Matematika I: Pitanja za završni dio ispita. 2. Definirati konjukciju dva iskaza. Konjukcija iskaza p i q je netačan iskaz

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Matematika I: Pitanja za završni dio ispita. 2. Definirati konjukciju dva iskaza. Konjukcija iskaza p i q je netačan iskaz"

Transcript

1 Univerzitet u Tuzli Prirodno-matematički fakultet Studijski odsjek fizika Predmetni nastavnik: Dr. Elvis Baraković, docent 1 Algebra iskaza Matematika I: Pitanja za završni dio ispita 1. Definirati pojam iskaza i istinitosne vrijednosti iskaza. 2. Definirati konjukciju dva iskaza. Konjukcija iskaza p i q je netačan iskaz (a) ako su oba iskaza iste istinitosne vrijednosti (b) ako su iskazi suprotnih istinitosnih vrijednosti (c) ako je bar jedan iskaz netačan (d) ako i samo ako su oba iskaza netačna. 3. Definirati disjunkciju iskaza. Disjunkcija iskaza p i q je tačan iskaz (a) ako je bar jedan od iskaza tačan (b) samo ako su oba iskaza tačna (c) ako su iskazi suprotnih istinitosnih vrijednosti. 4. Definirati implikaciju iskaza. Implikacija iskaza q i p, je tačan iskaz (a) ako su oba iskaza tačna (b) ako su iskazi suprotnih istinitosnih vrijednosti (c) ako su iskazi istih istinitosnih vrijednosti (d) ako iz q slijedi p. 5. Definirati ekvivalenciju iskaza. Ekvivalencija iskaza p i q je netačan iskaz (a) ako iz p ne slijedi q (b) ako su iskazi suprotni (c) ako su iskazi isti (d) ako je iskaz p tačan, i iskaz q tačan. 2 Skupovi i preslikavanja 6. Za skupove A i B kažemo da su jednaki (a) ako su svi elementi skupa A ujedno i elementi skupa B (b) ako vrijedi A B B A (c) ako imaju iste elemente na odgovarajućim mjestima (d) ako vrijedi ( x)(x A x B). 7. Defnirati uniju, presjek i razliku skupova.

2 8. Definirati razliku dva skupa i komplement skupa. Kakva je veza izmedu navedenih skupova? 9. Definirati gornje ograničenje skupa i supremum skupa. 10. Definirati donje ograničenje skupa i infimum skupa. 11. Definirati pojam preslikavanja. 12. Za preslikavanje f : X Y kažemo da je sirjektivno ako (a) svaki element iz skupa Y ima svoj original u skupu X (b) se svaki element skupa X preslikava u tačno jedan element skupa Y (c) vrijedi f(x) = Y (d) vrijedi f 1 (Y ) Y. 13. Za preslikavanje f : X Y kažemo da je injektivno ako (a) ( x, y X)(f(x) = f(y) x = y) (b) jednaki originali imaju jednake slike (c) jednakim slikama odgovaraju jednaki originali (d) ( x, y X)(x y f(x) f(y)). 14. Definirati bijektivno preslikavanje uz objašnjenje svih pojmova koji se javljaju u toj definiciji. 15. Definirati kompoziciju dva preslikavanja. Neka su zadata preslikavanja f : R R i g : R R, definirana sa f(x) = 3x + 2 i g(x) = x(x 1), formirati preslikavanja f g i g f. 3 Skupovi realnih i komplesnih brojeva 16. Navesti aksiome (pravila) skupa realnih brojeva za operaciju sabiranja. 17. Navesti aksiome (pravila) skupa realnih brojeva za operaciju množenja. 18. Navesti aksiome (pravila) skupa realnih brojeva koje se odnose na relaciju uredenja. 19. Objasniti pojam proširenog skupa realnih brojeva, te kao posljedica čega se on definira (Arhimedov aksiom). 20. Koje su od sljedećih jednakosti tačne: (a) (+ ) ( ) = (b) ( ) + ( ) = (c) (+ ) 0 = 0 (d) ( ) ( ) = + (e) (+ ) (+ ) = Koji od sljedećih iskaza nisu tačni? (a) ab = a b (b) x 2 = x (c) ( x, a R, a > 0)( x < a a < x < a)

3 (d) ( a, b R) a + b a + b. 22. Navesti aksiome skupa prirodnih brojeva. 23. Navesti princip matematičke indukcije. 24. Uvodeći pojam modula i argumenta kompleksnog broja izvesti trigonometrijski oblik kompleksnog broja. 25. Navesti Moavrovu formulu i izračunati z 3 ako je z = 1 + i. 26. U skupu kompleksnih brojeva riješiti jednačinu z = Izvesti formulu za korjenovanje kompleksnog broja i izračunati 3 1 i. 28. Definirati logaritam kompleksnog broja. Izračunati Ln( 4). 4 Algebra matrica 29. Definirati pojam matrice i njene osnovne elemente. 30. Ako je matrica formata m n, kako glase elementi njene pretposljednje vrste i treće kolone? 31. Kod kojih matrica možemo govoriti o tragu matrice? Definirati trag matrice. 32. Definirati determinantu matrice. Iskazati Stav Laplaceov razvoj determinante. 33. Za koje determinante navodimo Sarrusovo pravilo i kako to pravilo glasi? 34. Navesti osobine determinanti. 35. Definisati minor i bazisni minor matrice formata m n. 36. Definisati rang matrice formata m n. Koje su moguće vrijednosti ranga ovakve matrice? 37. Pri nalaženju ranga matrice služimo se elementarnim transformacijama. Navesti ih. 38. Elementarne trasformacije nad matricama su (zaokruži): (a) Zamjena mjesta dvjema kolonama (vrstama). (b) Brisanje jednakih vrsta (kolona). (c) Množenje kolone (vrste) proizvoljnim brojem. (d) Dodavanje jednoj koloni (vrsti) neke druge vrste (kolone). 39. Ako na matricu A primjenimo neku elementarnu transformaciju, dobijamo matricu B. Kako nazivamo takve matrice i koja je veza izmedju njih? 40. Definirati operaciju sabiranja nad matricama. Navesti osnovne osobine sabiranja matrica. 41. Definirati množenje matrice skalarom. Navesti osnovne osobine ovog množenja. 42. U definiciji proizvoda koje tipove matrica množimo i kako definiramo to množenje? u navedenom množenju i šta je njegov rezultat? Šta je bitno 43. Definisati operaciju množenja nad matricama i navesti osnovne osobine množenja matrica. 44. Šta znače pojmovi regularna i singularna matrica. 45. Koje matrice imaju inverznu matricu i kako računamo inverznu matricu (objasniti formulu).

4 5 Sistemi linearnih jednačina 46. Zapisati opšti sistem linearnih algebarskih jednačina. U zavisnosti od slobodnih članova sistema, kako dijelimo ove sisteme? (objasniti) 47. Zapisati opšti sistem linearnih algebarskih jednačina. U zavisnosti od oblika, kako dijelimo ove sisteme? (objasniti) 48. Zapisati opšti sistem linearnih algebarskih jednačina. Šta podrazumijevamo pod rješenjem ovog sistema. U zavisnosti od rješenja, kako dijelimo sisteme? (objasniti) 49. Za koje sisteme kažemo da su ekvivalentni? Navesti elementarne transformacije sistema. Ako na neki sistem primjenimo neke elementarne transformacije, kakva je veza izmedju polaznog i novog sistema jednačina? 50. Rješenje sistema linearnih jednačina se neće promijeniti ako nekoj vrsti proširene matrice sistema dodamo proizvoljnu drugu vrstu te matrice. DA NE 51. Rješenje sistema linearnih jednačina se neće promijeniti ako neku vrstu sistema pomnožimo nekim brojem. DA NE 52. Iskazati Kronecker-Capellijev stav. 53. Iskazati Cramerov stav. 54. Koliko rješenja ima homogeni sistem jednačina ako je rang matrice homogenog sistema sa n nepoznatih i n jednačina jednak n? 55. Za kvadratni homogeni sistem jednačina vrijedi (zaokružiti tačno): (a) On uvijek ima bar jedno rješenje. (b) On neće imati rješenje ako je detereminanta matrice sistema različita od 0. (c) Sistem je saglasan ako je rang matrice sistema jednak rangu proširene matrice. (d) On neće imati rješenje ako je detereminanta matrice sistema jednaka Sistem (a) ima samo trivijalno rješenje (b) nema rješenja (c) ima beskonačno mnogo rješenja. [ ] x y z = 57. Definirati pojmove [ karakteristične ] jednačine i sopstvenih vrijednosti matrice. Odrediti spektar 1 2 matrice A =

5 6 Vektori 58. Navesti definiciju vektorskog prostora. 59. Kada za vektore a 1, a 2,..., a n kažemo da su linearno nezavisani? 60. Kada za vektore a 1, a 2,..., a n kažemo da su linearno zavisani? 61. Kada za vektore a 1, a 2,..., a n iz vektorskog prostora V kažemo da čine bazu vektorskog prostora V? 62. Linearan vektorski prostor je konačno dimenzionalan ako (a) u njemu postoji baza. (b) u njemu postoji konačan linearno nezavisan sistem vektora. (c) u njemu postoji konačan sistem linearno nezavisnih vektora koji ima osobinu da ako mu dodamo bilo koji novi vektor on postaje linearno zavisan. (d) u njemu sve baze uvijek imaju isti broj vektora. 63. a) Navesti kriterij za ispitivanje linearne zavisnosti/nezavisnosti vektora. b) Ispitati linearnu zavisnost vektora: a 1 = (1, 2, 1), a 2 = ( 2, 4, 2), a 3 = (3, 1, 2). 64. Kada su vektori kolinearni, a kada komplanarni? 65. Vektori su kolinearni ako (a) su im nosači paralelne prave. (b) imaju iste intenzitete i smjerove. (c) su linearno zavisni. (d) su linearno nezavisni. 66. Vektori su komplanarni ako (a) su kolinearni i nezavisni. (b) im nosači leže u istoj ravni. (c) su svi ortogonalni na istu ravan. (d) svi imaju istu početnu tačku. 67. Dva vektora su jednaka samo ako (a) imaju iste pravce smjerove i intenzitete. (b) imaju iste intenzitete i komplanarni su. (c) se poklapaju. (d) su kolinearni i imaju jednake intenzitete i smjerove. 68. Zaokružiti tačne tvrdnje: (a) Svaka tri vektora u dvodimenzionalnom prostoru su linearno zavisna. (b) Svaka dva vektora u jednodimenzionalnom prostoru su linearno zavisna. (c) Tri vektora su linearno zavisna ako i samo ako su komplanarni.

6 (d) Svaka četri vektora su linearno zavisni. 69. Objasniti kako se vektori sabiraju. 70. Definisati skalarni proizvod vektora a i b. 71. Kako glasi uslov okomitosti dva vektora? 72. Ako su dati vektori x = x 1 i + x2 j + x3 k i y = 2x1 i + 3x2 j + a k koliko mora biti a da bi vektori bili ortogonalni? 73. Izvesti formulu za intenzitet vektora x = x 1 i +x2 j +x3 k, uz objašnjenje korištenih osobina. 74. Navesti formulu za izračunavanje ugla izmedju dva vektora. Koliki je ugao izmedju vektora x = a i + b j + c k i y = 2a i 2b j 2c k? 75. Definisati vektorski proizvod vektora a i b. 76. Navesti uslov kolinearnosti dva vektora. 77. Napisati uslov kolinearnosti vektora a = (a x, a y, a z ) i b = (b x, b y, b z ). 78. Objasniti kako dolazimo do formule za izračunavanje vektorskog proizvoda za vektore date u standardnoj kanonskoj bazi. 79. Mješoviti proizvod vektora u kanonskoj bazi. Za šta se koristi? 80. Objasniti vezu komplanarnosti tri vektora i njihovog mješovitog produkta. 81. Kako glasi uslov komlanarnosti vektora a = (a x, a y, a z ), b = (b x, b y, b z ) i c = (c x, c y, c z )? 82. Mješoviti produkt ( x y ) z jednak je (a) ( y z ) x (b) z ( x y ) (c) ( z x ) y (d) ( y z ) x 7 Prava i ravan 83. Nacrtati sliku i objasniti kako dolazimo do kanonskog oblika jednačine prave. 84. Kako glasi parametarski oblik jednačine prave. Napraviti prelaz iz parametarskog u kanonski oblik. 85. Napisati jednačinu prave kroz tačke A (x 1, y 1, z 1 ) i B (x 2, y 2, z 2 ). 86. Kako glasi opći oblik jednačine prave? Napraviti prelaz iz općeg u kanonski oblik jednačine ravni (u općem slučaju). 87. Kako glasi jednačina prave u kanonskom obliku, ako su njene dvije tačke A(1, 1, 2) i B(0, 1, 4)? 88. Kako glasi jednačina prave u parametarskom obliku, ako su njene dvije tačke A(1, 1, 2) i B(0, 1, 4)? 89. Može li prava imati vektor pravca p = (a, 0, 0) i koja je to prava?

7 90. Kako glasi uslov presjeka dvije prave? 91. Nacrtati sliku i objasniti kako dolazimo do općeg oblika jednačine ravni. 92. Šta predstavlja jednačina A(x x 0) + B(y y 0 ) + C(z z 0 ) = 0 i šta predstavljaju uvedene oznake. Objasniti! 93. Ravan (α) : Ax + By + Cz + D = 0 prevesti u segmentni oblik. 94. Kako glasi jednačina ravni koja prolazi kroz tačku M(2, 1, 3) i čiji je vektor normale n = (3, 1, 2)? 95. Neka je data ravan (α) : Ax + By + Cz + D = 0. Ako je C = 0 i D = 0 to znači da je ravan: a) paralelna x-osi, b) sadrži x-osu, c) sadrži z-osu, d) paralelna ravni xoz. 96. Zaokružiti tačna tvrdjenja: (a) Ravan čija je jednačina x = 0 paralelna je x-osi. (b) Ravan čija je jednačina Ax + By + 1 = 0 ne sadrži niti jednu tačku z-ose. (c) Ravan čija je jednačina Ax + By + Cz = 0 sadrži tačku koordinatnog početka. (d) Ravan čija je jednačina By + Cz + D = 0 paralelna je x-osi. 97. Napisati formulu za udaljenost tačke A (x 0, y 0, z 0 ) od ravni (α) : Ax + By + Cz + D = Dvije ravni su normalne jedna na drugu (a) ako su im karakteristični vektori ortogonalni. (b) ako se sijeku u jednoj tački. (c) ako im je vektorski produkt karakterističnih vektora jednak 0. (d) ako su im karakteristični vektori kolinearni. 99. Kako glase uslovi ortogonalnosti i paralelnosti dvije ravni. Kako te uslove dobijemo iz formule za ugao izmedju dvije ravni? 100. Za koje α R će prava x Za koje α R će prava x 1 2 = y 1 2 = y 2 2 = z α = z 3 8 Osnovne osobine realne funkcije biti paralelna ravni x + y + 2z = 1? biti paralnelna ravni x + y + 2z = 1? 102. Nabrojati načine zadavanja funkcija i za svaki način dati odgovarajući primjer Definisati graf funkcije. Šta je graf funkcije y = x 2 1. primjer parne funkcije Definisati neparnost funkcije i slikom objasniti geometrijski smisao neparnosti. Navesti primjer neparne funkcije.

8 105. Ako su funkcije f i g parne, takva je i funkcija (a) f g (b) f + g (c) f g (d) f g Ako su funkcije f i g neparne takve su i funcije f + g i f g. DA NE 107. Navesti definiciju ograničenosti funkcije sa gornje strane. Navesti negaciju te definicije Navesti definiciju ograničenosti funkcije sa donje strane. Navesti negaciju te definicije Da li funkcija može biti neograničena na ograničenom skupu? DA NE 110. Definisati osobinu periodičnosti funkcije. Kakva je razlika izmedju periode i osnovne periode funkcije? 111. Definisati pojmove rastuće i strogo rastuće funkcije. Kakva je razlika izmedju ovih pojmova? 112. Neka su a, b R i a tačka nagomilavanja domena funkcije f. Definirati lim x a f(x) = b i dati negaciju ovog pojma Dokazati jedinstvenost granične vrijednosti funkcije u tački Izraz ( M > 0)( δ > 0)( x D f )(0 < x a < δ f(x) > M) predstavlja (a) lim f(x) = a x (b) lim f(x) = + x a (c) lim x f(x) = a (d) lim x a f(x) = Definisati lijevu i desnu graničnu vrijednost funkcije u tački. Navesti njihovu vezu sa postojanjem granične vrijednosti funkcije u toj tački Da li postoji granična vrijednost funkcije f(x) = x u tački x = 0. Obrazložiti odgovor! 117. Navesti teorem koji govori o operacijama nad limesima funkcija Kako glase teoremi o dvije i tri funkcije Dokazati da je lim x 0 sin x x = Definisati neprekidnost funkcije u tački i na skupu Koje vrste su otklonjivi prekidi? Na primjeru pokazati zašto ovakve prekide nazivamo otklonjivim Kako se definišu asimptote funkcije? 123. Kada postoji horizontalna a kada kosa asimptota funkcije? Da li funkcija definirana na skupu (0, 1) (1, + ) može imati horizontalnu asimptotu? 124. Kada postoji vertikalna asimptota funkcije? 125. Ako je y = kx + n kosa asimptota funkcije iskazati formule za k i n.

9 9 Diferencijalni račun 126. Definisati izvod funkcije u tački, navesti oznake koje koristimo za izvod funkcije. Kada za funkciju kažemo da je diferencijabilna? 127. Funkcija y = f(x) je diferencijabilna u tački x 0 (a, b) (a) ako ima izvod u toj tački. f(x 0 + h) f(x 0 ) (b) ako postoji i konačan je lim h 0 h (c) ako je u okolini te tačke funkcija neprekidna. (d) ako ima konačan ili beskonačan izvod u toj tački Iskazati stav o neophodnim i dovoljnim uslovima diferencijabilnosti funkcije u tački Iskazati i dokazati stav o vezi neprekidnosti i diferencijabilnosti funkcije u tački. Primjerom pokazati da je diferencijabilnost jača osobina od neprekidnosti Šta je lijevi, a šta desni izvod funkcije u tački? 131. Navesti i dokazati pravilo o diferenciranju zbira dvije funkcije Navesti i dokazati pravilo o diferenciranju razlike dvije funkcije Navesti i dokazati pravilo o diferenciranju proizvoda dvije funkcije Navesti i dokazati pravilo o diferenciranju količnika dvije funkcije Navesti stav o derivaciji inverzne funkcije. Primjeniti ovo pravilo na izračunavanje izvoda funkcije y = ln x Kako glasi pravilo za nalaženje izvoda parametarski zadate funkcije? 137. Slikom objasniti geometrijsko tumačenje izvoda. Kako glase jednačine normnale i tangente na krivu u tački? 138. Koji od sljedećih izraza predstavljaju pravila za diferencijal funkcije: (a) d(f + g) = df + dg. ( ) f (b) d = f g fg g g 2 (c) df(x) = f (x)dx. (d) d(f g) = gdf + fdg Kako definišemo n-ti izvod i n-ti diferencijal funkcije jedne varijable? 140. Izvesti pravilo logaritamskog izvoda i primjeniti ga na izvod funkcije y = x ln x Iskazati Fermatov teorem Pod stacionarnom tačkom funkcije podrazumijevamo (a) tačku u kojoj je prvi izvod jednak nuli. (b) tačku u kojoj je prvi diferencijal funkcije jednak 0. (c) nepokretnu tačku funkcije.

10 (d) tačku u kojoj funkcija ima ekstrem Iskazati Rolleov teorem Iskazati Lagrangeov teorem Navesti prvo L Hospitaleovo pravilo. Kako ovo pravilo koristimo na izračunavanje neodredjenih oblika 0? 146. Navesti drugo L Hospitaleovo pravilo. Kako ovo pravilo koristimo na izračunavanje neodredjenih oblika 0? 147. Navesti Prvo pravilo za ekstreme funkcije i primjeniti ga za funkciju f(x) = xe x Navesti Drugo pravilo za ekstreme funkcije i primjeniti ga za funkciju f(x) = x 2 ln x Navesti I i II teorem o konveksnosti. Odrediti intervale konveksnosti za funkciju f(x) = 1 x Navesti I i II teorem o prevojnim tačkama. Ispitati prevojne tačke funkcije f(x) = ln x x.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1 Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana.

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 2 Dokazati da se visine trougla seku u jednoj tački ortocentar. 1 Dvostruki vektorski proizvod Važi

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

I Pismeni ispit iz matematike 1 I

I Pismeni ispit iz matematike 1 I I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Analitička geometrija

Analitička geometrija 1 Analitička geometrija Neka su dati vektori a = a 1 i + a j + a 3 k = (a 1, a, a 3 ), b = b 1 i + b j + b 3 k = (b 1, b, b 3 ) i c = c 1 i + c j + c 3 k = (c 1, c, c 3 ). Skalarni proizvod vektora a i

Διαβάστε περισσότερα

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ LINEARNA ALGEBRA 1 ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ 2. VEKTORSKI PROSTORI - LINEARNA (NE)ZAVISNOST SISTEM IZVODNICA BAZA Definicija 1. Neka je F

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Sistemi linearnih jednačina

Sistemi linearnih jednačina Sistemi linearnih jednačina Sistem od n linearnih jednačina sa n nepoznatih (x 1, x 2,..., x n ) je a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2, a n1 x 1 + a n2 x 2 +

Διαβάστε περισσότερα

Matematika I. Elvis Baraković, Edis Mekić. 4. studenog Pojam vektora. Sabiranje i oduzimanje vektora

Matematika I. Elvis Baraković, Edis Mekić. 4. studenog Pojam vektora. Sabiranje i oduzimanje vektora Matematika I Elvis Baraković, Edis Mekić 4. studenog 2011. 1 Analitička geometrija 1.1 Pojam vektora. Sabiranje i oduzimanje vektora Skalarnom veličinom ili skalarom nazivamo onu veličinu koja je potpuno

Διαβάστε περισσότερα

Matematika 1 { fiziqka hemija

Matematika 1 { fiziqka hemija UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Matematika 1 { fiziqka hemija Vektori Tijana Xukilovi 29. oktobar 2015 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima. M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

4 Izvodi i diferencijali

4 Izvodi i diferencijali 4 Izvodi i diferencijali 8 4 Izvodi i diferencijali Neka je funkcija f() definisana u intervalu (a, b), i neka je 0 0 + (a, b). Tada se izraz (a, b) i f( 0 + ) f( 0 ) () zove srednja brzina promene funkcije

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Osnovne definicije i rezultati iz Uvoda u linearnu algebru

Osnovne definicije i rezultati iz Uvoda u linearnu algebru Osnovne definicije i rezultati iz Uvoda u linearnu algebru (0.01) Simetrije Neka je A = [a ij ] kvadratna matrica (matrica oblika n n). a) Za A kažemo da je simetrična matrica kadgod je A = A, tj. kadgod

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu:

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: Refleksija S φ u odnosu na pravu kroz koordinatni početak Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: ( ) ( ) ( ) x cos 2φ

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Linearna algebra Materijali za nastavu iz Matematike 1

Linearna algebra Materijali za nastavu iz Matematike 1 Linearna algebra Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 40 Uvod Matrica: matematički objekt koji se sastoji od brojeva koji su rasporedeni u retke

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

PRVI IZVOD. f x0 x f x0. y x. ) lim lim ( ) ( ) x. Neka je y f(x) funkcija definisana na intervalu [a,b], x 0

PRVI IZVOD. f x0 x f x0. y x. ) lim lim ( ) ( ) x. Neka je y f(x) funkcija definisana na intervalu [a,b], x 0 . y PRVI IZVOD Neka je y f() funkcija definisana na intervalu [a,b], 0 unutrašnja tačka tog intervala, Δ ( 0) priraštaj argumenta i Δy odgovarajući priraštaj funkcije. Ako postoji granična vrijednost količnika

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

x n +m = 0. Ovo proširenje ima svoju manu u tome da se odričemo relacije poretka - no ne možemo imati sve...

x n +m = 0. Ovo proširenje ima svoju manu u tome da se odričemo relacije poretka - no ne možemo imati sve... 1 Kompleksni brojevi Kompleksni brojevi Već veoma rano se pokazalo da je skup realnih brojeva preuzak čak i za neke od najosnovnijih jednačina. Primjer toga je x n +m = 0. Pokazat ćemo da postoji logično

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012 MATERIJAL ZA VEŽBE Predmet: MATEMATIČKA ANALIZA Nastavnik: prof. dr Nataša Sladoje-Matić Asistent: dr Tibor Lukić Godina: 202 . Odrediti domen funkcije f ako je a) f(x) = x2 + x x(x 2) b) f(x) = sin(ln(x

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

> 0 svakako zadovoljen.

> 0 svakako zadovoljen. Elektrotehnički fakultet u Sarajevu akademska 0/3 ŠIFRA KANDIDATA _ Zadatak Za koje vrijednosti parametra ( ) + 3 = 0 m x mx oba iz skupa i suprotnog znaka? m su rješenja kvadratne jednačine a) m > 3 b)

Διαβάστε περισσότερα

Zbirka rešenih zadataka iz Matematike I

Zbirka rešenih zadataka iz Matematike I UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA Tatjana Grbić Silvia Likavec Tibor Lukić Jovanka Pantović Nataša Sladoje Ljiljana Teofanov Zbirka rešenih zadataka iz Matematike I Novi Sad, 009. god.

Διαβάστε περισσότερα

Funkcije. Predstavljanje funkcija

Funkcije. Predstavljanje funkcija Funkcije narna relacija f je funkcionalna relacija ako važi: ( ) za svaki a postoji jedinstven element b takav da (a, b) f. Definicija. Funkcija 1 je uredjena trojka (,, f) gde f zadovoljava uslov: Činjenicu

Διαβάστε περισσότερα

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a: Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave

Διαβάστε περισσότερα

LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA

LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA Predrag Tanović February 11, 211 {WARNING: Sadržaj ovog materijala NI U KOM SLUČAJU NE MOŽE ZAMENITI UDŽBENIK: radi se o prepravljanim slajdovima predavanja. Reference

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R. Matematika 4 zadaci sa pro²lih rokova, emineter.wordpress.com Pismeni ispit, 26. jun 25.. Izra unati I(α, β) = 2. Izra unati R ln (α 2 +x 2 ) β 2 +x 2 dx za α, β R. sin x i= (x2 +a i 2 ) dx, gde su a i

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

Geometrija (I smer) deo 2: Afine transformacije

Geometrija (I smer) deo 2: Afine transformacije Geometrija (I smer) deo 2: Afine transformacije Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Transformacije koordinata tačaka Transformacije koordinata tačaka Pretpostavimo da za bazne

Διαβάστε περισσότερα

ZBIRKA TESTOVA IZ ALGEBRE

ZBIRKA TESTOVA IZ ALGEBRE ZBIRKA TESTOVA IZ ALGEBRE 0.0.04. Studenti koji na testu kod pitanja do zvezdica naprave više od tri greške nisu položili ispit! U svakom zadatku dato je više odgovora, a treba zaokružiti tačne odgovore

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4.

x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4. Linearna algebra A, kolokvijum, 1. tok 22. novembar 2014. 1. a) U zavisnosti od realnih parametara a i b Gausovim metodom rexiti sistem linearnih jednaqina nad poljem R ax + (a + b)y + bz = 3a + 5b ax +

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα