ΠΕΜΠΤΟ ΚΕΦΑΛΑΙΟ Προσδιορισµός του αντικειµένου µας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΕΜΠΤΟ ΚΕΦΑΛΑΙΟ Προσδιορισµός του αντικειµένου µας"

Transcript

1 ΠΕΜΠΤΟ ΚΕΦΑΛΑΙΟ Προσδιορισµός του αντικειµένου µας 5.1 Τι είναι τα µαθηµατικά στην προσχολική ηλικία; Η διδασκαλία των µαθηµατικών στην προσχολική ηλικία δεν είναι απλά µια απαραίτητη προεργασία για την προετοιµασία των µαθηµατικών αναγκών της µετέπειτα σχολικής ζωής. Αν ανατρέξουµε στους σκοπούς της προσχολικής αγωγής, όπως αυτοί περιγράφονται στα κείµενα του Υπουργείου Παιδείας θα δούµε πως οι στόχοι που τίθενται είναι ευρείς και σχετίζονται µε µια ολόπλευρη γνωστική, συναισθηµατική, σωµατική και κοινωνική ανάπτυξη των παιδιών 1. Στα πλαίσια αυτά η προσέγγιση των επιστηµονικών αντικειµένων γίνεται µέσα από την παρατήρηση, την αναγνώριση και την περιγραφή συµβάντων και τέλος µε τις προσπάθειες γενίκευσης της εµπειρίας. Η προσχολική αγωγή και εκπαίδευση αντιµετωπίζονται ως µια αυτόνοµη βαθµίδα και οι προµαθηµατικές έννοιες εντάσσονται στις γνωστικές δυνατότητες των µαθητών. Η οικειοποίηση των µαθηµατικών εννοιών δεν εξαντλείται εδώ, αλλά µόλις αρχίζει να οικοδοµείται. Η διδασκαλία των µαθηµατικών εννοιών στο Νηπιαγωγείο βασίζεται στην παραδοχή πως υπάρχουν ποικίλα επίπεδα κατανόησης µιας έννοιας. Γι αυτό και το επίπεδο αυστηρότητας που προσδίδουµε κάθε φορά στην παρουσίαση των εννοιών αυτών συνυπολογίζει τις γνωστικές δυνατότητες των παιδιών να οικειοποιούνται τις έννοιες αυτές. Όταν λοιπόν, µιλάµε για προµαθηµατικές έννοιες, µιλάµε για ένα πρωτογενές επίπεδο κατανόησης, χρήσης και περιγραφής των µαθηµατικών εννοιών. 5.2 Η εισαγωγή και η οικειοποίηση ενός συνόλου γλωσσικών κωδίκων. 1 Σκοπός του Νηπιαγωγείου, σύµφωνα µε την κείµενη νοµοθεσία, Ν. 1566/85, είναι να βοηθήσει τα νήπια να αναπτυχθούν σωµατικά, συναισθηµατικά, νοητικά και κοινωνικά µέσα στα πλαίσια των ευρύτερων στόχων της πρωτοβάθµιας και δευτεροβάθµιας εκπαίδευσης (εφ. της Κυβερνήσεως, αρ. φύλλου 1376).

2 Είναι αναγκαία η εισαγωγή και η οικειοποίηση ενός λεξιλογίου που θα διευκολύνει την επικοινωνία της /του Νηπιαγωγού µε τα παιδιά στη τάξη. Πρέπει να γίνει κατανοητό πως τα παιδιά προέρχονται από περιοχές που συνήθως δεν έχουν ενιαία κοινωνικά και πολιτισµικά χαρακτηριστικά, ιδιαίτερα στις µέρες µας που ένα πλήθος οικονοµικών µεταναστών κατακλύζει τις ευηµερούσες οικονοµικά χώρες. Αυτό σηµαίνει πως µεταφέρουν ένα διαφορετικό φορτίο τόσο σχετικά µε τις γνώσεις τους, όσο και µε τα πολιτισµικά χαρακτηριστικά και τους γλωσσικούς κώδικες επικοινωνίας. Έτσι, επιβάλλεται η διαµόρφωση ενός επιπέδου σχέσεων γλωσσικής επικοινωνίας. Εισάγουµε και χρησιµοποιούµε ένα λεξιλόγιο που ενδεχοµένως θα το συναντήσουµε σε προµαθηµατικές δραστηριότητες, όπως η ταξινόµηση, η σύγκριση, η διάταξη, η αντιστοίχηση, κλπ. 5.3 Μέθοδοι εισαγωγής των εννοιών αυτών 1. Με την πρόκληση συζήτησης ώστε να εισάγουµε την έννοια που µας ενδιαφέρει και να εξακριβώσουµε την δυνατότητα κατανόησης. 2. Μέσα από άλλα γνωστικά αντικείµενα, όπως: Οι αισθησιοκινητικές ασκήσεις. Τα εικαστικά Η µουσική. Η περιβαλλοντική εκπαίδευση. ΕΚΤΟ ΚΕΦΑΛΑΙΟ Ο Γεωµετρικός χώρος 6.1 Η οικοδόµηση του παιδικού χώρου

3 Ο χώρος συνηθίζεται να αντιµετωπίζεται σαν κάτι το δοσµένο και αντικειµενικό, που προηγείται της ανθρώπινης εµπειρίας και που ο άνθρωπος οφείλει να το αναγνωρίσει και να το οικειοποιηθεί. Η αντίληψη αυτή εκφράστηκε µε ενάργεια στην προσπάθεια των ζωγράφων της Αναγέννησης να υποτάξουν τον χώρο στους κανόνες του Ευκλείδειου χώρου. Όµως, η συνεισφορά της ψυχολογίας στον τοµέα της αντίληψης του χώρου και της οικειοποίησής του από το παιδί, θα τονίσει την ιστορικότητα και συνεπώς την σχετικότητα της προσπάθειας να υποταχθεί ο χώρος σε µια γραµµική προοπτική. Οι ίδιοι οι αντιληπτικοί µηχανισµοί θα πάψουν να αντιµετωπίζονται ως µια διαδικασία παθητικής πρόσληψης, αλλά θα υπογραµµιστεί η ενεργός δράση του υποκειµένου. Έτσι λοιπόν η Φλοράνς ντε Μερεντιέ (1981) θα τονίσει ότι δεν υπάρχει χώρος καθεαυτός, αλλά µια πολλαπλότητα δυνατών χώρων, και ότι η εµφάνιση του καθενός απ' αυτούς εξαρτάται από τις κοινωνικο-ιστορικές συνθήκες της εποχής. Επιπλέον, ο αρχικός χώρος που κατασκευάζει το παιδί δεν σχετίζεται µε τους χώρους που θα γνωρίσουµε στη θεσµοθετηµένη εκπαίδευση ή στην επιστήµη, αλλά έχει να κάνει µε ψυχολογικά χαρακτηριστικά της ανάπτυξής του. Στα αρχικά στάδια της ανάπτυξής του το παιδί δεν έχει καµία αντίληψη του χώρου ανάλογη µε την δική µας. Πριν φτάσει στο σηµείο της αναπαράστασης του χώρου µέσω της γραφής, προηγείται η οικοδόµηση άλλων χώρων που έχουν εµβρυώδη και παθητικά χαρακτηριστικά που σχετίζονται µε τα αισθήµατα της αναµονής και της επιθυµίας. Σε ένα επόµενο στάδιο θα αναπτυχθεί ο αισθησιοκινητικός χώρος που σχετίζεται µε την προσπάθεια κίνησης και προσανατολισµού. Έτσι, λοιπόν η οικοδόµηση του αναπαραστατικού χώρου, που θα οδηγήσει και στην γραφική αναπαράσταση, έννοιες µε τις οποίες ασχολείται ιδιαίτερα ο κλάδος της Γεωµετρίας, θα βασιστεί σε προϋπάρχοντες χώρους που είναι ζωτικοί για την ύπαρξη και την ανάπτυξη του παιδιού. Η προσπάθεια αναπαράστασης του χώρου, δηλαδή ο λεγόµενος αναπαραστατικός χώρος, θα βασιστεί στον αντιληπτικό χώρο του παιδιού και θα τον ακολουθήσει χρονικά. Στα πρώτα στάδια του παιδικού σχεδίου εµπλέκονται πολλοί χώροι που

4 έχουν να κάνουν µε αισθησιοκινητικά χαρακτηριστικά Επιπλέον, οι πρώτες προσπάθειες αναπαράστασης του χώρου δεν θα αποτελέσουν µια άµεση µεταφορά του αντιληπτικού χώρου. Στοιχεία συναισθηµατικά και βιωµατικά θα παίξουν ένα κυρίαρχο ρόλο στους τρόπους αναπαράστασης. Αυτό φαίνεται από το γεγονός ότι τα παιδιά αρχικά δεν ενδιαφέρονται για την διατήρηση των µετρικών ή αναλογικών σχέσεων. Έτσι λοιπόν, στην απόπειρα γραφικής αναπαράστασης αποδίδουν ένα συναισθηµατικό µέγεθος [Φλοράνς ντε Μερεντιέ 1981], όπως για παράδειγµα στο σχήµα 6.1. Παράδειγµα σχεδίου όπου κυριαρχούν τα συναισθηµατικά µεγέθη: Το παιδί είναι ψηλότερο από το σπίτι (Αθηνά 4 χρονών). Σχήµα 6.1 Το παιδί αρχίζει να οικοδοµεί έναν χώρο σαφή και συνεκτικό στον βαθµό που αρχίσει να οικοδοµείται η διατήρηση του αντικειµένου. Μέχρι τότε "χώρος και αντικείµενα, περιέχον και περιεχόµενα, είναι ακόµη αδιαφοροποίητα" [Φλοράνς ντε Μερεντιέ 1981]. Σύµφωνα µε τον Piaget (1956) υπάρχουν τρία στάδια στην εξέλιξη της αναπαράστασης του χώρου: Στο πρώτο στάδιο, που χαρακτηρίζεται ως συνθετική ανικανότητα, αγνοούνται τα ευκλείδεια και προβολικά χαρακτηριστικά. Έτσι λοιπόν, δεν τηρούνται οι αναλογίες µεταξύ των µεγεθών, τα ίδια µεγέθη δεν διατηρούνται σταθερά και δεν εµφανίζονται στοιχεία προοπτικής. Είναι το στάδιο όπου αρχίζουν οικοδοµούνται τα τοπολογικά χαρακτηριστικά στην απεικόνιση του χώρου, όπως για παράδειγµα διατηρείται η σχέση της γειτνίασης στην απεικόνιση των προσώπων. Από την άλλη όµως, οι σχέσεις εγκλεισµού δεν τηρούνται µε µια συνέπεια. Έτσι, για παράδειγµα, µπορεί τα µάτια να ζωγραφιστούν έξω από το πρόσωπο, κλπ. Το στάδιο αυτό µπορεί χρονικά να διαρκέσει µέχρι το 3 ή 4 έτος. Το δεύτερο στάδιο χαρακτηρίζεται ως στάδιο του διανοητικού ρεαλισµού και χρονικά καλύπτει την περίοδο από 4 µέχρι 10 ετών. Είναι το στάδιο όπου κατά κανόνα

5 τηρούνται τα τοπολογικά χαρακτηριστικά του χώρου και αρχίζουν να οικοδοµούνται οι προβολικές σχέσεις. Τέλος, στην ηλικία των 8 και 9 ετών αρχίζει να οικοδοµείται ο οπτικός ρεαλισµός όπου παράλληλα µε την ύπαρξη των τοπολογικών και προβολικών χαρακτηριστικών στις απεικονίσεις γίνεται µια προσπάθεια για την τήρηση των αναλογικών σχέσεων των µεγεθών. Κλείνοντας την εισαγωγική µας αναφορά στην διαδικασία οικοδόµησης του παιδικού χώρου, κρίνουµε σκόπιµο να µεταφέρουµε τον προβληµατισµό που έχει αναπτυχθεί σχετικά µε το αν η προοπτική αποτελεί ένα αναπόφευκτο στάδιο στην εξέλιξη του παιδικού σχεδίου. Αν δηλαδή η προοπτική αποτελεί µια "φυσική" συνέπεια στον τρόπο αντίληψης του χώρου και συνεπώς στην εξέλιξη του παιδικού σχεδίου. Στο σηµείο αυτό θα υπογραµµιστεί η επίδραση του πολιτισµικού περιβάλλοντος των υτικών κοινωνιών που θα ασκήσει µια σηµαντική επιρροή στον τρόπο θέασης και αναπαράστασης του χώρου. Έτσι εκφράζονται σοβαρές αµφιβολίες αν τα παιδιά που µεγαλώνουν σε πολιτισµικά περιβάλλοντα χωρίς τις υτικές επιρροές θα καταλήξουν σε προοπτικές αναπαραστάσεις. Επιπλέον, η Φλοράνς ντε Μερεντιέ σηµειώνει ότι η προοπτική αναπαράσταση ευνοείται από ορισµένες τεχνικές σχεδίασης. Όταν το παιδί χρωµατίζει κατευθείαν, χωρίς προηγουµένως να έχει χαράξει το σχέδιο, η κηλίδα κυριαρχεί σε σχέση µε τη γραµµή, µε αποτέλεσµα να ευνοούνται οι τοπολογικές σχέσεις σε βάρος των προβολικών και ευκλείδειων σχέσεων (1981, σ. 90). 6.2 Οι έννοιες του χώρου στην προσχολική εκπαίδευση Στην προσχολική και την πρώτη σχολική ηλικία όταν αναφερόµαστε στην Γεωµετρία εννοούµε την ενασχόλησή µας µε τον τρισδιάστατο χώρο και ειδικότερα µε την µελέτη των Γεωµετρικών αντικειµένων που αποτελούν στοιχεία αυτού του χώρου. Έτσι, η αναφορά µας σε Γεωµετρικές έννοιες σχετίζεται, τόσο µε έννοιες που αντανακλούν ιδιότητες των Γεωµετρικών αντικειµένων, όπως επίσης και µε έννοιες που είναι αποτέλεσµα των σχέσεων που εισάγουµε εµείς µεταξύ των αντικειµένων αυτών. Ο χώρος που µας περιβάλλει αποτελεί το αφετηριακό σηµείο για την ανάπτυξη των περισσότερων εννοιών, µεταξύ των οποίων και των µαθηµατικών. Ο άνθρωπος

6 για να αναπτύξει τις δραστηριότητές του πρέπει να προσδιορίσει τις σχέσεις που υπάρχουν στο φυσικό ή τεχνικό περιβάλλον και να τις αναπαραστήσει. Στη σχέση του αυτή µε το περιβάλλον το παιδί: Αυτοπροσδιορίζεται και οριοθετείται από αυτό. ιαχωρίζει και εισάγει σχέσεις µεταξύ των αντικειµένων. Αποκεντρώνεται από µια υποκειµενική θεώρηση της πραγµατικότητας, αναπτύσσοντας, όσο το δυνατό µια αντικειµενική αντίληψή της. Οι χωρικές σχέσεις, οι σχέσεις δηλαδή του ατόµου µε τα αντικείµενα του χώρου µπορεί να διακριθούν σε τρεις κατηγορίες: Στις οριοθετήσεις µέσα στο χώρο που έχουν ένα ποιοτικό χαρακτήρα και προσδιορίζονται από τις τοπολογικές σχέσεις (πχ. εγγύτητα, διαχωρισµός, τάξη και σειρά, κλειστότητα, συνέχεια, ασυνέχεια). Τις προβολικές σχέσεις, που έχουν να κάνουν µε την συγγραµµικότητα, την καθετότητα, την προβολή τρισδιάστατων αντικειµένων στο επίπεδο, την δυνατότητα κατανόησης και περιγραφής διαφορετικών όψεων ενός αντικειµένου. Οι προβολικές σχέσεις εµπεριέχουν τις τοπολογικές και είναι, επίσης, ποιοτικές. Έχουµε, τέλος, τις ποσοτικές σχέσεις, που από τη µια εµπεριέχουν τις τοπολογικές και προβολικές σχέσεις, ενώ από την άλλη εισάγουν µετρικά χαρακτηριστικά [Τζεκάκη 1996]. 6.3 Τοποθέτηση και προσανατολισµός στο χώρο Το ανθρώπινο σώµα ως σύστηµα αναφοράς Το ανθρώπινο σώµα αποτελεί το πρώτο σύστηµα αναφοράς για τον προσανατολισµό στο χώρο. Η θέση των αντικειµένων προσδιορίζεται σε σχέση µε το ανθρώπινο σώµα. Οι κύριες διευθύνσεις εδώ είναι: i. Το µπροστά, που ορίζεται από την διεύθυνση του βλέµµατος. Το πίσω ορίζεται σε σχέση µε το µπροστά. ii. Το δεξιά, από το δεξί χέρι και συνεπώς το αριστερά από το αριστερό. iii. Το πάνω ορίζεται, συνήθως, από το ύψος του κεφαλιού, ενώ το κάτω ορίζεται σε σχέση µε το πάνω. Από µαθηµατική σκοπιά το σύστηµα αυτό εκφράζει το τρισδιάστατο σύστηµα αξόνων που ορίζεται από την τοµή τριών, καθέτων µεταξύ τους, επιπέδων.

7 Η διδακτική προσπάθεια σ αυτό το επίπεδο προσανατολίζεται στην ανάπτυξη ενός αποκεντρωµένου από το σώµα του παιδιού συστήµατος αναφοράς. Η αποκέντρωση αυτή θα εκφραστεί µε την δυνατότητα των παιδιών να ορίζουν τις σχετικές θέσεις των αντικειµένων του περιβάλλοντος σε σχέση µε συστήµατα αναφοράς εκτός του σώµατός τους. Σε µια περισσότερο µαθηµατική γλώσσα τα παιδιά κατακτούν: Την συµµετρικότητα των σχέσεων των αντικειµένων. Για παράδειγµα: Η Α είναι µπροστά από τον Β και ο Β είναι µπροστά από την Α (σχ. 6.2). Σχήµα 6.2 Την αντισυµµετρικότητα των σχέσεων. Για παράδειγµα: Η Α είναι µπροστά από τον Β, αλλά ο Β δεν είναι µπροστά από την Α (σχ. 6.3). Σχήµα 6.3 Πρέπει να τονιστεί εδώ πως οι δυσκολίες είναι διαφορετικές στην κατανόηση κάθε κατηγορίας. Για το πάνω-κάτω υπάρχει µια σχετική ευκολία αφού υπάρχει ένας φυσικός προσανατολισµός που έχει πάντα ως σταθερά σηµεία αναφοράς τον ουρανό και τη γη. Το παιδί µπορεί να προσδιορίσει εύκολα το πάνω-κάτω ενός άλλου, γιατί είναι το ίδιο µε το δικό του. Επίσης, το µπροστά-πίσω ορίζεται από τα φυσικά χαρακτηριστικά ενός αντικειµένου και γι αυτό µπορεί να προσδιοριστεί µε µια

8 σχετική ευκολία. Όµως οι έννοιες δεξιά-αριστερά δεν αποτελούν κάποια χαρακτηριστική ιδιότητα του σώµατος, σχετίζονται µε την πλευρική κυριαρχία στο ανθρώπινο σώµα και η ονοµασία δεξιά, αριστερά είναι κάποιες λεκτικές ανθρώπινες συµβάσεις. Για τον λόγο αυτό η προσπάθεια για τον προσανατολισµό σχετικά το δεξιά-αριστερά, απαιτεί πρόσθετη διδακτική ενασχόληση. 6.4 Προτεινόµενες ραστηριότητες Με σύστηµα αναφοράς το σώµα του παιδιού i. Τα παιδιά µε σύστηµα αναφοράς το σώµα τους ορίζουν από πού ακούγεται ο ήχος, από πού έρχεται το φως, που βρίσκεται κάποιος συµµαθητής τους, κλπ. Η δραστηριότητα µε τον ήχο µπορεί να γίνει µε κλειστά τα µάτια των παιδιών, οπότε αυτά πρέπει να αναπτύξουν νοητά µια εικόνα για τον χώρο και να προσανατολιστούν σε σχέση µε αυτόν. ii. Το παιγνίδι της τυφλόµυγας. Τα παιδιά µε κλειστά τα µάτια τους προσανατολίζονται στο χώρο µε υποδείξεις των άλλων για να βρουν τον κρυµµένο θησαυρό Με σύστηµα αναφοράς έξω από το σώµα του παιδιού i. Ένα παιδί ορίζεται να ανακαλύψει τον (την) συµµαθητή (συµµαθήτριά) του, που κληρώνεται µυστικά. Το παιδί αυτό πρέπει να ανακαλύψει µε περιγραφές τον συµµαθητή/την συµµαθήτριά του για το που είναι τοποθετηµένος/h στο χώρο. ii. Τοποθετούµε κάποια αντικείµενα στο χώρο. Τα παιδιά κλείνουν τα µάτια τους. Όταν τα ανοίξουν πρέπει να βρουν ποια αντικείµενα έχουν αλλάξει θέση Κατανόηση του προσανατολισµού δεξιά-αριστερά 3 2 Είναι αυτονόητο ότι στο βαθµό που γίνεται µια αφαίρεση των συγκεκριµένων συνθηκών που υφίστανται στην τάξη διδασκαλίας,, όπως το µορφωτικό επίπεδο των παιδιών, υλικοτεχνική υποδοµή του Νηπιαγωγείου, καθώς και κοινωνικών παραµέτρων που συχνά επικαθορίζουν την µαθησιακή διαδικασία, οι προτεινόµενες δραστηριότητες φιλοδοξούν, στην καλύτερη περίπτωση, να αποτελέσουν κάποια αρχικά ερεθίσµατα και να προσφέρουν κάποιες ιδέες για την διδακτική προσέγγιση των εννοιών που παρουσιάζονται εδώ.

9 i. ιαδοχικά πότε µε το δεξί, πότε µε το αριστερό ρίχνουν µια µπάλα, κλοτσούν, πηδούν κουτσό, µεταφέρουν ένα αντικείµενο, χτυπούν το ταµπουρίνο, κλπ. ii. Τα παιδιά σε διάφορες διατάξεις, όπως σε σειρά, κυκλικά, αντικριστά κρύβουν το δεξί τους χέρι, ή το αριστερό και κάνουν διάφορες κινήσεις µε το ελεύθερο χέρι τους: πιάνουν µια µπάλα, πιάνουν το κρυµµένο χέρι τους, το πόδι τους, κλπ. iii. Σχηµατίζουν µια σαρανταποδαρούσα, βρίσκονται το ένα πίσω από το άλλο και σηκώνουν όλα µαζί το δεξί τους χέρι, το αριστερό, το δεξί πόδι, το αριστερό, κλπ. iv. Τα παιδιά είναι αυτοκινητάκια που κινούνται το ένα πίσω από το άλλο µπρος από ένα τροχονόµο, ο οποίος τα κατευθύνει δεξιά ή αριστερά (σχ. 6.4). Σχήµα 6.4 v. Σε πίνακες που τους δίνονται (σχ. 6.5) κολλούν τα αυτοκόλλητα, ή χρωµατίζουν το πάνω δεξιά τετράγωνο, το κάτω αριστερά (σχ. 6.5α, β), κλπ. Βάφουν τα πάνω µέρη των ρόµβων ή τα δεξιά τους µέρη (σχ. 6.5γ). Σχήµα 6.5 vi. Τα παιδιά ζωγραφίζουν µια εικόνα µε διάφορα αντικείµενα που η σχετική τους θέση ορίζεται από την/τον Νηπιαγωγό. 3 Οι δραστηριότητες iv, v και viii βρίσκονται στο βιβλίο της Μ. Τζεκάκη (1996).

10 vii. Τα παιδιά σε ζευγάρια µε τις πλάτες γυρισµένες κρατούν την ίδια εικόνα. Το κάθε παιδί καθορίζει ένα αντικείµενο και µε περιγραφές προσπαθεί να προσανατολίσει το άλλο να το βρει. viii. Οι ταχυδρόµοι. Τέσσερα παιδιά ντύνονται µε χάρτινες κατασκευές σπίτια, ένα πέµπτο ντύνεται πύργος και τοποθετούνται όπως δείχνει το σχήµα 6.6. Τα υπόλοιπα παιδιά είναι οι ταχυδρόµοι που µε τις εντολές της/του Νηπιαγωγού πρέπει να µοιράσουν τα γράµµατα. Οι εντολές προσανατολίζουν σε σχέση µε τον πύργο, πχ, µπροστά και αριστερά από τον πύργο, κλπ. Φροντίζουµε τα γράµµατα να έχουν χρώµατα. Σε κάθε σπίτι αντιστοιχεί ένα ορισµένο χρώµα που δεν είναι άµεσα εµφανές στα παιδιά (είναι στο εσωτερικό του φακέλου). Τα παιδιά µπορούν να ελέγξουν αν το χρώµα του γράµµατος αντιστοιχεί µε το χρώµα του σπιτιού αφού το έχουν πλησιάσει. Σχήµ α 6.6

11 ΕΒ ΟΜΟ ΚΕΦΑΛΑΙΟ Τοπολογικές σχέσεις 7.1 Η έννοια της καµπύλης Η έννοια της κίνησης, της κίνησης µέσα στο χώρο ή γενικότερα κάθε µεταβολή που σχετίζεται µε τον χώρο και τον χρόνο, είναι στενά συνδεµένη µε την έννοια της καµπύλης. Στο αισθησιοκινητικό στάδιο τα παιδιά αναπαριστάνουν την κίνηση που βιώνουν στην καθηµερινότητά τους µε µουτζούρες που ζωγραφίζουν στο χαρτί. Κατά τα 2-21/2 χρόνια παρουσιάζονται στο χαρτί οι πρώτες µορφές. Στ α µαθηµατικά η καµπύλη γράφεται στην περίπτωση που δεν σηκώνεται το µολύβι και που δεν διαγράφεται 2 φορές ένα ολόκληρο τόξο ή ευθύγραµµο τµήµα. Για παράδειγµα τα σχήµατα 7.1α είναι µαθηµατικές καµπύλες, ενώ τα σχήµατα 7.1β δεν είναι.

12 Σχήµα 7.1α Σχήµα 7.1β Στις περιπτώσεις των απλών κλειστών καµπύλων ισχύει ένα θεµελιώδες θεώρηµα που διαισθητικά είναι φανερό και ανήκει στο Γάλλο µαθηµατικό C. Jordan 4 : Αυτό µας λεει ότι µια απλή κλειστή καµπύλη στο επίπεδο, χωρίζει το επίπεδο σε ακριβώς δύο χωρία, και αποτελεί το κοινό τους σύνορο. Παρόλο που σε απλές περιπτώσεις καµπύλων το θεώρηµα γίνεται διαισθητικά αντιληπτό και µοιάζει προφανές, εν τούτοις σε σύνθετες περιπτώσεις η απόδειξη είναι ιδιαίτερα δύσκολη. Ένα πρακτικό κριτήριο για το αν ένα σηµείο βρίσκεται στο εσωτερικό ή το εξωτερικό µιας απλής καµπύλης είναι το εξής. Τραβάµε από το σηµείο αυτό µια ηµιευθεία. Αν αυτή τέµνει τη καµπύλη σε περιττό πλήθος σηµείων τότε το σηµείο βρίσκεται στο εσωτερικό. Στην περίπτωση άρτιου αριθµού ή καθόλου τότε βρίσκεται στο εξωτερικό της καµπύλης (βλέπε στο σχήµα 7.2). 4 Βλέπε σχετικά P. Alexandroff (1993) και Τ. Πατρώνης (1985).

13 Σχήµα 7.2 Οι ιδιότητες που αναφέρουµε εδώ αφορούν ένα σύγχρονο κλάδο των µαθηµατικών την τοπολογία 5 και βρίσκουν εφαρµογές σε επιστήµες όπως για παράδειγµα η βιολογία γιατί µας δίνουν ένα µοντέλο για κάθε ζωντανό οργανισµό σχετικά µε το εσωτερικό, το εξωτερικό και το σύνορο που τα χωρίζει µε τις ιδιότητες που περιγράφει το θεώρηµα του Jordan. O Piaget και η Inhelder τονίζουν ότι ο τοπολογικός χώρος συγκροτείται πρώτος και αποτελεί το µόνο χώρο στον οποίο το παιδί έχει πρόσβαση µέχρι τα 8 ή τα 9 του χρόνια, οπότε και κατακτά τους ευκλείδειους µηχανισµούς και τις προβολικές σχέσεις που διατηρούν σταθερά τα µεγέθη και τις µορφές. Οι µορφές που αντιλαµβάνεται το παιδί µοιάζουν µε εκείνες τις παραµορφώσιµες και ελαστικές δοµές που µελετά η τοπολογία [Piaget, κ.ά., 1956]. Βέβαια υπάρχουν αντιρρήσεις τόσο από το χώρο της ψυχολογίας της µάθησης για τα χρονικά και νοητικά στάδια της πιαζετικής θεώρησης, καθώς και για την χρονική ακολουθία τοπολογικές σχέσεις -> προβολικές σχέσεις -> µετρικές σχέσεις. Επιπλέον, από µαθηµατικούς ασκείται κριτική στο κατά πόσο οι απλές αυτές γραµµές σχετίζονται µε την ουσία της τοπολογίας. Πρέπει να διευκρινιστεί εδώ πως ο τρόπος παρουσίασης τοπολογικών χαρακτηριστικών εγκλεισµού αντικειµένων που συναντάται στα βιβλία δραστηριοτήτων της προσχολικής αγωγής και της πρώτης τάξης του ηµοτικού δεν σχετίζεται µε την τοπολογία αλλά µε τα διαγράµµατα εγκλεισµού του Euler ή τα διαγράµµατα Venn. 7.2 Η µαθηµατική σηµασία των δραστηριοτήτων µε τοπολογικά χαρακτηριστικά Σκοπός του Νηπιαγωγείου δεν είναι να µάθουν τα παιδιά τοπολογικές ιδιότητες, αλλά να εκφράζουν λεκτικά και να απεικονίζουν γραφικά αυτό που βιώνουν καθηµερινά σχετικά µε τις θέσεις και τις σχέσεις των αντικειµένων στο χώρο. Βέβαια πρέπει να τονιστεί πως τα διάφορα γνωστικά αντικείµενα στο στάδιο αυτό, βρίσκονται σε αλληλεπίδραση και αλληλοσυχέτιση, αφού οι τοπολογικές δραστηριότητες απαντώνται και σε άλλα γνωστικά αντικείµενα, όπως: 5 Εδώ αναφερόµαστε στις έννοιες της εγγύτητας, του διαχωρισµού, της τάξης και της σειράς, της κλειστότητας, της συνέχειας και της ασυνέχειας

14 Το προγραφικό στάδιο. Βέβαια το προγραφικό στάδιο δεν περιορίζεται στις τοπολογικές ιδιότητες, αλλά απαιτεί και µετρικές σχέσεις. Η ώρα της φυσικής αγωγής και των εικαστικών προσφέρονται για δραστηριότητες τοπολογικού περιεχοµένου, όπως η εισαγωγή των εννοιών: Μέσα-έξω, επάνω-κάτω, ανάµεσα, κοντά-µακριά, πιο κοντά-πιο µακριά, ψηλότερα από, χαµηλότερα από, 7.3 ραστηριότητες i. Τοποθετούµε σχοινάκι ή κορδέλες στο πάτωµα και δηµιουργούµε διάφορα σχήµατα (σχ. 7.3). Τα παιδιά καλούνται να βαδίσουν κατά µήκος των γραµµών και προκαλούνται να σχολιάσουν τι παρατηρούν. Από την συζήτηση που θα ακολουθήσει µπορεί να φανεί ότι: α. Μερικές γραµµές είναι ανοικτές και άλλες κλειστές. β. Στις ανοικτές γραµµές υπάρχει αρχή και τέλος. γ. Στις κλειστές γραµµές δεν ξέρουµε από πού ακριβώς να αρχίσουµε και που να τελειώσουµε. δ. Υπάρχουν γραµµές που µπορεί να τις διατρέξουµε σε µια συνεχή πορεία και άλλες που δεν µπορούµε. Σχήµα 7.3 ii. Τα παιδιά κατά ζευγάρια κρατούν τις άκρες ενός σχοινιού. Το τινάζουν πάνω κάτω, δεξιά-αριστερά, αποµακρύνονται ώστε το σχοινί να τεντωθεί, πλησιάζουν, κλπ. Καλούνται να σχεδιάσουν την πορεία του σχοινιού σε κάθε περίπτωση. Εδώ έχουν µια ανοικτή καµπύλη που διατηρεί τα τοπολογικά της χαρακτηριστικά. iii. ίνεται ένα κορδόνι και καλούνται να σχηµατίσουν διάφορα σχήµατα, όπως ένα κεφάλι, ένα φίδι, ένα σπίτι και να τοποθετήσουν διάφορα χαρακτηριστικά σε

15 κάθε περίπτωση (πχ. µάτια, παράθυρα, κλπ. ). Εδώ εµπλέκονται οι έννοιες του εγκλεισµού, του διαχωρισµού (µάτια, παράθυρα), της συνέχειας (τα αυτιά σε συνέχεια του προσώπου). iv. Τα παιδιά πιάνονται από ένα σχοινί, το ένα πίσω από το άλλο. Όταν χτυπήσει το ταµπουρίνο τα παιδιά περπατούν το ένα πίσω από το άλλο. Όταν σταµατήσει το ταµπουρίνο τα παιδιά σταµατούν. Όταν ξαναρχίσει ο πρώτος τρέχει να πιάσει τον τελευταίο της γραµµής ενώ αυτός προσπαθεί να αποφύγει, κλπ. v. Κοιτάζοντας τη θάλασσα τι είδαν στο βάθος, τι κοντά, τι πολύ κοντά στην παραλία; vi. Υπάρχουν φύλλα πάνω στα δέντρα; Κάτω από τα δέντρα; vii. Ζητάµε να ζωγραφίσουν την τάξη τους και σχολιάζουµε τις ζωγραφιές τους. viii. Καλούµε τα παιδιά να ζωγραφίσουν διάφορα αντικείµενα της αίθουσας που βρίσκονται πάνω στο/ κάτω από/ δεξιά/ αριστερά ix. Τα παιδιά ζωγραφίζουν ένα σχέδιο µε διάφορα χρώµατα ώστε δύο γειτονικά χρώµατα να µη είναι ίδια (σχ. 7.4). Να διερευνηθεί ο µικρότερος αριθµός χρωµάτων που µπορεί να χρησιµοποιηθεί. Σχήµα 7.4 ΟΓ ΟΟ ΚΕΦΑΛΑΙΟ Προβολικές σχέσεις

16 Αναφέραµε στο προηγούµενο κεφάλαιο πως οι πρώτες κινήσεις του παιδιού είναι κυκλικές καθώς αυτό στην πρώτη περίοδο της ζωής του περιστρέφεται γύρο από τον εαυτό του και τη µητέρα του. Οι ευθείες γραµµές εµφανίζονται στο παιδικό σχέδιο αργότερα. Πριν εµφανίζονται γραµµές που φαίνεται να συγκλίνουν προς κάποιο σηµείο (σχ. 8.1) 6 και προοιωνίζουν την εµφάνιση των προβολικών στοιχείων στο παιδικό σχέδιο. Σχήµα 8.1 Οι έννοιες της προβολικής Γεωµετρίας µε τις οποίες θα ασχοληθούµε στην ενότητα αυτή, βασίστηκαν στην έννοια της προοπτικής που βρήκε εφαρµογή και αναπτύχθηκε ιδιαίτερα στην ζωγραφική της περιόδου της Αναγέννησης. Οι καλλιτέχνες τις περιόδου αυτής θα στρέψουν το ενδιαφέρον τους στον άνθρωπο και στο σύµπαν που τον περιβάλλει και θα αποτολµήσουν την αναπαράσταση της φύσης µε ένα ρεαλιστικό τρόπο. Ο ζωγράφος, τα αντικείµενα που απεικονίζει, φροντίζει, εκτός από το χρώµα και την φυσική τους υπόσταση, να αποτελούν γεωµετρικά αντικείµενα µε καθορισµένη θέση στο χώρο. Έτσι, η προσφυγή στην Γεωµετρία και η ανάπτυξη της προβολικής Γεωµετρίας θα διευκολύνει στην κατεύθυνση αυτή. Προβολικές είναι οι σχέσεις ανάµεσα σε άτοµα ή αντικείµενα του χώρου όπου παρεµβάλλεται η ευθυγράµµιση, η συγγραµµικότητα, η οπτική γωνία, κλπ. Για παράδειγµα, δύο αντικείµενα που βρίσκονται στην ίδια ευθεία συνδέονται µε µια προβολική σχέση. Με τις προβολικές σχέσεις ασχολείται ένα ιδιαίτερος κλάδος της γεωµετρίας, η προβολική γεωµετρία. Η ευθυγράµµιση και η προβολή είναι στοιχεία της καθηµερινότητάς µας: Ο δοµηµένος χώρος που µας περιστοιχίζει αποτελείται, συνήθως, από ευθείες γραµµές. Ο τρόπος απεικόνισης στο επίπεδο, η φωτογραφία, είναι µορφές προβολής του χώρου 6 Βλέπε σχετικά στο: Τ. Πατρώνης 1985.

17 στο επίπεδο. Επίσης, ο τρόπος διάδοσης του φωτός (όπως διδάσκεται στις πρώτες βαθµίδες της εκπαίδευσης και γίνεται διαισθητικά αντιληπτός) ακολουθεί τις ιδιότητες της προβολικής γεωµετρίας. Τα κύρια είδη προβολής είναι δύο: Η κεντρική και η παράλληλη προβολή. 8.1 Η κεντρική προβολή Παράδειγµα κεντρικής προβολής µπορεί να προκύψει στην περίπτωση µιας φωτεινής πηγής. Οι ιδιότητες της κεντρικής προβολής είναι: i. Η διατήρηση της ευθειότητας. Η προβολή µιας ευθείας σε ένα επίπεδο είναι επίσης ευθεία. Το αντίστροφο δεν ισχύει πάντα. ii. Οι τοπολογικές ιδιότητες του εσωτερικού και του εξωτερικού. iii. ύο τεµνόµενες ευθείες µπορεί να απεικονίζονται ως τεµνόµενες, αλλά µπορεί να είναι και παράλληλες. Όµοια δύο παράλληλες ευθείες σε µια προβολή µπορεί να απεικονίζονται ως τεµνόµενες. Στο γεγονός της µη διατήρησης της παραλληλίας στην κεντρική προβολή βασίζεται και το γεγονός της φαινοµενικής σύγκλισης των αποµακρυσµένων γραµµών ενός τρένου. 8.2 Η παράλληλη προβολή: Οι ακτίνες του ήλιου µας δίνουν ένα παράδειγµα παράλληλης προβολής. Εδώ διατηρείται η παραλληλία των ακτινών που αποτελούν τη δέσµη του φωτός. Στην παράλληλη προβολή παρατηρούµε, συνήθως, µια παραµόρφωση των γεωµετρικών σχηµάτων: Για παράδειγµα, η σκιά µιας σφαίρας µπορεί να είναι έλλειψη (βλέπε στο σχήµα 8.2), το τετράγωνο µπορεί να µετασχηµατιστεί σε παραλληλόγραµµο ή τραπέζιο, κλπ 7. 7 Περισσότερα ο αναγνώστης µπορεί να βρει στο: Τ. Πατρώνης (1985).

18 Σχήµα 8.2 Σύµφωνα µε τους Piaget και Inhelder η κατάκτηση των προβολικών ιδιοτήτων εµφανίζεται κατά τις ηλικίες 8-9. Όµως, το παιδί, αρκετά νωρίτερα έχει τη δυνατότητα να την αντιληφθεί. Η καθυστέρηση στην δυνατότητα απεικόνισης οφείλεται στην διαφορά ανάµεσα στην όραση και την αναπαράσταση της προοπτικής. Για να αναπαραστήσουµε ένα αντικείµενο πρέπει να έχουµε τη δυνατότητα να κατανοήσουµε ότι το ίδιο αντικείµενο µπορεί να φαίνεται διαφορετικά από διάφορες οπτικές γωνίες. Αυτό προϋποθέτει τη συνείδηση της σχέσης ανάµεσα στο υποκείµενο που παρατηρεί και το αντικείµενο της παρατήρησης. Συµπερασµατικά, ο προβολικός χώρος στηρίζεται στο συντονισµό διαφόρων δυνατών απόψεων ενός αντικειµένου, δηλαδή στις προοπτικές του. Ο διδακτικός σκοπός της ενότητας αυτής είναι η αναγνώριση από τα παιδιά της ευθείας, της παραλληλίας και της καθετότητας. Η δυνατότητα κατανόησης και περιγραφής διαφορετικών όψεων ενός αντικειµένου. 8.3 ραστηριότητες

19 i. Αντιστοίχηση καµπυλών µε επίπεδα σχήµατα και στερεά 8 Αντικείµενο της δραστηριότητας: Γεωµετρικές έννοιες- Αναγνώριση καµπυλών σε σχήµατα και στερεά. Στόχοι της δραστηριότητας: Με την δραστηριότητα αυτή επιδιώκουµε να αναζητήσουµε αντιστοιχήσεις ανάµεσα σε ευθείες, καµπύλες και τεθλασµένες από τη µια και επιπέδων σχηµάτων και στερεών από την άλλη. Αναγκαία υλικά: Ένα φύλλο εργασίας στο οποίο είναι σχεδιασµένα: µια ευθεία, µια καµπύλη και µια τεθλασµένη. Στο ίδιο φύλλο εργασίας υπάρχουν σχεδιασµένα επίπεδα σχήµατα: τετράγωνο, τρίγωνο και κύκλος (βλέπε στο σχήµα 8.3). Σχήµα Η δραστηριότητα αυτή περιέχεται στο βιβλίο της Μ. Τζεκάκη (1996).

20 Ανάπτυξη της δραστηριότητας: Εισάγουµε, κατά αρχήν, ένα λεξιλόγιο που σχετίζεται µε το υλικό που χρησιµοποιούµαι. Μιλάµε, δηλαδή, για ευθείες, τεθλασµένες, καµπύλες, τετράγωνα, τρίγωνα, κύκλους, κύβους, πρίσµατα, κυλίνδρους, κώνους, κλπ. Τα παιδιά αναζητούν, ευθείες, τεθλασµένες και καµπύλες στα επίπεδα σχήµατα. Στη συνέχεια προσπαθούν να αναζητήσουν στα στερεά, γνωστά τους σχήµατα, όπως τετράγωνα, τρίγωνα και κύκλους. Τέλος, αναζητούµε στα στερεά αυτά ευθείες, τεθλασµένες και καµπύλες και µιλάµε για επίπεδες και καµπύλες επιφάνειες. Χρησιµοποιούµε, επιπλέον, διάφορα στερεά σχήµατα: κύβους, πρίσµατα, κυλίνδρους και κώνους και αναζητούµε αντιστοιχήσεις µε ευθείες, καµπύλες και τεθλασµένες γραµµές µε επίπεδα ή στερεά σχήµατα που δίνουµε. ii. Αντικείµενα που είναι πιο κοντά και άλλα που είναι πιο µακριά 9. Αντικείµενο της δραστηριότητας Εισαγωγή ενός λεξιλογίου που σχετίζεται µε τις αποστάσεις των αντικειµένων και η αναγνώριση της σχετικότητας της απόστασης ανάλογα µε τον παρατηρητή. Στόχοι της δραστηριότητας: Σκοπός της δραστηριότητας αυτής είναι η οικειοποίηση και η αποδοχή ενός λεξιλογίου που σχετίζεται µε τις αποστάσεις αντικειµένων και τη σχετική τους θέση (πχ. µακριά, κοντά, πιο µακριά, πιο κοντά, κλπ). Η διάκριση των σχετικών θέσεών τους σε σχέση µε τον παρατηρητή. Η προσπάθεια αποκέντρωσης του παιδιού από την συγκεκριµένη οπτική γωνία που βλέπει τα αντικείµενα και η ανάπτυξη της ικανότητας του να βλέπει τα αντικείµενα και από άλλες οπτικές γωνίες. Αναγκαία υλικά: Στερεά γεωµετρικά σχήµατα: Πυραµίδες, σφαίρες, κύλινδροι, κύβοι, Παραλληλεπίπεδα. Επιπλέον, δύο φύλλα εργασίας. Και τα δύο απεικονίζουν ένα τραπέζι σε προοπτική, όπου πάνω του βρίσκονται διάφορα αντικείµενα (ίσως τα γεωµετρικά στερεά που χρησιµοποιήθηκαν προηγούµενα). Στο ένα φύλλο εργασίας κάθεται η Α που κοιτάζει προς το τραπέζι. Στο άλλο φύλλο, στην αντίθετη πλευρά, κάθεται ο Β (µια πιθανή µορφή που µπορεί να έχει το σχήµα είναι αυτή του σχήµατος 8.4). 9 Για τις δραστηριότητες ιι/ιιι/ιv/v βλέπε στο Πούλος Α. (1994)].

21 Σχήµα 8.4 Ανάπτυξη της δραστηριότητας: Τοποθετούµε τα παιδιά ανά δύο αντικριστά. Ανάµεσά τους, πάνω σε ένα τραπέζι, βρίσκονται στη σειρά, το ένα πίσω από το άλλο δύο στερεά. Το ένα από τα δύο παιδιά µας λεει πιο από τα δύο αντικείµενα είναι πιο κοντά και πιο µακρύτερα. Στη συνέχεια µας λεει πιο είναι πιο κοντά και πιο µακρύτερα για τον συµπαίκτη του. Ο συµπαίκτης επιβεβαιώνει ή διαψεύδει Στη συνέχεια χρησιµοποιούµε τα φύλλα εργασίας. Ζητείται από τα παιδιά να περιγράψουν το αντικείµενο που είναι πιο κοντά και αυτό που είναι πιο µακριά για την Α και τον Β. iii. Τι βλέπει η κούκλα /1 Αντικείµενο της δραστηριότητας: Προβολές στο επίπεδο όψεων ενός αντικειµένου. Στόχοι της δραστηριότητας: Με την δραστηριότητα αυτή στοχεύουµε στην ανάπτυξη της ικανότητας των παιδιών να αντιλαµβάνονται τις ορθές προοπτικές ενός αντικειµένου στο επίπεδο. Αναγκαία υλικά: Ένα µπλοκ κύβων, µια κούκλα και τέσσερις κάρτες που απεικονίζουν τις τέσσερις ορθές προβολές των πλάγιων πλευρών της κατασκευής των κύβων. Ανάπτυξη της δραστηριότητας: Η κούκλα βλέπει διαφορετικές όψεις της κατασκευής. Τα παιδιά πρέπει να επιλέξουν την κάρτα που περιγράφει την όψη της κατασκευής που, κάθε φορά, βλέπει η κούκλα. iv. Tι βλέπει η κούκλα /2. Ο µαρτυριάρης καθρέπτης Αντικείµενο της δραστηριότητας. Η ανακάλυψη του τι βλέπει ο Άλλος.

22 Στόχοι της δραστηριότητας. Ανάπτυξη στρατηγικών για την ανακάλυψη του τι βλέπει ένα τρίτο πρόσωπο, που δεν µπορούµε να το δούµε άµεσα εµείς. Αναγκαία υλικά. Ένα ζάρι, που σε κάθε πλευρά του έχει διαφορετική εικόνα, ένας καθρέπτης και µια κούκλα. Ανάπτυξη της δραστηριότητας. Απέναντι από το παιδί, πάνω στο τραπεζάκι του Νηπιαγωγείου, βρίσκεται ο καθρέπτης και δίπλα του η κούκλα. Το παιδί ρίχνει το ζάρι και πρέπει να µας πει ποια εικόνα του ζαριού βλέπει η κούκλα Η πλευρά που βλέπει η κούκλα καθρεπτίζεται στον καθρέπτη και το παιδί την βλέπει (βλέπε στο σχήµα 8.5). Σχήµα 8.5 v. Οι θέσεις των πραγµάτων Αντικείµενο της δραστηριότητας: Προσδιορισµός της θέσης αντικειµένων σε µια προοπτική διευθέτησή τους. Στόχοι της δραστηριότητας: Η ανάπτυξη της ικανότητας των παιδιών να βλέπουν τη θέση των αντικειµένων σε µια προοπτική διευθέτησή τους. Αναγκαία υλικά: Παιγνίδια που παριστάνουν ένα δέντρο, µια αγελάδα, µια ποτίστρα και µια κούκλα. Επίσης ένα πράσινο χαρτόνι. Ανάπτυξη της δραστηριότητας: Πάνω σε ένα τραπεζάκι του Νηπιαγωγείου, στο λιβάδι (το πράσινο χαρτόνι), τοποθετούµε στη σειρά την ποτίστρα, την αγελάδα και το δέντρο, όπως δείχνει το σχήµα 8.6. Τέσσερις κάρτες παριστάνουν τις τέσσερις πλευρές του σκηνικού, όπως αυτό φαίνεται, από µπροστά, από πίσω, από αριστερά και από δεξιά. Τέσσερα παιδιά βρίσκονται στις τέσσερις πλευρές

23 του τραπεζιού. ίνουµε µια κάρτα. Η οµάδα πρέπει να τοποθετήσει την κούκλα στη πλευρά του τραπεζιού, ώστε να βλέπει αυτό που απεικονίζει η κάρτα. Στην περίπτωση που δεν υπάρξει συναίνεση, τα παιδιά κινούνται γύρο από το τραπέζι ώστε να δουν την προοπτική που παρουσιάζεται στην εικόνα. Τέλος, δίνουµε και τις υπόλοιπες κάρτες και καλούµε τα παιδιά να τις µοιράσουν, έτσι ώστε, κάθε κάρτα να απεικονίζει αυτό που βλέπουν. Σχήµα 8.6 vi. Παιγνίδια µε ευθύγραµµες κινήσεις, όπως για παράδειγµα η τρίλιζα. Οι δύο παίχτες, ο ένας µε τα πούλια Ο και ο άλλος µε τα πούλια Χ προσπαθούν να τοποθετήσουν τα πούλια τους σε ευθεία γραµµή. Ο αντίπαλος προσπαθεί να εµποδίσει (σχ. 8.7). Θ Θ Θ Ο Ο Ο Σχήµα 8.7 vii. Σκιές. Αντικείµενο της δραστηριότητας: Η κεντρική προβολή

24 Στόχοι της δραστηριότητας: Η κατανόηση της κεντρικής προβολής και ειδικότερα του φαινοµένου των σκιών που δηµιουργούνται από µια φωτεινή πηγή. Αναγκαία υλικά: Μια φωτεινή πηγή (προβολέας, φωτιστικό, κλπ.), ράβδοι διαφόρων µεγεθών, ένα λευκό σεντόνι (που θα χρησιµοποιηθεί ως µπερντές). Ανάπτυξη της δραστηριότητας: Στην αρχή τοποθετούµε τις ράβδους µπροστά από την φωτεινή πηγή ώστε οι σκιές τους να προβάλλονται στον τοίχο. Πλησιάζουµε και αποµακρύνουµε τις ράβδους από την φωτεινή πηγή και παρατηρούµε πως οι σκιές µεγαλώνουν και µικραίνουν αντίστοιχα. Αφού κάνουµε µια επίδειξη ζητούµε στην συνέχεια από τα παιδιά να προβλέψουν πως η σκιά του αντικειµένου θα αλλάζει καθώς θα µετακινούµε το αντικείµενο (ή την φωτεινή πηγή). Αφού τα παιδιά παρατηρήσουν τις αλλαγές παίζουµε ένα θέατρο σκιών χρησιµοποιώντας το σενάριο από το παραµύθι η Αλίκη στη χώρα των θαυµάτων. Η Αλίκη πίσω από τον µπερντέ τρωει τον απαγορευµένο καρπό και αρχίζει να µεγαλώνει (πλησιάζει την φωτεινή πηγή). Σε κάποια άλλη σκηνή αρχίζει να µικραίνει (αποµακρύνεται από την φωτεινή πηγή). Τα παιδιά σε ρόλο θεατή ή της Αλίκης κάνουν υποθέσεις σχετικά µε τις θέσεις της Αλίκης, ώστε αυτή να µεγαλώνει ή να µικραίνει. Ελέγχουν την ορθότητα των υποθέσεών τους. viii. Η ναυµαχία 10 Αντικείµενο της δραστηριότητας: Εξοικείωση µε την κάθετη και οριζόντια διεύθυνση. Συντονισµός των δύο διευθύνσεων. Στόχοι της δραστηριότητας: Ένα στοιχείο της λογικο-µαθηµατικής ανάπτυξης των παιδιών είναι η δυνατότητά τους να προσανατολίζονται στο χώρο και ο νοητικός συντονισµός διαφορετικών διευθύνσεων. Ειδικότερα ασχολούµαστε εδώ, µε τον συντονισµό δύο καθέτων διευθύνσεων (οριζόντια και κάθετη), γεγονός που παραπέµπει στο ορθοκανονικό σύστηµα αξόνων, που θα συναντήσουν τα παιδιά σε µια επόµενη εκπαιδευτική βαθµίδα. Αναγκαία υλικά: Μια σκακιέρα, µεγάλων διαστάσεων (µπορούµε να την κατασκευάσουµε και µε κιµωλία στην αυλή του Νηπιαγωγείου) (σχ. 8.8). 10 Η "ναυµαχία" περιέχεται στο βιβλίο των Kammi & Clark, Τα παιδιά ξαναεφευρίσκουν την Αριθµητική (1995).

25 15 (περίπου) πούλια, από τα οποία τα 4 έχουν στην µια πλευρά τους σχεδιασµένο ένα πλοίο. Ανάπτυξη της δραστηριότητας: Τα παιδιά χωρίζονται σε δύο οµάδες. Η µια κάθεται κατά µήκος δύο διαδοχικών πλευρών της σκακιέρας, όπως δείχνει το σχήµα. Μέσα στη σκακιέρα έχουµε διάσπαρτα τα πούλια, µεταξύ των οποίων είναι και αυτά που από κάτω είναι σηµαδεµένα µε τα πλοία του στόλου. Η αντίπαλη οµάδα προσπαθεί να εντοπίσει τις θέσεις των πλοίων µε ζεύγη παιδιών που κάθονται στις διαδοχικές πλευρές. Για παράδειγµα δηλώνεται το ζεύγος (Α, Β), ή (Β, Α) προκειµένου να οριστεί η θέση στο πούλι Π. Αν στη θέση που συναντώνται τα παιδιά δεν υπάρχει πλοίο, τότε η οµάδα χάνει ένα χτύπηµα. Αν υπάρχει, το βυθίζουν. Συνεχίζουν ώσπου να συµπληρώσουν ένα προκαθορισµένο αριθµό χτυπηµάτων (πχ. έχουν την δυνατότητα για 10 χτυπήµατα). Κερδίζει η οµάδα που βυθίζει τα περισσότερα πλοία. Σχήµα 8.8 ix. Α. Τι βλέπουµε Οι δραστηριότητες εδώ είναι παρµένες από το: HERSHKOWITZ, R., PARZYSZ, B., & VAN DORMOLEN, J., Space and Shape. In A.J. Bishop, K. Clements, C. Keitel, J.

26 1. Ο/Η φωτογράφος Αντικείµενο της δραστηριότητας: Προοπτικές ενός αντικειµένου Στόχοι της δραστηριότητας: Σε συνέχεια των προηγούµενων δραστηριοτήτων τα παιδιά φωτογραφίζουν διαφορετικές πλευρές ενός αντικειµένου. Αναγκαία υλικά: Ένα αντικείµενο και τέσσερις φωτογραφίες του από διαφορετική προοπτική. Ανάπτυξη της δραστηριότητας: Τα παιδιά στο ρόλο του φωτογράφου αναγνωρίζουν την θέση απ όπου τραβήχτηκε η φωτογραφία που τους δείχνουµε. Στο βαθµό που έχουµε στην διάθεση µας φωτογραφική µηχανή στιγµιαίας εµφάνισης φωτογραφίζουµε για επαλήθευση. 2. Η τραγουδίστρια. Μια φωτογραφία απεικονίζει ένα στούντιο τηλεόρασης, όπου τραγουδάει µια τραγουδίστρια και την παίρνουν τέσσερις κάµερες: η µια από µπροστά, η άλλη από πίσω, µια από αριστερά και µια δεξιά. Στο χώρο του διευθυντή εικόνας υπάρχουν τέσσερις εικόνες που η καθεµιά τους αντιστοιχεί στη λήψη κάθε κάµερας. Οι µαθητές παίζουν τον ρόλο του διευθυντή και πρέπει να βρουν πια φωτογραφία ανήκει σε πια κάµερα (σχ. 8.9). Σχήµα 8.9 Σχόλιο: Kilpatrick, C. Laborde (Eds.), International Handbook of Mathematics Education, Kluwer Academic Publishers, Dordrecht/Boston/London, pp

27 Οι δύο προηγούµενες δραστηριότητες έχουν διαφορετικό βαθµό δυσκολίας: Στην πρώτη περίπτωση το παιδί έχει την δυνατότητα να είναι το ίδιο ο παρατηρητής, να περπατήσει γύρο-γύρο το τραπέζι και να παρατηρήσει άµεσα. Στην δεύτερη, πρέπει να έρθει νοητά στη θέση του παρατηρητή και να φανταστεί το τι αυτός βλέπει σε κάθε περίπτωση. Β. Πως µπορούµε να το δούµε 3. Όπως περίπου και στην προηγούµενη περίπτωση δίνονται τέσσερις φωτογραφίες, αλλά εδώ τα παιδιά παίρνουν τα αντικείµενα στα χέρια τους και πρέπει να τα τοποθετήσουν στη θέση τους στο τραπέζι. Τους ζητείται επίσης να σχεδιάσουν ένα χάρτη (µια κάτοψη) του τραπεζιού µε τα αντικείµενα. Τα παιδιά πρέπει να υποδείξουν στον χάρτη που στεκόταν ο φωτογράφος στις περιπτώσεις των τεσσάρων φωτογραφιών. Επίσης να σχεδιάσουν τι βλέπει κάποιος από κάθε πλευρά. Που πρέπει να τοποθετηθεί στο σχέδιο ώστε να βλέπει αυτό που δείχνει η κάθε φωτογραφία; Οι µαθητές που δυσκολεύονται µπορούν να αναπαραστήσουν την κατάσταση µε αισθητά αντικείµενα, όπως πχ. τουβλάκια, κλπ Η δραστηριότητα Β διαφέρει από αυτή που περιγράφεται στο Α: Στο Α το παιδί πρέπει να µας πει το τι βλέπει, ενώ στην Β πρέπει να µας πει πως θα δει κάτι. Έχουµε δηλαδή µια µετακίνηση από το τι βλέπουν µε τα µάτια τους, στο τι βλέπουν µε τα µάτια του µυαλού τους. Η πρώτη περίπτωση περιέχει µεγαλύτερο βαθµό υποκειµενικότητας, αφού τα παιδιά περιγράφουν το τι βλέπουν µόνα τους ή από τη θέση του παρατηρητή. Στην δεύτερη περίπτωση πρέπει να φανταστούν τι βλέπει ο παρατηρητής από πάνω ή από κάποια πλευρά. Θα µπορούσαµε να πούµε ότι τα παιδιά πρέπει να ταυτιστούν µε δύο πρόσωπα: το ένα του παρατηρητή και ένα δεύτερο που παρατηρεί τον παρατηρητή. Στην πρώτη περίπτωση τα παιδιά είναι µέρος της κατάστασης, ενώ στην δεύτερη έχουµε ένα είδος µετα-σκέψης, αφού πρέπει να σκεφτούν πάνω στην κατάσταση στην οποία συµµετέχουν. Η επιτυχής µεταφορά από το επίπεδο του τι βλέπουµε στο πως θα το δούµε, απαιτεί µια µεγαλύτερη ικανότητα οπτικής αναλυτικής σκέψης. 4. Η γάτα και το ποντίκι Εδώ υπάρχει µια κάτοψη της γάτας και του ποντικιού που προσπαθεί να κρυφτεί (σχ. 8.10).

28 Σχήµα 8.10 Θέτουµε τα ερωτήµατα: - Μπορεί η γάτα να δει το ποντίκι; - Που θα ήταν καλύτερα για το ποντίκι να µη βρίσκεται; - Αν η γάτα δεν µπορεί να δει το ποντίκι, από ποια θέση θα µπορούσε να το δει (υποθέτουµε ότι το ποντίκι δεν µετακινείται); Στην πρώτη περίπτωση τα παιδιά πρέπει να κατανοήσουν ότι µπορούν να σχεδιάσουν µια ευθεία από τα µάτια της γάτας προς το ποντίκι. Στην περίπτωση που η ευθεία αυτή τέµνει κάποιο αντικείµενο η γάτα δεν µπορεί να δει το ποντίκι. Αυτή η γραµµή είναι µια φανταστική γραµµή που αρχίζει από τα µάτια και αποκαλείται οπτική γραµµή (sight-line). Η οπτική γραµµή αποτελεί ένα σηµαντικό εργαλείο για την επίλυση προβληµάτων σχετικά µε την σχετική θέση αντικειµένων στο χώρο. Αυτό το πρώτο βήµα της µαθηµατικοποίησης έχει να κάνει µε το πώς βλέπω. Στην δεύτερη περίπτωση έχουµε τον προσδιορισµό µιας επικίνδυνης περιοχής, όπου το ποντίκι βρίσκεται στο οπτικό πεδίο της γάτας. Η περιοχή αυτή ορίζεται ως οπτική γωνία. Αν και η οπτική γραµµή είναι ένα επαρκές εργαλείο εν τούτοις η ιδέα της οπτικής γωνίας κρίνεται χρήσιµη γιατί ενοποιεί όλες τις σχετικές οπτικές γραµµές που σχετίζονται µε τον στόχο της θέασης του ποντικιού. Η τρίτη περίπτωση, όπου ζητείται η περιοχή απ όπου η γάτα µπορεί να δει το ποντίκι µοιάζει όµοια µε τις δύο προηγούµενες, αλλά στην πραγµατικότητα είναι τελείως διαφορετική: Στην πρώτη περίπτωση αναζητούµε την οπτική γραµµή που αρχίζει από τα µάτια της γάτας και κατευθύνεται προς το ποντίκι. Το πρόβληµα, όµως, µπορεί να αντιµετωπιστεί ακριβέστερα αν η οπτική γραµµή αρχίζει από το ποντίκι και κατευθύνεται προς τη γάτα. Εδώ πρόκειται για αλλαγή προοπτικής.

29 Στην τρίτη περίπτωση πρέπει να σχεδιαστεί η οπτική γωνία από το ποντίκι προς την τρύπα. Οι µαθητές/τριες που έχουν δυσκολία στο να φανταστούν την κατάσταση µε την γάτα και το ποντίκι, µπορούν να βοηθηθούν παίζοντας τη γάτα και το ποντίκι. Σχόλια για τα προηγούµενα Στην περιγραφή του χώρου εµπλέκονται δύο διαφορετικά είδη σχέσεων µεταξύ των αντικειµένων που σχετίζονται µε τα παρατηρούµενα και τον παρατηρητή: η πρώτη σχέση είναι άµεση, υποκειµενική και αντανακλάει το τι βλέπει ο παρατηρητής. Η δεύτερη είναι έµµεση περισσότερο αντικειµενική και αντανακλάει την άποψη για το πώς ο παρατηρητής βλέπει. Στην δεύτερη σχέση διευκολύνουν τα εργαλεία όπως η οπτική γραµµή και η οπτική γωνία. Στην επίλυση προβληµάτων σχετικά µε την οπτική γραµµή και την οπτική γωνία χρησιµοποιείται η µέθοδος της αλλαγής προοπτικής. Υπάρχει µια κλιµάκωση και οι καταστάσεις γίνονται βαθµηδόν δυναµικές. Οι οπτικές γραµµές και οι οπτικές γωνίες εκφράζουν µε δυναµικό τρόπο της σχέσεις των αντικειµένων. Οι καταστάσεις-προβλήµατα (problem-situations) µπορούν να υλοποιηθούν µε πραγµατικά αντικείµενα. Οι οπτικές γραµµές µπορούν να πάρουν µια συγκεκριµένη υλική υπόσταση, όπως µε κοµµάτια σχοινιού, κλπ. 5. Κάτοψη. Η κατασκευή µε τους κύβους. Αντικείµενο της δραστηριότητας: Η κατασκευή ενός τρισδιάστατου αντικειµένου µε πληροφορίες από την κάτοψή του Στόχοι της δραστηριότητας: Με την δραστηριότητα αυτή στοχεύουµε στην ανάπτυξη της ικανότητας των παιδιών να κατασκευάζουν στερεά από πληροφορίες σχετικές µε την κάτοψή τους. Επίσης, ελέγχεται η δυνατότητα αντιστοίχησης των πλευρών του αντικειµένου µε εικόνες που δείχνουν τις τέσσερις πλευρές του. Αναγκαία υλικά: - Το σχήµα 1.3 δίνει πληροφορίες από την κάτοψη του αντικειµένου: Οι αριθµοί δείχνουν τον αριθµό των κύβων που βρίσκονται στην κάθε θέση. - Οικοδοµικό υλικό (κύβοι). - Τέσσερις κάρτες που απεικονίζουν τις τέσσερις ορθές προβολές των πλάγιων πλευρών της κατασκευής. - Μια κούκλα

30 Ανάπτυξη της δραστηριότητας: Τα παιδιά καλούνται αρχικά να κατασκευάσουν το αντικείµενο µε τις προϋποθέσεις που προβλέπονται στην κάτοψή του (σχ. 8.11). ηλαδή, τοποθετούν σε κάθε τετράγωνο τόσους κύβους, τον ένα πάνω στον άλλο, όσους προτείνει ο αριθµός. Στην συνέχεια τους δίνεται µια από τις τέσσερις κάρτες, που απεικονίζουν τις ορθές προβολές της κατασκευής και καλούνται να τοποθετήσουν την κούκλα ώστε να βλέπει την όψη που περιγράφει η κάρτα Σχήµα 8.11

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών Παράρτημα 1: Τεχνική έκθεση τεκμηρίωσης σεναρίου Το εκπαιδευτικό σενάριο που θα σχεδιαστεί πρέπει να συνοδεύεται από μια τεχνική έκθεση τεκμηρίωσής του. Η τεχνική αυτή έκθεση (με τη μορφή του παρακάτω

Διαβάστε περισσότερα

Εργαλείο Εκπαιδευτικής Αξιολόγησης για παιδιά µε Αυτισµό στο Γνωστικό τοµέα

Εργαλείο Εκπαιδευτικής Αξιολόγησης για παιδιά µε Αυτισµό στο Γνωστικό τοµέα Εργαλείο Εκπαιδευτικής Αξιολόγησης για παιδιά µε Αυτισµό στο Γνωστικό τοµέα Οπτική αντίληψη Ακουστική αντίληψη Γνωστικός - εκτελεστικός τοµέας Γνωστικός - εκφραστικός τοµέας Μίµηση Οπτική µνήµη Λειτουργική

Διαβάστε περισσότερα

ιδακτικό Σενάριο για το Νηπιαγωγείο Μέσα Συγκοινωνίας και Μεταφοράς «Ταξίδι ταξιδάκι µου»

ιδακτικό Σενάριο για το Νηπιαγωγείο Μέσα Συγκοινωνίας και Μεταφοράς «Ταξίδι ταξιδάκι µου» ΚΣΕ ΚΕΚ ΕΥΡΩΪ ΕΑ ΚΑΡ ΙΤΣΑΣ ιδακτικό Σενάριο για το Νηπιαγωγείο Μέσα Συγκοινωνίας και Μεταφοράς «Ταξίδι ταξιδάκι µου» ΙΟΥΝΙΟΣ 2010 1 1. Τίτλος διδακτικού σεναρίου «Τα µέσα συγκοινωνίας και µεταφοράς» (Προσχολική

Διαβάστε περισσότερα

ΜΙΑ ΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΓΙΑ ΤΟ ΣΠΙΤΙ ΜΕ ΧΡΗΣΗ ΠΕΝΤΕ ΙΑΦΟΡΕΤΙΚΩΝ ΛΟΓΙΣΜΙΚΩΝ

ΜΙΑ ΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΓΙΑ ΤΟ ΣΠΙΤΙ ΜΕ ΧΡΗΣΗ ΠΕΝΤΕ ΙΑΦΟΡΕΤΙΚΩΝ ΛΟΓΙΣΜΙΚΩΝ ΜΙΑ ΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΓΙΑ ΤΟ ΣΠΙΤΙ ΜΕ ΧΡΗΣΗ ΠΕΝΤΕ ΙΑΦΟΡΕΤΙΚΩΝ ΛΟΓΙΣΜΙΚΩΝ ΕΝΤΥΠΟ Α ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ Ιώ Παπαδηµητρίου 757 Σηµείωση: Θα πρέπει εδώ να σηµειωθεί ότι στην προσχολική αγωγή δε συνηθίζεται

Διαβάστε περισσότερα

ΣΧΕ ΙΟ ΕΞΑΤΟΜΙΚΕΥΜΕΝΗΣ Ι ΑΣΚΑΛΙΑΣ

ΣΧΕ ΙΟ ΕΞΑΤΟΜΙΚΕΥΜΕΝΗΣ Ι ΑΣΚΑΛΙΑΣ ΣΧΕ ΙΟ ΕΞΑΤΟΜΙΚΕΥΜΕΝΗΣ Ι ΑΣΚΑΛΙΑΣ Επιµέλεια: Καλαντζής Παναγιώτης, ηµ. Σχ. Παίδων «Π. & Α. Κυριακού». Γνωστικό αντικείµενο: ΜΑΘΗΜΑΤΙΚΑ Ε ΗΜΟΤΙΚΟΥ 1. ΤΙΤΛΟΣ Ι ΑΚΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ: Μονάδες µέτρησης επιφανείας

Διαβάστε περισσότερα

Περίθλαση από ακµή και από εµπόδιο.

Περίθλαση από ακµή και από εµπόδιο. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 63 6. Άσκηση 6 Περίθλαση από ακµή και από εµπόδιο. 6.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης αυτής, καθώς και των δύο εποµένων, είναι η γνωριµία των σπουδαστών

Διαβάστε περισσότερα

ΕΚΠΑΙ ΕΥΤΙΚΕΣ ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ ΑΒΑΚΙΟ/E-SLATE

ΕΚΠΑΙ ΕΥΤΙΚΕΣ ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ ΑΒΑΚΙΟ/E-SLATE Θέµα ιερεύνησης: Σχεδιασµός γραµµάτων Μπορώ να φτιάξω το δικό µου επεξεργαστή κειµένου; Στη διερεύνηση αυτή οι µαθητές καλούνται να κατασκευάσουν µια γραµµατοσειρά µε όλα τα κεφαλαία γράµµατα του ελληνικού

Διαβάστε περισσότερα

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Κ Ε Φ Α Λ Α Ι Ο Α Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Σκοπός Σκοπός του κεφαλαίου αυτού είναι να γνωρίσουν οι μαθητές τα υλικά που χρειάζονται για το ελεύθερο σχέδιο και τον τρόπο που θα τα

Διαβάστε περισσότερα

ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT

ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT Βασιλίσιν Μιχάλης, Δέφτο Χριστίνα, Ιλινιούκ Ίον, Κάσα Μαρία, Κουζμίδου Ελένη, Λαμπαδάς Αλέξης, Μάνε Χρισόστομος, Μάρκο Χριστίνα, Μπάμπη Χριστίνα, Σακατελιάν Λίλιτ, Σαχμπαζίδου

Διαβάστε περισσότερα

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:

Διαβάστε περισσότερα

ΣΤ Δημοτικού - Προγραμματίζω τον υπολογιστή. Σχέδιο Μαθήματος No 1 Εισαγωγή στο προγραμματιστικό περιβάλλον της EasyLogo

ΣΤ Δημοτικού - Προγραμματίζω τον υπολογιστή. Σχέδιο Μαθήματος No 1 Εισαγωγή στο προγραμματιστικό περιβάλλον της EasyLogo ΣΤ Δημοτικού - Προγραμματίζω τον υπολογιστή Σχέδιο Μαθήματος No 1 Εισαγωγή στο προγραμματιστικό περιβάλλον της EasyLogo Εμπλεκόμενες έννοιες «Γραφή» και άμεση εκτέλεση εντολής. Αποτέλεσμα εκτέλεσης εντολής.

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Çëßáò Ã. ÊáñêáíéÜò - Έφη Ι. Σουλιώτου Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Α Τεύχος 1 Απαγορεύεται η αναπαραγωγή µέρους ή του συνόλου του παρόντος έργου µε οποιοδήποτε τρόπο ή µορφή, στο πρωτότυπο ή σε

Διαβάστε περισσότερα

Περιεχόμενα. Σελίδα 3 από 21

Περιεχόμενα. Σελίδα 3 από 21 Σελίδα 1 από 21 Σελίδα 2 από 21 Περιεχόμενα Κεφάλαιο 1 Χρήσεις του υπολογιστή... 4 Κεφάλαιο 2 Βασικά τμήματα υπολογιστή... 6 Κεφάλαιο 3 - Ασφάλεια... 9 Κεφάλαιο 4 - Ποντίκι... 11 Κεφάλαιο 5 - Πληκτρολόγιο...

Διαβάστε περισσότερα

Επαγγελματικές κάρτες

Επαγγελματικές κάρτες Επαγγελματικές κάρτες Αφροδίτη Οικονόμου Νηπιαγωγός afoikon@uth.gr Η παρουσίαση αναπτύχθηκε για την πλατφόρμα Ταξίδι στον γραμματισμό Θεματική: Τα επαγγέλματα των γονιών της τάξης μας ΤΙΤΛΟΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ:

Διαβάστε περισσότερα

ΕΝ ΕΙΚΤΙΚΑ ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ. Κεφάλαιο 17

ΕΝ ΕΙΚΤΙΚΑ ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ. Κεφάλαιο 17 ΕΝ ΕΙΚΤΙΚΑ ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ 1 ο Παράδειγµα (διάρκεια: 15 λεπτά) Κεφάλαιο 17 Α. ΣΤΟΙΧΕΙΑ ΤΟΥ ΜΑΘΗΤΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ:... ΤΑΞΗ:... ΤΜΗΜΑ:... ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... Β.

Διαβάστε περισσότερα

Κεφάλαιο 1.Εντολές κίνησης

Κεφάλαιο 1.Εντολές κίνησης Προγραμματίζω με το ΒΥΟΒ 1 Κεφάλαιο 1.Εντολές κίνησης Από το μάθημα της Φυσικής γνωρίζουμε ότι κίνηση σημαίνει αλλαγή της θέσης ενός αντικειμένου. Οι εντολές κίνησης που μας παρέχει το ΒΥΟΒ χωρίζονται

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

Προσέλευση μαθητών, ελεύθερες δραστηριότητες. Τα παιδιά απασχολούνται με οικοδομικό υλικό (τουβλάκια, κ.λπ.), πλαστελίνη, παζλ, ζωγραφική κ.ά.

Προσέλευση μαθητών, ελεύθερες δραστηριότητες. Τα παιδιά απασχολούνται με οικοδομικό υλικό (τουβλάκια, κ.λπ.), πλαστελίνη, παζλ, ζωγραφική κ.ά. Τα παιδιά απασχολούνται με οικοδομικό υλικό (τουβλάκια, κ.λπ.), πλαστελίνη, παζλ, ζωγραφική κ.ά. Τουαλέτα, υγιεινή, πρωινό. Πρωινή προσευχή, ημερολόγιο, αναφορά στο θέμα εβδομάδας. Πρόκειται για τη θεματική

Διαβάστε περισσότερα

Γκαραγκάνη Αγγελική, kikigarag@gmail.com Φούκα Παρασκευή pfouka@sch.gr. 1. Τίτλος διδακτικού σεναρίου «Γνωρίζω τη Μινωϊκή Κρήτη»

Γκαραγκάνη Αγγελική, kikigarag@gmail.com Φούκα Παρασκευή pfouka@sch.gr. 1. Τίτλος διδακτικού σεναρίου «Γνωρίζω τη Μινωϊκή Κρήτη» 1. Τίτλος διδακτικού σεναρίου «Γνωρίζω τη Μινωϊκή Κρήτη» Κεφάλαιο: Μινωϊκός πολιτισµός (Ιστορία Γ ηµοτικού) Ενότητες: Το ανάκτορο της Κνωσού Καθηµερινή ζωή των Μινωϊτών Η τέχνη των Μινωϊτών 2. Εµπλεκόµενες

Διαβάστε περισσότερα

παράθυρα ιδακτικό υλικό µαθητή Πλήκτρα για να το παράθυρο Λωρίδα τίτλου Πλαίσιο παραθύρου

παράθυρα ιδακτικό υλικό µαθητή Πλήκτρα για να το παράθυρο Λωρίδα τίτλου Πλαίσιο παραθύρου ιδακτικό υλικό µαθητή παράθυρα Κατά τη διάρκεια της µελέτης µας γράφουµε και διαβάζουµε, απλώνοντας πάνω στο γραφείο τετράδια και βιβλία. Ξεκινώντας ανοίγουµε αυτά που µας ενδιαφέρουν πρώτα και συνεχίζουµε

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Εισαγωγικό Σημείωμα. Η είσοδος στο νηπιαγωγείο είναι ένας από τους σημαντικότερους σταθμούς της ζωής

Εισαγωγικό Σημείωμα. Η είσοδος στο νηπιαγωγείο είναι ένας από τους σημαντικότερους σταθμούς της ζωής Εισαγωγικό Σημείωμα Αγαπητοί γονείς, Η είσοδος στο νηπιαγωγείο είναι ένας από τους σημαντικότερους σταθμούς της ζωής κάθε παιδιού. Οι στέρεες βάσεις και τα θεμέλια της μάθησης και της ολόπλευρης ανάπτυξής

Διαβάστε περισσότερα

Νηπιαγωγείο - Δημοτικό

Νηπιαγωγείο - Δημοτικό Νηπιαγωγείο - Δημοτικό Το πρόγραμμα «Τέχνη και Μαθηματικά» για το νηπιαγωγείο δημοτικό, αποτελείται από τρία διδακτικά μέρη, δύο εκ των οποίων είναι κοινά για τους μαθητές όλων των τάξεων (Μέρη Α & Β )

Διαβάστε περισσότερα

ΠΩΣ ΕΡΩΤΕΥΟΝΤΑΙ ΣΤΗ ΒΕΡΟΝΑ; Μικρός οδηγός για δραστηριότητες μελέτης κινηματογραφικών μεταφορών από θεατρικά έργα του Σαίξπηρ

ΠΩΣ ΕΡΩΤΕΥΟΝΤΑΙ ΣΤΗ ΒΕΡΟΝΑ; Μικρός οδηγός για δραστηριότητες μελέτης κινηματογραφικών μεταφορών από θεατρικά έργα του Σαίξπηρ ΠΩΣ ΕΡΩΤΕΥΟΝΤΑΙ ΣΤΗ ΒΕΡΟΝΑ; Μικρός οδηγός για δραστηριότητες μελέτης κινηματογραφικών μεταφορών από θεατρικά έργα του Σαίξπηρ αρχική εκδοχή: Θεοδωρίδης Μ. (2006), «Πώς ερωτεύονται στη Βερόνα; σκέψεις για

Διαβάστε περισσότερα

Τα βιβλία θα τα βρείτε στο βιβλιοπωλείο: Βιβλία γνώσεων και δραστηριοτήτων ΣΦΡΑΓΙΔΑ ΒΙΒΛΙΟΠΩΛΕΙΟΥ

Τα βιβλία θα τα βρείτε στο βιβλιοπωλείο: Βιβλία γνώσεων και δραστηριοτήτων ΣΦΡΑΓΙΔΑ ΒΙΒΛΙΟΠΩΛΕΙΟΥ Τα βιβλία θα τα βρείτε στο βιβλιοπωλείο: Βιβλία γνώσεων και δραστηριοτήτων ΣΦΡΑΓΙΔΑ ΒΙΒΛΙΟΠΩΛΕΙΟΥ Συντονισμός χεριού-ματιού Βοηθούν στην ανάπτυξη των κινητικών δεξιοτήτων του παιδιού. Παίζω με τους κύβους

Διαβάστε περισσότερα

Μιχάλης Μακρή EFIAP. www.michalismakri.com

Μιχάλης Μακρή EFIAP. www.michalismakri.com Μιχάλης Μακρή EFIAP www.michalismakri.com Γιατί κάποιες φωτογραφίες είναι πιο ελκυστικές από τις άλλες; Γιατί κάποιες φωτογραφίες παραμένουν κρεμασμένες σε γκαλερί για μήνες ή και για χρόνια για να τις

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΙΑ ΑΣΕΠ ΝΗΠΙΑΓΩΓΩΝ

ΘΕΜΑΤΑ ΓΙΑ ΑΣΕΠ ΝΗΠΙΑΓΩΓΩΝ ΘΕΜΑΤΑ ΓΙΑ ΑΣΕΠ ΝΗΠΙΑΓΩΓΩΝ Στις ερωτήσεις πολλαπλών επιλογών για την ειδικότητα των νηπιαγωγών των εκπαιδευτικών πρέπει να δοθεί ιδιαίτερη έμφαση, ακριβώς λόγω του μεγάλου ανταγωνισμού και των υψηλών βαθμολογιών

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Χρησιµοποίηση των τεχνικών του PIAGET (µέθοδος της συνέντευξης) για. την αξιολόγηση της νοητικής ανάπτυξης των παιδιών.

Χρησιµοποίηση των τεχνικών του PIAGET (µέθοδος της συνέντευξης) για. την αξιολόγηση της νοητικής ανάπτυξης των παιδιών. Χρησιµοποίηση των τεχνικών του PIAGET (µέθοδος της συνέντευξης) για την αξιολόγηση της νοητικής ανάπτυξης των παιδιών. 1. Ταξινόµ ηση. Ηλικία: 5-7 ετών. Σκοπός: Να διερευνήσουµε πώς το παιδί ταξινοµεί

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µικρές τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Η έννοια της ανακύκλωσης» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

ΠΑΡΕΜΒΑΣΗ ΣΤΙΣ ΠΡΟ ΓΛΩΣΣΙΚΕΣ ΚΑΙ ΓΛΩΣΣΙΚΕΣ ΔΕΞΙΟΤΗΤΕΣ

ΠΑΡΕΜΒΑΣΗ ΣΤΙΣ ΠΡΟ ΓΛΩΣΣΙΚΕΣ ΚΑΙ ΓΛΩΣΣΙΚΕΣ ΔΕΞΙΟΤΗΤΕΣ ΠΑΡΕΜΒΑΣΗ ΣΤΙΣ ΠΡΟ ΓΛΩΣΣΙΚΕΣ ΚΑΙ ΓΛΩΣΣΙΚΕΣ ΔΕΞΙΟΤΗΤΕΣ Μαρίτσα Καμπούρογλου, Λογοπεδικός Ίδρυμα για το Παιδί «Η Παμμακάριστος» ΑΝ ΜΠΟΡΟΥΣΕ ΝΑ ΜΙΛΗΣΕΙ... Η γλωσσική παρέμβαση Είναι η διαδικασία μέσω της

Διαβάστε περισσότερα

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση Γεωµετρική θεώρηση του Φωτός Ανάκλαση ηµιουργίαειδώλουαπόκάτοπτρα. είκτης ιάθλασης Νόµος του Snell Ορατό Φάσµα και ιασπορά Εσωτερική ανάκλαση Οπτικές ίνες ιάθλαση σε

Διαβάστε περισσότερα

Θέμα: ΟΡΓΑΝΩΣΗ & ΠΑΡΟΥΣΙΑΣΗ ΓΡΑΜΜΙΚΩΝ ΣΧΕΔΙΩΝ

Θέμα: ΟΡΓΑΝΩΣΗ & ΠΑΡΟΥΣΙΑΣΗ ΓΡΑΜΜΙΚΩΝ ΣΧΕΔΙΩΝ ΤΕΙ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ Θέμα: ΟΡΓΑΝΩΣΗ & ΠΑΡΟΥΣΙΑΣΗ ΓΡΑΜΜΙΚΩΝ ΣΧΕΔΙΩΝ ΕΡΓΑΣΤΗΡΙΩΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ & ΟΙΚΟΔΟΜΙΚΗΣ Σύνταξη κειμένου: Μαρία Ν. Δανιήλ, Αρχιτέκτων

Διαβάστε περισσότερα

Δραστηριότητες γραμματισμού: Σχεδιασμός

Δραστηριότητες γραμματισμού: Σχεδιασμός Δραστηριότητες γραμματισμού: Σχεδιασμός Αφροδίτη Οικονόμου Νηπιαγωγός afoikon@uth.gr Μαρία Παπαδοπούλου Αν. Καθηγήτρια, Π.Τ.Π.Ε., Π.Θ. mariapap@uth.gr Η παρουσίαση αναπτύχθηκε για την πλατφόρμα Ταξίδι

Διαβάστε περισσότερα

Επαναλαμβάνοντας το Ισόπλευρο Τρίγωνο με Δύο Κώδικες

Επαναλαμβάνοντας το Ισόπλευρο Τρίγωνο με Δύο Κώδικες Επαναλαμβάνοντας το Ισόπλευρο Τρίγωνο με Δύο Κώδικες Λουμπαρδιά Αγγελική 1, Ναστάκου Μαρία 2 1 Καθηγήτρια Μαθηματικών, 2 o Γενικό Λύκειο Τρίπολης loumpardia@sch.gr 2 Διευθύντρια, ΙΕΚ Σπάρτης marynasta@sch.gr

Διαβάστε περισσότερα

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Όνοµα: Τάσος Αναστάσιος Επώνυµο: Μικρόπουλος Τίτλος: Αναπληρωτής Καθηγητής, Εργαστήριο Εφαρµογών Εικονικής Πραγµατικότητας στην Εκπαίδευση, Πανεπιστήµιο Ιωαννίνων

Διαβάστε περισσότερα

Σύλλογος γονέων & κηδεµόνων παιδικών σταθµών Αγίας Παρασκευής. Δυσλεξία Ανάπτυξη Λόγου & Κίνησης Παιδοψυχολόγος: Νότα Ζέρβα

Σύλλογος γονέων & κηδεµόνων παιδικών σταθµών Αγίας Παρασκευής. Δυσλεξία Ανάπτυξη Λόγου & Κίνησης Παιδοψυχολόγος: Νότα Ζέρβα Σύλλογος γονέων & κηδεµόνων παιδικών σταθµών Αγίας Παρασκευής Δυσλεξία Ανάπτυξη Λόγου & Κίνησης Παιδοψυχολόγος: Νότα Ζέρβα Το παιδί µου δεν µιλάει καθαρά... Έως 2 ετών πρέπει να... Καταλαβαίνει σύνθετες

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

THE JEWISH MUSEUM BERLIN

THE JEWISH MUSEUM BERLIN ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΑΡΧΙΤΕΚΤ0ΝΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑ: ΟΠΤΙΚΟΑΚΟΥΣΤΙΚΕΣ ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ ΤΗΣ ΠΟΛΗΣ ΔΙΔΑΣΚΩΝ: Γ.ΠΑΠΑΚΩΣΤΑΝΤΙΝΟΥ THE JEWISH MUSEUM BERLIN ΈΝΑ FILM ΤΩΝ: STAN NEUMANN KAI RICHARD COPANS

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ

ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ 1 ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ Κώστας Κύρος ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 1. Ανοίξτε το λογισμικό Google Earth και προσπαθήστε να εντοπίσετε τη θέση της Ευρώπης στη Γη. Κατόπιν για να

Διαβάστε περισσότερα

ΜΙΑ ΜΕΡΑ ΣΤΟ ΠΑΙΔΚΟ ΣΤΑΘΜΟ

ΜΙΑ ΜΕΡΑ ΣΤΟ ΠΑΙΔΚΟ ΣΤΑΘΜΟ ΜΙΑ ΜΕΡΑ ΣΤΟ ΠΑΙΔΚΟ ΣΤΑΘΜΟ ΤΟ ΠΑΙΧΝΙΔΙ ΤΗΣ ΧΑΡΑΣ ΚΑΤΕΡΙΝΑ ΠΟΥΛΕΑ Μια μέρα στο παιδικό σταθμό «Το παιχνίδι της χαράς» Στο παιχνίδι της χαράς υπάρχει ένα περιβάλλον όπου παρέχει στα παιδιά ασφάλεια, φροντίδα,

Διαβάστε περισσότερα

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Γιατί η Ρομποτική στην Εκπαίδευση; A) Τα παιδιά όταν σχεδιάζουν, κατασκευάζουν και προγραμματίζουν ρομπότ έχουν την ευκαιρία να μάθουν παίζοντας και να αναπτύξουν δεξιότητες Η

Διαβάστε περισσότερα

Άσκηση Διδακτικής του Μαθήµατος των Θρησκευτικών. Γ Οµάδα

Άσκηση Διδακτικής του Μαθήµατος των Θρησκευτικών. Γ Οµάδα Άσκηση Διδακτικής του Μαθήµατος των Θρησκευτικών Γ Οµάδα Διδάσκων: Αθ. Στογιαννίδης Λέκτορας 11ο Μάθηµα Διερεύνηση Προϋποθέσεων Διδασκαλίας - Α : Η θεωρία του Jean Piaget για τη νοητική ανάπτυξη του ανθρώπου

Διαβάστε περισσότερα

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Δομή της παρουσίασης Δυσκολίες μαθητών γύρω από την έννοια της

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

[CE312] Διδακτική της πληροφορικής

[CE312] Διδακτική της πληροφορικής [CE312] Διδακτική της πληροφορικής Αντωνόπουλος Εμμανουήλ-Άρης Βασιλειάδης Βασίλειος Ελευθεριάδης Χαράλαμπος Θεοδωρίδης Αθανάσιος Παρασύρης Κωνσταντίνος Σκρέκα Λαμπρινή Τάτση Μαρία November 29, 2011 1

Διαβάστε περισσότερα

Σχεδιασµός και υλοποίηση ενός εκπαιδευτικού προγράµµατος ΠΕ για το δάσος και την ανακύκλωση µε αφορµή µία έκθεση τέχνης για το περιβάλλον

Σχεδιασµός και υλοποίηση ενός εκπαιδευτικού προγράµµατος ΠΕ για το δάσος και την ανακύκλωση µε αφορµή µία έκθεση τέχνης για το περιβάλλον Σχεδιασµός και υλοποίηση ενός εκπαιδευτικού προγράµµατος ΠΕ για το δάσος και την ανακύκλωση µε αφορµή µία έκθεση τέχνης για το περιβάλλον Έρση Γιαννουλάτου Καλλιτέχνιδα Full Time BA(Ηοns) The Surrey Institute

Διαβάστε περισσότερα

ΑΛΛΗΛΟΤΟΜΙΕΣ ΕΠΙΦΑΝΕΙΩΝ 2 ου ΒΑΘΜΟΥ

ΑΛΛΗΛΟΤΟΜΙΕΣ ΕΠΙΦΑΝΕΙΩΝ 2 ου ΒΑΘΜΟΥ ΑΛΛΗΛΟΤΟΜΙΕΣ ΕΠΙΦΑΝΕΙΩΝ 2 ου ΒΑΘΜΟΥ ΟΡΙΣΜΟΙ - ΚΑΤΑΣΚΕΥΕΣ 1. ΟΡΙΣΜΟΙ ύο επιφάνειες βαθµών µ και ν αντιστοίχως, τέµνονται κατά καµπύλη βαθµού (µ. ν). Η αλληλοτοµία, εποµένως, δύο επιφανειών 2 ου βαθµού,

Διαβάστε περισσότερα

Να φύγει ο Ευκλείδης;

Να φύγει ο Ευκλείδης; Να φύγει ο Ευκλείδης; Σωτήρης Ζωιτσάκος Βαρβάκειο Λύκειο Μαθηματικά στα ΠΠΛ Αθήνα 2014 Εισαγωγικά Dieudonné: «Να φύγει ο Ευκλείδης». Douglas Quadling: «Ο Ευκλείδης έχει φύγει, αλλά στο κενό που άφησε πίσω

Διαβάστε περισσότερα

ΒΙΚΥ ΤΣΑΛΑΜΑΤΑ ΑΣΤΙΚΑ ΤΟΠΙΑ

ΒΙΚΥ ΤΣΑΛΑΜΑΤΑ ΑΣΤΙΚΑ ΤΟΠΙΑ ΒΙΚΥ ΤΣΑΛΑΜΑΤΑ ΑΣΤΙΚΑ ΤΟΠΙΑ «Πλάθω τις εικόνες μου χαράζοντας κατευθείαν πάνω στο υλικό μου, όπως ο ζωγράφος σχεδιάζει ή πλάθει τις εικόνες του πάνω στον καμβά.» Η Βίκυ Τσαλαματά γεννήθηκε στην Αθήνα και

Διαβάστε περισσότερα

ΓΛΩΣΣΙΚΗ ΠΑΡΕΜΒΑΣΗ. Μαρίτσα Καμπούρογλου, Λογοπεδικός. Ίδρυμα για το Παιδί «Η Παμμακάριστος»

ΓΛΩΣΣΙΚΗ ΠΑΡΕΜΒΑΣΗ. Μαρίτσα Καμπούρογλου, Λογοπεδικός. Ίδρυμα για το Παιδί «Η Παμμακάριστος» ΓΛΩΣΣΙΚΗ ΠΑΡΕΜΒΑΣΗ Μαρίτσα Καμπούρογλου, Λογοπεδικός Ίδρυμα για το Παιδί «Η Παμμακάριστος» ΑΝ ΜΠΟΡΟΥΣΕ ΝΑ ΜΙΛΗΣΕΙ... Στόχοι της γλωσσικής παρέμβασης Νηπιακή ηλικία : Η ανάπτυξη να παραλληλιστεί με την

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

Στα 1849 ο Sir David Brewster περιγράφει τη μακροσκοπική μηχανή λήψης και παράγονται οι πρώτες στερεοσκοπικές φωτογραφίες (εικ. 5,6).

Στα 1849 ο Sir David Brewster περιγράφει τη μακροσκοπική μηχανή λήψης και παράγονται οι πρώτες στερεοσκοπικές φωτογραφίες (εικ. 5,6). ΣΤΕΡΕΟΣΚΟΠΙΑ Η στερεοσκοπία είναι μια τεχνική που δημιουργεί την ψευδαίσθηση του βάθους σε μια εικόνα. Στηρίζεται στο ότι η τρισδιάστατη φυσική όραση πραγματοποιείται διότι κάθε μάτι βλέπει το ίδιο αντικείμενο

Διαβάστε περισσότερα

Σενάριο 19: Το πρόβλημα με τις 8 Βασίλισσες

Σενάριο 19: Το πρόβλημα με τις 8 Βασίλισσες Σενάριο 19: Το πρόβλημα με τις 8 Βασίλισσες Ταυτότητα Σεναρίου Τίτλος : Το πρόβλημα με τις 8 Βασίλισσες Γνωστικό Αντικείμενο: Εφαρμογές Λογισμικού Διδακτική Ενότητα: Σχεδιάζω Εφαρμόζω. Τμηματική υλοποίηση

Διαβάστε περισσότερα

Εισαγωγή στην Ψυχολογία

Εισαγωγή στην Ψυχολογία 1 Εισαγωγή στην Ψυχολογία ΨΥΧΟΛΟΓΙΑ 2 Θέµατα Ορισµού Η ψυχολογία είναι η επιστήµη που σκοπό έχει να περιγράψει και να εξηγήσει την συµπεριφορά και της νοητικές διεργασίες κυρίως των ανθρώπων αλλά και των

Διαβάστε περισσότερα

ΕΥΤΕΡΑ Προσέλευση νηπίων και αυθόρμητες δραστηριότητες στις οργανωμένες γωνιές της τάξης: Κολύμβηση/ Φυσική αγωγή:

ΕΥΤΕΡΑ Προσέλευση νηπίων και αυθόρμητες δραστηριότητες στις οργανωμένες γωνιές της τάξης: Κολύμβηση/ Φυσική αγωγή: ΕΥΤΕΡΑ * Προσέλευση νηπίων και αυθόρμητες δραστηριότητες στις οργανωμένες γωνιές της τάξης: Το ελεύθερο παιχνίδι είτε ατομικό, είτε ομαδικό σε ελκυστικά οργανωμένες γωνιές επιτρέπει στα παιδιά να αναπτύσσονται,

Διαβάστε περισσότερα

3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας. «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2

3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας. «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2 3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας ΠΡΑΚΤΙΚΑ «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2 1 Καθηγητής, Φυσικός, 2 ο Γενικό Λύκειο Αγ. Νικολάου Κρήτης xaralpan@gmail.com 2 Καθηγήτρια, Φυσικός,

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

Bάτραχοι στη λίμνη. Παιχνίδια Συνεργασίας 2014. Επίπεδο 1,2

Bάτραχοι στη λίμνη. Παιχνίδια Συνεργασίας 2014. Επίπεδο 1,2 Bάτραχοι στη λίμνη 1,2 Οργάνωση: Εργασία με όλη την τάξη. Τα παιδιά είναι γύρω από το αλεξίπτωτο, τη λίμνη και το κρατούν στο ύψος της μέσης. Τα σακουλάκια πάνω στο αλεξίπτωτο είναι οι βάτραχοι. Σκοπός

Διαβάστε περισσότερα

ΤΑ ΕΡΓΑΛΕΙΑ ΤΟΥ ΚΛΑΔΟΥ ΛΥΚΟΠΟΥΛΩΝ ΤΑ ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ Η ΠΡΟΟΔΟΣ ΤΟΥ ΚΛΑΔΟΥ ΛΥΚΟΠΟΥΛΩΝ Στον Προσκοπισµό οι νέοι έχουν την ευκαιρία να αποκτήσουν µια σειρά από εµπειρίες που συµβάλλουν στην φυσιολογική

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

ΜΟΥΣΙΟΥ ΓΕΩΡΓΙΑ ΝΗΠΙΑΓΩΓΟΣ ΓΕΝΙΚΗΣ ΑΓΩΓΗΣ Λάρισα 2012

ΜΟΥΣΙΟΥ ΓΕΩΡΓΙΑ ΝΗΠΙΑΓΩΓΟΣ ΓΕΝΙΚΗΣ ΑΓΩΓΗΣ Λάρισα 2012 ΜΟΥΣΙΟΥ ΓΕΩΡΓΙΑ ΝΗΠΙΑΓΩΓΟΣ ΓΕΝΙΚΗΣ ΑΓΩΓΗΣ Λάρισα 2012 Ο μαθητής μου σύμφωνα με συστηματική παρατήρηση διαπίστωσα ότι: είχε δυσκολία στην κοινωνική επαφή. Δεν ήξερε πώς να προσεγγίσει τα υπόλοιπα παιδιά.

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

Σενάριο 17: Παιχνίδι μνήμης με εικόνες

Σενάριο 17: Παιχνίδι μνήμης με εικόνες Σενάριο 17: Παιχνίδι μνήμης με εικόνες Φύλλο Εργασίας Τίτλος: Παιχνίδι μνήμης με εικόνες Γνωστικό Αντικείμενο: Εφαρμογές Πληροφορικής-Υπολογιστών Διδακτική Ενότητα: Διερευνώ - Δημιουργώ Ανακαλύπτω, Συνθετικές

Διαβάστε περισσότερα

TO ΠΑΙΧΝΙΔΙ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ

TO ΠΑΙΧΝΙΔΙ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ TO ΠΑΙΧΝΙΔΙ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ Η λέξη ΠΑΙΧΝΊΔΙ προέρχεται από την λέξη παίχτης παίζω παις. Με την έννοια παιχνίδι ορίζουμε την κατ εξοχήν αυθόρμητη και ενδιαφέρουσα δραστηριότητα των παιδιών που έχει ως στόχο

Διαβάστε περισσότερα

Στo Π. Χατζηκαμάρη & Μ. Κοκκίδου (επιμ.), Το παιχνίδι στην εκπαιδευτική διαδικασία, Πρακτικά Διημερίδας, 109-118. Θεσσαλονίκη: University Press, 2004

Στo Π. Χατζηκαμάρη & Μ. Κοκκίδου (επιμ.), Το παιχνίδι στην εκπαιδευτική διαδικασία, Πρακτικά Διημερίδας, 109-118. Θεσσαλονίκη: University Press, 2004 Τα Μαθηματικά, ένα παιχνίδι. Τζεκάκη, Μ. & Χριστοδούλου, Ι. Στo Π. Χατζηκαμάρη & Μ. Κοκκίδου (επιμ.), Το παιχνίδι στην εκπαιδευτική διαδικασία, Πρακτικά Διημερίδας, 109-118. Θεσσαλονίκη: University Press,

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

TECHNO ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A.E. Τηλ. 210 48 11 260

TECHNO ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A.E. Τηλ. 210 48 11 260 TECHNO ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A.E. 25 ης Μαρτίου 12-177 78 Ταύρος Τηλ. 210 48 11 260 Απαγορεύεται η αναδημοσίευση και η αναπαραγωγή του παρόντος βιβλίου με οποιοδήποτε τρόπο ή μορφή, τμηματικά ή περιληπτικά,

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΗΝ ΑΝΑΠΤΥΞΙΑΚΗ ΕΚΠΑΙΔΕΥΤΙΚΗ ΨΥΧΟΛΟΓΙΑ

ΕΡΓΑΣΙΑ ΣΤΗΝ ΑΝΑΠΤΥΞΙΑΚΗ ΕΚΠΑΙΔΕΥΤΙΚΗ ΨΥΧΟΛΟΓΙΑ 1 ΕΡΓΑΣΙΑ ΣΕ ΜΙΑ ΑΠΟ ΤΙΣ 12 ΑΡΧΕΣ ΤΗΣ ΜΑΘΗΣΗΣ ΑΡΧΗ ΤΗΣ ΜΑΘΗΣΗΣ: Ενεργός συμμετοχή (βιωματική μάθηση) ΘΕΜΑ: Παράδοση στο μάθημα των «ΛΕΙΤΟΥΡΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ», για τον τρόπο διαχείρισης των σκληρών δίσκων.

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης)

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΓΕΝΙΚΟΙ ΣΚΟΠΟΙ ΚΑΙ ΣΤΟΧΟΙ Το μάθημα απευθύνεται σε μαθητές με ειδικό ενδιαφέρον για το ΣΧΕΔΙΟ (Ελεύθερο και Προοπτικό) και που ενδέχεται

Διαβάστε περισσότερα

Διδακτικές ενότητες Στόχος

Διδακτικές ενότητες Στόχος Η διδασκαλία του τριγωνομετρικού κύκλου με τον παραδοσιακό τρόπο στον πίνακα, είναι μία διαδικασία όχι εύκολα κατανοητή για τους μαθητές, με αποτέλεσμα τη μηχανική παπαγαλίστικη χρήση των τύπων της τριγωνομετρίας.

Διαβάστε περισσότερα

Παιχνίδια του χθες και του σήμερα

Παιχνίδια του χθες και του σήμερα Παιχνίδια του χθες και του σήμερα Πολιτιστικό πρόγραμμα Υπεύθυνη τμήματος: Γιώτα Αλεξάνδρου Διάρκεια προγράμματος: 3 μήνες Μάρτιος Μάιος 2013 Γενικοί στόχοι προγράμματος Να ανακαλύψουν τα παιχνίδια που

Διαβάστε περισσότερα

Σχέδιο Ειδικότητας Αµαξωµάτων

Σχέδιο Ειδικότητας Αµαξωµάτων 89 ιδακτικοί στόχοι: Στο τέλος αυτής της διδακτικής ενότητας θα είσαι σε θέση: Να µπορείς να απεικονίζεις σε σκαρίφηµα τα κυριότερα µέρη των αµαξωµάτων. Να γνωρίζεις τη σειρά συναρµολόγησης των τµηµάτων

Διαβάστε περισσότερα

2 ο Εργαστήρι Λεσχών Ανάγνωσης. Πάρος 2-6 Ιουλίου 2007

2 ο Εργαστήρι Λεσχών Ανάγνωσης. Πάρος 2-6 Ιουλίου 2007 2 ο Εργαστήρι Λεσχών Ανάγνωσης Πάρος 2-6 Ιουλίου 2007 Περίληψη Η Αλίκη µισεί τα µαθηµατικά και θεωρεί πως δε χρησιµεύουν σε τίποτα. Μια µέρα που κάθεται και διαβάζει στο πάρκο, ένα παράξενο άτοµο την προσκαλεί

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ»

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 217 ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» Λουκία Μαρνέλη Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης Διεύθυνση: Μονής Κύκκου 1, 15669 Παπάγου

Διαβάστε περισσότερα

ΘΕΜΑ: «ΜΙΚΡΗ ΚΑΤΟΙΚΙΑ ΔΙΑΚΟΠΩΝ»

ΘΕΜΑ: «ΜΙΚΡΗ ΚΑΤΟΙΚΙΑ ΔΙΑΚΟΠΩΝ» ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 26 ΙΟΥΝΙΟΥ 2010 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΠΕΝΤΕ (5) ΘΕΜΑ: «ΜΙΚΡΗ ΚΑΤΟΙΚΙΑ ΔΙΑΚΟΠΩΝ» ΠΕΡΙΓΡΑΦΗ: Πρόκειται

Διαβάστε περισσότερα

Εκµάθηση προµαθηµατικών εννοιών για ΑµεΑ στο φάσµα του Αυτισµού µε το λογισµικό LT125-ThinkingMind

Εκµάθηση προµαθηµατικών εννοιών για ΑµεΑ στο φάσµα του Αυτισµού µε το λογισµικό LT125-ThinkingMind Εκµάθηση προµαθηµατικών εννοιών για ΑµεΑ στο φάσµα του Αυτισµού µε το λογισµικό LT125-ThinkingMind Λαδιάς Αναστάσιος, Σχολικός Σύµβουλος Πληροφορικής Β Αθήνας Μπέλλου Ιωάννα, Σχολικός Σύµβουλος Πληροφορικής

Διαβάστε περισσότερα

Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού.

Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού. Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού. 1.ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΣΕΝΑΡΙΟΥ Συγγραφέας: Μποζονέλου Κωνσταντίνα 1.1.Τίτλος διδακτικού σεναρίου Οι τέσσερις

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ

ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ Ασκήσεις και δραστηριότητες παρέα µε τον KOK Ο µικρός µας φίλος Μιχάλης θέλει να περάσει απέναντι. Για να τον βοηθήσεις να διασχίσει σωστά το δρόµο, ένωσε µε πράσινο χρώµα

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ ΕΝΟΤΗΤΩΝ Β ΤΑΞΗΣ ΕΝΟΤΗΤΑ 2

ΟΡΓΑΝΩΣΗ ΕΝΟΤΗΤΩΝ Β ΤΑΞΗΣ ΕΝΟΤΗΤΑ 2 ΟΡΓΑΝΩΣΗ ΕΝΟΤΗΤΩΝ Β ΤΑΞΗΣ ΕΝΟΤΗΤΑ 2 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ: Ένα συνεκτικό και επαρκές σώμα γνώσεων Τα παιδιά να αναγνωρίζουν, να ονομάζουν και εντοπίζουν τόπους στον πραγματικό χώρο, σε απεικόνιση (π.χ. φωτογραφία

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΣΚΥΔΡΑΣ Ομάδα ανάπτυξης Μαρία Τσικαλοπούλου, Μαθηματικός Σ Κ Υ Δ Ρ Α / 2 0 1 5 Το αντικείμενο με το οποίο θα ασχοληθούμε είναι τα μαθηματικά της

Διαβάστε περισσότερα

2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΕΠΟ 22. ΘΕΜΑ: Οι βασικοί σταθµοί του νεώτερου Εµπειρισµού από τον Locke µέχρι και τον Hume. ΣΧΕ ΙΟ ΕΡΓΑΣΙΑΣ Α.

2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΕΠΟ 22. ΘΕΜΑ: Οι βασικοί σταθµοί του νεώτερου Εµπειρισµού από τον Locke µέχρι και τον Hume. ΣΧΕ ΙΟ ΕΡΓΑΣΙΑΣ Α. Θέµατα & Ασκήσεις από: www.arnos.gr 2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΕΠΟ 22 ΘΕΜΑ: Οι βασικοί σταθµοί του νεώτερου Εµπειρισµού από τον Locke µέχρι και τον Hume. ΣΧΕ ΙΟ ΕΡΓΑΣΙΑΣ Α. ΕΙΣΑΓΩΓΗ Σύµφωνα µε τη θεωρία του εµπειρισµού

Διαβάστε περισσότερα

γραμματισμό των νηπίων Μέρος 5ο: Παιχνίδια

γραμματισμό των νηπίων Μέρος 5ο: Παιχνίδια Η αξιοποίηση του ονόματος του παιδιού για το γραμματισμό των νηπίων Μέρος 5ο: Παιχνίδια Μαρία Θεοδωρακάκου Νηπιαγωγός, ΜΤΕΕΑ maria.theodorakakou@gmail.com Η παρουσίαση αναπτύχθηκε για την πλατφόρμα Ταξίδι

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

8. Η ΚΑΛΛΙΕΡΓΕΙΑ ΤΟΥ ΤΑΛΕΝΤΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

8. Η ΚΑΛΛΙΕΡΓΕΙΑ ΤΟΥ ΤΑΛΕΝΤΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 8. Η ΚΑΛΛΙΕΡΓΕΙΑ ΤΟΥ ΤΑΛΕΝΤΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Πολυάριθµες είναι οι περιοχές όπου ένα ταλέντο ή µία χαρακτηριστική κλίση µπορεί να εκδηλωθεί. Το ταλέντο στα µαθηµατικά έχει ιδιαίτερα απασχολήσει την επιστηµονική

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΘΕΑΤΡΙΚΗΣ ΑΓΩΓΗΣ ΔΗΜΟΤΙΚΟΥ Ι. ΠΕΡΙΕΧΟΜΕΝΟ ΚΑΙ ΔΟΜΗ ΤΟΥ ΒΙΒΛΙΟΥ

ΜΑΘΗΜΑ ΘΕΑΤΡΙΚΗΣ ΑΓΩΓΗΣ ΔΗΜΟΤΙΚΟΥ Ι. ΠΕΡΙΕΧΟΜΕΝΟ ΚΑΙ ΔΟΜΗ ΤΟΥ ΒΙΒΛΙΟΥ ΜΑΘΗΜΑ ΘΕΑΤΡΙΚΗΣ ΑΓΩΓΗΣ ΔΗΜΟΤΙΚΟΥ Ι. ΠΕΡΙΕΧΟΜΕΝΟ ΚΑΙ ΔΟΜΗ ΤΟΥ ΒΙΒΛΙΟΥ Το μάθημα της Θεατρικής Αγωγής θα διδάσκεται από φέτος στην Ε και Στ Δημοτικού. Πρόκειται για μάθημα βιωματικού χαρακτήρα, με κύριο

Διαβάστε περισσότερα

Η ΤΡΟΧΙΑ ΤΟΥ ΗΛΙΟΥ. Σελίδα 1 από 6

Η ΤΡΟΧΙΑ ΤΟΥ ΗΛΙΟΥ. Σελίδα 1 από 6 Η ΤΡΟΧΙΑ ΤΟΥ ΗΛΙΟΥ Στόχος(οι): Η παρατήρηση της τροχιάς του ήλιου στον ουρανό και της διακύμανση της ανάλογα με την ώρα της ημέρας ή την εποχή. Εν τέλει, η δραστηριότητα αυτή θα βοηθήσει τους μαθητές να

Διαβάστε περισσότερα

AΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΕΜΠΤΗ 18 ΙΟΥΝΙΟΥ 2015 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΕΛΕΥΘΕΡΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΔΥΟ (2)

AΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΕΜΠΤΗ 18 ΙΟΥΝΙΟΥ 2015 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΕΛΕΥΘΕΡΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΔΥΟ (2) AΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 18 ΙΟΥΝΙΟΥ 2015 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΕΛΕΥΘΕΡΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΔΥΟ (2) ΖΗΤΟΥΝΤΑΙ: 1. Απεικόνιση του θέματος στον καθορισμένο

Διαβάστε περισσότερα

Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό.

Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό. Η κατασκευή με τις δύο πινέζες και το νήμα Στη δραστηριότητα αυτή θα εξερευνήσετε ίσως την πλέον κοινή μέθοδο κατασκευής μιας έλλειψης. Προκειμένου να θέσετε το πλαίσιο για την κατασκευή αυτή, πρέπει να

Διαβάστε περισσότερα