i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και"

Transcript

1 Δύο αβαρή και µη εκτατά νήµατα του ίδιου µή κους είναι στερεωµένα στο ίδιο σηµείο Ο, ενώ στις ελεύθερες άκρες των νηµάτων είναι δεµένα δύο σφαιρίδια, µε µάζες 1 και. Eκτρέ πουµε τα σφαιρίδια από την θέση ισορροπίας τους, ώστε τα νήµατα να σχηµατίζουν µε την κατακόρυφη διεύθυνση την ίδια γωνία φ και τα αφήνουµε ελεύθερα, οπότε τα σφαιρίδια συγκρούονται στην θέση ισορροπίας τους. Eάν η κρούση των δύο σφαιριδίων είναι ελαστική, να βρείτε: i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και ii) τον λόγο των µαζών των δύο σφαιριδίων, ώστε το σφαιρίδιο µάζας να ακινητοποιείται αµέσως µετά την κρούση. Ποια είναι στην περί πτωση αυτή η µέγιστη εκτροπή από την κατακόρυφη διεύθυνση του νήµατος που συγκρατεί το σφαιρίδιο µάζας 1, µετά την κρούση; ΛΥΣΗ: i) Κατά το πρόβληµα στις αρχικές θέσεις των σφαιριδίων τα νήµατα σχηµατίζουν την ίδια γωνία φ µε την κατακόρυφο διεύθυνση, οπότε οι ταχύτη τες µε τις οποίες φθάνουν ταυτόχρονα στο κατώτατο σηµείο Κ των τροχιών τους είναι αντίθετες, το δε κοινό τους µέτρο v θα βρεθεί εάν εφαρµόσουµε για το καθένα από αυτά το θεώρηµα διατήρησης της µηχανικής ενέργειας, Έτσι θα έχουµε την σχέση: Σχήµα = v / - g(l - L"#$) v = gl(1 - "#$)

2 v = 4gLµ (" / ) v= glµ (" / ) (1) Επειδή µετά την κρούση τα σφαιρίδια φθάνουν στις αρχικές τους θέσεις, οι ταχύτητές τους αµέσως µετά την κρούση αντιστρέφονται (σχήµα 1) και συµφω να µε την αρχή διατήρησης της ορµής θα ισχύει η σχέση: 1 v - v = - 1 v+ v 1 v = v 1 / = 1 () ii) Aς δεχθουµε ότι οι µάζες 1, των δύο σφαιριδίων έχουν τιµές που εξασ φαλίζουν ότι το σφαιριδιο µάζας αµέσως µετά την κρούση ακινητοποιείται. Eάν v 1 είναι η ταχύτητα του σφαιριδίου µάζας 1 αµέσως µετά την κρούση (σχήµα ), τότε σύµφωνα µε την αρχή διατήρησης της ορµής για το σύστηµα των δύο σφαιριδίων θα έχουµε την σχέση: 1 v - v = 0-1 v 1 v 1 = ( - 1 )v / 1 (3) Σχήµα Εξάλλου επειδή η κρούση των δύο σφαιριδίων είναι ελαστική, η συνολική κινητική τους ενεργειά δεν µεταβάλλεται και αυτό µας επιτρέπει να γράψουµε την σχέση: 1 v + v = v 1 1 (3) v + v = 1 v 1 1 v + v = 1 ( - 1 ) v / = ( - 1 ) / = = / 1 = 3 (4) Eάν φ 1 είναι η µέγιστη εκτροπή του νήµατος που συγκρατεί το σφαιρίδιο µάζας 1 µετά την κρούση, τότε σύµφωνα µε το θεώρηµα διατήρησης της µηχανικής ενέργειας θα ισχύει η σχέση: 1 v 1 (3) - 1 g(l - L"#$ 1 ) = v 1 = gl(1 - "#$ 1 )

3 (1).(4) ( - 1 ) v / 1 = 4gLµ (" 1 / ) (3 1-1 ) 4gLµ (" / )/ 1 = 4gLµ (" 1 / ) µ (" 1 / ) = µ(" / ) P.M. fysikos Δύο δίσκοι Δ 1 και Δ µε αντίστοιχες µάζες 1 και είναι στερεωµένοι στις άκρες ενός κατακόρυφου ιδανικού ελα τηρίου σταθεράς k. Το σύστηµα ισορροπεί ώστε ο δίσκος Δ να εφά πτεται σε οριζόντιο έδαφος, όπως φαίνεται στο σχήµα (3). Εφαρµό ζουµε στο κέντρο του δίσκου Δ 1 κατακόρυφη δύναµη µε φορά προς τα κάτω, της οποίας το µέτρο έχει επιλεγεί, ώστε αν το σύστηµα αφε θεί ελεύθερο ο δίσκος Δ µόλις να χάνει την επαφή του µε το οριζόν τιο έδαφος. i) Nα βρείτε σε συνάρτηση µε τον χρόνο τον ρυθµό µεταβολής της ορ µής και της κινητικής ενέργειας του δίσκου Δ 1. ii) Nα βρείτε σε συνάρτηση µε τον χρόνο την δύναµη που δέχεται ο δίσκος Δ από το έδαφος. Δίνεται η επιτάχυνση g της βαρύτητας. ΛYΣH: i) i) Πριν την εφαρµογή της δύναµης F ο δίσκος Δ 1 ισορροπούσε στην θέση Ο (στάθµη ε 0 ) και το ελατήριο ήταν συµπιεσµένο κατά α από την φυσική του κατάσταση και ισχύει η σχέση: 1 g = kα α = 1 g/k (1) Σχήµα 3 Σχήµα 4 Όταν επί του δίσκου Δ 1 εφαρµόζεται η δύναµη F αυτός ισορροπεί σε νέα θέση που βρίσκεται κάτω από την Ο (στάθµη ε 1 ) σε απόσταση x 0 από αυτήν (σχήµα 3)

4 και ισχύει η σχέση: F = kx 0 x 0 = F/k () Aς δεχθούµε ότι το µέτρο της δύναµης F είναι τέτοιο, ώστε όταν αυτή αποσυρ θεί ο δίσκος Δ οριακά να χάνει την επαφή του µε το οριζόντιο έδαφος. Αυτό σηµαίνει ότι ο µεν δίσκος Δ 1 εκτελεί κατακόρυφη απλή αρµονική ταλάντωση µε κέντρο ταλάντωσης το Ο και σταθερά ταλάντωσης k, ο δε δίσκος Δ ισορροπεί επί του εδάφους και την στιγµή που ο Δ 1 βρίσκεται στην ανώτατη θέση του (στάθµη ε στο σχήµα 4) η δύναµη επαφής του δίσκου Δ µε το έδαφος µηδενίζε ται. Εποµένως την στιγµή αυτή ο δίσκος Δ ισορροπεί οριακά υπό την επίδραση του βάρους του g και της δύναµης F " από το ελατήριο, δηλαδή η F " την στιγµή αυτή είναι αντίθετη του βάρους g, δηλαδή έχει φορά προς τα πάνω, οπότε το ελατήριο είναι τεντωµένο κατά β από την φυσική του κατάσταση (σχήµα 4) και θα ισχύει η σχέση: g = kβ β = g/k (3) Όµως από το σχήµα (4) προκύπτει ότι α+β= x 0, η οποία µε βάση τις σχέσεις (1), () και (3) γράφεται: 1 g k + 1 g k = F k F = ( 1 + )g (4) Aν λάβουµε ως αρχή µέτρησης του χρόνου την στιγµή που το σύστηµα αφήνε ται ελευθερο, δηλαδη την στιγµή που αποσύρεται η δύναµη F και ως θετική φόρα στην κατακόρυφη διεύθυνση την προς τα κάτω, τότε η εξίσωση κίνησης του δίσκου Δ 1 θα έχει την µορφή: () x = x 0 µ (" + #/) x = F k "# $ & % k ' (4) ) 1 ( x = ( 1 + )g k $ "#& % k ' ) (5) 1 ( Eξάλλου κάθε στιγµή ο ρυθµός µεταβολής της ορµής του δίσκου Δ 1 είναι ίσος µε την συνισταµένη δύναµη που δέχεται, δηλαδή µπορουµε για τις αλγεβρικές τιµές των δύο αυτών διανυσµάτων να γράψουµε την σχέση: dp d = F(x) = -kx (5) dp d = -g( $ 1 + )"#& % k ' ) (6) 1 ( Ας δεχθούµε ότι µεταξύ των χρονικών στιγµών και +d η κινητική ενέργεια του δίσκου Δ 1 µεταβάλλεται κατά dk. Εφαρµόζοντας κατά τον χρόνο d για τον δίσκο Δ 1 το θεώρηµα έργου-ενέργειας παίρνουµε την σχέση: dk = dw F(x) = F(x)dx dk = -kxdx

5 dk d = -kx dx d = -kxv (7) όπου dx η µεταβολή του µεγέθους x κατά τον χρόνο d, v η αλγεβρική τιµή της ταχύτητας του δίσκου την στιγµή και dk/d o αντίστοιχος ρυθµός µεταβολής της κινητικής ενέργειας του δίσκου. Όµως για την αλγεβρική τιµή της ταχύτη τας του δίσκου Δ 1 ισχύει η σχέση: () v = x 0 "µ ( + #) = -x 0 "µ v = - F k k " µ $ 1 # k % (4) ' 1 & v = - g( 1 + ) k k " µ $ 1 # k % ' (8) 1 & H (7) µε βάση την (6) και (8) γράφεται: dk d = g ( 1 + ) k k " µ $ 1 # k % ' 1 & ()* " $ # k % ' (9) 1 & ii) Eπειδή στην διάρκεια της ταλάντωσης του δίσκου Δ 1 ο δίσκος Δ ισορροπεί, µπορουµε να γράψουµε για τον Δ την σχέση: F " - N + g = 0 N = F " + g (10) Σχήµα 5 όπου N η δύναµη επαφής του δίσκου Δ µε το έδαφος και F ελ η αλγεβρική τιµή της δύναµης F " που δέχεται ο δίσκος αυτός από το ελατήριο (η δύναµη F " αλ λάζει φορά στην διάρκεια που ο δίσκος Δ 1 ταλαντεύεται). Όµως ισχύει: (5) F " = 1 g + kx & F " = 1 g + g( 1 + )#$%( ' k ) + 1 *

6 oπότε η σχέση (10) γράφεται: $ N= g + 1 g + g( 1 + )"# & % k ' ) 1 ( * $ N= ( 1 + )g, 1 + "#& +, % k ' - ) / 1 (./ P.M. fysikos Oµογενής σφαίρα µάζας εφάπτεται σε οριζόντιο έδαφος και σε κατακόρυφο τοίχο, ενώ στο ανώτατο σηµείο Α αυτής ενεργεί οριζόντια δύναµη F η οποία κατευθύνεται κάθετα προς τον τοίχο, οπώς φαίνεται στο σχήµα (6). Εάν ο συντελεστής οριακής τριβής µεταξύ σφαίρας-εδάφους και µεταξύ σφαίρας-τοίχου είναι n, να βρεθεί η µέγιστη τιµή του µέτρου της F, ώστε η σφαίρα να ισορ ροπεί. Δίνεται η επιτάχυνση g της βαρύτητας. ΛYΣH: Ας δεχθούµε ότι το µέτρο της δύναµης F έχει τιµή που εξασφαλίζει την ισορροπία της. Επί της σφαίρας εκτός από την F ενεργεί το βάρος της w, η αντίδραση του κατακόρυφου τοίχου, η οποία αναλύεται στην τριβή T 1 και στην κάθετη αντίδραση N 1 και η αντίδραση του οριζοντίου επιπέδου, η οποία Σχήµα 6 αναλύεται στην κάθετη αντίδραση N και στην τριβή T. Η µεγαλύτερη τιµή που µπορεί να λάβει το µέτρο της F αντιστοιχεί στην περίπτωση που επίκειται η ολίσθηση της σφαίρας επί του τοίχου και του εδάφους, που σηµαίνει ότι στην περίπτωση αυτή οι τριβές είναι οριακές, δηλαδή τα µέτρα τους ικανοποιούν τις σχέσεις Τ 1 =nn 1 και Τ =nn. Στην οριακή αυτή κατάσταση ισορροπίας της σφαί ρας η συνισταµένη των οριζόντιων και των κατακόρυφων δυνάµεων που δέχε ται είναι µηδενική, δηλαδή ισχύουν οι σχέσεις:

7 -F ax - T + N 1 = 0 N + T 1 - w = 0 " # F ax = -T + N 1 " w = N + T 1 nn # F ax = -nn + N 1 " w = N + nn 1 # (1) Θεωρώντας τις σχέσεις (1) ως σύστηµα µε αγνώστους τα Ν 1 και Ν, παίρνουµε από την λύση του το τις σχέσεις: N 1 = F ax + nw 1 + n και N = w - nf ax 1 + n () Εξάλλου η συνισταµένη ροπή όλων των δυνάµεων που δέχεται η σφαίρα, περί το κέντρο µάζας της C, είναι µηδενική λόγω της οριακής της ισορροπίας, δηλα δή ισχύει η σχέση: -F ax R + T R + T 1 R = 0 F ax - T 1 - T = 0 () F ax - nn 1 - nn = 0 F ax - n(f ax + nw) 1 + n - n(w - nf ax) 1 + n = 0 F ax (1 + n ) - nf ax - n w - nw + n F ax = 0 F ax (1 + n - n) = n w + nw F ax = n w + nw n(n + 1) = n - n + 1 n - n + 1 g P.M. fysikos Βαρύ σχοινί αιωρείται ελεύθερα στερεωµένο στις άκρες του Α και Β λαµβάνοντας το σχήµα µιας καµπύλης που βρίσκε ται σε κατακόρυφο επίπεδο και ονοµάζεται αλυσοειδής καµπύλη (σχήµα 7). Εάν η τάση του σχοινιού στα σηµεία στηρίξεως Α, Β και στο κατώτατο σηµείο του Κ είναι Τ Α, Τ Β και Τ Κ αντιστοίχως, µε Τ Α >Τ Κ και Τ Β >Τ Κ, να βρεθεί η µάζα του σχοινιού. Δίνεται η επιτάχυνση g της βαρύτητας. ΛΥΣΗ: Εξετάζοντας την ισορροπία του τµήµατος ΑΚ του σχοινιού παρατηρού µε ότι το τµήµα αυτό δέχεται το βάρος του w 1, το οποίο θεωρείται ότι ενεργεί στο κέντρο µάζας C 1 του τµήµατος ΑΚ, την δύναµη T A από το σηµείο στήριξης Α, της οποίας ο φορέας εφάπτεται του σχοινιού στο σηµείο αυτό και τέλος την δύναµη T K από το τµήµα ΒΚ του σχοινιού, της οποίας ο φορέας εφάπτεται του σχοινιού στο κατώτερο σηµείο του Κ, δηλαδή ο φορέας αυτός είναι οριζόντιος. Πρέπει οι φορείς των τριών αυτών δυνάµεων να τέµνονται στο ίδιο σηµείο Ο 1 το οποίο βρίσκεται επί του οριζόντιου άξονα Κx, η δε συνισταµένη των T K και w 1 να είναι αντίθετη της T A. Έτσι τα µέτρα των τριών αυτών δυνάµεων, λόγω της ορθογωνιότητας των T K και w 1 θα ικανοποιούν την σχέση: T A = T K + w 1 w 1 = T A - T K 1 g = T A - T K

8 1 g = T A - T K 1 = T A - T K / g (1) Σχήµα 7 όπου 1 η µάζα του τµήµατος ΑΚ του σχοινιού. Εάν εργασθούµε µε τον ίδιο τρόπο για το τµήµα ΒΚ θα καταλήξουµε στην σχέση: = T B - T K / g () όπου η µάζα του τµήµατος ΒΚ. Προσθέτοντας κατά µέλη τις σχέσεις (1) και () παίρνουµε: 1 + = T B - T K / g + T B - T K / g ". = T B - T K + T ( B - T K ) / g (3) όπου σχ. η η ζητούµενη µάζα του σχοινιού. P.M. fysikos Λεπτός δακτύλιος ακτίνας R, κυλίεται χωρίς ολίσθηση πάνω σε οριζόντιο έδαφος, ώστε η ταχύτητα του κέντρου του να είναι σταθερή και ίση µε v C. i) Nα βρείτε την ταχύτητα ενός σηµείου M της περιφέρειας του δακ τυλίου, την στιγµή που η επιβατική του ακτίνα ως προς το κέντρο του O σχηµατίζει γωνία φ µε την κατακόρυφη διεύθυνση και να δείξετε ότι ο φορέας της είναι κάθετος στην ευθεία που συνδέεει το σηµείο M µε το σηµείο επαφής του δακτυλίου και οριζόντιου επιπέδου. ii) Nα δείξετε ότι, η κύλιση του δακτυλίου είναι ισοδύναµη µε µια γνήσια περιστροφή αυτού περί άξονα που διέρχεται από το σηµείο επαφής του µε το οριζόντιο έδαφος και είναι κάθετος στο επίπεδό του, η δε γωνιακή της ταχύτητα είναι ίση µε τη γωνιακή ταχύτητα της κύλισης, δηλαδή ίση µε v C /R.

9 ΛYΣH: i) H ταχύτητα v M ενός τυχαίου σηµείου M της περιφέρειας του κυλιό µενου δακτυλίου, είναι ίση µε το διανυσµατικό άθροισµα της ταχύτητας v C της µεταφορικής του κίνησης (δηλαδή της ταχύτητας του κέντρου µάζας του C) και της ταχύτητας v, που οφείλεται στην περιστροφική κίνηση του δακτυλίου, περί άξονα που διέρχεται από το κέντρο µάζας του C και είναι κάθετος στο επί πεδό του. Δηλαδή ισχύει η διανυσµατική σχέση: v M = v C + v (1) Σχήµα 8 Όµως η ταχύτητα v είναι κάθετη στην CM και το µέτρο της είναι ίσο µε ωr, όπου η γωνιακή ταχύτητα περιστροφής του δακτυλίου και επειδή η ταχύ τητα v C είναι οριζόντια, η γωνία των διανυσµάτων v C και v είναι ίση µε φ. Eξάλλου, λόγω της κύλισης του δακτυλίου ισχύει v C =ωr, δηλαδή το µέτρο της v είναι ίσο µε το µέτρο της v C. Σύµφωνα µε τον κανόνα του παραλληλογ ράµµου, για τα µέτρα των ταχυτήτων της σχέσεως (1) ισχύει: v M = v C + v + v C v " #$%& = v C + v C + v C v C #$%& v M = v C (1 + "#$) = v C 4"# ($ /) = v C "#($ /) () ii) Aπό την Γεωµετρία του σχήµατος (8) προκύπτει ότι, το διάνυσµα της ταχύ τητας v M είναι κάθετο στην ευθεία AM και ότι: AM = (AK) = R"#($ /) "#($ /) = AM/R (3) Συνδυάζοντας τις σχέσεις () και (3) παίρνουµε: v M = v C (AM)/R =(AM) (4) H σχέση (4) σε συνδυασµό µε το γεγονός ότι η AM είναι κάθετη στην v M, µας πείθει ότι η κύλιση του δακτυλίου στο οριζόντιο επίπεδο µπορεί κάθε στιγµή να θεωρηθεί ως γνήσια περιστροφική κίνηση περί άξονα που διέρχεται από το εκάστοτε στιγµιαίο σηµείο επαφής A και είναι κάθετος στο επίπεδό του, µε γω νιακή ταχύτητα. P.M. fysikos H διπλή τροχαλία του σχήµατος (9) έχει µάζα και ισορροπεί σε λείο οριζόντιο δάπεδο. Tην χρονική στιγµή =0 εφαρ

10 µόζεται σταθερή οριζόντια δύναµη F στο ελεύθερο άκρο Β αβαρούς και µη εκτατού νήµατος που έχει περιτυλιχθεί στο αυλάκι της εξωτε ρικής τροχαλίας. Αν τα νήµατα δεν ολισθαίνουν στα αντίστοιχα αυλά κια να βρείτε: i) την επιτάχυνση του άξονα της τροχαλίας, ii) την επιτάχυνση του σηµείου Β και iii) την τάση του στερεωµένου νήµατος A B. Δίνονται οι ακτίνες R και r των λαιµών της τροχαλίας (R>r) και η ροπή αδράνειας I αυτής, ως προς τον γεωµετρικό της άξονα. ΛΥΣΗ: i) Eπί της διπλής τροχαλίας ενεργεί το βάρος της w, η µέσω του νή µατος οριζόντια δύναµη F, η τάση Q του νήµατος Α Β και η αντίδραση N του λείου οριζόντιου δαπέδου, της οποίας ο φορέας είναι κατακόρυφος. Η τροχαλία δεν µπορεί να κυλίεται χωρίς ολίσθηση πάνω στο δάπεδο, διότι τότε θα έπρεπε τα σηµεία επαφής της Α µε αυτό να έχουν µηδενική ταχύτητα, αλλά µηδενική ταχύτητα έχει και το σηµείο Α της τροχαλίας, που σηµαίνει ότι η τροχαλία θα ήταν ακίνητη. Η κίνηση της τροχαλίας είναι σύνθετη και µπορεί να αναλυθεί Σχήµα 9 σε µια ευθύγραµµη µεταφορική κίνηση και µια περιστροφική περί τον γεωµετρι κό της άξονα. Εφαρµόζοντας για την µεταφορική κίνηση της τροχαλίας τον δεύτερο νόµο κίνησης του Νεύτωνα, παίρνουµε την σχέση: F - Q = a C (1) όπου a C η επιτάχυνση του κέντρου µάζας C της τροχαλίας. Εξάλλου o θεµελι ώδης νόµος της στροφικής κίνησης δίνει για την τροχαλία την σχέση: FR + Qr = I' () όπου ' η γωνιακή επιτάχυνση της τροχαλίας. Επειδή το σηµείο Α είναι συνεχώς ακίνητο, µπορούµε να γράψουµε την σχέση: a C - 'r = 0 '= a C / r οπότε η () γράφεται:

11 FR + Qr = Ia C r Q = Ia C r - FR r (3) Συνδυάζοντας τις σχέσεις (1) και (3) παίρνουµε: F - Ia C r + FR r = a 1+ R $ C # & F = + I $ # " r % " r & a C % ( r + R)F = r + I$ # " r & % a a = r ( r + R )F C C r + I ii) H επιτάχυνση a B του σηµείου Β είναι ίση µε την εφαπτοµενική επιτάχυνση του ανώτατου σηµείου της τροχαλίας, δηλαδή το µέτρο της επιτάχυνσης αυτής είναι: a B = a C + 'R = a C + a R C = a r C 1 + R (4) " % $ ' # r & (4) a B = r ( r + R )F 1 + R $ r # & a + I " r B = r + R % r + I ( ) F (5) iii) Θέτοντας στο δεύτερο µέλος της (3) όπου a C το ίσο του εκ της (5) παίρνου µε για το µέτρο της τάσεως Q την σχέση:: Q = F Ir + IR # r " r + I - R $ & = F % r Q = F r r( I- rr) r + I Q = ( Ir + IR - r R - IR) r + I F( I- rr) r + I P.M. fysikos Ένας οµογενής κύλινδρος µάζας και ακτίνας R, αφήνεται να κυλιθεί εκ της ηρεµίας κατά µήκος κεκλιµένου επιπέδου γωνίας κλίσεως φ ως προς τον ορίζοντα, υπό την επίδραση δύναµής F, η οποία κατευθύνεται προς τα πάνω και παράλληλα προς το κεκλι µένο επίπεδο, ο φορέας της διέρχεται από τον γεωµετρικό άξονα του κυλίνδρου και ανήκει στο κατακόρυφο επίπεδο που τέµνει κάθετα τον άξονα στο µέσον του. Εάν ο συντελεστής οριακής τριβής µεταξύ κυλίνδρου και κεκλιµένου επίπεδου είναι n, να βρείτε την µέγιστη και την ελάχιστη τιµή του µέτρου της δύναµης F, ώστε να διατηρεί ται η χωρίς ολίσθηση κύλιση του κυλίνδρου. Δίνεται η επιτάχυνση g της βαρύτητας και η ροπή αδράνειας Ι=R / του κυλίνδρου, ως προς τον γεωµετρικό του άξονα. ΛΥΣΗ: Διακρίνουµε τις εξής δύο περιπτώσεις:

12 α) O κύλινδρος ανέρχεται κυλιόµενος χωρίς ολίσθηση κατά µήκος του κεκλιµένου επιπέδου (σχήµα 10). Ο κύλινδρος δέχεται το βάρος του w που αναλύεται στην παράλληλη προς το κεκλιµένο επίπεδο συνιστώσα w 1 και την κάθετη προς αυτό συνιστώσα w, την δύναµη F και την αντίδραση του κεκλιµένου επιπέδου που αναλύεται στην στατική τριβή T και την κάθετη αντίδραση N. Η η φορά της τριβής πρέ πει να είναι αντίρροπη της ταχύτητας του άξονα του κυλίνδρου, ώστε να εξασφαλίζει δεξιόστροφη περιστροφική κίνηση περί τον άξονά του, που είναι αναγκαία για τον µηδενισµό της ταχύτητας των σηµείων επαφής του κυλίν δρου µε το κεκλιµένο επίπεδο (σχήµα 10). Εφαρµόζοντας για την µεταφορική κίνηση του κυλίνδρου τον δεύτερο νόµο κίνησης του Νεύτωνα παίρνουµε την σχέση: F- w 1 - T = a C F - gµ" - T = a C (1) Σχήµα 10 όπου a C η επιτάχυνση του άξονα. Εφαρµόζοντας εξάλλου για την περιστροφική κίνηση του κυλίνδρου περί τον γεωµετρικό του άξονα, τον θεµελιώδη νόµο της στροφικής κίνησης παίρνουµε την σχέση: TR = I' TR = R '/ T = R'/ () όπου ' η γωνιακή επιτάχυνση του κυλίνδρου. Όµως λόγω της κύλισης του κυλίνδρου ισχύει η σχέση Rω =a C, οπότε η () γράφεται T = a C / (3) Συνδυάζοντας τις σχέσεις (3) και (4) παίρνουµε: F - gµ" - a C / = a C F - gµ" = 3a C / a C = (F - gµ")/ 3 (4) Με βάση την (4) η (3) γράφεται: T= (F - gµ")/ 3 (5) Eπειδή η τριβή είναι στατική πρέπει το µέτρο της να ικανοποιεί την σχέση:

13 (5) T nn (F - gµ")/ 3 # ng$%&' F - gµ" # 3ng$%&' F g(3n"#$% + &µ') (6) Aπό την (6) προκύπτει ότι η µεγαλύτερη τιµή F ax που επιτρέπεται να λάβει το µέτρο της F, ώστε να εξασφαλίζεται η ανοδική κύλιση του κυλίνδρου, χωρίς ολίσθηση, είναι: F ax = g(3n"#$ + %µ&) (7) β) O κύλινδρος κατέρχεται κυλιόµενος χωρίς ολίσθηση κατά µήκος του κεκλιµένου επιπέδου (σχήµα 11). Στην περίπτωση αυτή η τριβή θα είναι πάλι στατική τριβή αλλά θα κατευθύ νεται αντίρροπα προς την ταχύτητα του άξονα του κυλίνδρου, ώστε τώρα να εξασφαλίζει αριστερόστροφη περιστροφική κίνηση περί τον άξονά του, που είναι ανάγκαία για τον µηδενισµό της ταχύτητας των σηµείων επαφής του κυλίν δρου µε το κεκλιµένο επίπεδο (σχήµα 11). Εφαρµόζοντας για την µεταφορική κίνηση του κυλίνδρου τον δεύτερο νόµο κίνησης του Νεύτωνα παίρνουµε την σχέση: Σχήµα 11 -F+ w 1 - T a C -F + gµ" - T = a C (8) όπου a C η επιτάχυνση καθόδου του άξονα του κυλίνδρου. Εφαρµόζοντας εξάλ λου για την περιστροφική κίνηση του κυλίνδρου τον θεµελιώδη νόµο της στρο φικής κίνησης, παίρνουµε την σχέση: TR = I' TR = R '/ T = R'/ (9) όπου ' η γωνιακή επιτάχυνση του κυλίνδρου κατά την κάθοδό του. Όµως λόγω της κύλισης ισχύει Rω =a C, οπότε η (9) γράφεται T = a C / (10) Συνδυάζοντας τις σχέσεις (8) και (10) παίρνουµε: -F + gµ" - a C / = a C -F + gµ" = 3a C / a C = (- F + gµ")/ 3 (11)

14 Με βάση την (11) η (10) γράφεται: T = (- F + gµ")/ 3 (1) Eπειδή η τριβή είναι στατική πρέπει το µέτρο της να ικανοποιεί την σχέση: (1) T nn (- F + gµ")/ 3 # ng$%&' - F + gµ" # 3ng$%&' F g(3n"#$% - &µ') (13) Aπό την (6) προκύπτει ότι η µικρότερη τιµή F in που επιτρέπεται να λάβει το µέτρο της F, ώστε να εξασφαλίζεται η καθοδική κύλιση του κυλίνδρου, χωρίς ολίσθηση, είναι: F in = g(3n"#$ - %µ&) (14) H (14) έχει νόηµα εφ όσον ισχύει: 3n"#$ - %µ& > 0 n > "" / 3 P.M. fysikos

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και Δύο αβαρή και µη εκτατά νήµατα του ίδιου µή κους είναι στερεωµένα στο ίδιο σηµείο Ο, ενώ στις ελεύθερες άκρες των νηµάτων είναι δεµένα δύο σφαιρίδια, µε µάζες 1 και. Eκτρέ πουµε τα σφαιρίδια από την θέση

Διαβάστε περισσότερα

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N!

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N! Οµογενής συµπαγής κύβος ακµής α και µάζας m, ισορροπεί ακουµπώντας µε µια ακµή του σε κατακόρυφο τοίχο και µε µια του έδρα σε κεκλιµένο επίπεδο γωνίας κλίσεως φ ως προς τον ορίζοντα, όπως φαίνεται στο

Διαβάστε περισσότερα

i) Να δείξετε ότι: F max = (m 1 + m 2 όπου! g η επιτάχυνση της βαρύτητας.

i) Να δείξετε ότι: F max = (m 1 + m 2 όπου! g η επιτάχυνση της βαρύτητας. Δύο σώµατα Σ και Σ µε αντίστοιχες µάζες m και m, είναι στερεωµένα στις άκρες ενός κατακόρυφου αβαρούς ελατηρίου, όπως φαίνεται στο σχήµα. Εξασκούµε στο σώµα Σ κατακόρυφη δύναµη µε φορά προς τα κάτω, της

Διαβάστε περισσότερα

περί το κέντρο της σφαίρας, ονοµάζεται δε τριβή κυλίσεως. Tο µέτρο της τρι βής κυλίσεως είναι προφανώς ανάλογο του µέτρου της N,!

περί το κέντρο της σφαίρας, ονοµάζεται δε τριβή κυλίσεως. Tο µέτρο της τρι βής κυλίσεως είναι προφανώς ανάλογο του µέτρου της N,! Θεωρούµε µια βαρειά σφαίρα, η οποία ισορροπεί επί σχετικά µαλακού εδάφους, ώστε να προκαλεί σ αυτό µια µικρή παραµόρφωση. Λόγω της συµµετρίας που παρουσιάζει η παραµόρφωση αυτή, ως προς την κατακόρυφη

Διαβάστε περισσότερα

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν:

όπου Α το πλάτος της ταλάντωσης, φ η αρχική της φάση και ω η γωνιακή της συχνότητα. Οι σχέσεις (2) εφαρµοζόµενες τη χρονική στιγµή t=0 δίνουν: Tο ένα άκρο κατακόρυφου ιδανικού ελατηρίου είναι στερεωµένο στο οριζόντιο έδαφος, ενώ το άλλο του άκρο είναι ελεύθερο. Mικρό σφαιρίδιο, µάζας m, αφήνεται σε ύψος h από το άκρο Β. Το σφαιρίδιο πέφτοντας

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο

Διαβάστε περισσότερα

διέρχεται από το σηµείο τοµής Ο των φορέων του βάρους w! της ράβδου και της οριζόντιας αντίδρασης A!

διέρχεται από το σηµείο τοµής Ο των φορέων του βάρους w! της ράβδου και της οριζόντιας αντίδρασης A! Η οµογενής ράβδος ΑΒ του σχήµατος έχει βά ρος w και στηρίζεται διά του άκρου της Α σε τραχύ κεκλιµένο επί πεδο γωνίας κλίσεως φ ως προς τον ορίζοντα, ενώ το άλλο της άκρο Β ακουµπάει σε λείο κατακόρυφο

Διαβάστε περισσότερα

ακτινικής διεύθυνσης και στην οριακή τριβή T!"

ακτινικής διεύθυνσης και στην οριακή τριβή T! Λεπτή κυκλική στεφάνη ακτίνας R και µάζας m, ισορρο πεί εφαπτόµενη σε δύο υποστηρίγµατα A και Γ, όπως φαίνεται στο σχήµα (1. Eάν ο συντελεστής οριακής τριβής µεταξύ της στεφάνης και των υποστη ριγµάτων

Διαβάστε περισσότερα

i) Nα δείξετε ότι αν το σύστηµα αφεθεί ελεύθερο η τροχαλία τ 1 δεν µπορεί να κυλίεται, άλλά µόνο να ισσρροπεί ή να ολισθαίνει.

i) Nα δείξετε ότι αν το σύστηµα αφεθεί ελεύθερο η τροχαλία τ 1 δεν µπορεί να κυλίεται, άλλά µόνο να ισσρροπεί ή να ολισθαίνει. Στην διάταξη του σχήµατος η τροχαλία τ 1 έχει µάζα m 1 και ακτίνα R και στο αυλάκι της έχει περιτυλιχθεί αβαρές νήµα, το οποίο διέρ χεται από τον λαιµό της µικρής τροχαλίας τ στο δε άκρο του έχει δε θεί

Διαβάστε περισσότερα

i) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο,

i) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο, Tο σφαιρίδιο του σχήµατος ισορροπεί πάνω στο λείο οριζόντιο δαπεδο, ενώ τα οριζόντια ελατήρια είναι τεντωµένα. H απόσταση των σηµείων στήριξης των δύο ελατηρίων είναι 3α, ενώ τα ελατήρια έχουν το ίδιο

Διαβάστε περισσότερα

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου 1. Ομογενής και ισοπαχής ράβδος μήκους L= 4 m και μάζας M= 2 kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου

Διαβάστε περισσότερα

i) την µέγιστη ροπή του ζεύγους δυνάµεων που επιτρέπεται να ενερ γήσει επί του κυλίνδρου, ώστε αυτός να ισορροπεί και

i) την µέγιστη ροπή του ζεύγους δυνάµεων που επιτρέπεται να ενερ γήσει επί του κυλίνδρου, ώστε αυτός να ισορροπεί και Oµογενής κύλινδρος µάζας m και ακτίνας R εφάπ τεται στα τοιχώµατα ενός αυλακιού, τα οποία είναι επίπεδες σταθερές επιφάνειες που η τοµή τους είναι οριζόντια. Τα τοιχώµατα είναι ισο κεκλιµένα ως προς τον

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται

Διαβάστε περισσότερα

Q του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως!

Q του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως! Αβαρής ράβδος αποτελείται από δύο συνεχόµενα τµήµατα ΟΑ και ΑΒ που είναι ορθογώνια µεταξύ τους. Το άκρο Ο της ράβδου είναι αρθρωµένο σε οριζόντιο έδαφος το δε τµήµα της ΟΑ είναι κατακόρυφο και εφάπτεται

Διαβάστε περισσότερα

F r. www.ylikonet.gr 1

F r. www.ylikonet.gr 1 3.5. Έργο Ενέργεια. 3.5.1. Έργο δύναµης- ροπής και Κινητική Ενέργεια. Το οµοαξονικό σύστηµα των δύο κυλίνδρων µε ακτίνες R 1 =0,1m και R =0,5m ηρεµεί σε οριζόντιο επίπεδο. Τυλίγουµε γύρω από τον κύλινδρο

Διαβάστε περισσότερα

Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα.

Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα. Δίσκος Σύνθετη Τρίτη 01 Μαϊου 2012 ΑΣΚΗΣΗ 5 Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα. ΠΕΙΡΑΜΑ Α Θα εκτοξευθεί με ταχύτητα από τη βάση του κεκλιμένου

Διαβάστε περισσότερα

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου.

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου. Oµογενής ράβδος σταθερής διατοµής, µάζας m και µήκους L, µπορεί να στρέφεται περί οριζόντιο άξονα που διέρχεται από το ένα άκρο της. Όταν η ράβδος βρίσκεται στην θέση ευσταθούς ισορροπίας εφαρµόζεται στο

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α Α.1. Ενα στερεό σώµα περιστρέφεται γύρω από ακλόνητο άξονα. Εάν διπλασιαστεί η στροφορµή

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου]

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου] ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

που δέχονται οι τροχοί αυτοί αποτελούν κινητήριες δυνάµεις για το αυτοκί νητο, δηλαδή είναι δυνάµεις οµόρροπες προς την κίνησή του, ένω οι τριβές T!

που δέχονται οι τροχοί αυτοί αποτελούν κινητήριες δυνάµεις για το αυτοκί νητο, δηλαδή είναι δυνάµεις οµόρροπες προς την κίνησή του, ένω οι τριβές T! Tο κέντρο µάζας ενός επιβατηγού αυτοκινήτου απέχει από το οριζόντιο έδαφος απόσταση h. Δίνεται η µάζα Μ του αυτοκινήτου η µάζα m και η ακτίνα R κάθε τροχού, η επιτάχυνση g της βαρύτητας και οι αποστάσεις

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑΠΕΝΤΕ (15) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας

Διαβάστε περισσότερα

Διαγώνισμα: Μηχανική Στερεού Σώματος

Διαγώνισμα: Μηχανική Στερεού Σώματος Διαγώνισμα: Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

ii) Έαν αρχικά ο δίσκος κρατείται στην θέση, όπου η ΟΚ είναι οριζόν τια και αφεθεί ελευθερος να βρεθούν οι επιταχύνσεις a!

ii) Έαν αρχικά ο δίσκος κρατείται στην θέση, όπου η ΟΚ είναι οριζόν τια και αφεθεί ελευθερος να βρεθούν οι επιταχύνσεις a! Ένας κυκλικός δίσκος ακτίνας R φέρει κυκλική οπή ακτίνας R/, της οποίας το κέντρο Κ βρίσκεται σε απόσταση R/ από το κέντρο Ο του δίσκου, µπορεί δε να κυλίεται σε µη λείο οριζόντιο έδαφος. i) Εκτρέπουµε

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σηµειακό

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α1.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. Ισχύει: α. L 1. και Κ 1 β. 2L 1 =2L 2 =L 2. και 2Κ 1 γ. L 1

ΟΡΟΣΗΜΟ. Ισχύει: α. L 1. και Κ 1 β. 2L 1 =2L 2 =L 2. και 2Κ 1 γ. L 1 61 Η κινητική ενέργεια ενός δίσκου μάζας m και ακτίνας R που εκτελεί στροφική κίνηση, εξαρτάται: α Μόνο από την γωνιακή του ταχύτητα β Μόνο από την μάζα και την ακτίνα του γ Μόνο από την γωνιακή του ταχύτητα,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 23/2/2014 ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 3-4

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 23/2/2014 ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 3-4 ΚΕΝΤΡΟ Αγίας Σοφίας 39 3 ΝΤΕΠΩ Β Όλγας 3 38 ΕΥΟΣΜΟΣ ΜΑλεξάνδρου 5 37736 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3// ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 3- ΘΕΜΑ A Στις ερωτήσεις - να γράψετε

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 8 ΙΟΥΛΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Ασκήσεις. Φυσική Γ Λυκείου - Μηχανική στερεού σώματος

Ασκήσεις. Φυσική Γ Λυκείου - Μηχανική στερεού σώματος - Μηχανική στερεού σώματος Ασκήσεις 1. Στερεό στρέφεται γύρω Ένας δίσκος μπορεί να περιστρέφεται γύρω από σταθερό άξονα ο οποίος διέρχεται από το κέντρο και είναι κάθετος στο επίπεδο του. Ο δίσκος είναι

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25) ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ ΘΕΜΑ Α (μοναδες 25) Α1. Σε στερεό που περιστρέφεται γύρω από σταθερό κατακόρυφο άξονα ενεργεί σταθερή ροπή. Τότε αυξάνεται με σταθερό ρυθμό: α. η ροπή αδράνειας του β. η

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα

Διαβάστε περισσότερα

Kινηµατική άποψη της επίπεδης κίνησης

Kινηµατική άποψη της επίπεδης κίνησης Kινηµατική άποψη της επίπεδης κίνησης Θα λέµε ότι ένα στερεό σώµα εκτελεί επίπεδη κίνηση, όταν οι αποστάσεις των υλικών του σηµείων από ένα ορισµένο επίπεδο αναφοράς (ε), παραµέ νουν αµετάβλητες µε το

Διαβάστε περισσότερα

i) Nα εκφράσετε σε συνάρτηση µε τον χρόνο την γωνιακή ταχύτητα της τροχαλίας.

i) Nα εκφράσετε σε συνάρτηση µε τον χρόνο την γωνιακή ταχύτητα της τροχαλίας. Στην διάταξη του σχήµατος ) οι δύο κυκλικοί δίσκοι Δ, Δ έχουν την ιδια ακτίνα R και αντίστοιχες µάζες m, m µπορούν δε να κυλίωνται χωρίς ολίσθηση κατά µήκος δύο κεκλιµέ νων επιπέδων που είναι µεταξύ τους

Διαβάστε περισσότερα

Ένθετη θεωρία για την αδρανειακή δύναµη D Alempert

Ένθετη θεωρία για την αδρανειακή δύναµη D Alempert Ένθετη θεωρία για την αδρανειακή δύναµη D Alempert Είναι γνωστό ότι ο δεύτερος νόµος κίνησης του Νεύτωνα ισχύει µόνο για τα λεγόµενα αδρανεικά συστήµατα αναφοράς, δηλαδή για τα συστήµατα εκείνα που είναι

Διαβάστε περισσότερα

που εξασκείται στο άκρο της Γ και των αντιδράσεων A! , A 2

που εξασκείται στο άκρο της Γ και των αντιδράσεων A! , A 2 Oµογενής ράβδος BΓ βάρους w, ισορροπεί ώστε τα άκρα της να εφάπτονται σε µια λεία και ακίνητη κοίλη σφαίρα ακτί νας R, όπως φαίνεται στο σχήµα (1). Eάν η κατακόρυφη δύναµη F που εξασκείται στο άκρο Γ της

Διαβάστε περισσότερα

Τίτλος Κεφαλαίου: Στερεό σώµα. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1

Τίτλος Κεφαλαίου: Στερεό σώµα. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1 Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 3ο: Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1 ιδακτική Ενότητα: Ροπή

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 01: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w!

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w! Το κυκλικό σύρµα του σχήµατος έχει µάζα m/ και είναι κρεµασµένο από κατακόρυφο σπάγκο αµελητέας µάζας αλλά επαρκούς αντοχής. Δύο όµοιες σηµειακές χάντρες, καθε µιά µε µάζα m, αφήνονται ταυτόχρονα από την

Διαβάστε περισσότερα

Κρούσεις. 1 ο ΘΕΜΑ. Φυσική Γ Θετ. και Τεχν/κης Κατ/σης. Θέματα εξετάσεων

Κρούσεις. 1 ο ΘΕΜΑ. Φυσική Γ Θετ. και Τεχν/κης Κατ/σης. Θέματα εξετάσεων ο ΘΕΜΑ Κρούσεις Α. Ερωτήσεις πολλαπλής επιλογής Στην παρακάτω ερώτηση να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε κάθε κρούση ισχύει

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ Θέµα Α ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β ΜΑΪΟΥ 03 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση, η οποία συµπληρώνει

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε:

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε: ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Διατήρηση της στροφορμής) Η Γη στρέφεται σε ελλειπτική τροχιά γύρω από τον Ήλιο. Το κοντινότερο σημείο στον Ήλιο ονομάζεται Περιήλιο (π) και το πιο απομακρυσμένο Αφήλιο (α).

Διαβάστε περισσότερα

ΤΕΣΤ 16. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας.

ΤΕΣΤ 16. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Επαναληπτικό 4 ΘΕΜ aa ΤΕΣΤ 16 1. Στη διάταξη του σχήματος, ασκούμε κατακόρυφη δύναμη σταθερού μέτρου F στο άκρο του νήματος, ώστε ο τροχός () να ανέρχεται κυλιόμενος χωρίς ολίσθηση στο κεκλιμένο επίπεδο.

Διαβάστε περισσότερα

A e (t σε sec). Το πλάτος των ταλαντώσεων

A e (t σε sec). Το πλάτος των ταλαντώσεων ΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Επιλέξτε την σωστή απάντηση. 1. Σηµειακό αντικείµενο εκτελεί φθίνουσες ταλαντώσεις µε πλάτος που µειώνεται εκθετικά µε το χρόνο σύµφωνα µε την 0,01t σχέση

Διαβάστε περισσότερα

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Τελική Εξέταση Φυσικής Α Λυκείου Κυριακή 11 Μάη 2014 Σύνολο Σελίδων : (7) Πρόχειρες Λύσεις. Θέµα Α

Τελική Εξέταση Φυσικής Α Λυκείου Κυριακή 11 Μάη 2014 Σύνολο Σελίδων : (7) Πρόχειρες Λύσεις. Θέµα Α Τελική Εξέταση Φυσικής Α Λυκείου Κυριακή Μάη 24 Σύνολο Σελίδων : (7) Πρόχειρες Λύσεις Θέµα Α Στις ερωτήσεις Α. Α.4 επιλέξτε την σωστή απάντηση (4 5 = 2 µονάδες ) Α.. Ενα αυτοκίνητο κινείται µε σταθερή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΚΙΝΗΣΕΙΣ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΕΡΩΤΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4ο: ΚΙΝΗΣΕΙΣ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΕΡΩΤΗΣΕΙΣ Α ΕΡΩΤΗΣΕΙΣ Ερώτηση 1 Σε ένα ρολόι θέλουμε το άκρο του ωροδείκτη και το άκρο του λεπτοδείκτη να έχουν την ίδια ταχύτητα λόγω περιστροφής (γραμμική ταχύτητα). Αν συμβολίσουμε με το μήκος του ωροδείκτη και

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 4: ΣΤΡΟΦΟΡΜΗ 26. Δύο σημειακές σφαίρες που η καθεμιά έχει μάζα συνδέονται μεταξύ τους με οριζόντια αβαρή ράβδο. Το σύστημα περιστρέφεται γύρω από κατακόρυφο

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

2) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο

2) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο - 1 - Επώνυμο.. Όνομα.. Αγρίνιο 22/3/2015 Ζήτημα 1 0 Να επιλεγεί η σωστή πρόταση 1) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο. Ο δίσκος στρέφεται γύρω

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ. Θέµατα Εξετάσεων

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ. Θέµατα Εξετάσεων ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Θέµατα Εξετάσεων ΣΤΕΡΕΟ. Θέµατα Εξετάσεων 2 1) Αν το αλγεβρικό άθροισµα των ροπών που δρουν πάνω σ' ένα στερεό σώµα, το οποίο περιστρέφεται γύρω από σταθερό άξονα, είναι µηδέν, τότε α.

Διαβάστε περισσότερα

Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 4ο: ιδακτική Ενότητα: Ροπή ύναµης Ισορροπία Στερεού Σώµατος Ασκήσεις

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΘΕΜΑ Α Ι. Α1.Β Α2.Γ Α3. Α Α4. Α ΙΙ. 1.Σ 2.Σ 3.Λ 4.Σ 5. Λ

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΘΕΜΑ Α Ι. Α1.Β Α2.Γ Α3. Α Α4. Α ΙΙ. 1.Σ 2.Σ 3.Λ 4.Σ 5. Λ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Ι. Α1.Β Α2.Γ Α3. Α Α4. Α ΙΙ. 1.Σ 2.Σ 3.Λ 4.Σ 5. Λ ΘΕΜΑ Β Β1. Σωστή η β) Έστω Σ το υλικό σημείο που απέχει d από το άκρο Α. Στο σχήμα

Διαβάστε περισσότερα

Προτεινόμενα ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ

Προτεινόμενα ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΘΕΜΑΤΑ Β. Β1. Από ύψος h (σημείο Α) αφήνουμε να κυλίσει δακτύλιος μάζας m 1 =m χωρίς ολίσθηση σε οδηγό που καταλήγει σε τεταρτοκύκλιο. Στο σημείο Β και όταν η u cm είναι κατακόρυφη ο δακτύλιος εγκαταλείπει

Διαβάστε περισσότερα

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 27/09/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

# $ + L " = ml " ml! = ML " $ + ml " $ L " = ML/2(M + m) # $ (1) Eξάλλου, εάν L' α, L' σ είναι οι τελικές αποστάσεις του κέντρου µάζας C του

# $ + L  = ml  ml! = ML  $ + ml  $ L  = ML/2(M + m) # $ (1) Eξάλλου, εάν L' α, L' σ είναι οι τελικές αποστάσεις του κέντρου µάζας C του Mία σανίδα, µήκους L καί µάζας M, βρίσκεται πάνω σε λείο οριζόντιο επίπεδο. Στο ένα άκρο της σανίδας πατάει άνθ ρωπος µάζας m και αρχίζει να κινείται προς το άλλο άκρο της. Kατά πόσο θα µετατοπιστεί η

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 009 ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) Θέµα 1 ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) 1.1 Πολλαπλής επιλογής A. Ελαστική ονοµάζεται η κρούση στην οποία: α. οι ταχύτητες των σωµάτων πριν και µετά την κρούση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2012

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ 0 ΕΚΦΩΝΗΕΙ ΘΕΜΑ Α τις ηµιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα το γράµµα που αντιστοιχεί στη φράση η οποία τη συµπληρώνει σωστά. Α. Κατά τη

Διαβάστε περισσότερα

από το νήµα που περιβάλλει το εσωτερικό της αυλάκι, ίση µε το βάρος m g! του σώµατος Σ, την δύναµη επαφής F!

από το νήµα που περιβάλλει το εσωτερικό της αυλάκι, ίση µε το βάρος m g! του σώµατος Σ, την δύναµη επαφής F! Στην διάταξη του σχήµατος (1) η διπλή τροχα λία θεωρείται µε αµελητέα µάζα και εφάπτεται λείου κεκλιµένου επιπέδου και κατακόρυφου τοίχου. Στο εσωτερικό αυλάκι της τροχαλίας έχει περιτυλιχθεί αβαρές νήµα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό

Διαβάστε περισσότερα

υ r 1 F r 60 F r A 1

υ r 1 F r 60 F r A  1 2.2. Ασκήσεις Έργου-Ενέργειας. 4.2.1. Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ. Ένα σώµα µάζας m=2kg ηρεµεί σε οριζόντιο επίπεδο. Σε µια στιγµή δέχεται την επίδραση οριζόντιας δύνα- µης, το µέτρο

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

υναµική στερεού. Οµάδα Γ

υναµική στερεού. Οµάδα Γ 3.3.21. Μια περίεργη κύλιση Κύλινδρος υναµική στερεού. Οµάδα Γ µάζας Μ=10Κg και ακτίνας R=0,5m αρχίζει την στιγµή t=0 να ανέρχεται κυλιόµενος (αριστερόστροφα) χωρίς να ολισθαίνει κατά µήκος αρχικά λείου

Διαβάστε περισσότερα

Β. Κίνηση σώματος (ή συστήματος σωμάτων)

Β. Κίνηση σώματος (ή συστήματος σωμάτων) ΚΕΦΑΛΑΙΟ 4 Γενικές ερωτήσεις Γενικές ασκήσεις Κριτήρια αξιολόγησης Ένα πρόβλημα μηχανικής στερεού σώματος είναι γενικά σύνθετο πρόβλημα και απαιτούνται όλα όσα γράψαμε μέχρι τώρα στις επιμέρους ενότητες

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

και όταν φθάσει στο σηµείο Γ αρχίζει να κινείται στο κυκλικό του τµήµα που έχει την µορφή λείου τεταρτο κυκλίου ακτίνας R.

και όταν φθάσει στο σηµείο Γ αρχίζει να κινείται στο κυκλικό του τµήµα που έχει την µορφή λείου τεταρτο κυκλίου ακτίνας R. Το σώµα Σ του σχήµατος (α) έχει µάζα και µπορεί να ολισθαίνει πάνω σε λείο οριζόντιο έδαφος. Ένα µικρό σφαιρίδιο µάζας m κινείται αρχικά πάνω στο οριζόντιο τµήµα του σώµατος µε ταχύτητα v 0 και όταν φθάσει

Διαβάστε περισσότερα

φυσική κατεύθυνσης γ λυκείου ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΕΠΙΛΟΓΗΣ (κεφ.4) Γκότσης Θανάσης - Τερζής Πέτρος

φυσική κατεύθυνσης γ λυκείου ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΕΠΙΛΟΓΗΣ (κεφ.4) Γκότσης Θανάσης - Τερζής Πέτρος 1 Ένα στερεό εκτελεί μεταφορική κίνηση όταν: α) η τροχιά κάθε σημείου είναι ευθεία γραμμή β) όλα τα σημεία του έχουν ταχύτητα που μεταβάλλεται με το χρόνο γ) μόνο το κέντρο μάζας του διαγράφει ευθύγραμμη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέμα Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό της

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείµενο εξέτασης: Όλη η διδακτέα ύλη Χρόνος εξέτασης: 3 ώρες

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείµενο εξέτασης: Όλη η διδακτέα ύλη Χρόνος εξέτασης: 3 ώρες ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείµενο εξέτασης: Όλη η διδακτέα ύλη Χρόνος εξέτασης: 3 ώρες ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο φύλλο απαντήσεών σας τον αριθµό

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Επαναληπτικά Θέµατα ΟΕΦΕ 007 Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ZHTHMA Στις ερωτήσεις έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 015 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 6 Απριλίου 015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1

Διαβάστε περισσότερα

Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση

Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση Η ομογενής και ισοπαχής ράβδος ΑΓ του διπλανού σχήματος έχει μήκος L=1,m και μάζα M=4kg και μπορεί να περιστρέφεται χωρίς τριβές σε κατακόρυφο

Διαβάστε περισσότερα

i) Να δείξετε ότι αν για µια τιµή της γωνίας θ η ράβδος ισορροπεί, η ισορροπία αυτή είναι αδιάφορη.

i) Να δείξετε ότι αν για µια τιµή της γωνίας θ η ράβδος ισορροπεί, η ισορροπία αυτή είναι αδιάφορη. Η ράβδος του σχήµατος έχει µήκος L, βάρος w και στηρίζεται διά του άκρου της Α επί λείου τοίχου, ενώ το άλλο άκρο της Β ακουµπά ει σε λεία κοίλη επιφάνεια. Η τοµή της επιφάνειας µε κατακόρυφο επίπεδο που

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 12 ΣΕΠΤΕΜΒΡΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση.

Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Τις προηγούµενες µέρες έγινε στο δίκτυο µια συζήτηση µε θέµα «Πόση είναι η κεντροµόλος επιτάχυνση;» Θεωρώ αναγκαίο να διατυπώσω µε απλό τρόπο κάποια

Διαβάστε περισσότερα

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2 ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή

Διαβάστε περισσότερα

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση 1.

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό

Διαβάστε περισσότερα

Φυσική Γ Λυκείου. Επαναληπτικά θέματα στο ΣΤΕΡΕΟ. Θετικής - Τεχνολογικής κατεύθυνσης. Πηγή: study4exams.gr

Φυσική Γ Λυκείου. Επαναληπτικά θέματα στο ΣΤΕΡΕΟ. Θετικής - Τεχνολογικής κατεύθυνσης. Πηγή: study4exams.gr Φυσική Γ Λυκείου Θετικής - Τεχνολογικής κατεύθυνσης Επαναληπτικά θέματα στο ΣΤΕΡΕΟ Πηγή: tudy4exam.gr Επιμέλεια: Μαρούσης Βαγγέλης - Φυσικός Φυσικής ζητήματα 1 Επαναληπτικά Θέματα στη Μηχανική του Στερεού

Διαβάστε περισσότερα

Σχήµα 20. οι οριζόντιες συνιστώσες των ταχυτήτων v! προσπτώσεως και ανακλάσεως αντιστοίχως του σφαιριδίου, T!

Σχήµα 20. οι οριζόντιες συνιστώσες των ταχυτήτων v! προσπτώσεως και ανακλάσεως αντιστοίχως του σφαιριδίου, T! Ένα στερεό σώµα εκτελεί επίπεδη κίνηση και δύο σηµεία αυτού βρίσκονται κάποια στιγµή t στις θέσεις Α(,) και Β(,α) του επιπέδου κίνησής του (x,y) Εάν οι ταχύτητες των σηµείων αυτών έχουν το ίδιο µέτρο v

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

Ένα κυβικό δοχείο ακµής α, είναι γεµάτο νερό και τοποθετείται πάνω σε οριζόντιο έδαφος (σχ. 13).

Ένα κυβικό δοχείο ακµής α, είναι γεµάτο νερό και τοποθετείται πάνω σε οριζόντιο έδαφος (σχ. 13). Ένα κυβικό δοχείο ακµής α, είναι γεµάτο νερό και τοποθετείται πάνω σε οριζόντιο έδαφος σχ. 3). i) Εάν στο κέντρο Ο µιας έδρας του δοχείου ανοίξουµε µικρή κυκλική οπή εµβαδού S, ποιο πρέπει να είναι το

Διαβάστε περισσότερα

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1 EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1. Από την ίδια γραµµή αφετηρίας(από το ίδιο ύψος) ενός κεκλιµένου επιπέδου αφήστε να κυλήσουν, ταυτόχρονα προς τα κάτω, δύο κυλίνδροι της

Διαβάστε περισσότερα