Κεφάλαιο 17. Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 17. Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2."

Transcript

1 Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ ΕΙΣΑΓΩΓΗ ΤΟ χ 2 ΓΙΑ ΜΙΑ ΠΟΙΟΤΙΚΗ ΜΕΤΑΒΛΗΤΗ Ένα ερευνητικό παράδειγμα Ερμηνεία των αποτελεσμάτων Υπολογισμός του χ 2 για μία μεταβλητή στο SPSS Το κριτήριο καλής προσαρμογής και η κανονική κατανομή Μονόπλευρος ή αμφίπλευρος έλεγχος; ΤΟ χ 2 ΓΙΑ ΔΥΟ ΠΟΙΟΤΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ Ένα ερευνητικό παράδειγμα Ερμηνεία των αποτελεσμάτων Υπολογισμός του χ 2 για δύο μεταβλητές στο SPSS Η περίπτωση των δύο μεταβλητών με δύο κατηγορίες (2 2) Η κατάτμηση του χ ΠΕΡΙΟΡΙΣΜΟΙ ΣΤΗ ΧΡΗΣΗ ΤΟΥ χ Η ΚΛΗΡΟΝΟΜΙΑ ΤΟΥ YATES: ΝΑ ΔΙΟΡΘΩΣΟΥΜΕ ή ΟΧΙ; Η ΧΡΗΣΗ ΤΟΥ χ 2 ΓΙΑ ΤΗ ΣΥΓΚΡΙΣΗ ΠΟΣΟΣΤΩΝ ΑΝΑΚΕΦΑΛΑΙΩΣΗ ΑΣΚΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ 463

2

3 Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ Διαφορές ή συσχέτιση: Κλίμακα μέτρησης: Σχεδιασμός: Σημειώσεις: Διαφορές Κατηγορική Ανεξάρτητα δείγματα Τα δεδομένα πρέπει να έχουν τη μορφή συχνοτήτων. Παρότι ενδιαφερόμαστε για τις διαφορές στην επίδραση της ανεξάρτητης μεταβλητής, το τεστ ουσιαστικά εξετάζει τη σχέση μεταξύ των κατηγοριών στις στήλες και τις γραμμές ενός πίνακα ΕΙΣΑΓΩΓΗ Το στατιστικό κριτήριο χ 2 (χ-τετράγωνο chi-square) είναι πιθανότατα η δοκιμασία που χρησιμοποιείται συχνότερα για τον έλεγχο των υποθέσεων των ερευνών που πραγματοποιούνται από τους κοι- 2 Στατιστικό τεστ που χρησιμοποιείται για Στατιστικό κριτήριο χ νωνικούς επιστήμονες. Σε ένα βαθμό, το χ 2 είναι πολύ δημοφιλές λόγω της σχετικής ευκολίας με την οποία ικανο- την ανάλυση ποιοτικών δεδομένων ποιούνται οι προϋποθέσεις για τη χρήση του. Πρόκειται για ένα μη παραμετρικό κριτήριο που δεν απαιτεί καμία υπόθεση για την ακριβή μορφή της κατανομής του πληθυσμού. Το χ 2 είναι το κατάλληλο κριτήριο για την περίπτωση κατά την οποία τα δεδομένα της έρευνάς μας είναι ποιοτικά (η κλίμακα μέτρησης που χρησιμοποιήθηκε ήταν κατηγορική). Αυτό σημαίνει ότι δεν χρειάζεται να μετρήσουμε την επίδοση των συμμετεχόντων. αρκεί μόνο να τους εντάξουμε σε μία κατηγορία. Επειδή οι συμμετέχοντες δεν μπορούν να ενταχθούν σε περισσότερες από μία κατηγορίες, το χ 2 είναι κατάλληλο μόνο για προβλέψεις σχετικά με το πόσοι διαφορετικοί συμμετέχοντες θα βρεθούν στην κάθε κατηγορία. Η δημοτικότητα του χ 2 σχετίζεται, επίσης, με τη χρησιμότητά του σε ένα ευρύτερο φάσμα ερευνητικών καταστάσεων, σε σύγκριση με τα άλλα στατιστικά κριτήρια στα οποία έχουμε μέχρι τώρα αναφερθεί. Έτσι, αν και το χ 2 μπορεί να χρησιμοποιηθεί στην απλή περίπτωση όπου συγκρίνονται οι συχνότητες δύο συνθηκών μιας ποιοτικής μεταβλητής, μπορεί, επίσης, να εφαρμοστεί και σε πιο περίπλοκες ερευνητικές συνθήκες με δύο ποιοτικές μεταβλητές. 465

4 Στατιστική στις επιστήμες της συμπεριφοράς με τη χρήση του SPSS χ 2 κριτήριο καλής προσαρμογής Η χρήση του στατιστικού κριτηρίου χ 2 για την ερμηνεία συχνότητας κατηγοριών που προέρχονται από μία ποιοτική μεταβλητή χ 2 για ανεξαρτησία Η χρήση του στατιστικού κριτηρίου χ 2 για την ερμηνεία συχνότητας κατηγοριών που προέρχονται από δύο ποιοτικές μεταβλητές Ένα σημείο που πρέπει να λαμβάνεται υπόψη όταν χρησιμοποιείται το χ 2, είναι το εξής: Σε όλους τους υπόλοιπους πειραματικούς σχεδιασμούς που έχουν αναφερθεί μέχρι τώρα ο ερευνητής αποφασίζει πόσους συμμετέχοντες θα έχει σε κάθε ομάδα, οπότε ο αριθμός των μετρήσεων κάθε ομάδας είναι προκαθορισμένος. Ωστόσο, το χ 2 ελέγχει μία εναλλακτική υπόθεση η οποία προβλέπει πόσοι συμμετέχοντες κάθε ομάδας θα βρεθούν σε συγκεκριμένες κατηγορίες. Επομένως, αυτό δεν μπορεί να αποφασιστεί εκ των προτέρων. Η συγκεκριμένη ιδιαιτερότητα επιβάλλει στον ερευνητή να χρησιμοποιήσει πολλούς συμμετέχοντες προκειμένου να εξασφαλίσει ότι ένας ικανός αριθμός από αυτούς θα βρεθεί στην κάθε κατηγορία. Έτσι, για να υπολογίσουμε τον ελάχιστο αριθμό συμμετεχόντων, μπορούμε να ακολουθήσουμε τον εξής απλό κανόνα: Για κάθε κατηγορία θα πρέπει να έχουμε περίπου 20 συμμετέχοντες. Όσο και αν ο εν λόγω αριθμός φαίνεται μεγάλος, στη συνέχεια του κεφαλαίου θα διαπιστώσουμε ότι αυτός είναι ο καλύτερος τρόπος για να εξασφαλίσουμε πως θα πληρούται μία από τις πιο σημαντικές προϋποθέσεις για την εφαρμογή του κριτηρίου αυτού. Το χ 2 μπορεί να χρησιμοποιηθεί για να ερμηνεύσει τη συχνότητα κατηγοριών που προέρχονται μόνο από μία ποιοτική μεταβλητή (κριτήριο καλής προσαρμογής ή καταλληλότητας - Chi-square as a good ness-of-fit test) ή από δύο ποιοτικές μεταβλητές (χ 2 για ανεξαρτησία Chi-square as a test of independence). Παρά το γεγονός ότι η ίδια στατιστική δοκιμασία χρησιμοποιείται και στις δύο περιπτώσεις, οι ερευνητικές υποθέσεις που διατυπώνονται και ελέγχονται καθώς και ο τρόπος με τον οποίο το χ 2 εφαρμόζεται είναι διαφορετικά. Αυτός είναι και ο λόγος για τον οποίο τα διαπραγματευόμαστε ξεχωριστά στη συνέχεια του κεφαλαίου ΤΟ χ 2 ΓΙΑ ΜΙΑ ΠΟΙΟΤΙΚΗ ΜΕΤΑΒΛΗΤΗ Πραγματικές συχνότητες Η στατιστική δοκιμασία χ 2 για μία ποιοτική μεταβλητή Οι συχνότητες που παρατηρήθηκαν εξετάζει, στην ουσία, αν υπάρχει διαφορά μεταξύ των δεδομένων που έχουν συλλεχθεί κατά τη διάρκεια της έρευ- κατά τη διεξαγωγή της έρευνας νας (πραγματικές συχνότητες observed freque ncies) Αναμενόμενες συχνότητες Οι τιμές των συχνοτήτων που θα εμφανίζονταν αν ίσχυε η μηδενική υπόθεση μηδενική υπόθεση (αναμενόμενες συχνότητες και αυτών που θα περιμέναμε να εμφανιστούν αν ίσχυε η expected frequencies). Αυτό στην πράξη σημαίνει ότι, αν οι πραγματικές συχνότητες είναι τυχαίες, θα πρέπει να πλησιάζουν αρκετά τις αναμενόμενες συχνότητες. Το χ 2 αντανακλά το μέγεθος των διαφορών μεταξύ των πραγματικών και των αναμενόμενων συχνοτήτων. Όσο με- 466

5 Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 γαλύτερη είναι η εν λόγω διαφορά, τόσο πιθανότερο είναι να προκύψει στατιστικώς σημαντικό αποτέλεσμα. Το χ 2 υπολογίζεται με βάση τον ακόλουθο τύπο: 2 χ 2 Σ ( Π A ), A όπου Π η πραγματική συχνότητα κάθε κατηγορίας, και Α η αναμενόμενη συχνότητα κάθε κατηγορίας. Η χ 2 κατανομή Πλαίσιο 17.1 Η χ 2 κατανομή είναι η κατανομή που ορίζεται από τον ακόλουθο τύπο: 2 1 f ( χ ) χ k / 2 2 Γ ( k / 2) 2 2 ( k / 2) 1 ( χ )/ 2 Όπως γίνεται εύκολα αντιληπτό, είναι μια περίπλοκη συνάρτηση, την οποία δεν πρόκειται να χρησιμοποιήσουμε σε κανένα σημείο για τον υπολογισμό του στατιστικού κριτηρίου χ 2. Το μόνο στοιχείο που παρουσιάζει κάποιο ενδιαφέρον είναι ότι η μοναδική παράμετρος του τύπου αυτού είναι το k. Όλα τα σύμβολα έχουν σταθερές τιμές εκτός από το χ 2, την τεταγμένη του οποίου θέλουμε να υπολογίσουμε [f(χ 2 )]. Περνώντας από τα μαθηματικά στη στατιστική, βλέπουμε ότι η παράμετρος k δηλώνει τους βαθμούς ελευθερίας (df). Στο σχήμα 17.1 παρουσιάζονται τα διαγράμματα ορισμένων χ 2 κατανομών, καθεμία από τις οποίες αναπαριστά μία διαφορετική τιμή του k. Τα βέλη δηλώνουν τις κρίσιμες τιμές για α0,05. e Πυκνότητα Πυκνότητα 467

6 Στατιστική στις επιστήμες της συμπεριφοράς με τη χρήση του SPSS Πυκνότητα Πυκνότητα Σχήμα χ 2 κατανομές για df 1, 2, 4 & 8 (Howell, 2010). Με βάση το παραπάνω σχήμα, είναι προφανές ότι η μορφή της κατανομής αλλάζει σημαντικά ανάλογα με τις αλλαγές στην τιμή του k και γίνεται πιο συμμετρική όσο αυξάνει η τιμή του k. Ένα άλλο ενδιαφέρον χαρακτηριστικό της συγκεκριμένης κατανομής είναι ότι ο μέσος όρος και η διακύμανση κάθε χ 2 κατανομής αυξάνουν όσο αυξάνουν οι τιμές του k, με το οποίο και σχετίζονται άμεσα με το k. Συγκεκριμένα, σε όλες τις περιπτώσεις ο μέσος όρος είναι ίσος με το k και η διακύμανση ίση με 2k. Μία προσεκτική μελέτη του παραπάνω τύπου θα καταστήσει σαφές γιατί είναι κατάλληλος για την εξέταση του θέματος που μας απασχολεί. Στον αριθμητή μετράται το τετράγωνο της απόστασης μεταξύ των δύο συχνοτήτων (αυτής που παρατηρήθηκε και της αναμενόμενης). Επομένως, όσο μεγαλύτερες είναι αυτές οι αποστάσεις, τόσο υψηλότερη θα είναι και η τιμή του χ 2. Ο παρονομαστής παίζει χρήσιμο ρόλο κρατώντας αυτές τις αποστάσεις σε μια προοπτική. Για να γίνει αυτό κατανοητό, υποθέστε ότι έχουμε δύο περιπτώσεις όπου η διαφορά μεταξύ της πραγματικής και της αναμενόμενης συχνότητας είναι η ίδια. Για παράδειγμα: Π 36, Α 21, Π Α 15 και Π 336, Α 321, Π Α 15 Παρότι η διαφορά είναι η ίδια και στις δύο περιπτώσεις, στη δεύτερη ωστόσο περίπτωση αποδεικνύεται πολύ μικρή, δεδομένου του πλήθους των περιπτώσεων: ( Π Α) ( 36 21) Α , 71 ( Π Α) ( ) Α , 468

7 Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ Ένα ερευνητικό παράδειγμα Ένας ερευνητής μελετά τον τρόπο με τον οποίο οι φοιτητές οργανώνουν τη μελέτη τους. Επιλέγει τυχαία 120 φοιτητές διαφόρων σχολών και τους ζητά να συμπληρώσουν ένα ερωτηματολόγιο, το οποίο επιτρέπει να καθοριστεί ο τρόπος μελέτης τους. Συγκεκριμένα, η αξιολόγηση των απαντήσεων που δίνονται από τον φοιτητή επιτρέπει στον ερευνητή να κατηγοριοποιήσει τον τρόπο μελέτης του σε: α) μεθοδική (καθημερινή μελέτη), β) ακανόνιστη (περίοδοι εξαιρετικά έντονης μελέτης και περίοδοι χωρίς μελέτη), ή γ) συνδυαστική (συνδυασμός των δύο προηγουμένων). Στον πίνακα 17.1 που ακολουθεί παρουσιάζεται ο αριθμός των συμμετεχόντων σε κάθε κατηγορία. Πραγματικές συχνότητες των τρόπων οργάνωσης μελέτης Πίνακας 17.1 Τρόπος μελέτης Μεθοδική Ακανόνιστη Συνδυαστική Σύνολο Προσοχή! Δεν πρόκειται για μετρήσεις που πήραμε από τους συμμετέχοντες, αλλά για συχνότητες. Το ερώτημα που απασχολεί τον ερευνητή είναι κατά πόσο έχει ανακαλύψει ένα ενδιαφέρον φαινόμενο όσον αφορά τον τρόπο με τον οποίο οι φοιτητές οργανώνουν τη μελέτη τους, ή αν πρόκειται απλώς για τυχαίες διαφορές μεταξύ των τριών κατηγοριών. Το χ 2 είναι το κατάλληλο στατιστικό κριτήριο, καθώς τα δεδομένα της συγκεκριμένης έρευνας είναι ποιοτικά (η κλίμακα μέτρησης που χρησιμοποιήθηκε είναι κατηγορική), και δι αυτού συγκρίνεται η πραγματική συχνότητα (Π) κάθε φατνίου του πίνακα με την αναμενόμενη συχνότητα (Α) του ίδιου φατνίου, προκειμένου να εκτιμηθεί αν αυτές οι διαφορές είναι τυχαίες ή συστηματικές. Με άλλα λόγια, το τεστ συγκρίνει τους πραγματικούς αριθμούς των φοιτητών που βρίσκονται σε κάθε κατηγορία, με τους αριθμούς των φοιτητών που θα αναμέναμε να βρίσκονται σε κάθε κατηγορία, αν στην πραγματικότητα δεν υπήρχε καμιά διαφορά στον τρόπο μελέτης των φοιτητών. Στο πλαίσιο 17.2 παρουσιάζεται διεξοδικά η διαδικασία υπολογισμού του χ 2 για μία ποιοτική μεταβλητή. Πριν προχωρήσουμε όμως στον υπολογισμό του χ 2, ας διατυπώσουμε τις υποθέσεις μας: Μηδενική υπόθεση: Οι συχνότητες των τριών τύπων μελέτης δεν είναι διαφορετικές μεταξύ τους (αμφίπλευρος έλεγχος). Εναλλακτική υπόθεση: Οι συχνότητες των τριών τύπων μελέτης είναι διαφορετικές μεταξύ τους. 469

8 Στατιστική στις επιστήμες της συμπεριφοράς με τη χρήση του SPSS Πλαίσιο Η διαδικασία υπολογισμού του χ 2 για μία ποιοτική μεταβλητή Βήμα 1ο Υπολογίζουμε τις αναμενόμενες συχνότητες βασιζόμενοι στη μηδενική υπόθεση ότι και τα τρία φατνία πρέπει να είναι ίσα. Έτσι, διαιρούμε το συνολικό πλήθος των πραγματικών συχνοτήτων (120) με τον αριθμό των κατηγοριών (3): Βήμα 2ο Αντικαθιστούμε στον τύπο του χ 2 που παρατέθηκε παραπάνω τις τιμές των πραγματικών συχνοτήτων του Πίνακα 17.1 και των αναμενόμενων συχνοτήτων που υπολογίσαμε στο προηγούμενο βήμα, και υπολογίζουμε την τιμή του χ 2 : [ ] Σημείωση: Ενώ οι πραγματικές συχνότητες είναι πάντοτε ακέραιοι αριθμοί, οι αναμενόμενες συχνότητες μπορεί και να μην είναι ακέραιοι. ( 51 40) ( 27 40) ( 42 40) χ , , , 735, [Π: 51, 27, 42 Α: 40, 40, 40] Βήμα 3ο Υπολογίζουμε τους βαθμούς ελευθερίας (df). Στην περίπτωση που το χ 2 υπολογίζεται από μία μεταβλητή με k κατηγορίες (στο παράδειγμά μας k3), τότε ο αριθμός των df ισούται με k 1. [df 3 1 2] Βήμα 4ο Βρίσκουμε στον πίνακα 7 του Παραρτήματος Α την κρίσιμη τιμή που αντιστοιχεί στους 2 βαθμούς ελευθερίας για επίπεδο στατιστικής σημαντικότητας α0,05 και για αμφίπλευρο έλεγχο. [Κρίσιμη τιμή 5,99] Βήμα 5ο Από τη σύγκριση της τιμής του χ 2 που υπολογίστηκε με την αντίστοιχη κρίσιμη τιμή (7,35>5,99), προκύπτει ότι πρέπει να απορρίψουμε τη μηδενική υπόθεση. Σημείωση: Απορρίπτουμε τη μηδενική υπόθεση αν η τιμή του χ 2 που υπολογίστηκε είναι μεγαλύτερη από την τιμή της θεωρητικής κατανομής του χ 2 (κρίσιμη τιμή) για επίπεδο στατιστικής σημαντικότητας α και για βαθμούς ελευθερίας k

9 Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ Ερμηνεία των αποτελεσμάτων Βρήκαμε, λοιπόν, ότι η τιμή του χ 2 είναι 7,35. Προκειμένου να αποφασίσουμε αν η συγκεκριμένη τιμή είναι στατιστικώς σημαντική ή όχι, πρέπει να συμβουλευτούμε τον πίνακα 7 του παραρτήματος Α. Έτσι, για df2, επίπεδο στατιστικής σημαντικότητας α0,05 και αμφίπλευρο έλεγχο, η κρίσιμη τιμή είναι 5,99. Η τιμή του χ 2 πρέπει να είναι ίση ή μεγαλύτερη από το 5,99 ώστε η μηδενική υπόθεση να απορριφθεί. Στο παράδειγμά μας το αποτέλεσμα του υπολογισμού είναι μεγαλύτερο από αυτή την τιμή (7,35>5,99), επομένως μπορούμε να απορρίψουμε τη μηδενική υπόθεση. Συμπερασματικά, τα ευρήματα του ερευνητή είναι επαρκή για να υποστηρίξουν (όχι να αποδείξουν) την υπόθεση ότι οι φοιτητές διαφόρων σχολών χρησιμοποιούν συστηματικά έναν τρόπο μελέτης περισσότερο από κάποιους άλλους. Τέλος, σύμφωνα με τα πρότυπα της ΑΡΑ, το αποτέλεσμα αυτό διατυπώνεται ως εξής: χ 2 (2)7,35, p<0,05 Βαθμοί ελευθερίας Στατιστικώς σημαντικό αποτέλεσμα σε επίπεδο α0,05 Τιμή του χ Υπολογισμός του χ 2 για μία μεταβλητή στο SPSS Τα δεδομένα του προηγούμενου ερευνητικού παραδείγματος περιέχονται στο αρχείο chapter17_1 1.sav. Για τον υπολογισμό του χ 2 για μία μεταβλητή στο SPSS, ακολουθήστε τις παρακάτω εντολές: Από το αρχικό μενού που βρίσκεται στην κορυφή της οθόνης επιλέξτε [Analyze Nonparametric Tests Legacy Dialogs Chi-square ]. Στο πλαίσιο διαλόγου που θα εμφανιστεί μετακινήστε τη μεταβλητή Study στο πλαίσιο [Test Variable List:] και πατήστε [OK]. Στην εικόνα 17.1 παρουσιάζονται τα αποτελέσματα όπως εμφανίζονται στο SPSS Viewer. Ο πρώτος πίνακας παρουσιάζει τις πραγματικές (Observed N) και τις αναμενόμενες (Expected N) συχνότητες για καθεμία από τις τρεις κατηγορίες της μεταβλητής. Το αποτέλεσμα του υπολογισμού του χ 2 περιέχεται στον δεύτερο πίνακα, όπου θα βρούμε και την ακριβή πιθανότητα να έχουν προκύψει τα συγκεκριμένα δεδομένα αν η μηδενική υπόθεση είναι αληθής (Asymp. Sig.), οπότε το αποτέλεσμα που αναφέραμε στο τέλος της προηγούμενης ενότητας θα πρέπει τώρα να παρουσιαστεί ως εξής: χ 2 (2)7,35, p0, Στο SPSS, η μεταβλητή του τρόπου μελέτης καταχωρίστηκε ως «study». 471

10 Στατιστική στις επιστήμες της συμπεριφοράς με τη χρήση του SPSS Κάτω από τον δεύτερο πίνακα υπάρχει μία σημείωση, η οποία μας πληροφορεί ότι «0 φατνία έχουν αναμενόμενη συχνότητα μικρότερη από 5». Πρόκειται για τον έλεγχο μιας από τις προϋποθέσεις εφαρμογής του κριτηρίου χ 2. Για περισσότερες πληροφορίες σχετικά με αυτό τον έλεγχο, βλ. στην ενότητα Εικόνα Αποτελέσματα του χ 2 για μία ποιοτηκή μεταβλητή Το κριτήριο καλής προσαρμογής και η κανονική κατανομή Το κριτήριο καλής προσαρμογής χρησιμοποιείται προκειμένου να αποφασίσουμε αν ένα μεγάλο δείγμα προσεγγίζει τη μορφή της κανονικής κατανομής ή όχι. Στην περίπτωση αυτή οι αναμενόμενες συχνότητες υπολογίζονται με βάση τον πίνακα 1 του Παραρτήματος Α, ο οποίος δείχνει το ποσοστό ενός κανονικά κατανεμημένου πληθυσμού που κυμαίνεται μεταξύ δύο τυπικών τιμών. Για παράδειγμα, σε μία κανονική κατανομή περιμένουμε ότι περίπου το 34% όλων των τιμών θα περιλαμβάνεται μεταξύ του μέσου όρου και μιας τυπικής απόκλισης (z ±1), όπως επίσης ένα 13,6% θα περιλαμβάνεται μεταξύ μιας και δύο τυπικών αποκλίσεων από τον μέσο όρο (μεταξύ z ±1 και z ±2. βλ. Κεφάλαιο 6). Το κριτήριο καλής προσαρμογής συγκρίνει τα ποσοστά της κατανομής των τιμών του δείγματός μας (πραγματικές συχνότητες) με αυτά τα ιδανικά ποσοστά που παίζουν τον ρόλο των αναμενόμενων συχνοτήτων. 472

11 Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ Μονόπλευρος ή αμφίπλευρος έλεγχος; Έχει γίνει ήδη εκτενής αναφορά στη σημασία που έχει η απόφαση για τη διεξαγωγή μονόπλευρου ή αμφίπλευρου ελέγχου της υπόθεσής μας. Ωστόσο, στην περίπτωση του χ 2 αυτή η διαφοροποίηση δεν είναι συνήθως προφανής. Ορισμένοι συγγραφείς (π.χ., Dancey & Reidy, Robson, 1994) υποστηρίζουν ότι το χ 2 είναι πάντα μονόπλευρο, επειδή η δειγματοληπτική κατανομή του χ 2 είναι πάντοτε θετική (οι τιμές του χ 2 βασίζονται σε τετράγωνα διαφορών, επομένως είναι πάντοτε θετικές). Άλλοι πάλι ισχυρίζονται ότι το χ 2 είναι πάντοτε αμφίπλευρο, διότι δεν είναι δυνατόν να δηλώσουμε κατεύθυνση στην υπόθεσή μας. Παρά το γεγονός ότι η συζήτηση αυτή είναι μάλλον ακαδημαϊκή, στόχος μας εδώ είναι να δείξουμε μία από τις πιο σημαντικές αδυναμίες του χ 2. Έτσι, στα δεδομένα του πίνακα 17.1, οι τρεις διαφορετικοί τρόποι μελέτης θα μπορούσαν να δημιουργήσουν έξι συνδυασμούς με τις τρεις συχνότητες που παρατηρήθηκαν (27, 42, 51), χωρίς να υπάρξει καμιά διαφοροποίηση στην τιμή του χ 2. Αυτό σημαίνει ότι, αν στη βάση μιας συγκεκριμένης θεωρίας θέλαμε να ελέγξουμε μία συγκεκριμένη μηδενική υπόθεση (ένα συγκεκριμένο συνδυασμό των τριών συχνοτήτων), θα είχαμε μία πιθανότητα στις έξι το αποτέλεσμα να είναι σύμφωνο με την πρόβλεψή μας. Ωστόσο, σε μία τέτοια περίπτωση και εφόσον το αποτέλεσμα (ο συνδυασμός των συχνοτήτων) δεν ήταν σύμφωνο με την πρόβλεψή μας, θα έπρεπε να δεχθούμε τη μηδενική υπόθεση (ακόμη και αν η τιμή του χ 2 ήταν πολύ μεγαλύτερη από την αντίστοιχη κρίσιμη τιμή). Από την άλλη πλευρά, υπάρχει μία περίπτωση κατά την οποία είναι απολύτως ασφαλές να πραγματοποιήσουμε μονόπλευρο έλεγχο της υπόθεσής μας. Για παράδειγμα, ας υποθέσουμε ότι ζητούμε από 50 φοιτητές να επιλέξουν μεταξύ δύο τρόπων μελέτης (π.χ., μεθοδικής και ακανόνιστης) και ότι παίρνουμε τα αποτελέσματα που παρουσιάζονται στον πίνακα Στην περίπτωση αυτή ο ερευνητής διατυπώνει την εναλλακτική υπόθεση ότι οι περισσότεροι φοιτητές θα επιλέξουν τον μεθοδικό τρόπο μελέτης (μονόπλευρος έλεγχος). Επιλογές τρόπου μελέτης από τους 50 φοιτητές Πίνακας Μεθοδική μελέτη Ακανόνιστη μελέτη Σύνολο Αν οι φοιτητές απαντούσαν τυχαία, θα περιμέναμε ότι οι μισοί θα επέλεγαν τον έναν τρόπο μελέτης και οι άλλοι μισοί τον άλλο. Επομένως, οι αναμενόμενες συχνότητες και για τα δύο φατνία θα ήταν 25. Ο υπολογισμός του χ 2 γίνεται όπως ακριβώς και παραπάνω. Η τιμή του χ 2 στην περίπτωση αυτή θα είναι 23,12 και οι βαθμοί ελευθερίας df1. 473

12 Στατιστική στις επιστήμες της συμπεριφοράς με τη χρήση του SPSS Ο πίνακας 7 στο Παράρτημα Α δείχνει ότι η συγκεκριμένη τιμή είναι μεγαλύτερη ακόμη και από την κρίσιμη τιμή σε επίπεδο στατιστικής σημαντικότητας α0,005 (6,64) για μονόπλευρο έλεγχο. Πρόκειται, δηλαδή, για μία διαφορά η οποία είναι ελάχιστα πιθανόν να προέκυψε τυχαία ΤΟ χ 2 ΓΙΑ ΔΥΟ ΠΟΙΟΤΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ Το στατιστικό κριτήριο χ 2 μπορεί να χρησιμοποιηθεί, κατά δεύτερον, ως στατιστικό κριτήριο για τον έλεγχο της ανεξαρτησίας μεταξύ δύο ποιοτικών μεταβλητών. Μπορεί να χρησιμοποιηθεί, δηλαδή, για να εξετάσουμε αν δύο μεταβλητές που διασταυρώνονται σε έναν πίνακα διπλής εισόδου είναι ανεξάρτητες ή εξαρτημένες και αν οι συχνότητες των διαφόρων κατηγοριών μπορούν να προκύψουν τυχαία ή είναι συστηματικές, αντίστοιχα Ένα ερευνητικό παράδειγμα Ας υποθέσουμε ότι ένας ερευνητής θέλει να ελέγξει αν μία μέθοδος διδασκαλίας είναι αποτελεσματικότερη από τον παραδοσιακό τρόπο διδασκαλίας. Για τον σκοπό αυτό επιλέγει δύο τμήματα (ισοδύναμα ως προς τις νοητικές ικανότητες και τις σχολικές επιδόσεις των μαθητών) μιας τάξης ενός σχολείου και ζητάει από ένα δάσκαλο να διδάξει στο πρώτο τμήμα (το οποίο αποτελείται από 44 μαθητές) ένα γνωστικό αντικείμενο με τη νέα μέθοδο διδασκαλίας, και στο δεύτερο τμήμα (που αποτελείται από 42 μαθητές) το ίδιο γνωστικό αντικείμενο χρησιμοποιώντας την παραδοσιακή μέθοδο διδασκαλίας. Μετά την ολοκλήρωση της διδασκαλίας στα δύο τμήματα, ο ερευνητής υποβάλλει τους μαθητές και των δύο στην ίδια γραπτή δοκιμασία για τον έλεγχο της κατανόησης του γνωστικού αντικειμένου που διδάχθηκαν. Η γραπτή αυτή δοκιμασία δίνει στον ερευνητή τη δυνατότητα να κατηγοριοποιήσει την επίδοση των μαθητών σε: α) χαμηλή, β) μέτρια, ή γ) υψηλή. Πίνακας διπλής εισόδου Πίνακας στον οποίο κάθε τιμή ταξινομείται ως προς δύο μεταβλητές ταυτόχρονα Στον πίνακα διπλής εισόδου ή διασταύρωσης (contingency table) που ακολουθεί (πίνακας 17.3) παρουσιάζονται οι αριθμοί (οι απόλυτες συχνότητες) των μαθητών κάθε τμήματος που ανήκουν σε καθεμία από τις τρεις αυτές κατηγορίες. 2. Για μία πιο διεξοδική συζήτηση σχετικά με το συγκεκριμένο θέμα, βλ. Howell (2010) ή Delucchi (1983). 474

13 Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 Η επίδοση των μαθητών των δύο τμημάτων Πίνακας Μέθοδος διδασκαλίας Επίδοση των μαθητών Χαμηλή Μέτρια Υψηλή Σύνολο Νέα μέθοδος Παραδοσιακή μέθοδος Σύνολο Προσοχή! Δεν πρόκειται για μετρήσεις που πήραμε από τους συμμετέχοντες, αλλά για συχνότητες. Οι πραγματικές συχνότητες μας είναι ήδη γνωστές (είναι οι αριθμοί των μαθητών οι οποίοι συμπεριλαμβάνονται σε καθένα από τα τρία επίπεδα επίδοσης που αναφέρθηκαν παραπάνω). Οι αναμενόμενες συχνότητες όμως πρέπει να υπολογιστούν από τους συνολικούς αριθμούς των μαθητών κάθε τάξης και από τους συνολικούς αριθμούς κάθε επιπέδου επίδοσης (οι οποίοι παρουσιάζονται στην τελευταία στήλη και στην τελευταία γραμμή του πίνακα 17.3). Στο πλαίσιο 17.3 παρουσιάζεται τόσο η λογική όσο και η διαδικασία υπολογισμού των αναμενόμενων συχνοτήτων. Υπολογισμός των αναμενόμενων συχνοτήτων Πλαίσιο Είναι πολύ εύκολο για κάποιον να κάνει λάθος καθώς υπολογίζει τις αναμενόμενες συχνότητες. Στην ερώτηση «Τι είναι οι αναμενόμενες συχνότητες;» πολλοί απαντούν ότι είναι «αυτό που περιμένει ο ερευνητής», ή κάτι παρόμοιο. Στην πραγματικότητα όμως, οι αναμενόμενες συχνότητες είναι το αντίθετο από εκείνο που ο ερευνητής (συχνά) θέλει να συμβεί. είναι αυτό που θα περιμέναμε να συμβεί αν ίσχυε η μηδενική υπόθεση. Πριν προχωρήσουμε στον υπολογισμό των αναμενόμενων συχνοτήτων για το παράδειγμά μας, ας μελετήσουμε για λίγο τη λογική τους χρησιμοποιώντας ένα παράδειγμα. Ας υποθέσουμε, λοιπόν, ότι 200 φοιτητές ρωτήθηκαν για τις θρησκευτικές πεποιθήσεις τους και στη συνέχεια για την άποψή τους σχετικά με τις εκτρώσεις. Η ερευνητική υπόθεση είναι ότι υπάρχει σχέση μεταξύ των δύο μεταβλητών (θρησκευτικής πίστης και στάσης έναντι των εκτρώσεων). Τα αποτελέσματα παρουσιάζονται στον πίνακα 17.4.α. Πίνακας 17.4.α. Υπολογισμός των αναμενόμενων συχνοτήτων Στάση έναντι των εκτρώσεων Μη θρησκευόμενοι Θρησκευόμενοι Σύνολο Αρνητική Θετική Σύνολο

14 Στατιστική στις επιστήμες της συμπεριφοράς με τη χρήση του SPSS Προσέξτε ότι από τους 200 φοιτητές που ρωτήθηκαν οι 120 έχουν αρνητική στάση (60%) έναντι των εκτρώσεων και οι 80 θετική (40%). Στατιστικά, εφόσον το 40% από τους συνολικά 200 ερωτηθέντες απάντησε ότι έχει θετική στάση απέναντι στις εκτρώσεις, θα περιμέναμε ότι το ίδιο ποσοστό των θρησκευομένων και των μη θρησκευομένων θα απαντούσε το ίδιο, αν δεν υπήρχε καμιά σχέση μεταξύ της στάσης έναντι των εκτρώσεων και των θρησκευτικών πεποιθήσεων του φοιτητή (με άλλα λόγια, αν οι δύο μεταβλητές ήταν ανεξάρτητες). Αντίστοιχα, θα περιμέναμε το υπόλοιπο 60% και των δύο ομάδων να δηλώσει αρνητική στάση έναντι των εκτρώσεων. Έτσι, λοιπόν, οι αναμενόμενες συχνότητες θα ήταν οι ακόλουθες: Μη θρησκευόμενοι με θετική στάση έναντι των εκτρώσεων: 60 40%24 άτομα Θρησκευόμενοι με θετική στάση έναντι των εκτρώσεων: %56 άτομα Μη θρησκευόμενοι με αρνητική στάση έναντι των εκτρώσεων: 60 60%36 άτομα Θρησκευόμενοι με αρνητική στάση έναντι των εκτρώσεων: %84 άτομα Πίνακας 17.4.β. Αναμενόμενες συχνότητες Στάση έναντι των εκτρώσεων Μη θρησκευόμενοι Θρησκευόμενοι Σύνολο Αρνητική Θετική Σύνολο Αν συμφωνείτε με αυτό το σκεπτικό, τότε στην πραγματικότητα έχετε ήδη χρησιμοποιήσει τον τύπο για τον υπολογισμό των αναμενόμενων συχνοτήτων: Γ Σ A, T όπου Γ το σύνολο των συχνοτήτων της αντίστοιχης γραμμής, Σ το σύνολο των συχνοτήτων της αντίστοιχης στήλης, και T το σύνολο των συχνοτήτων όλων των φατνίων. Επιστρέφοντας τώρα στο παράδειγμά μας με τη σύγκριση των μεθόδων διδασκαλίας, η αναμενόμενη τιμή για το πρώτο φατνίο της πρώτης στήλης του Πίνακα 17.3 (νέα μέθοδος διδασκαλίας χαμηλή επίδοση μαθητών, όπου η πραγματική συχνότητα είναι 6) είναι: A A , Με τον ίδιο τρόπο υπολογίζονται και οι αναμενόμενες συχνότητες για τα υπόλοιπα φατνία του πίνακα 17.3: 476

15 Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ A B 11, A Δ , A Γ 86 24, A Ε 11, A ΣΤ 86 22, 95 Πρέπει να προσέξουμε και να ελέγξουμε αν το σύνολο των αναμενόμενων συχνοτήτων είναι ίσο με το σύνολο των πραγματικών συχνοτήτων. Έτσι: 8, , ,05 + 7, , ,95 86 Προσοχή! Σε έναν πίνακα διπλής εισόδου δεν είναι απαραίτητο να υπολογίσουμε όλες τις αναμενόμενες συχνότητες ακολουθώντας αυτή τη διαδικασία, καθώς μπορεί να μας φανούν χρήσιμες οι ιδιότητες των βαθμών ελευθερίας 3. Για παράδειγμα, σε έναν πίνακα 2 2 έχουμε 1 βαθμό ελευθερίας γιατί, με δεδομένα τα σύνολα των γραμμών και των στηλών του πίνακα, όταν ένα φατνίο πάρει μία τιμή, οι τιμές όλων των υπόλοιπων φατνίων είναι καθορισμένες (δηλαδή, δεν μπορούν να κυμαίνονται ελεύθερα). Έτσι, σε έναν πίνακα 2 4 αρκεί να υπολογίσουμε μόνο 3 από τις 8 αναμενόμενες συχνότητες χρησιμοποιώντας αυτό τον τύπο, και στη συνέχεια να υπολογίσουμε τις υπόλοιπες με αφαίρεση των τριών αυτών συχνοτήτων από τα σύνολα των γραμμών και των στηλών του πίνακα. Αν οι πραγματικές συχνότητες είναι τυχαίες, θα πρέπει να πλησιάζουν αρκετά τις αναμενόμενες συχνότητες. Το χ 2 αντανακλά το μέγεθος των διαφορών μεταξύ των πραγματικών και των αναμενόμενων συχνοτήτων. Όσο μεγαλύτερη είναι αυτή η διαφορά, τόσο πιθανότερο είναι να προκύψει στατιστικώς σημαντικό αποτέλεσμα. Το χ 2 για δύο ποιοτικές μεταβλητές υπολογίζεται με βάση τον ίδιο τύπο με εκείνον που χρησιμοποιήθηκε στην περίπτωση της μιας ποιοτικής μεταβλητής: Σ ( Π Α) A 2 χ 2 Στο πλαίσιο 17.4 παρουσιάζεται διεξοδικά η διαδικασία υπολογισμού του χ 2 για δύο ποιοτικές μεταβλητές. Πριν προχωρήσουμε, όμως, στον υπολογισμό του χ 2, ας διατυπώσουμε τις υποθέσεις μας: 3. Ο αριθμός των φατνίων που είναι ελεύθερα να μεταβάλλονται όταν είναι γνωστά τα σύνολα των γραμμών και των στηλών του πίνακα διπλής εισόδου. 477

16 Στατιστική στις επιστήμες της συμπεριφοράς με τη χρήση του SPSS Μηδενική υπόθεση: Οι δύο μεταβλητές (επίδοση και μέθοδος διδασκαλίας) είναι ανεξάρτητες μεταξύ τους. Με άλλα λόγια, το πλήθος των μαθητών με χαμηλή, μέτρια και υψηλή επίδοση θα είναι ίσο και για τις δύο μεθόδους διδασκαλίας. Εναλλακτική υπόθεση: Οι δύο μεταβλητές είναι εξαρτημένες (σχετίζονται μεταξύ τους). Δηλαδή, το πλήθος των μαθητών με χαμηλή, μέτρια και υψηλή επίδοση θα είναι διαφορετικό και για τις δύο μεθόδους διδασκαλίας. Πλαίσιο Η διαδικασία υπολογισμού του χ 2 για δύο μεταβλητές Βήμα 1ο Υπολογίζουμε τις αναμενόμενες συχνότητες των φατνίων του πίνακα 17.3 Βήμα 2ο Αντικαθιστούμε στον τύπο του χ 2 που παρατέθηκε παραπάνω τις τιμές των πραγματικών συχνοτήτων του Πίνακα 17.3 (με μαύρα γράμματα στον διπλανό πίνακα) και των αναμενόμενων συχνοτήτων που υπολογίσαμε στο προηγούμενο βήμα, και υπολογίζουμε την τιμή του δείκτη χ 2 : ( 6 819, ) 819, ( 15 11, 77) + 11, 77 ( 23 24, 05) , 0 5 χ , ,81 (βλ. πλαίσιο 17.3) 15 11, , , , ( 10 7, 81) ( , ) ( 24 22, 95) , 781, 11, 23 22, 95 Βήμα 3ο Υπολογίζουμε τους βαθμούς ελευθερίας (df). Σε έναν πίνακα διπλής εισόδου με Σ στήλες και Γ γραμμές, οι βαθμοί ελευθερίας είναι: df (Σ 1)(Γ 1). Βήμα 4ο Βρίσκουμε στον πίνακα 7 του Παραρτήματος Α την κρίσιμη τιμή που αντιστοιχεί στους 2 βαθμούς ελευθερίας για επίπεδο στατιστικής σημαντικότητας α0,05 και για αμφίπλευρο έλεγχο. Βήμα 5ο Από τη σύγκριση της τιμής του χ 2 που υπολογίστηκε με την αντίστοιχη κρίσιμη τιμή (3,11<5,99), προκύπτει ότι πρέπει να δεχθούμε τη μηδενική υπόθεση. df(σ-1)(γ-1)(3-1)(2-1)2 [Κρίσιμη τιμή 5,99] Σημείωση: Απορρίπτουμε τη μηδενική υπόθεση αν η τιμή του χ 2 που υπολογίστηκε είναι μεγαλύτερη από την τιμή της θεωρητικής κατανομής του χ 2 (κρίσιμη τιμή) για επίπεδο στατιστικής σημαντικότητας α και για βαθμούς ελευθερίας (Σ-1)(Γ-1). 478

17 Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ Ερμηνεία των αποτελεσμάτων Βρήκαμε, λοιπόν, ότι η τιμή του χ 2 είναι 3,11. Προκειμένου να αποφασίσουμε αν θα απορρίψουμε τη μηδενική υπόθεση ή όχι, πρέπει να συμβουλευτούμε τον πίνακα 7 του Παραρτήματος Α. Έτσι, για df2, επίπεδο στατιστικής σημαντικότητας α0,05 και αμφίπλευρο έλεγχο, η κρίσιμη τιμή είναι 5,99. Η τιμή του χ 2 θα πρέπει να είναι ίση ή μεγαλύτερη από το 5,99 ώστε η μηδενική υπόθεση να απορριφθεί. Το αποτέλεσμα του υπολογισμού στο παράδειγμά μας είναι μικρότερο από αυτή την τιμή (3,11<5,99), επομένως δεχόμαστε τη μηδενική υπόθεση. Συμπερασματικά, τα ευρήματα του ερευνητή δεν είναι επαρκή για να πείσουν ότι υπάρχει κάποια σχέση μεταξύ των μεταβλητών της διδακτικής μεθόδου και της επίδοσης των μαθητών (οι μεταβλητές είναι ανεξάρτητες μεταξύ τους). Τέλος, σύμφωνα με τα πρότυπα της ΑΡΑ, το αποτέλεσμα αυτό διατυπώνεται ως εξής: χ 2 (2)3,11, ns Βαθμοί ελευθερίας Στατιστικώς μη σημαντικό αποτέλεσμα Τιμή του χ Υπολογισμός του χ 2 για δύο μεταβλητές στο SPSS Τα δεδομένα του προηγούμενου ερευνητικού παραδείγματος περιέχονται στο αρχείο chapter17_2.sav. Για τον υπολογισμό του χ 2 για δύο μεταβλητές στο SPSS, ακολουθήστε τις παρακάτω εντολές: Από το αρχικό μενού που βρίσκεται στην κορυφή της οθόνης επιλέξτε [Analyze Descriptive Statistics Crosstabs ]. Στο πλαίσιο διαλόγου που θα εμφανιστεί, μετακινήστε τις μεταβλητές που θα συμμετάσχουν στην ανάλυση στα πλαίσια [Row(s):] και [Column(s):]. Συνήθως, προτιμούμε να βάλουμε στο πλαίσιο [Row(s):] τη μεταβλητή με τις περισσότερες κατηγορίες, ώστε ο πίνακας διπλής εισόδου που θα προκύψει να εκτείνεται καθ ύψος και όχι κατά πλάτος. Αντίθετα, εμείς θα μετακινήσουμε τη μεταβλητή method στο πλαίσιο [Row(s):] και τη μεταβλητή performance στο πλαίσιο [Column(s):] (βλ. εικόνα 17.2), ώστε ο πίνακας που θα προκύψει να είναι παρόμοιος με τον πίνακα 17.3 που έχουμε χρησιμοποιήσει προηγουμένως. 479

18 Στατιστική στις επιστήμες της συμπεριφοράς με τη χρήση του SPSS Εικόνα Πλαίσιο διαλόγου Crosstabs Στο δεξιό τμήμα του πλαισίου διαλόγου βρίσκονται τέσσερα κουμπιά, από τα οποία το σημαντικότερο είναι το [Statistics...]. Πρέπει να το πατήσουμε (βλ. εικόνα 17.3) και να επιλέξουμε το [Chi-square], αλλιώς το στατιστικό κριτήριο δεν θα υπολογιστεί. Από τα περιεχόμενα του πλαισίου αυτού προκύπτει ότι μπορούμε να υπολογίσουμε και άλλα κρι- Εικόνα Πλαίσιο διαλόγου Crosstabs: Statistics 480

19 Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 τήρια εκτός από το χ 2 (π.χ., το φ και το Cramer s V) 4. Αφού επιλέξουμε το [Phi and Cramer s V], πατάμε το [Continue] για να επιστρέψουμε στην αρχική οθόνη. Από εκεί πατάμε το κουμπί [Cells ] και εμφανίζεται το πλαίσιο διαλόγου της εικόνας Εικόνα Πλαίσιο διαλόγου Crosstabs: Cells Display Όπως βλέπουμε, οι πραγματικές συχνότητες [Observed] είναι προεπιλεγμένες. Μπορούμε να ζητήσουμε τις αναμενόμενες συχνότητες [Expected] ή/και τις σχετικές συχνότητες [Percentages] ή/και τα σφάλματα [Residuals]. Αν επιλέξουμε το [Row] και το [Column] από το πεδίο [Percentages], στον πίνακα διπλής εισόδου που θα κατασκευάσει το SPSS θα εμφανίζονται οι σχετικές συχνότητες επί των γραμμών και επί των στηλών. Τα [Residuals] (σφάλματα) είναι οι διαφορές μεταξύ πραγματικής και αναμενόμενης συχνότητας για καθένα από τα φατνία του πίνακα. Αφού ολοκληρώσουμε τις επιλογές μας, πατάμε πάλι [Continue] για να επιστρέψουμε στην αρχική οθόνη. Στην αρχική οθόνη πατάμε [OK] για να εκτελεστεί η ανάλυση. Τα αποτελέσματα της ανάλυσης παρουσιάζονται στις εικόνες 17.5 και Όπως βλέπουμε, ο πρώτος πίνακας παρουσιάζει τις απόλυτες συχνότητες (count), τις αναμενόμενες συχνότητες (Expected Count), τις σχετικές συχνότητες (% of Total) και τα σφάλματα (Residuals), τα οποία όπως θα παρατηρήσετε είναι σε κάθε φατνίο η απόκλιση μεταξύ πραγματικής και αναμενόμενης συχνότητας. 4. Τόσο το φ (Phi) όσο και το Cramer s V είναι συντελεστές εκτίμησης της έντασης (του μεγέθους) της σχέσης μεταξύ των δύο ποιοτικών μεταβλητών. Ο συντελεστής Cramer s V μπορεί να πάρει τιμές μεταξύ 0 και 1, ενώ ο συντελεστής φ μπορεί να πάρει τιμή μεγαλύτερη από 1. Στην περίπτωση της ανεξαρτησίας μεταξύ των δύο μεταβλητών, η τιμή των συντελεστών είναι κοντά στο

20 Στατιστική στις επιστήμες της συμπεριφοράς με τη χρήση του SPSS Εικόνα Ο πίνακας διπλής εισόδου για τις δύο μεταβλητές Στους δύο επόμενους πίνακες (βλ. εικόνα 17.6) περιλαμβάνονται τα αποτελέσματα της ανάλυσης. Στον πρώτο πίνακα κοιτάζουμε πάλι στην πρώτη σειρά: Pearson Chi- Square. Το αποτέλεσμα συμπίπτει με τους υπολογισμούς που κάναμε στην προηγούμενη ενότητα, ωστόσο το SPSS έχει υπολογίσει με ακρίβεια την τιμή p (Asymp. Sig.), οπότε θα πρέπει να γραφτεί ως εξής: χ 2 (2)3,107, p0,212 Εικόνα Αποτελέσματα του χ 2 για δύο μεταβλητές Κάτω από τον πρώτο πίνακα υπάρχει μία σημείωση, η οποία μας πληροφορεί ότι «0 φατνία έχουν αναμενόμενη συχνότητα μικρότερη από 5». Πρόκειται για τον έλεγχο μιας από τις προϋποθέσεις εφαρμογής του κριτηρίου χ 2. Για περισσότερες πληροφορίες σχετικά με αυτό τον έλεγχο, βλ. στην ενότητα

21 Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 Ο δεύτερος πίνακας περιλαμβάνει τις τιμές των συντελεστών φ και Cramer s V (ο σωστός τρόπος να αναφερθούμε σε αυτόν είναι Cramer s φ c ). Ο πρώτος εφαρμόζεται σε πίνακες διπλής εισόδου 2 2 (επομένως εδώ δεν έχει νόημα) και ο δεύτερος θα πρέπει να αναφερθεί ως εξής: φ c 0,19. Αν λάβουμε υπόψη ότι μπορεί να πάρει τιμές μεταξύ 0 και 1, τότε έχουμε μία μικρή σχέση μεταξύ των δύο μεταβλητών. Προσοχή! Η αναφορά στους δύο αυτούς συντελεστές έχει νόημα όταν το αποτέλεσμα του χ 2 είναι στατιστικώς σημαντικό (κάτι που δεν συνέβη στο παράδειγμά μας) Η περίπτωση των δύο μεταβλητών με δύο κατηγορίες (2 2) Όταν ο πίνακας διπλής εισόδου που σχηματίζεται με τα δεδομένα της έρευνάς μας έχει δύο στήλες και δύο γραμμές, μπορούμε να χρησιμοποιήσουμε για τον υπολογισμό του χ 2 τον ακόλουθο τύπο, ο οποίος δεν απαιτεί τον υπολογισμό των αναμενόμενων τιμών του κάθε φατνίου: 2 N( A BΓ) χ 2, ( A + B)( Γ + )( A + Γ)( B + ) όπου Α, B, Γ & Δ οι πραγματικές συχνότητες σε καθένα από τα 4 φατνία του πίνακα, και Ν ο συνολικός αριθμός των συμμετεχόντων Η κατάτμηση του χ 2 Δεν υπάρχει καμία δυσκολία στην ερμηνεία των αποτελεσμάτων του χ 2 όταν ο πίνακας διπλής εισόδου αποτελείται από δύο στήλες και δύο γραμμές. Το χ 2 σε αυτή την περίπτωση δείχνει αν οι δύο μεταβλητές είναι ανεξάρτητες μεταξύ τους ή όχι. Ωστόσο, αν ο πίνακας διπλής εισόδου είναι μεγαλύτερος (π.χ., 2 3, όπως στο ερευνητικό παράδειγμα που παρουσιάστηκε στην ενότητα , όπου είχαμε δύο ομάδες και τρεις κατηγορίες επίδοσης), τότε είναι σχετικά αβέβαιο τι σημαίνει μία στατιστικώς σημαντική τιμή του χ 2 : σημαίνει ότι και οι τρεις κατηγορίες είναι διαφορετικές μεταξύ τους, ή μήπως ότι μόνο οι κατηγορίες 1 και 2 είναι διαφορετικές (ή μόνο οι κατηγορίες 1 και 3, ή μόνο οι κατηγορίες 2 και 3); Μία απόλυτα σωστή στατιστική διαδικασία είναι η κατάτμηση του αρχικού χ 2 σε έναν αριθμό επιμέρους τεστ (2 2), προκειμένου να εκτιμηθεί με ακρίβεια το πού εντοπίζονται οι στατιστικώς σημαντικές διαφορές. Σύμφωνα με τα παραπάνω, για τα δεδομένα του πίνακα 17.3 (και εφόσον το αποτέλεσμα της στατιστικής ανάλυσης υποδεικνύει την απόρριψη της μηδενικής υπόθεσης) πρέπει να πραγματοποιηθούν τρία επιμέρους χ 2 : το πρώτο μεταξύ χαμηλής και μέτριας επίδοσης, το δεύτερο μεταξύ χαμηλής και υψηλής επίδοσης, και το τρίτο μεταξύ μέτριας και υψηλής επίδοσης των μαθητών. Και τα τρία αυτά επιμέρους χ 2 τεστ έχουν 483

22 Στατιστική στις επιστήμες της συμπεριφοράς με τη χρήση του SPSS ένα βαθμό ελευθερίας (εφόσον πρόκειται για πίνακες 2 2), και η πραγματοποίησή τους μας δίνει τη δυνατότητα να αποφασίσουμε με ακρίβεια πού εντοπίζονται οι διαφορές μεταξύ των δύο μεθόδων διδασκαλίας και των τριών διαφορετικών επιπέδων επίδοσης των μαθητών. Η μόνη δυσκολία έγκειται στο επίπεδο στατιστικής σημαντικότητας που χρησιμοποιούμε. Επειδή εκτελούμε τρία επιμέρους χ 2 τεστ, το επίπεδο στατιστικής σημαντικότητας που θα επιλέξουμε πρέπει να «διορθωθεί» λαμβάνοντας υπόψη το πλήθος των τεστ που θα πραγματοποιήσουμε (βλ. ενότητα για τη λογική αυτής της διαδικασίας). Με άλλα λόγια, αν υποθέσουμε ότι επιλέγουμε το επίπεδο σημαντικότητας α0,05, πρέπει να το διαιρέσουμε με το τρία (0,05 30,017), και στη συνέχεια να εξετάσουμε αν καθένα από τα τρία τεστ είναι στατιστικώς σημαντικό σε αυτό το επίπεδο (α0,017), προκειμένου να αναφέρουμε ότι είναι σημαντικό σε επίπεδο α0,05. Στον πίνακα 17.5 παρουσιάζονται οι προσαρμοσμένες κρίσιμες τιμές του χ 2 τις οποίες πρέπει να υπερβαίνει η τιμή του χ 2 που θα υπολογιστεί (αμφίπλευρος έλεγχος). Επομένως, αν έχουμε να εκτελέσουμε τρεις συγκρίσεις, η ελάχιστη τιμή του χ 2 που είναι στατιστικώς σημαντική είναι 5,73. Πίνακας Κρίσιμες τιμές του χ 2 σε επίπεδο στατιστικής σημαντικότητας α0,05 για 1-10 συγκρίσεις Βαθμοί Αριθμός συγκρίσεων ελευθερίας ,84 5,02 5,73 6,24 6,64 6,96 7,24 7,48 7,69 7,88 Σημείωση: Οι βαθμοί ελευθερίας γι αυτές τις συγκρίσεις είναι πάντοτε 1, καθώς βασίζονται σε πίνακες συχνοτήτων ΠΕΡΙΟΡΙΣΜΟΙ ΣΤΗ ΧΡΗΣΗ ΤΟΥ χ 2 Παρά το γεγονός ότι το χ 2 είναι ένα μη παραμετρικό στατιστικό κριτήριο, υπάρχουν αρκετές προϋποθέσεις που πρέπει να ικανοποιούνται προκειμένου να μπορέσουμε να το χρησιμοποιήσουμε. Δυστυχώς, πολλοί ερευνητές αγνοούν ή αδιαφορούν για τις προϋποθέσεις και τους περιορισμούς αυτούς, καθιστώντας το χ 2 μία στατιστική δοκιμασία με ένα από τα υψηλότερα ποσοστά λανθασμένης χρήσης. Το χειρότερο μάλιστα είναι ότι ακόμη και τα διάφορα εγχειρίδια στατιστικής διαφωνούν ως προς αυτές τις προϋποθέσεις. Οι τρεις πρώτοι περιορισμοί είναι ξεκάθαροι, αν και πολύ συχνά διαπιστώνει κανείς ότι παραβιάζονται. Κατ αρχάς, οι συμμετέχοντες πρέπει να εμφανίζονται μία μόνο φορά (σε ένα μόνο φατνίο) στον πίνακα διπλής εισόδου. Δηλαδή, δεν επιτρέπεται να περιλαμβάνονται δύο παρατηρήσεις από το ίδιο άτομο στον πίνακα, ούτε όμως και να παραλείπονται δεδομένα από κάποιο συμμετέχοντα. Σε μία μόνο περίπτωση μπορεί να 484

23 Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 παραβιαστεί αυτός ο περιορισμός: όταν όλα τα δεδομένα που έχουν συγκεντρωθεί αφορούν στο ίδιο άτομο. Ο δεύτερος κανόνας ορίζει με σαφήνεια ότι στα φατνία του πίνακα πρέπει να εμφανίζονται πραγματικές συχνότητες και όχι ποσοστά ή αναλογίες. Ωστόσο, το ερώτημα που προκύπτει είναι το εξής: Πώς είναι δυνατόν να βλέπουμε τόσο συχνά τη χρήση του χ 2 με ποσοστά; Η απάντηση μπορεί να είναι είτε ότι ο ερευνητής το εφαρμόζει λανθασμένα πάνω στα ποσοστά (σε μία τέτοια περίπτωση δεν παίρνει έγκυρη τιμή του χ 2 και το τεστ στο σύνολό του δεν έχει καμία αξία), είτε πρώτα μετέτρεψε τα ποσοστά σε συχνότητες (εφόσον γνώριζε τον συνολικό αριθμό των παρατηρήσεων) και στη συνέχεια εφήρμοσε το χ 2 πάνω στις συχνότητες. Τρίτον, το σύνολο των αναμενόμενων συχνοτήτων πρέπει να είναι ίσο με το σύνολο των πραγματικών συχνοτήτων. Με άλλα λόγια, πρέπει να προσέχουμε ιδιαίτερα κατά τον υπολογισμό των αναμενόμενων συχνοτήτων, γιατί ένα σφάλμα σε αυτό το στάδιο έχει σημαντικές επιπτώσεις στον υπολογισμό της τιμής του χ 2. Τέλος, υπάρχει ένας τέταρτος περιορισμός ο οποίος έχει προκαλέσει πάρα πολλές διαφωνίες μεταξύ των επιστημόνων. Πρόκειται για την περίπτωση εκείνη κατά την οποία σε ορισμένα φατνία του πίνακα διπλής εισόδου οι αναμενόμενες συχνότητες είναι χαμηλές. Το χ 2 βασίζεται εν μέρει στην υπόθεση ότι, αν ένα πείραμα επαναλαμβανόταν άπειρες φορές με τον ίδιο αριθμό συμμετεχόντων, οι πραγματικές συχνότητες σε κάθε φατνίο του πίνακα θα σχημάτιζαν κανονική κατανομή γύρω από την αναμενόμενη συχνότητα. Όταν όμως η αναμενόμενη συχνότητα είναι πολύ χαμηλή (π.χ., 1), δεν είναι δυνατόν οι πραγματικές συχνότητες να σχηματίσουν κανονική κατανομή γύρω από αυτήν. Το πρόβλημα έγκειται στο γεγονός ότι, ενώ όλοι συμφωνούν πως ένας μεγάλος αριθμός χαμηλών αναμενομένων συχνοτήτων αυξάνει σημαντικά τον κίνδυνο για ένα σφάλμα Τύπου Ι, όταν πρέπει να δοθεί απάντηση στο ερώτημα ποια μπορεί να θεωρηθεί χαμηλή αναμενόμενη συχνότητα αλλά και ποιος είναι ένας μεγάλος αριθμός από τέτοιες συχνότητες, διατυπώνονται πολλές διαφορετικές απόψεις. Οι απαντήσεις που δίνονται στα ερωτήματα αυτά από τα διάφορα εγχειρίδια στατιστικής είναι τόσες όσα σχεδόν και τα εγχειρίδια, ενώ αποτελούν ακόμη αντικείμενο συζήτησης στα επιστημονικά περιοδικά του χώρου. Οι απόψεις διίστανται σε πολύ μεγάλο βαθμό, και στο παρόν βιβλίο καταβλήθηκε προσπάθεια να συμβιβαστούν και να συνοψιστούν στο σύνολό τους στις ακόλουθες τρεις συμβουλές: 1. Οι αναμενόμενες συχνότητες εξαρτώνται απόλυτα από το πλήθος των συμμετεχόντων στην έρευνα που έχει πραγματοποιηθεί. Επομένως, ο απλούστερος και συγχρόνως ασφαλέστερος τρόπος για να αποφευχθεί το πρόβλημα είναι να καταβληθεί προσπάθεια ώστε να συγκεντρωθούν δεδομένα από αρκετούς συμμετέχοντες (τουλάχιστον 20 για κάθε φατνίο του πίνακα διπλής εισόδου). 485

24 Στατιστική στις επιστήμες της συμπεριφοράς με τη χρήση του SPSS 2. Όταν ο πίνακας διπλής εισόδου είναι μικρός (9 ή λιγότερα φατνία), όλες οι αναμενόμενες συχνότητες θα πρέπει να είναι ίσες ή μεγαλύτερες του 5 (Howell, 2010). 3. Αν έχουμε περισσότερους από 20 συμμετέχοντες, το χ 2 δεν μπορεί να χρησιμοποιηθεί, εφόσον τρία ή περισσότερα φατνία έχουν αναμενόμενη συχνότητα μικρότερη από 5 (Coolican, 1994) Η ΚΛΗΡΟΝΟΜΙΑ ΤΟΥ YATES: ΝΑ ΔΙΟΡΘΩΣΟΥΜΕ ή ΟΧΙ; Πολλά στατιστικά εγχειρίδια περιλαμβάνουν τη διόρθωση Yates (Yates correction, από το όνομα του επιστήμονα ο οποίος και την πρότεινε το 1934), η οποία γίνεται κατά τη διαδικασία υπολογισμού του χ 2 όταν υπάρχει μόνο ένας βαθμός ελευθερίας (δηλαδή στην περίπτωση 2 2, αλλά και 1 2). Ο λόγος για τον οποίο προέκυψε αυτή η διόρθωση σχετίζεται με την άποψη ότι το χ Διόρθωση Yates Τροποποίηση στον υπολογισμό του χ 2 2 όταν οι βαθμοί ελευθερίας είναι 1. δεν είναι πολύ ασφαλές στην περίπτωση του ενός βαθμού ελευθερίας, όπου και είναι αυξημένες οι πιθανότητες σφάλματος Τύπου Ι. Στην περίπτωση αυτή το χ 2 υπολογίζεται σύμφωνα με τον τύπο: 2 ( 05 χ 2 Σ Π Α, ), Α όπου Π Α η απόλυτη τιμή (η τιμή χωρίς πρόσημο) της διαφοράς της πραγματικής συχνότητας Π από την αναμενόμενη συχνότητα Α για καθεμία από τις κατηγορίες της μεταβλητής. Επομένως, η διαφορά μεταξύ πραγματικής και αναμενόμενης συχνότητας για κάθε φατνίο μειώνεται κατά 0,5 πριν υψωθεί στο τετράγωνο. Αυτό έχει ως αποτέλεσμα μία μικρότερη τιμή του χ 2 και μικρότερες πιθανότητες για ένα σφάλμα Τύπου Ι. Για παράδειγμα, αν εφαρμόσουμε τη διόρθωση Yates στα δεδομένα του πίνακα 17.3, η τιμή του χ 2 που θα προκύψει είναι 21,78 (ενώ η τιμή του χ 2 πριν τη διόρθωση ήταν 23,12). Σήμερα, ωστόσο, πολλοί στατιστικολόγοι (Bradley, Bradley, McGrath & Cutcomb, Camilli & Hopkins, 1978, Overall, 1980) θεωρούν τη διόρθωση Yates πολύ «συντηρητική» (η διόρθωση που κάνει στο χ 2 είναι πολύ μεγάλη) και υποστηρίζουν ότι μπορεί να οδηγήσει αντίστοιχα σε ένα σφάλμα Τύπου ΙΙ (για μία πιο διεξοδική συζήτηση αυτού του θέματος, βλ. Howell, 2010). Το SPSS υπολογίζει αυτόματα μία επιπλέον σειρά αποτελεσμάτων στην περίπτωση πινάκων 2 2, η οποία παρουσιάζει τα αποτελέσματα της διόρθωσης αυτής (Continuity Correction). 486

25 Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ Η ΧΡΗΣΗ ΤΟΥ χ 2 ΓΙΑ ΤΗ ΣΥΓΚΡΙΣΗ ΠΟΣΟΣΤΩΝ Το στατιστικό κριτήριο χ 2 μπορεί να χρησιμοποιηθεί και για τη σύγκριση ποσοστών, με την προϋπόθεση, ωστόσο, ότι γνωρίζουμε το μέγεθος του δείγματος. Αυτό συμβαίνει γιατί πρέπει να μετατρέψουμε τα ποσοστά σε συχνότητες. Είναι ανάγκη να τονιστεί ότι η εφαρμογή του χ 2 κατευθείαν στα ποσοστά δεν είναι σωστή διαδικασία (παρά το γεγονός ότι ορισμένοι ερευνητές κάνουν συχνά αυτό το λάθος). Ας υποθέσουμε, λοιπόν, ότι 124 αγόρια και 153 κορίτσια πήραν μέρος σε ένα πείραμα, κατά το οποίο τους ζητήθηκε να λύσουν ένα πρόβλημα. Στον πίνακα 17.6.α. που ακολουθεί παρουσιάζονται τα ποσοστά επιτυχίας των αγοριών και των κοριτσιών. Ποσοστιαία δεδομένα του πειράματος Πίνακας 17.6.α. Η μηδενική υπόθεση την οποία ο πειραματιστής καλείται να ελέγξει είναι: οι πιθανότητες να δοθεί μία σωστή ή μία λανθασμένη λύση είναι ίδιες τόσο για τα αγόρια όσο και για τα κορίτσια. Αντίστοιχα, η εναλλακτική υπόθεση έχει ως εξής: οι πιθανότητες να δοθεί μία σωστή ή μία λανθασμένη λύση δεν είναι ίδιες για τα αγόρια και τα κορίτσια. Οι τιμές του πίνακα 17.6.β. υπολογίστηκαν με βάση τα ήδη γνωστά σύνολα των αγοριών και των κοριτσιών που πήραν μέρος στο πείραμα (124 και 153, αντίστοιχα) και τα ποσοστά που παρουσιάζονται στον πίνακα 17.6.α. Για παράδειγμα, η πραγματική συχνότητα του πρώτου φατνίου (αγόρια που έδωσαν σωστή λύση) υπολογίζεται ως εξής: ποσοστό Π Αγόρια συνολικός αριθμός αγοριών 100 Κορίτσια Σωστή λύση 21% 28% Λανθασμένη λύση 79% 72% Σύνολο 100% 100% Τα δεδομένα του πειράματος ύστερα από τη μετατροπή τους σε συχνότητες Πίνακας 17.6.β. Αγόρια Κορίτσια Σύνολο Σωστή λύση 26 (30,9) 43 (38,1) 69 Λανθασμένη λύση 98 (93,1) 110 (114,9) 208 Σύνολο Σημείωση: Οι τιμές στις παρενθέσεις είναι οι αναμενόμενες συχνότητες. 487

26 Στατιστική στις επιστήμες της συμπεριφοράς με τη χρήση του SPSS Η τιμή του χ 2 υπολογίζεται ως εξής: Σ ( Π A) A 2 χ 2 ( 26 30, 9) 30, 9 ( 43 38, 1) + 38, 1 ( 98 93, 1) + 93, ( , 9) + 114, , Δεδομένου ότι η κρίσιμη τιμή του πίνακα 7 (παράρτημα Α) για df1 και για αμφίπλευρο έλεγχο σε επίπεδο στατιστικής σημαντικότητας α0,05 είναι 3,84, πρέπει να δεχτούμε τη μηδενική υπόθεση και να συμπεράνουμε ότι οι δύο μεταβλητές (φύλο και λύση) είναι ανεξάρτητες μεταξύ τους. Τέλος, σύμφωνα με τα πρότυπα της ΑΡΑ, το αποτέλεσμα αυτό διατυπώνεται ως εξής: χ 2 (1)1,87, ns Βαθμοί ελευθερίας Στατιστικώς μη σημαντικό αποτέλεσμα Τιμή του χ 2 Ανακεφαλαίωση Στο κεφάλαιο αυτό παρουσιάσαμε το στατιστικό κριτήριο χ 2, το οποίο χρησιμοποιείται για την ανάλυση ποιοτικών δεδομένων. Αρχικά εξετάσαμε το χ 2 ως κριτήριο καλής προσαρμογής, δηλαδή τη χρήση του για τη σύγκριση συχνοτήτων που προέρχονται από μία μεταβλητή μόνο. Στη συνέχεια, παρουσιάσαμε τη χρήση του χ 2 για τον έλεγχο της ανεξαρτησίας δύο μεταβλητών, η οποία αποτελεί και την περίπτωση όπου το χ 2 χρησιμοποιείται συχνότερα. Το κεφάλαιο ολοκληρώθηκε με την παρουσίαση των προϋποθέσεων που πρέπει να πληρούνται (αναφορικά με τη φύση των δεδομένων, το πλήθος του δείγματος και των αναμενόμενων συχνοτήτων), ώστε ο υπολογισμός του χ 2 να είναι έγκυρος. 488

27 Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ Μία ερευνήτρια θέλει να μελετήσει τη σχέση ανάμεσα στο σωματικό βάρος και στη χώρα προέλευσης. Για να μετρήσει το βάρος των συμμετεχόντων χρησιμοποιεί το βάρος σε κιλά. Μπορεί η ερευνήτρια να χρησιμοποιήσει το κριτήριο χ 2 για να ελέγξει την υπόθεσή της; Το μέγεθος της οικογένειας (3μελής, 4μελής, 5μελής, 6μελής) επηρεάζει την ικανότητα ανάγνωσης (υψηλή, μέτρια, χαμηλή). Είναι αυτή μία ορθή εναλλακτική υπόθεση για να εξεταστεί με τη χρήση του κριτηρίου χ 2 ; Ποια η διαφορά ανάμεσα στις πραγματικές και στις αναμενόμενες συχνότητες; Γιατί είναι σημαντικές για τον υπολογισμό του κριτηρίου χ 2 ; Σύμφωνα με τη θεωρία, αν οι πραγματικές συχνότητες μιας μεταβλητής είναι τυχαίες, ποια θα πρέπει να είναι η σχέση τους με τις αναμενόμενες συχνότητες; Ασκήσεις κατανόησης 5 Αν θέλουμε να διαπιστώσουμε κατά πόσο η κατανομή που έχει το δείγμα μας πλησιάζει την κατανομή που θα αναμέναμε να είχε σύμφωνα με τη θεωρία μας, ποιο τύπο κριτηρίου χ 2 θα πρέπει να χρησιμοποιήσουμε; 6 Πότε χρησιμοποιούμε το κριτήριο χ 2 ως κριτήριο ανεξαρτησίας; 7 Ένας ερευνητής θέλει να μελετήσει τη σχέση ανάμεσα στην επαγγελματική καθοδήγηση (υπάρχει δεν υπάρχει) και στη σιγουριά που νιώθει το άτομο για την επαγγελματική του επιλογή (έχει δεν έχει). Η ανάλυση έδειξε στατιστικώς σημαντικό αποτέλεσμα. Τι συμπεραίνετε για τη σχέση μεταξύ των δύο αυτών μεταβλητών; 8 Μία ερευνήτρια θέλησε να μελετήσει τη σχέση μεταξύ νέων πτυχιούχων και ανεργίας. Για τον σκοπό αυτό ζήτησε τα δεδομένα από την Ελληνική Στατιστική Αρχή. Στον πίνακα που ακολουθεί παρουσιάζονται τα στοιχεία που της έδωσαν. Μπορεί να χρησιμοποιήσει το κριτήριο χ 2 ; Άνεργοι Εργαζόμενοι 38% 62% 9 Ποιο πρόβλημα υπάρχει όταν θέλουμε να χρησιμοποιήσουμε το κριτήριο χ 2 για τη σύγκριση ενός πίνακα διπλής εισόδου 2 2; Πώς θα αντιμετωπίζαμε ένα τέτοιο πρόβλημα; 10 Ποιο είναι πιο ισχυρό στατιστικό κριτήριο για τη μελέτη της επίδρασης μιας ανεξάρτητης μεταβλητής στην εξαρτημένη: το κριτήριο χ 2 ή το κριτήριο t; 489

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 7 Στατιστικός έλεγχος υποθέσεων ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Ένα Ερευνητικό Παράδειγμα Σκοπός της έρευνας ήταν να διαπιστωθεί εάν ο τρόπος αντίδρασης μιας γυναίκας απέναντι σε φαινόμενα

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

Επαγωγική Στατιστική. Εισαγωγή Βασικές έννοιες

Επαγωγική Στατιστική. Εισαγωγή Βασικές έννοιες Επαγωγική Στατιστική Εισαγωγή Βασικές έννοιες Επαγωγική Στατιστική Πως μπορούμε να συγκρίνουμε μεταβλητές μεταξύ τους? Διαφορά συγκρίνοντας το μέσο μιας μεταβλητής (λόγος ή διάστημα) στις ομάδες πχ. t-test

Διαβάστε περισσότερα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα Κεφάλαιο 7 Έλεγχος Υποθέσεων 1 Ένα παράδειγµα Ένας ερευνητής θέλησε να διαπιστώσει κατά πόσο η από απόσταση εκπαίδευση είναι καλύτερη από τη δια ζώσης εκπαίδευση. Για το σκοπό αυτό, επέλεξε δύο οµάδες

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Στατιστικό κριτήριο χ 2

Στατιστικό κριτήριο χ 2 18 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Στατιστικό κριτήριο χ 2 Ο υπολογισµός του κριτηρίου χ 2 γίνεται µέσω του µενού [Statistics => Summarize => Crosstabs...]. Κατά τη συγκεκριµένη διαδικασία

Διαβάστε περισσότερα

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Εισαγωγή στην Κανονική Κατανομή Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Ένα πρόβλημα Πρόβλημα: Ένας μαθητής είχε επίδοση στο τεστ Μαθηματικών 18 και στο τεστ

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:

Διαβάστε περισσότερα

1. Σκοπός της έρευνας

1. Σκοπός της έρευνας Στατιστική ανάλυση και ερμηνεία των αποτελεσμάτων των εξετάσεων πιστοποίησης ελληνομάθειας 1. Σκοπός της έρευνας Ο σκοπός αυτής της έρευνας είναι κυριότατα πρακτικός. Η εξέταση των δεκτικών/αντιληπτικών

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 8 ο 8.1 Συντελεστές συσχέτισης: 8.1.1 Συσχέτιση Pearson, και ρ του Spearman 8.1.2 Υπολογισµός του συντελεστή

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Μέρος 1 Εισαγωγή στο SPSS 37. 1 Βασικές αρχές καταχώρισης δεδομένων και στατιστικής ανάλυσης με το SPSS 39

Μέρος 1 Εισαγωγή στο SPSS 37. 1 Βασικές αρχές καταχώρισης δεδομένων και στατιστικής ανάλυσης με το SPSS 39 41 Περιεχόμενα Ξενάγηση στο βιβλίο 25 Ξενάγηση στο συνοδευτικό CD 27 Εισαγωγή 29 Ευχαριστίες 33 Οι βασικές διαφορές μεταξύ του SPSS 16 και των προηγούμενων εκδόσεων 35 Μέρος 1 Εισαγωγή στο SPSS 37 1 Βασικές

Διαβάστε περισσότερα

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Κωνσταντίνος Τζιόμαλος Επίκουρος Καθηγητής Παθολογίας ΑΠΘ Α Προπαιδευτική Παθολογική Κλινική, Νοσοκομείο ΑΧΕΠΑ 1 ο βήμα : καταγραφή δεδομένων Το πιο πρακτικό

Διαβάστε περισσότερα

T-tests One Way Anova

T-tests One Way Anova William S. Gosset Student s t Sir Ronald Fisher T-tests One Way Anova ΣΤΑΤΙΣΤΙΚΗ Νίκος Ζουρμπάνος Ρούσσος, Π.Λ., & Τσαούσης, Γ. (2002). Στατιστική εφαρμοσμένη στις κοινωνικές επιστήμες. Αθήνα: Ελληνικά

Διαβάστε περισσότερα

H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r)

H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r) 5 H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r) Περίληψη Σκοπός του κεφαλαίου είναι η εφαρμογή της ανάλυσης συσχέτισης (Pearson r) μέσω του PASW. H ανάλυση συσχέτισης Pearson r χρησιμοποιείται για να εξεταστεί η

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Μ ΑΪΟΥ 2002 2004 Δ ΕΥΤΕΡΟ ΜΕΡΟΣ Π ΕΡΙΛΗΨΗ: Η μελέτη αυτή έχει σκοπό να παρουσιάσει και να ερμηνεύσει τα ευρήματα που προέκυψαν από τη στατιστική

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ 6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ Το 1965, από τον Conover και πάλι προτάθηκε ένας άλλος έλεγχος τύπου Smirnov για k ανεξάρτητα δείγματα. Ο έλεγχος αυτός διαφέρει από τον προηγούμενο

Διαβάστε περισσότερα

ΣΕΜΙΝΑΡΙΟ: Β06Σ03 «Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική» ΘΕΜΑ ΕΡΓΑΣΙΑΣ:

ΣΕΜΙΝΑΡΙΟ: Β06Σ03 «Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική» ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2011-2012 ΣΕΜΙΝΑΡΙΟ: Β06Σ03 «Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική» Διδάσκων: Κ. Χρήστου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Ονοματεπώνυμα Σπουδαστριών: Μποτονάκη Ειρήνη (5422), Καραλή Μαρία (5601) Μάθημα: Β06Σ03 Στατιστική

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.).

ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.). ΛΥΜΕΝΕΣ ΣΚΗΣΕΙΣ ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.). a. Τι μπορεί να συνέβη όταν η διάμεσος αυξήθηκε; Το γεγονός ότι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 5] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να φθάσουν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

Η αβεβαιότητα στη μέτρηση.

Η αβεβαιότητα στη μέτρηση. Η αβεβαιότητα στη μέτρηση. 1. Εισαγωγή. Κάθε μέτρηση, όσο προσεκτικά και αν έχει γίνει, περικλείει κάποια αβεβαιότητα. Η ανάλυση των σφαλμάτων είναι η μελέτη και ο υπολογισμός αυτής της αβεβαιότητας στη

Διαβάστε περισσότερα

6.2 Ο ΜΟΝΟΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ

6.2 Ο ΜΟΝΟΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ 6.2 Ο ΜΟΝΟΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ Ο έλεγχος της ενότητας αυτής αποτελεί μία επέκταση του μονόπλευρου ελέγχου Smirnov στην περίπτωση περισσοτέρων από δύο δειγμάτων. Ο έλεγχος αυτός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Μη Παραµετρικά Κριτήρια. Παραµετρικά Κριτήρια

Μη Παραµετρικά Κριτήρια. Παραµετρικά Κριτήρια Κεφάλαιο 7 Μη Παραµετρικά Κριτήρια Παραµετρικά Κριτήρια Τα παραµετρικά κριτήρια είναι στατιστικά κριτήρια που απαιτούν την ικανοποίηση συγκεκριµένων προϋποθέσεων είτε αναφορικά µε συγκεκριµένες παραµέτρους

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή

4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή 4.3.3 Ο Έλεγχος των Shapro-Wlk για την Κανονική Κατανομή Ένας άλλος πολύ γνωστός έλεγχος καλής προσαρμογής για την κανονική κατανομή, ο οποίος μπορεί να χρησιμοποιηθεί στην θέση του ελέγχου Lllefors, είναι

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 1 Εισαγωγή

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 1 Εισαγωγή (ΨΥΧ-122) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 1 Εισαγωγή ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. ΘΕΜΑ (ΙΟΥΝΙΟΣ 000) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα σχετική Σχετική Αθροιστική f % f N 0

Διαβάστε περισσότερα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ .4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ Η μέθοδος για τον προσδιορισμό ενός διαστήματος εμπιστοσύνης για την άγνωστη πιθανότητα =P(A) ενός ενδεχομένου A συνδέεται στενά με τον διωνυμικό έλεγχο. Ένα

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά.

Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά. Γ. Οι μαθητές και τα Μαθηματικά. Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά. ΠΙΝΑΚΑΣ 55 Στάση

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΕΝΟΤΗΤΕΣ 1. ΓΕΝΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ 3. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΗΣ ΠΡΟΟΔΕΥΤΙΚΗΣ ΠΡΟΣΘΗΚΗΣ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΔΙΑΣΥΝΟΡΙΑΚΗΣ ΣΥΝΕΡΓΑΣΙΑΣ ΕΛΛΑΔΑ ΚΥΠΡΟΣ 2007-2013

ΠΡΟΓΡΑΜΜΑ ΔΙΑΣΥΝΟΡΙΑΚΗΣ ΣΥΝΕΡΓΑΣΙΑΣ ΕΛΛΑΔΑ ΚΥΠΡΟΣ 2007-2013 ΠΡΟΓΡΑΜΜΑ ΔΙΑΣΥΝΟΡΙΑΚΗΣ ΣΥΝΕΡΓΑΣΙΑΣ ΕΛΛΑΔΑ ΚΥΠΡΟΣ 2007-2013 ΑΞΙΟΛΟΓΗΣΗ ΗΜΕΡΙΔΑΣ ΕΝΗΜΕΡΩΣΗΣ ΕΠΙΚΕΦΑΛΗΣ ΕΤΑΙΡΩΝ ΣΤΗΝ ΚΡΗΤΗ ΣΤΑ ΠΛΑΙΣΙΑ ΤΩΝ ΕΓΚΕΚΡΙΜΕΝΩΝ ΕΡΓΩΝ ΤΗΣ 1 ΗΣ ΠΡΟΣΚΛΗΣΗΣ 24-06-2011 ΕΙΣΑΓΩΓΙΚΗ ΠΕΡΙΓΡΑΦΗ

Διαβάστε περισσότερα

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling) 3 ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratfed Radom Samplg) Είναι προφανές από τα τυπικά σφάλματα των εκτιμητριών των προηγούμενων παραγράφων, ότι ένας τρόπος να αυξηθεί η ακρίβεια τους είναι να αυξηθεί

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ σ. 2 Α. ΕΡΕΥΝΑ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ Ε ΟΜΕΝΩΝ 2

ΕΙΣΑΓΩΓΗ σ. 2 Α. ΕΡΕΥΝΑ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ Ε ΟΜΕΝΩΝ 2 1 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α ΕΙΣΑΓΩΓΗ σ. 2 Α. ΕΡΕΥΝΑ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ Ε ΟΜΕΝΩΝ 2 Β. ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΕΥΝΑ 1. Γενικά Έννοιες.. 2 2. Πρακτικός Οδηγός Ανάλυσης εδοµένων.. 4 α. Οδηγός Λύσεων στο πλαίσιο

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α A1. Να γράψετε στο τετράδιό σας τους

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

Έλεγχος Χ 2 (καλής προσαρμογής, ανεξαρτησίας και ομογένειας) Προβλήματα και Ασκήσεις

Έλεγχος Χ 2 (καλής προσαρμογής, ανεξαρτησίας και ομογένειας) Προβλήματα και Ασκήσεις Έλεγχος Χ -Προβλήματα και Ασκήσεις Έλεγχος Χ (καλής προσαρμογής, ανεξαρτησίας και ομογένειας) Προβλήματα και Ασκήσεις 1. Στη βιβλιογραφία αναφέρεται ότι τα ποσοστά των ομάδων αίματος Α, Β, ΑΒ και Ο σε

Διαβάστε περισσότερα

Η οικολογία μάθησης για τους υπολογιστές ΙII: Η δική σας οικολογία μάθησης

Η οικολογία μάθησης για τους υπολογιστές ΙII: Η δική σας οικολογία μάθησης Η οικολογία μάθησης για τους υπολογιστές ΙII: Η δική σας οικολογία μάθησης Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων Πανεπιστήμιο Θεσσαλίας Ιανουάριος 2011 Ψυχομετρία Η κατασκευή

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ: ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ ΣΥΝΤΕΛΕΣΤΗΣ ΜΕΤΑΒΟΛΗΣ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ: ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ ΣΥΝΤΕΛΕΣΤΗΣ ΜΕΤΑΒΟΛΗΣ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΤΙΤΛΟΣ ΣΕΝΑΡΙΟΥ Μέτρα διασποράς - Συντελεστής μεταβολής ΤΑΥΤΟΤΗΤΑ ΣΕΝΑΡΙΟΥ ΣΥΓΓΡΑΦΕΙΣ: Καραγιάννης Βασίλης ΑΜ: 201118 Οικονόμου Κυριάκος AM: 201102 ΓΝΩΣΤΙΚΗ ΠΕΡΙΟΧΗ: Στατιστική Γ Λυκείου

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Περιεχόμενα 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA) ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις

Διαβάστε περισσότερα

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 24 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Όπως ακριβώς συνέβη και στο κριτήριο t, τα δεδοµένα µας θα πρέπει να έχουν οµαδοποιηθεί χρησιµοποιώντας µια αντίστοιχη

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ Άσκηση 1 Οι βαθμοί 5 φοιτητών που πέρασαν το μάθημα της Στατιστικής ήταν: 6 5 7 5 9 5 6 6 8 10 8 5 6 7 5 6 5 7 8 9 5 6 7 5 8 i. Να κάνετε πίνακα κατανομής

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis)

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΚΕΦΑΛΑΙΟ 23 ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΕΙΣΑΓΩΓΗ Έχοντας παρουσιάσει τις βασικές έννοιες των ελέγχων υποθέσεων, θα ήταν, ίσως, χρήσιμο να αναφερθούμε σε μια άλλη περιοχή στατιστικής συμπερασματολογίας

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 4o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΜΙΑΣ ΕΡΕΥΝΑΣ. ΜΑΝΟΥΣΟΣ ΕΜΜ. ΚΑΜΠΟΥΡΗΣ, ΒΙΟΛΟΓΟΣ, PhD ΙΑΤΡΙΚHΣ

ΟΡΓΑΝΩΣΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΜΙΑΣ ΕΡΕΥΝΑΣ. ΜΑΝΟΥΣΟΣ ΕΜΜ. ΚΑΜΠΟΥΡΗΣ, ΒΙΟΛΟΓΟΣ, PhD ΙΑΤΡΙΚHΣ ΟΡΓΑΝΩΣΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΜΙΑΣ ΕΡΕΥΝΑΣ ΜΑΝΟΥΣΟΣ ΕΜΜ. ΚΑΜΠΟΥΡΗΣ, ΒΙΟΛΟΓΟΣ, PhD ΙΑΤΡΙΚHΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΗΣ ΕΠΙΣΤΗΜΟΝΙΚΗΣ ΕΡΕΥΝΑΣ Η επιστημονική έρευνα στηρίζεται αποκλειστικά στη συστηματική μελέτη της εμπειρικής

Διαβάστε περισσότερα

Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας

Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας Σημερα και την επόμενη βδομάδα Η ερευνητική διαδικασία Επαγωγικός και παραγωγικός συλλογισμός Είδη ερευνητικών ερωτημάτων Ερευνητικές υποθέσεις Βασικές ερευνητικές

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΔΙΑΣΥΝΟΡΙΑΚΗΣ ΣΥΝΕΡΓΑΣΙΑΣ ΕΛΛΑΔΑ ΚΥΠΡΟΣ 2007-2013

ΠΡΟΓΡΑΜΜΑ ΔΙΑΣΥΝΟΡΙΑΚΗΣ ΣΥΝΕΡΓΑΣΙΑΣ ΕΛΛΑΔΑ ΚΥΠΡΟΣ 2007-2013 ΠΡΟΓΡΑΜΜΑ ΔΙΑΣΥΝΟΡΙΑΚΗΣ ΣΥΝΕΡΓΑΣΙΑΣ ΕΛΛΑΔΑ ΚΥΠΡΟΣ 2007-2013 ΑΞΙΟΛΟΓΗΣΗ ΗΜΕΡΙΔΑΣ ΕΝΗΜΕΡΩΣΗΣ ΕΠΙΚΕΦΑΛΗΣ ΕΤΑΙΡΩΝ ΣΤΗΝ ΚΥΠΡΟ ΣΤΑ ΠΛΑΙΣΙΑ ΤΩΝ ΕΓΚΕΚΡΙΜΕΝΩΝ ΕΡΓΩΝ ΤΗΣ 1 ΗΣ ΠΡΟΣΚΛΗΣΗΣ 08-06-2011 ΕΙΣΑΓΩΓΙΚΗ ΠΕΡΙΓΡΑΦΗ

Διαβάστε περισσότερα

Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014

Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014 Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014 Περιγραφική και Επαγωγική Στατιστική Η περιγραφική στατιστική

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα

ΛΟΓΟΙ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΟΔΗΓΟΣ ΟΡΓΑΝΩΣΗΣ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ. Μιχάλης Αργύρης

ΛΟΓΟΙ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΟΔΗΓΟΣ ΟΡΓΑΝΩΣΗΣ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ. Μιχάλης Αργύρης ΛΟΓΟΙ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΟΔΗΓΟΣ ΟΡΓΑΝΩΣΗΣ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ Μιχάλης Αργύρης 1 Λόγοι και αναλογίες Περίληψη Οι μαθητές έχουν στη διάθεσή τους μια υπολογιστική οντότητα, ένα καγκουρό του οποίου το μέγεθος μπορούν

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

έρευνας και στατιστική» παραμετρικές συγκρίσεις»

έρευνας και στατιστική» παραμετρικές συγκρίσεις» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ «Μεθοδολογία έρευνας και στατιστική» Μάθημα μεταπτυχιακού κύκλου σπουδών Διάλεξη: «Μη παραμετρικές συγκρίσεις» ΔΙΔΑΣΚΩΝ: Δρ. Αθανάσιος

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα