑ ΕΣ ΤΩΝ 3 Ή 4 ΑΤΟΜΩΝ ΟΙ ΟΠΟΙΕΣ ΘΑ ΟΥΛΕΥΟΥΝ ΑΝΕΞΑΡΤΗΤΑ, ΤΑ ΤΕΛΙΚΑ ΟΜΩΣ ΣΥΜΠΕΡΑΣΜΑΤΑ ΠΡΕΠΕΙ ΝΑ ΑΝΑΚΟΙΝΩΝΟΝΤΑΙ ΣΕ ΟΛΕΣ ΤΙΣ ΟΜΑ ΕΣ ΚΑΙ ΝΑ ΓΙΝΟΝΤΑΙ ΑΠΟ ΕΚΤΑ ΑΠΟ ΟΛΟΥΣ. ΓΙΑ ΜΗΝ ΧΑΝΟΥΜΕ ΧΡΟΝΟ ΘΑ ΠΡΕΠΕΙ ΑΠΟ ΤΟ ΙΑΛΛΕΙΜΑ ΜΑΖΙ ΜΕ ΤΟΥΣ ΕΠΙΜΕΛΗΤΕΣ ΝΑ ΕΧΟΥΜΕ ΕΤΟΙΜΑΣΕΙ ΤΑ ΘΡΑΝΙΑ ΒΑΖΟΝΤΑΣ ΤΑ ΑΝΑ ΥΟ ΜΑΖΙ (ΚΟΛΛΗΤΑ ΚΑΙ ΑΝΤΙΚΡΙΣΤΑ) ΚΑΙ ΤΙΣ ΚΑΡΕΚΛΕΣ ΓΥΡΩ-ΓΥΡΩ. ΕΠΙΣΗΣ ΘΑ ΠΡΕΠΕΙ ΝΑ ΕΧΟΥΜΕ ΕΤΟΙΜΑ ΤΑ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΤΑ ΟΠΟΙΑ ΘΑ ΤΑ ΜΟΙΡΑΖΟΥΜΕ ΑΜΕΣΩΣ ΣΤΙΣ ΟΜΑ ΕΣ H ΣΥΝΘΕΣΗ ΤΩΝ ΟΠΟΙΩΝ ΘΑ ΕΙΝΑΙ ΠΡΟΚΑΘΟΡΙΣΜΕΝΗ ΓΙΑ ΤΗΝ Ι ΑΚΤΙΚΗ ΩΡΑ ΠΟΥ ΘΑ ΑΚΟΛΟΥΘΗΣΕΙ, ΕΤΣΙ ΘΑ ΕΧΟΥΜΕ ΤΟΝ ΧΡΟΝΟ ΝΑ ΑΣΧΟΛΟΥΜΑΣΤΕ ΜΕ ΤΗΝ ΚΑΘΕ ΟΜΑ Α ΤΟΥΛΑΧΙΣΤΟΝ 5 ΛΕΠΤΑ ΤΗΣ ΩΡΑΣ ΠΕΡΙΦΕΡΟΜΕΝΟΙ ΑΝΑΜΕΣΑ ΣΤΙΣ ΟΜΑ ΕΣ ΚΑΤΕΥΘΥΝΟΝΤΑΣ ΚΑΙ ΥΠΟΒΟΗΘΩΝΤΑΣ ΤΟ ΕΡΓΟ ΤΟΥΣ. ΚΑΛΟ ΕΙΝΑΙ ΣΤΗΝ ΣΥΝΘΕΣΗ ΤΗΣ ΟΜΑ ΑΣ ΝΑ ΥΠΑΡΧΕΙ ΑΝΟΜΟΙΟΓΕΝΕΙΑ ΩΣ ΠΡΟΣ ΤΟ ΓΝΩΣΤΙΚΟ ΕΠΙΠΕ Ο ΤΩΝ ΜΕΛΩΝ ΤΗΣ ΚΑΙ ΚΑΤΑ ΚΑΙΡΟΥΣ ΝΑ ΑΛΛΑΖΕΙ Η ΣΥΝΘΕΣΗ ΤΩΝ ΟΜΑ ΩΝ ΕΙ ΙΚΑ ΑΝ ΒΛΕΠΟΥΜΕ ΟΤΙ ΕΝ ΥΠΑΡΧΕΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΣΥΝΕΡΓΑΣΙΑ ΜΕΤΑΞΥ ΤΩΝ ΜΕΛΩΝ ΤΗΣ. ΜΠΟΡΟΥΜΕ ΑΚΟΜΗ ΝΑ ΖΗΤΗΣΟΥΜΕ ΤΗΝ ΑΙΘΟΥΣΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗΝ ΟΠΟΙΑ ΥΠΑΡΧΟΥΝ ΥΠΟΛΟΓΙΣΤΕΣ ΚΑΙ ΣΤΟΥΣ ΟΠΟΙΟΥΣ ΜΠΟΡΟΥΜΕ ΜΕ ΕΝΑ ΦΛΑΣΑΚΙ ΝΑ ΜΕΤΑΦΕΡΟΥΜΕ ΤΑ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΚΑΙ ΑΝΑ 3 Ή 4 ΜΑΘΗΤΕΣ ΝΑ ΟΥΛΕΥΟΥΝ ΣΕ ΕΝΑ ΥΠΟΛΟΓΙΣΤΗ ΕΝΩ ΕΜΕΙΣ ΜΕ ΕΝΑ ΒΙΝΤΕΟΠΡΟΒΟΛΕΑ (ΥΠΑΡΧΕΙ ΣΤΑ ΣΧΟΛΕΙΑ) ΠΟΥ ΘΑ ΠΡΟΒΑΛΕΙ ΣΤΟ ΠΙΝΑΚΑ ΤΑ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΑΠΟ ΤΟΝ ΙΚΟ ΜΑΣ ΥΠΟΛΟΓΙΣΤΗ ΝΑ ΚΑΝΟΥΜΕ ΥΠΟ ΕΙΞΕΙΣ ΚΑΙ ΝΑ ΕΙΧΝΟΥΜΕ ΣΤΟΥΣ ΜΑΘΗΤΕΣ ΑΥΤΑ ΠΟΥ ΘΕΛΟΥΜΕ ΜΕ ΕΝΑ ΑΠΛΟ ΛΕΙΖΕΡ. 1

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους 0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.

Διαβάστε περισσότερα

αριθμών Ιδιότητες της διάταξης

αριθμών Ιδιότητες της διάταξης Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ΙΑΝΥΣΜΑΤΑ - ΘΕΩΡΙΑ & ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ε (ρχή) φορές (πέρς) 1. Τι ορίζετι ως διάνυσµ ; Το διάνυσµ ορίζετι ως έν προσντολισµένο

Διαβάστε περισσότερα

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση. Μετρικές σχέσεις στ τρίγων Α Μετρικές σχέσεις σε ορθογώνιο τρίγωνο Α Προβολή σηµείου σε ευθεί Ορθή προβολή Α ονοµάζετι το ίχνος της κάθετης που φέρνουµε

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Στο διπλνό ορθοώνιο τρίωνο, έχουμε φέρει πλά το ύψος που κτλήει στην υποτείνουσ. Είνι προφνές ότι, με υτό τον τρόπο, το μεάλο ορθοώνιο τρίωνο χωρίστηκε σε δύο μικρότερ ορθοώνι, τ κι. Σε

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ. είναι ακέραιος.

ΕΦΑΡΜΟΓΕΣ. είναι ακέραιος. ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ ΕΦΑΡΜΟΓΕΣ Αν ο είνι κέριος κι ο ( ) είνι κέριος ΑΠΟΔΕΙΞΗ Επειδή τ δυντά υπόλοιπ του με τον είνι 0,,, ο κέριος έχει μί πό τις μορφές κ ή κ, κ Z Αν κ, κ Z ) κ (κ ) κ(9κ

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

ΠΙΝΑΚΕΣ 1.1. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ. Ονοµάζουµε πίνακα Α n m µία διάταξη n m αριθµών και j = 1, 2,, m, σε n γραµµές και m στήλες.

ΠΙΝΑΚΕΣ 1.1. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ. Ονοµάζουµε πίνακα Α n m µία διάταξη n m αριθµών και j = 1, 2,, m, σε n γραµµές και m στήλες. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ Ονοµάζουµε πίνκ Α n m µί διάτξη n m ριθµών κι j,,, m, σε n γρµµές κι m στήλες ηλδή: Α ( σµβ ij ) ορσ n n m m nm a ij όπου i,,, n Έτσι όπως γράφετι ο πίνκς Α, ο ριθµός a ij,

Διαβάστε περισσότερα

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ) ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τ σύολ τω ριθµώ είι τ εξής : ) Οι φυσικοί ριθµοί : Ν {0,,,,... } ) Οι κέριοι ριθµοί : Ζ {...,,,, 0,,,,... } ) Οι ρητοί ριθµοί : Q ρ / κ ρ, κ Z, Z 0 4) Οι άρρητοι

Διαβάστε περισσότερα

2.1 ΟΙ ΠΡΑΞΕΙΣ & ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΟΙ ΠΡΑΞΕΙΣ & ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ 1.1 ΟΙ ΠΡΑΞΕΙΣ & ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΘΕΩΡΙΑ 1. Ιδιότητες των πράξεων ( β ι γ δ) + γ β + δ ( β ι γ δ) γ βδ β + γ β + γ Αν γ 0, τότε : β 0 0 ή β 0 β γ βγ. Ιδιότητες των δυνάµεων λ +λ β ( β ( ) λ λ ) λ β λ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΚΕΦΑΛΑΙΟ Ο : ΙΑΝΥΣΜΑΤΑ Ιδιότητες πρόσθεσης δινυσµάτων () + = + () ( + ) + γ = + ( + γ) (3) + = (4) + ( ) =. Αν Ο είνι έν σηµείο νφοράς, τότε γι κάθε διάνυσµ ΑΒ έχουµε: AB = OB OA

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕ ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 015 Θέμ 1 ο Α) Ν διτυπώσετε τ κριτήρι γι ν είνι δύο τρίγων όμοι Β) Ν διτυπώσετε κι ν ποδείξετε το ο θεώρημ διμέσων Γ) Ν

Διαβάστε περισσότερα

Εμβαδόν τετραγώνου: Ε = α 2. Εμβαδόν ορθογωνίου παραλληλογράμμου: Ε = α β. β Εμβαδόν πλάγιου παραλληλογράμμου: Ε = υ β. α υ

Εμβαδόν τετραγώνου: Ε = α 2. Εμβαδόν ορθογωνίου παραλληλογράμμου: Ε = α β. β Εμβαδόν πλάγιου παραλληλογράμμου: Ε = υ β. α υ Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η ποτελεσμτική μάθηση δεν θέλει κόπο λλά τρόπο, δηλδή ma8eno.gr Συνοπτική Θεωρί Μθημτικών Α Γυμνσίου Αριθμητική - Άλγερ Γεωμετρί Αριθμητική πράστση ονομάζετι

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση ΔΥΝΑΜΕΙΣ ΜΕ ΕΚΘΕΤΗ ΡΗΤΟ - ΑΡΡΗΤΟ Αν >0, μ κέριος κι ν θετικός κέριος, τότε ορίζουμε: Επιπλέον, ν μ,ν θετικοί κέριοι, ορίζουμε: 0 =0. Πρδείγμτ: 4 4,, 5 5, 4 0 =0. Γενικότερ μπορούμε ν ορίσουμε δυνάμεις

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΚΑΛΟΚΑΙΡΙΝΟ ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΕΜΕ ΛΕΠΤΟΚΑΡΥΑ ΠΙΕΡΙΑΣ 0 ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Αργύρης Φελλούρης Απληρωτής Κθηγητής ΕΜΠ ΚΕΦΑΛΑΙΟ Ι ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Στο Κεφάλιο υτό θεωρούμε γωστές τις σικές

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΓΑ() ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α.. Α.. Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνί: Κυρική 7 Απριλίου ιάρκει Εξέτσης: ώρες ΑΠΑΝΤΗΣΕΙΣ Βλέπε πόδειξη () σελ.75 σχολικού βιβλίου

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΓΩΝΩΝ

Μαθηματικά Γ Γυμνασίου AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΓΩΝΩΝ ε ω μ ε τ ρ ί AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΩΝΩΝ 1. Σε ισοσκελές τρίγωνο ΑΒ (ΑΒ=Α) προεκτείνουμε τη βάση Β κτά ίσ τμήμτ Β=Ε. Ν δείξετε ότι το τρίγωνο ΑΕ είνι ισοσκελές. 2. Ν κτσκευάσετε σε ισοσκελές τρίγωνο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο. 1.1. Οι πράξεις πρόσθεση και πολλαπλασιασµός και οι ιδιότητές τους.

ΚΕΦΑΛΑΙΟ 1 ο. 1.1. Οι πράξεις πρόσθεση και πολλαπλασιασµός και οι ιδιότητές τους. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - - ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ ο.. Οι πράξεις πρόσθεση κι πολλπλσισµός κι οι ιδιότητές τους. Πρόσθεση Πολλπλσισµός Ιδιότητ.. Ατιµετθετική (γ)()γ (γ)()γ Προσετιρική (γ)γ Επιµεριστική 0. Ουδέτερο

Διαβάστε περισσότερα

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Ταυτότητες ΤΑΥΤΟΤΗΤΕΣ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Ταυτότητες ΤΑΥΤΟΤΗΤΕΣ Δ/ση Β /θµις Εκπ/σης Φλώρις Κέτρο ΠΛΗ.ΝΕ.Τ. Τυτότητες ΤΑΥΤΟΤΗΤΕΣ Τυτότητ ποκλείτι η ισότητ άµεσ σε δύο λγερικές πρστάσεις, η οποί ληθεύει γι όλες τις τιµές τω µετλητώ πό τις οποίες ε- ξρτώτι οι λγερικές

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 3 IOYNIOY 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ 6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο

Διαβάστε περισσότερα

ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1 ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ (Επλήψεις Συμπληρώσεις) Εισγωγή Στο Γυμάσιο μάθμε ότι οι πργμτικοί ριθμοί ποτελούτι πό τους ρητούς κι τους άρρητους ριθμούς κι πριστάοτι με

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-, 1) κι διέρχετι πό το

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

Μαθηµατικά Ιβ Σελίδα 1 από 7 ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ

Μαθηµατικά Ιβ Σελίδα 1 από 7 ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Μθηµτικά Ιβ Σελίδ πό 7 Μάθηµ 7 ο ΟΡΘΟΚΑΝΟΝΙΚΗ ΒΑΣΗ ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Θεωρί : Γρµµική Άλγεβρ : εδάφιο 6, σελ. (µέχρι Πρότση 4.6), εδάφιο 7, σελ. 5 (όχι την πόδειξη της Πρότσης 4.9). πρδείγµτ που ντιστοιχούν

Διαβάστε περισσότερα

ΠΕΡΙΚΛΗΣ Γ. ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΟΡΟΣΗΜΟ ΖΩΓΡΑΦΟΥ

ΠΕΡΙΚΛΗΣ Γ. ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΟΡΟΣΗΜΟ ΖΩΓΡΑΦΟΥ ΠΕΡΙΚΛΗΣ Γ ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΚΕΝΤΡΙΚΗ ΔΙΑΘΕΣΗ Τρυλντώνη 8, 577 Ζωγράφου Τηλ: 747344 747395 email:info@orosimoeu wwworosimoeu ISBN: 978-68-873--4 ΕΚΔΟΣΕΙΣ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΟΜΑ Α A ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΟΜΑ Α Β ΤΡΙΤΗ 3 IOYNIOY 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I

ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I Σε κθεµιά πό τις πρκάτω περιπτώσεις ν κυκλώσετε το γράµµ Α, ν ο ισχυρισµός είνι ληθής κι το γράµµ Ψ, ν ο ισχυρισµός είνι ψευδής δικιολογώντς συγχρόνως την πάντησή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη

Διαβάστε περισσότερα

Qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

Qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj Qwφιertuiopasdfghjklzερυυξnmηq σwωψertuςiopasdρfghjklzcvbn mqwertuiopasdfghjklzcvbnφγιmλι qπςπζwωeτrtuτioρμpκaλsdfghςj ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ klzcvλοπbnmqwertuiopasdfghjklz ΤΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΔΕΙΞΕΙΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη στο σηµείο

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:...

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:... ΑΝΑΛΟΓΙΕΣ Μι νθοδέσμη έχει 5 λευκά κι 15 κόκκιν γρύφλλ. Τι μπορούμε ν πρτηρήσουμε; ότι τ κόκκιν είνι κτά δέκ περισσότερ πό τ λευκά, λλά κι ότι τ κόκκιν γρύφλλ είνι τρεις φορές περισσότερ πό τ λευκά Η μέτρηση

Διαβάστε περισσότερα

Σηµειώσεις στις ακολουθίες

Σηµειώσεις στις ακολουθίες Σηµειώσεις στις κολουθίες Η έννοι της κολουθίς Ας ρίξουµε µι µτιά στην επόµενη πράθεση ριθµών: 7,, 5, 9,, 7,, Όπως κτλβίνει κνείς, υπάρχουν άπειροι ριθµοί που διδέχοντι ο ένς τον άλλο, µε κάποι λογική

Διαβάστε περισσότερα

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9/0/5 έως 9/04/5 γρπτή εξέτση στo μάθημ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ ΛΥΚΕΙΟΥ Τμήμ: Βθμός: Ονομτεπώνυμο: Κθηγητές: Θ Ε Μ Α Α Α. Έστω μι συνάρτηση

Διαβάστε περισσότερα

1.3 ΕΜΒΑ Α ΕΠΙΠΕ ΩΝ ΣΧΗΜΑΤΩΝ

1.3 ΕΜΒΑ Α ΕΠΙΠΕ ΩΝ ΣΧΗΜΑΤΩΝ 1 1.3 ΕΜΒΑ Α ΕΠΙΠΕ ΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ 1. Εµδόν τετργώνο πλεράς : Ε =. Εµδόν ορθογωνίο : Ε = 3. Εµδό πρλληλογράµµο : Ε = ύψος ή ύψος άση άση 4. Εµδόν τχίο τριγώνο : Ε = 5. Εµδόν ορθογωνίο τριγώνο : Ε =

Διαβάστε περισσότερα

ΔΟΚΙΜΙΑ ΔΙΔΑΚΤΙΚΗΣ ΜΕ ΘΕΜΑΤΑ ΑΝΑΛΥΣΗΣ Η συμβολή των γεωμετρικών αναπαραστάσεων στην απόδειξη μαθηματικών προτάσεων

ΔΟΚΙΜΙΑ ΔΙΔΑΚΤΙΚΗΣ ΜΕ ΘΕΜΑΤΑ ΑΝΑΛΥΣΗΣ Η συμβολή των γεωμετρικών αναπαραστάσεων στην απόδειξη μαθηματικών προτάσεων y y=e y= ð 3 e Ä Ã Å 2 y = ln lnð 1 O A Â 1 lnð 2 e 3 ð 4 Δημήτρης Α. Ντρίζος Σχολ. Σύμ. Μθημτικών ΔΟΚΙΜΙΑ ΔΙΔΑΚΤΙΚΗΣ ΜΕ ΘΕΜΑΤΑ ΑΝΑΛΥΣΗΣ Η συμολή των γεωμετρικών νπρστάσεων στην πόδειξη μθημτικών προτάσεων

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ -ΚΕΦΑΛΑΙΑ:7 ο -8 ο -9 ο -10 ο. 2_19005 ΘΕΜΑ Β (7 ο -9 ο )

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ -ΚΕΦΑΛΑΙΑ:7 ο -8 ο -9 ο -10 ο. 2_19005 ΘΕΜΑ Β (7 ο -9 ο ) 0 05 ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ -ΚΕΦΑΛΑΙΑ:7 ο -8 ο -9 ο -0 ο _9005 ΘΕΜΑ Β (7 ο -9 ο ) Σε τρίγωνο ΑΒΓ η διχοτόµος της γωνίς Αˆ τέµνει την πλευρά ΒΓ σε σηµείο, τέτοιο ώστε Β 3 =

Διαβάστε περισσότερα

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx Λογάριθμοι Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έοι του λογάριθμου Έστω η εξίσωση θ, 0, θ 0. Η εξίσωση υτή έχει μοδική λύση φού η εκθετική συάρτηση f είι γησίως μοότοη κι το θ ήκει στο σύολο τιμώ της. Τη μοδική

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ Μετρικές σχέσεις Εμβαδά

Β ΛΥΚΕΙΟΥ Μετρικές σχέσεις Εμβαδά Β ΛΥΚΕΙΟΥ Μετρικές σχέσεις Εμβδά ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β. Κορτίκη Β. Κουτσογούλ Μ. Ρούσσ Γ. Ευθυμίου Μ. Ζφείρη ΕΜΕ Πράρτημ Τρικάλων ΑΣΚΗΣΗ η i. Ν υπολογιστούν οι πλευρές, β, γ του ορθογωνίου τριγώνου ΑΒΓ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.

Διαβάστε περισσότερα

4.4 Η ΠΥΡΑΜΙΔΑ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

4.4 Η ΠΥΡΑΜΙΔΑ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΜΡΟΣ 4.4 Η ΠΥΡΜΙ Ι Τ ΣΤΟΙΧΙ ΤΗΣ 89 4.4 Η ΠΥΡΜΙ Ι Τ ΣΤΟΙΧΙ ΤΗΣ Ορισμός Πυρμίδ λέγετι έν στερεό, ου µί έδρ του είνι έν ολύγωνο κι όλες οι άλλες έδρες του είνι τρίγων µε κοινή κορυφή. Τ στοιχεί της υρμίδς

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Δίνετι η εκθετική συνάρτηση: f a Γι ποιες τιμές του η ) γνησίως ύξουσ; β) γνησίως φθίνουσ; ( ) είνι:. Δίνοντι οι

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά;

ΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά; ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ι ΗΜΕΡΗΣΙΑ ΘΕΜΑ

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 24 ΜΑΪΟΥ 202 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ

ΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ Ρίζες πργμτικώ ριθμώ Τετργωική ρίζ πργμτικού ριθμού Ορισμός: Η τετργωική ρίζ εός μη ρητικού ριθμού είι ο μη ρητικός ριθμός β που ότ υψωθεί στο τετράγωο μς δίει το, δηλδή: = β β =,, β Πρτήρηση: Η ορίζετι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ 0 ΜΑΘΗΜΑΤΙΚΑ κτεύθυνσης Β ΛΥΚΕΙΟΥ Συνοπτικη θεωρι με ποδειξεις Λυμεν θεμτ γι εξετάσεις Θέμτ πό εξετάσεις Βγγέλης Α Νικολκάκης Μθημτικός ΠΕΡΙΕΧΟΜΕΝΑ ENOTHTA ΘΕΜΑ ΣΕΛΙΔΕΣ ΤΥΠΟΛΟΓΙΑ-ΑΠΟΔΕΙΞΕΙΣ-ΕΡΩΤΗΣΕΙΣ

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Μάρτιος 1998.

ΠΡΟΛΟΓΟΣ. Μάρτιος 1998. ΠΡΟΛΟΓΟΣ Το βιβλίο υτό περιλμβάνει την ύλη των Μθημτικών, που προβλέπετι πό το πρόγρμμ σπουδών της Θετικής Κτεύθυνσης της Β τάξης του Ενιίου Λυκείου, του οποίου η εφρμογή ρχίζει πό το σχολικό έτος 998-999

Διαβάστε περισσότερα

3.10 ΕΠΙΛΥΣΗ ΤΡΙΓΩΝΟΥ

3.10 ΕΠΙΛΥΣΗ ΤΡΙΓΩΝΟΥ 3. ΕΠΙΛΥΣΗ ΤΡΙΩΝΟΥ σκήσεις σχολικού βιβλίου σελίδς - A Οµάδς. ύο πύργοι κι βρίσκοντι εκτέρωθεν ενός ποτµού. Ένς πρτηρητής Π βρίσκετι προς το ίδιο µέρος του ποτµού µε τον πύργο. ν στο τρίγωνο Π είνι Π 3m,

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014 ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014 Θέμα 1 ο A. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: Ρ(Α Β) = Ρ(Α) +

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 4 IOYNIOY 2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α.1.

Διαβάστε περισσότερα

ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου

ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστ Βκλόπουλου, Βσίλη Κρκάνη, Άννς Βκλοπούλου Άσκηση η Δίνοντι τ δινύσμτ, β διάφορ του μηδνικού γι τ οποί ισχύι: β, β κι β i) Ν βρθούν τ μέτρ των δινυσμάτων,

Διαβάστε περισσότερα

1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή

1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή ΔΙΑΝΥΣΜΑΤΑ Εισγωγή Το διάνυσμ είνι έν χρκτηριστικό πράδειγμ έννοις που νπτύχθηκε μέσ πό τη στενή λληλεπίδρση Μθημτικών κι Φυσικής Ο κνόνς του πρλληλόγρμμου, σύμφων με τον οποίο το μέτρο κι η κτεύθυνση

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΜΑΘΗΜΑΤΙΚΑ. Β Τάξη Ενιαίου Λυκείου Θετική Κατεύθυνση ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΜΑΘΗΜΑΤΙΚΑ. Β Τάξη Ενιαίου Λυκείου Θετική Κατεύθυνση ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΜΑΘΗΜΑΤΙΚΑ Β Τάξη Ενιίου Λυκείου Θετική Κτεύθυνση ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ Με πόφση της ελληνικής

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009. ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ ΘΕΜΑ Α Επνληπτικό Διγώνισµ Μθηµτικών Γ Λυκείου ΕΠΑΛ Α. Ν δώσετε τον ορισµό της συχνότητς κι της σχετικής συχνότητς µις πρτήρησης x i. (7 Μονάδες) Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς

Διαβάστε περισσότερα

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. Περιέχει την ύλη που διδάσκεται στα Μαθηματικά της Κατεύθυνσης στη Γ Λυκείου

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. Περιέχει την ύλη που διδάσκεται στα Μαθηματικά της Κατεύθυνσης στη Γ Λυκείου ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ Περιέχει την ύλη που διδάσκετι στ Μθημτικά της Κτεύθυνσης στη Γ Λυκείου Στους δσκάλους μου με ευγνωμοσύνη Στους μθητές μου με ελπίδ Κάθε γνήσιο ντίτυπο έχει την ιδιόχειρη υπογρφή του συγγρφέ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα Ορισμό ΚΕΦΑΛΑΙΟ Αόριστ & Ορισμέν Ολκλήρωμ Αρχική-Πράγυσ Πράγυσ ή Αρχική ή Αντιπράγωγ μι συνάρτηση f, σε έν διάστημ Δ νμάζετι η πργωγίσιμη συνάρτηση F γι την πί ισχύει F ( ) = f ( ) γι κάθε Ξ D π.χ. π.χ.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

f(x) dx ή f(x) dx f(x) dx

f(x) dx ή f(x) dx f(x) dx ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Ορισμός. Αν η f είνι ολοκληρώσιμη στο διάστημ [ a, ) ή στο διάστημ (,], τότε ονομάζουμε γενικευμένο ολοκλήρωμ είδους το ολοκλήρωμ της μορφής f() d ή - f() d Ορισμός. Το σημείο

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

5.6 5.9. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 110 112. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ. Απάντηση Στο σχήµα (α) :

5.6 5.9. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 110 112. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ. Απάντηση Στο σχήµα (α) : 5.6 5.9 σκήσεις σχολικού βιβλίου σελίδας 0 ρωτήσεις Κατανόησης. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ (α ) ( β ) A x x, 5 ( γ) ψ x +, 5 x, 5 ε ε ε ε 4 δ δ ε ε B ε ε 4 (δ ) ψ ψ x 60 o 4 (ε) B 5

Διαβάστε περισσότερα

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες.

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες. 5.0 5. ΘΕΩΡΙ. Ορισµοί Τραπέζιο λέγεται το τετράπλευρο που έχει µόνο δύο πλευρές παράλληλες. άσεις τραπεζίου λέγονται οι παράλληλες πλευρές του. Ύψος τραπεζίου λέγεται η απόσταση των βάσεων. ιάµεσος τραπεζίου

Διαβάστε περισσότερα

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση. . Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα»

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα» 1 ΜΕΤΡΙΚΕ ΧΕΕΙ ΘΕΩΡΙΑ Μετρικές σχέσεις στο ορθογώνιο τρίγωνο το ορθογώνιο τρίγωνο το τετράγωνο κάθε κάθετης πλευράς είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της κάθετης στην υποτείνουσα.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΜΑΪΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµ 1ο Α. Έστω µι συνεχής συνάρτηση f ορισµένη σε έν διάστηµ.

Διαβάστε περισσότερα

Φροντιστήρια 2001-ΟΡΟΣΗΜΟ

Φροντιστήρια 2001-ΟΡΟΣΗΜΟ Φροτιστήρι -ΟΡΟΣΗΜΟ ΟΡΟΣΗΜΟ Άλγεβρ Β Λυκείου Επιμέλει: Σεμσίρης Αριστείδης -- Φροτιστήρι -ΟΡΟΣΗΜΟ - - Φροτιστήρι -ΟΡΟΣΗΜΟ Άλγεβρ Β Λυκείου Περιέχει Συοπτική Θεωρί Μεθοδολογί Ασκήσεω Λυμέες Ασκήσεις Λυμέ

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν

ΣΤΟΙΧΕΙΑ Τ Ρ Ι Γ Ω Ν Ω Ν ΣΤΟΙΧΕΙ Τ Ρ Ι Ω Ν Ω Ν Θυμάμι ότι... ˆ + ˆ + ˆ = 180 ο ντί ν ράφουμε συνέχει «το τρίωνο» μπορούμε ν ράφουμε Δ. ΠΛΕΥΡΕΣ = = = ΩΝΙΕΣ = = = ν χωρίσουμε τ τρίων σε κτηορίες, με κριτήριο τ κύρι στοιχεί τους,

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj klzxcvλοπbnαmqwertyuiopasdfghjklz ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ

Διαβάστε περισσότερα

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Γ'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της Γ Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν ίσως το αποκορύφωµα των

Διαβάστε περισσότερα

Μαθηματικά. Β'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Β'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Β'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της B Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν βάση των µαθηµατικών του

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE ΚΕΦΑΛΑΙΟ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE 1. Το σηµείο Μ (-, ) νήκει στη γρµµή µε εξίσωση Α. = = - Γ. = 1. ( ) ( - ) = 1 Ε. = -. Το κέντρο του κύκλου που έχει διάµετρο ΑΒ µε Α

Διαβάστε περισσότερα

τετραγωνικό εκατοστόµετρο 1 cm 2 1 10000 m2 =

τετραγωνικό εκατοστόµετρο 1 cm 2 1 10000 m2 = 3.5 ΜΟΝΑ ΕΣ ΜΕΤΡΗΣΗΣ ΘΕΩΡΙΑ. Μονάδες µέτρησης µήκους Βσική µονάδ το µέτρο. Συµβολίζετι m Υποδιιρέσεις του µέτρου : δεκτόµετρο dm = 0 m = 0, m Πολλπλάσιο του µέτρου : εκτοστόµετρο cm = 00 m = 0,0 m χιλιοστόµετρο

Διαβάστε περισσότερα

3x 2x 1 dx. x dx. x x x dx.

3x 2x 1 dx. x dx. x x x dx. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση (Υολογισμός του f () d Βσιζόμενος σε Ιδιότητες Ή στην Αρχική της f, η οοί Βρίσκετι ό Κνόνες Πργώγισης) Ν υολογίσετε το ολοκλήρωμ ( + ) d (Θέμ Β) Άσκηση (Υολογισμός του f () d

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΒΙΟΛΟΓΙΑΣ ΚΑΤΕΥΘΥΝΣΗΣ 2015

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΒΙΟΛΟΓΙΑΣ ΚΑΤΕΥΘΥΝΣΗΣ 2015 ΠΝΤΣΕΙΣ ΘΕΜΤΩΝ ΙΟΛΟΓΙΣ ΚΤΕΥΘΥΝΣΣ 2015 ΘΕΜ 1. 2. γ 3. 4. δ 5. γ ΘΕΜ 1. 1., 2., 3., 4., 5., 6., 7., 8. νφορά στις σελίδες γίνετι µε τη σελιδοποίηση του πλιού ιλίου. 2. Σχολικό ιλίο σελ.36 «Κτά την ένρξη

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1. Ένα ψυγείο την περίοδο των εκπτώσεων πωλείται µε έκπτωση 18% αντί του ποσού των 779. Να βρείτε πόση ήταν η αξία του ψυγείου πριν τις εκπτώσεις. Αν x ήταν η αξία του ψυγείου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 867 (Αναρτήθηκε 8 4 ) ίνονται τα διανύσµατα a και b µε µέτρα, 6 αντίστοιχα και ϕ [, π] a b+ x+ a b y 5= () δίνεται η εξίσωση ( ) ( ) α) Να αποδείξετε

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o A. Έστω µι συνεχής συνάρτηση σ' έν διάστηµ [, ]. Αν G είνι µι πράγουσ

Διαβάστε περισσότερα

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι Ίσ Τρίω όχι Ψευδοΐσ ι ημοσιεύτηε στο περιοδιό «φ» τ.5 008 ημ. Ι. Μπουάης Σχ. Σύμουλος Μθημτιώ Οι ερωτήσεις τω μθητώ μς είι σφλώς πάτ ευπρόσδετες λλά πρέπει ι τις εθρρύουμε με άθε τρόπο. Όχι μόο ιτί ζωτεύου

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα