PAU Xuño 2011 FÍSICA OPCIÓN A

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PAU Xuño 2011 FÍSICA OPCIÓN A"

Transcript

1 PAU Xuño 20 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución ás cuestións; terán que ser respostas razoadas. Pódese usar calculadora sempre que non sexa programable nin memorice texto. O alumno elixirá unha das dúas opcións. OPCIÓN A C..- Nun sistema illado, dúas masas idénticas están separadas unha distancia a. Nun punto C da recta CE perpendicular a a por a/2 colócase outra C m a / 2 a / 2 nova masa m en repouso. Que lle ocorre a m?: A) Desprázase ata O e para. B) Afástase das masas. C) Realiza un movemento oscilatorio entre C e E. C.2.- Unha onda de luz é polarizada por un polarizador A e atravesa un segundo polarizador B colocado despois de A. Cal das seguintes afirmacións é O correcta con respecto á luz despois de B?: A) Non hai luz se A e B son paralelos entre si. B) Non hai luz se A e B son perpendiculares entre si. C) Hai E luz independentemente da orientación relativa de A e B. C.3.- Cun raio de luz de lonxitude de onda λ non se produce efecto fotoeléctrico nun metal. Para conseguilo débese aumentar: A) A lonxitude de onda λ. B) A frecuencia f. C) O potencial de freado. C.4.- Emprégase un resorte para medir a súa constante elástica polo método estático e polo dinámico, aplicando a lei de Hooke e o período en función da masa, respectivamente. Obsérvase unha certa diferenza entre os resultados obtidos por un e outro método; a que pode ser debido? P..- Unha carga q de 2 mc está fixa no punto A(0, 0), que é o centro dun triángulo equilátero de lado 3 3 m. Tres cargas iguais Q están nos vértices e a distancia de cada Q a A é 3 m. O conxunto está en equilibrio electrostático: a) Calcula o valor de Q. b) A enerxía potencial de cada Q. c) A enerxía posta en xogo para que o triángulo rote 45º arredor dun eixe que pasa por A e é perpendicular ó plano do papel. (K = N m 2 C-2 ) P.2.- Un péndulo simple de lonxitude l = 2,5 m, desvíase do equilibrio ata un punto a 0,03 m de altura e sóltase. Calcula: a) A velocidade máxima. b) O período. c) A amplitude do movemento harmónico simple descrito polo péndulo. (Dato g = 9,8 m s -2 ) OPCIÓN B C..- Unha partícula cargada atravesa un campo magnético B con velocidade v. A continuación, fai o mesmo outra partícula coa mesma v, dobre masa e triple carga, e en ambos os casos a traxectoria é idéntica. Xustifica cal é a resposta correcta: A) Non é posible. B) Só é posible se a partícula inicial é un electrón. C) É posible nunha orientación determinada Th C.2.- O elemento radioactivo desintégrase emitindo unha partícula alfa, dúas partículas beta e unha radiación gamma. O elemento resultante é: A) 88 X B) 89 Y C) 90Z C.3.- Unha espira móvese no plano XY, onde tamén hai unha zona cun campo magnético B constante en dirección +Z. Aparece na espira unha corrente en sentido antihorario: A) Se a espira entra na zona de B. B) Cando sae desa zona. C) Cando se despraza por esa zona. (g) C.4.- Na práctica para medir a constante elástica k polo método dinámico, obtense a seguinte táboa. Calcula a constante do resorte. T (s) 0,20 0,28 0,34 0,40 0,44 P..- Un raio de luz produce efecto fotoeléctrico nun metal. Calcula: a) A velocidade dos electróns se o potencial de freado é de 0,5V. b) A lonxitude de onda necesaria se a frecuencia umbral é f 0 = 0 5 Hz e o potencial de freado é V. c) Aumenta a velocidade dos electróns incrementando a intensidade da luz incidente? (Datos nm = 0-9 m; c = m s - ; e = -,6 0-9 C; m e = 9, 0-3 kg; h = 6, J s). P.2.- Quérese formar unha imaxe real e de dobre tamaño dun obxecto de,5 cm de altura. Determina: a) A posición do obxecto se se usa un espello cóncavo de R = 5 cm. b) A posición do obxecto se se usa unha lente converxente coa mesma focal que o espello. c) Debuxa a marcha dos raios para os dous apartados anteriores.

2 Solucións OPCIÓN A C..- Nun sistema illado, dúas masas idénticas están separadas unha distancia a. Nun punto C da recta CE perpendicular a a por a/2 colócase outra nova masa m en repouso. Que lle ocorre a m?: A) Desprázase ata O e para. B) Afástase das masas. C) Realiza un movemento oscilatorio entre C e E. C m a / 2 O a / 2 C A forza gravitatoria é unha forza de atracción. Cada masa atrae cara a si á masa m. A lei da gravitación de Newton di que a forza é proporcional ás masas e m e inversamente proporcional ao cadrado da distancia r entre os seus centros. F = G m r 2 u r Como as masas e as distancias son iguais, as forzas gravitatorias das masas sobre m son do mesmo valor e simétricas respecto de a recta CE, polo que a forza resultante sobre a masa m situada en C está dirixida na recta CE con sentido cara a O. Pola 2ª lei de Newton a aceleración está dirixida no mesmo sentido que a forza resultante, e a masa m desprazarase cara a O. A medida que avanza, continúa sentindo unha forza na mesma dirección e sentido pero de menor intensidade ata que ao chegar a O a forza é nula. Polo principio de inercia de Newton, se a resultante das forzas que actúan sobre un corpo é nula, ao estar en movemento, seguirá movéndose con velocidade constante. A masa m seguirá movéndose cara a E, pero ao pasar o punto O comezará a frear, porque a forza resultante diríxese cara a O. A súa velocidade irá diminuíndo ata que ao chegar ao punto E, simétrico a C, deterase. A forza gravitatoria é unha forza conservativa. A enerxía mecánica (suma das enerxías cinética e potencial) mantense constante. No punto E a masa m terá a mesma enerxía mecánica que en C. Como está á mesma distancia das masas, tamén terá a mesma enerxía potencial: E P = G m r Polo tanto terá a mesma enerxía cinética e a mesma velocidade que en C. Agora a forza gravitatoria sobre m, dirixida cara a O, produciralle unha aceleración e comezará a moverse cara a O. Cando volva pasar por O farao á máxima velocidade e volverá frear para deterse en C. O movemento volverá repetirse e será oscilatorio, pero non harmónico simple. Nun.H.S., a aceleración é proporcional e de sentido contrario á elongación: a = - k y No presente caso a aceleración é: a= F m = 2G r senα= 2G y 2 y 2 +(a/ 2) 2 y 2 +(a/ 2) 2 E C m que non se axusta a esa condición, pois o término que multiplica á elongación y, non é constante xa que depende de y. O E C.2.- Unha onda de luz é polarizada por un polarizador A e atravesa un segundo polarizador B colocado despois de A. Cal das seguintes afirmacións é correcta con respecto á luz despois de B? A) Non hai luz se A e B son paralelos entre si. B) Non hai luz se A e B son perpendiculares entre si. C) Hai luz independentemente da orientación relativa de A e B. B O fenómeno de polarización só ocorre nas ondas transversais. A luz é un conxunto de oscilacións de campo eléctrico e campo magnético

3 que vibran en planos perpendiculares que se cortan na liña de avance a raio de luz. A luz do sol ou dunha lámpada eléctrica vibra nunha multitude de planos. O primeiro polarizador só permite pasar a luz que vibra nun determinado plano. Si o segundo polarizador está colocado en dirección perpendicular ao primeiro, a luz que chega a el non ten compoñentes na dirección desta segunda polarización polo que non pasará ningunha luz. C.3.- Cun raio de luz de lonxitude de onda λ non se produce efecto fotoeléctrico nun metal. Para conseguilo débese aumentar: A) A lonxitude de onda λ. B) A frecuencia f. C) O potencial de freado. B O efecto fotoeléctrico, cuxa interpretación por Einstein permitiu confirmar a teoría cuántica de Planck, está baseada nun conxunto de leis experimentais. Unha destas leis di que si se vai variando a lonxitude de onda da luz que incide sobre o cátodo da célula fotoeléctrica, existe unha frecuencia limiar f 0, por baixo da cal non se produce efecto fotoeléctrico. Na interpretación de Einstein a luz pódese considerar como un feixe de partículas chamadas fotóns. A enerxía E que leva un fotón de frecuencia f é: E = h f na que h é a constante de Planck e ten un valor moi pequeno: h = 6, J s O efecto fotoeléctrico prodúcese cando cada fotón choca cun electrón e transmítelle toda a súa enerxía. Canto maior sexa a frecuencia, maior será a enerxía do fotón. Se o raio de luz orixinal non produce efecto fotoeléctrico, haberá que empregar outro de maior enerxía, ou sexa, de maior frecuencia. C.4.- Emprégase un resorte para medir a súa constante elástica polo método estático e polo dinámico, aplicando a lei de Hooke e o período en función da masa, respectivamente. Obsérvase unha certa diferenza entre os resultados obtidos por un e outro método. A que pode ser debido? O método estático consiste en medir os alongamentos producidos nun resorte ao pendurar del pesas de valor coñecido e aplicar a lei de Hooke: F = - k Δx A constante k de forza do resorte calcúlase a partir da pendente da recta obtida ao representar os alongamentos Δx fronte ás forzas F peso das pesas penduradas. O método dinámico consiste en facer oscilar masas coñecidas penduradas do resorte e determinar o período de oscilación medindo o tempo dun número determinado de oscilacións. Aínda que na oscilación vertical actúa a forza peso, ademais da forza recuperadora elástica, a forza resultante que actúa sobre a masa oscilante dá lugar a un movemento harmónico simple arredor da posición de equilibrio na que as forzas elástica e peso se anulan. Combinando a ecuación de Hooke coa 2ª lei de Newton F = - k Δx F = m a tendo en conta que no.h.s., a aceleración é proporcional e de sentido contrario á elongación, queda a = - ω 2 Δx - k Δx = - m ω 2 Δx

4 k =m ω 2 = 4π2 m T 2 A constante k de forza do resorte calcúlase a partir da pendente da recta obtida ao representar os cadrados T 2 dos períodos fronte as masas m das pesas penduradas. Na gráfica T 2 m, se os valores de m son os das masas penduradas, a recta obtida non pasa pola orixe de coordenadas senón que aparece desprazada cara á esquerda. Aínda que a constante de forza do resorte é a mesma en ámbalas dúas expresións, a masa m oscilante é maior que a masa que colga e inclúe parte da masa do resorte. Se o cálculo da constante no método dinámico realízase a partir da pendente, a masa non debe afectar ao valor da constante obtida. Pero se a constante calcúlase coa ecuación anterior, o resultado pode ser diferente se a masa do resorte non é desprezable fronte ás masas penduradas. P..- Unha carga q de 2 mc está fixa no punto A(0, 0), que é o centro dun triángulo equilátero de lado 3 3 m. Tres cargas iguais Q están nos vértices e a distancia de cada Q a A é 3 m. O conxunto está en equilibrio electrostático: a) Calcula o valor de Q. b) A enerxía potencial de cada Q. c) A enerxía posta en xogo para que o triángulo rote 45º arredor dun eixe que pasa por A e é perpendicular ao plano do papel. K = N m2 C Rta.: a) Q = -3,46 mc; b) E P = 2, J; c) ΔE = 0 Datos Cifras significativas: 3 Valor da carga situada no punto A: (0, 0) m q = 2,00 mc = 0,00200 C Lonxitude ao lado do triángulo L = 3 3 m = 5,20 m Distancia do centro do triángulo a cada vértice d = 3,00 m Ángulo virado polo triángulo θ = 45º Constante eléctrica K = 9, N m2 C Incógnitas Valor da carga Q que se atopa en cada un dos vértices Q Enerxía potencial de cada carga Q E P Enerxía necesaria para rotar o triángulo 45º arredor dun eixe perpendicular ΔE Outros símbolos Distancia entre dous puntos A e B r AB Ecuacións Lei de Coulomb: forza entre dúas cargas puntuais Q e q a unha distancia r F =K Q q r Principio de superposición r 2 F A = F Ai Enerxía potencial electrostática de dúas cargas puntuais Q e q a unha distancia r E p =K Q q r Enerxía potencial electrostática dunha carga puntual Q sometida á acción de varias E carga q i a distancias r i dela. p Q = K Q q i 2 r i Traballo dunha forza F constante cando o seu punto de aplicación desprázase Δr W F = F Δr a) Faise un debuxo das cargas e de cada un dos vectores forza electrostática de dúas das tres cargas iguais Q e da carga central q sobre a terceira carga Q. A forza electrostática F AD da carga q situada no punto A sobre a carga Q no punto D é, en función da carga Q descoñecida: F A D =9, [ N m 2 C 2 0,00200 [C] Q ] j=2, Q j N (3,00 [ m]) 2 A forza electrostática F B D que exerce a carga Q situada no punto B sobre a carga Q no punto D é, en función da carga Q descoñecida: C FBD F AD A D 3 3 m F CD 3 m B

5 F B D =9, [ N m 2 C 2 Q Q ] (5,20 [m]) (cos20 º i +sen 20 º j )=( 67 i +289 j ) 0 6 Q 2 [ N] 2 Por simetría, a forza electrostática F C D que exerce a carga Q situada no punto C sobre a carga Q no punto D é, Aplicando o principio de superposición, F C D = (67 i j) 0 6 Q 2 [N] F D = F A D + F B D + F C D = 0 porque a carga en D está en equilibrio. As compoñentes x das forzas se anulan. Para as compoñentes y: (2, Q Q) Q 0 6 = 0 Q= 2,00 C = 0,00346 C = -3,46 mc (2 289) b) A enerxía potencial de cada carga é a suma das enerxías potenciais de todos os pares de carga que lle afecten: E P Q = E P i E P D = E P CD + E P BD + E P AD E p Q =9, [ N m 2 C 2 ] ( 2 ( 3, [C]) 2 (5,20 [ m]) [C] ( 3, [ C]) (3,00 [ m]) ) =2,08 04 J c) A enerxía potencial da disposición de cargas é a suma das enerxías potenciais de todos os pares de cargas ou, o que é o mesmo, a metade da suma das enerxías potenciais de todas as cargas (porque nesta caso cada interacción cóntase dúas veces) E p A =3 ( 9,00 09 [ N m 2 C 2 ] [C] ( 3, [C]) (3,00 [ m]) ) = 6,24 04 J E p = 2 ( E p A +3 E p Q)=0 Como ao xirar 45º, as distancias relativas no cambian, a enerxía da nova disposición é a mesma, e a enerxía total requirida é cero. ΔE = E' p T E p T = 0 P.2.- Un péndulo simple de lonxitude l = 2,5 m, desvíase do equilibrio ata un punto a 0,03 m de altura e sóltase. Calcula: a) A velocidade máxima. b) O período. c) A amplitude do movemento harmónico simple descrito polo péndulo. (Dato: g = 9,8 m s -2 ) Rta.: a) v máx = 0,077 m/s; b) T = 3,2 s; c) A = 0,39 m Datos Cifras significativas: 3 Lonxitude do péndulo l = 2,50 m Altura inicial h 0 = 0,0300 m Velocidade inicial v 0 = 0 Aceleración da gravidade g = 9,80 m s -2 Incógnitas Velocidade máxima v máx Período T Amplitude do.h.s. A Outros símbolos Pulsación (frecuencia angular) ω = 2 π f = 2 π / T Fase inicial φ 0

6 Ecuacións De movemento no.h.s. θ = θ 0 sen(ω t + φ 0 ) s = A sen(ω t + φ 0 ) Período do péndulo T=2π l g Relación entre o arco s e o ángulo central θ nunha circunferencia de radio R s = θ R Enerxía cinética E c = ½ m v 2 Enerxía potencial do peso E p = m g h Principio de conservación da enerxía mecánica (E c + E p ) = (E c + E p ) 2 a) Como a única forza que realiza traballo é o peso (o traballo da tensión da corda é nulo porque a tensión é perpendicular ao desprazamento en todo momento), a enerxía mecánica consérvase: ½ m v m g h 0 = ½ m v f 2 + m g h f v f = 2 g h 0 = 2 9,80 [ m/s 2 ] 0,0300 [ m]=0,767 m/s b) O período vale T =2π l g =2π 2,50 [ m] 9,80 [m s 2 ] =3,7 s c) Na figura vese o xeito de calcular o ángulo a correspondente a amplitude a partir da altura h 0 e a lonxitude l: θ =arccos( h 0 l ) =arccos ( l l cos θ = h 0 0,0300[ m] 2,50[ m] ) =arccos0,988=0,55 rad L θ L cosθ L A = l θ = 2,50 [m] 0,55 [rad]= 0,388 m h O movemento de péndulo é harmónico simple porque θ (= 0,55) sen θ (= 0,54) OPCIÓN B C..- Unha partícula cargada atravesa un campo magnético B con velocidade v. A continuación, fai o mesmo outra partícula coa mesma v, dobre masa e triple carga, e en ámbolos dous casos a traxectoria é idéntica. Xustifica cal é a resposta correcta: A) Non é posible. B) Só é posible se a partícula inicial é un electrón. C) É posible nunha orientación determinada. C Un campo magnético B exerce sobre una partícula de masa m e carga q que o atravesa cunha velocidade v, unha forza F que pode calcularse pola expresión de Lorentz. F = q (v B) F = q v B sen φ Como a forza F é sempre perpendicular á velocidade, a partícula ten unha aceleración centrípeta que só cambia a dirección da velocidade, polo que a traxectoria é unha circunferencia de radio: F =m a N =m v 2 R

7 R= m v q B senϕ Coa mesma velocidade v e o mesmo campo magnético B, o dobre de masa e o triplo de carga, o radio non podería dar o mesmo resultado que a primeira vez a no ser que o ángulo α entre o vector velocidade e o vector campo magnético fose distinto, pero nese caso a traxectoria non sería a mesma. Pero existe unha posibilidade. Se o vector velocidade e o vector campo magnético fosen paralelos (φ = 0), non habería forza sobre a partícula e seguiría unha traxectoria rectilínea en ámbolos dous casos Th C.2.- O elemento radioactivo desintégrase emitindo unha partícula alfa, dúas partículas beta e unha radiación gamma. O elemento resultante é: 227 A) X B) Y C) Z 90 C 4 As partículas alfa son núcleos de helio 2He Escribindo a reacción nuclear 232 Th 90 0, as beta electróns e 4 2He +2 e 0 + γ 0 e as radiacións gamma, fotóns 0 γ e aplicando os principios de conservación do número bariónico (ou número másico) e da carga, queda: 0 0 A + Z D 232 = 4 + A A = = (-) + Z Z = 90. C.3.- Unha espira móvese no plano XY, onde tamén hai unha zona cun campo magnético B constante en dirección +Z. Aparece na espira unha corrente en sentido antihorario: A) Se a espira entra na zona de B. B) Cando sae desa zona. C) Cando se despraza por esa zona. B Pola lei de Faraday-Lenz, a forza electromotriz ε inducida nunha espira é igual ao ritmo de variación de fluxo magnético Φ que a atravesa ε= dφ dt e o sentido oponse á variación de fluxo. Cando a espira que se move no plano XY entra no campo magnético B en dirección +Z, prodúcese unha corrente inducida que se opón ao aumento do fluxo saínte (visto desde o extremo do eixe Z), polo que se producirá unha corrente inducida en sentido horario que cree un campo entrante (-Z). Ao saír do campo, a corrente inducida en sentido antihorario creará un campo magnético saínte que se opón a diminución do fluxo entrante. v B B v I B i B i I

8 C.4.- Na práctica para medir a constante elástica k polo método dinámico, obtense a seguinte táboa. Calcula a constante do resorte. (g) T (s) 0,20 0,28 0,34 0,40 0,44 A forza recuperadora é: de onde F = k x = m a = m ( ω 2 x) = m ω 2 x k =m ω 2 = 4π2 m T 2 Calcúlase o valor da constante para cada unha das experiencias (kg) 5, e o valor medio é: T (s) 0,20 0,28 0,34 0,40 0,44 k (N/m) 4,9 5,0 5, 4,9 5, k m = 5,0 N/m No caso de ter papel milimetrado, o mellor aínda unha folla de cálculo, poderíanse representar os cadrados dos períodos fronte ás masas, obténdose unha recta. Da pendente (7,78 s 2 /kg ) da recta calcularíase a constante do resorte. 4 π2 T 2 = 4π2 k k = 7,78 s 2 / kg =5, kg/s2 =5, N/ m que é un valor algo máis exacto que o obtido como valor medio. m T² (s²) 0,2 0,8 0,6 0,4 0,2 0, 0,08 0,06 0,04 0,02 0 0,0 0,0 0,02 0,02 0,03 (kg) P.. Un raio de luz produce efecto fotoeléctrico nun metal. Calcula: a) A velocidade dos electróns se o potencial de freado é de 0,5 V. b) A lonxitude de onda necesaria se a frecuencia limiar é f 0 = 0 5 Hz e o potencial de freado é V. c) Aumenta a velocidade dos electróns incrementando a intensidade da luz incidente? (Datos nm = 0-9 m; c = m s - ; q e = -,6 0-9 C; m e = 9, 0-3 kg; h = 6, J s). Rta.: a) v = 2,2 0 5 m/s; b) λ = 242 nm Datos Cifras significativas: 3 Potencial de freado a V f a = 0,500 V Frecuencia limiar f 0 =, Hz Potencial de freado b V f b =,00 V Constante de Planck h = 6, J s Velocidade da luz no baleiro c = 3, m/s Carga do electrón q e = -, C asa do electrón m e = 9,0 0-3 kg Incógnitas Velocidade dos electróns v Lonxitude de onda λ Outros símbolos Enerxía cinética máxima dos electróns emitidos E c

9 Ecuacións De Planck (enerxía do fotón) E f = h f De Einstein do efecto fotoeléctrico E f = W e + E c Relación entre a frecuencia e a lonxitude de onda dunha onda f = c / λ Enerxía cinética E c = ½ m v 2 Relación entre potencial de freado e enerxía cinética E c = q e V a) A enerxía cinética dos electróns mídese co potencial de freado. b) 0 ½ m v 2 = q e V f v= 2 q e V f a = 2, [C] 0,500 [ V] =4,9 0 5 m/s m e 9,0 0 3 [ kg] Pola ecuación de Einstein do efecto fotoeléctrico W e = h f 0 = 6, [J s], [s - ] = 6, J E c = q e V f`b =, [C],00 [V] =, J E f = W e + E c = 6, [J] +, [J] = 8, J Despexando a frecuencia do fotón da expresión da enerxía f = E f h = 8, [J ] 6, [J s] =,24 05 Hz λ= c f =3,00 08 [ m s ], [s ] =2, m c) A intensidade da luz non afecta á velocidade dos electróns. Depende só da frecuencia da luz. É unha das leis experimentais do efecto fotoeléctrico, explicada pola interpretación de Einstein de que a luz é un feixe de partículas chamadas fotóns. Cando un fotón choca con un electrón, comunícalle toda a súa enerxía que vén dada pola ecuación de Planck: E f = h f Se a enerxía é suficiente para arrincar o electrón do metal (E f > W e ), a enerxía restante queda en forma de enerxía cinética do electrón. Canto maior sexa a frecuencia do fotón, maior será a velocidade do electrón. Ao aumentar a intensidade da luz, o que se conseguiría sería un maior número de fotóns, que, de ter a enerxía suficiente, arrincarían máis electróns, producindo unha maior intensidade de corrente eléctrica. P.2. Quérese formar unha imaxe real e de dobre tamaño dun obxecto de,5 cm de altura. Determina: a) A posición do obxecto se se usa un espello cóncavo de R = 5 cm. b) A posición do obxecto se se usa unha lente converxente coa mesma focal que o espello. c) Debuxa a marcha dos raios para os dous apartados anteriores. Rta.: a) s e = - cm; b) s l = - cm Datos (convenio de signos DIN) Cifras significativas: 2 Tamaño do obxecto y =,5 cm = 0,05 m Aumento lateral A L = -2,0 Radio do espello cóncavo R = -5 cm = -0,5 m Incógnitas Posición do obxecto ante o espello s e Posición do obxecto ante a lente s l Outros símbolos Distancia focal (do espello e da lente) f

10 Incógnitas Tamaño da imaxe Ecuacións Relación entre a posición da imaxe e a do obxecto nos espellos Relación entre a posición da imaxe e a do obxecto nas lentes Aumento lateral nos espellos Aumento lateral nas lentes y' s ' + s = f s ' s = f A L = y ' y = s' s A L = y ' y = s' s Relación entre a distancia focal e o radio de curvatura dun espello f = R / 2 a) Se a imaxe e real e de dobre tamaño, ten que ser invertida, polo que o aumento lateral será negativo. A L = -2,0 = s' / s s' = 2,0 s f e = R / 2 = -0,075 m s ' + s = f s e =3 2,0 s + s = 0,075 [ m] ( 0,075 [m]) = 0, m 2 I C F f O s R s' Análise: Nun espello, a imaxe é real cando se forma «á esquerda» do espello, xa que os raios que saen reflectidos só se cortan «á esquerda». b) Se a lente é converxente, a distancia focal é positiva. f l = 0,075 m Como a imaxe é real o aumento lateral é negativo. A L = -2,0 = s' / s F s F' s' s' = -2,0 s s ' s = f 2,0 s s = 0,075 [ m] 3 0,075 [ m] s l = = 0, m 2 Cuestións e problemas das Probas de Acceso á Universidade (P.A.U.) en Galicia. Respostas e composición de Alfonso J. Barbadillo arán, Algunhas ecuacións construíronse coas macros da extensión CLC09 de Charles Lalanne-Cassou. A tradución ao/desde o galego realizouse coa axuda de traducindote, de Óscar Hermida López. Algúns cálculos fixéronse cunha folla de cálculo OpenOffice (ou LibreOffice) feita por Alfonso J. Barbadillo arán.

PAU SETEMBRO 2013 FÍSICA

PAU SETEMBRO 2013 FÍSICA PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2009

PAAU (LOXSE) Setembro 2009 PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que

Διαβάστε περισσότερα

FÍSICA. = 4π 10-7 (S.I.)).

FÍSICA. = 4π 10-7 (S.I.)). 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos

Διαβάστε περισσότερα

Problemas y cuestiones de electromagnetismo

Problemas y cuestiones de electromagnetismo Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)

Διαβάστε περισσότερα

Física e química 4º ESO. As forzas 01/12/09 Nome:

Física e química 4º ESO. As forzas 01/12/09 Nome: DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste

Διαβάστε περισσότερα

PAU XUÑO 2010 FÍSICA

PAU XUÑO 2010 FÍSICA PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;

Διαβάστε περισσότερα

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::... Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)

Διαβάστε περισσότερα

TRIGONOMETRIA. hipotenusa L 2. hipotenusa

TRIGONOMETRIA. hipotenusa L 2. hipotenusa TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto

Διαβάστε περισσότερα

A LUZ. ÓPTICA XEOMÉTRICA

A LUZ. ÓPTICA XEOMÉTRICA A LUZ. ÓPTICA XEOMÉTRICA PROBLEMAS. Un espello esférico ten 0,80 m de radio. a) Se o espello é cóncavo, calcular a qué distancia hai que colocar un obxecto para obter unha imaxe real dúas veces maior que

Διαβάστε περισσότερα

PAU XUÑO 2013 FÍSICA

PAU XUÑO 2013 FÍSICA PAU XUÑO 2013 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO 1. Punto e recta 2. Lugares xeométricos 3. Ángulos 4. Trazado de paralelas e perpendiculares con escuadro e cartabón 5. Operacións elementais 6. Trazado de ángulos

Διαβάστε περισσότερα

CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA

CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA PAAU (LOXSE) XUÑO 2001 Código: 22 ÍSICA Elixir e desenrolar unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións

Διαβάστε περισσότερα

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Solucionario Trigonometría ACTIVIDADES INICIALES.I. En una recta r hay tres puntos: A, B y C, que distan, sucesivamente, y cm. Por esos puntos se trazan rectas paralelas que cortan otra, s, en M, N y P.

Διαβάστε περισσότερα

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS 5 FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Página PARA EMPEZAR, REFLEXIONA Y RESUELVE. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora:

Διαβάστε περισσότερα

PAU XUÑO 2011 QUÍMICA OPCIÓN A

PAU XUÑO 2011 QUÍMICA OPCIÓN A AU XUÑO 011 Código: 7 QUÍMICA Cualificación: O alumno elixirá UNA das dúas opcións. Cada pregunta cualificarase con puntos OCIÓN A 1. 1.1. Que sucedería se utilizase unha culler de aluminio para axitar

Διαβάστε περισσότερα

S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA EXTRACCIÓN DO ADN EXTRACCIÓN DO ADN CUANTIFICACIÓN. 260 280 260/280 ng/µl

S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA EXTRACCIÓN DO ADN EXTRACCIÓN DO ADN CUANTIFICACIÓN. 260 280 260/280 ng/µl CUANTIFICACIÖN 26/VI/2013 S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA - ESPECTROFOTÓMETRO: Cuantificación da concentración do ADN extraido. Medimos a absorbancia a dúas lonxitudes

Διαβάστε περισσότερα

ε x = du dx ε(x) = ds ds = du(x) dx

ε x = du dx ε(x) = ds ds = du(x) dx Capítulo 8 ECUCIONES DIFERENCIES Cálculo de desplazamientos Dr. Fernando Flores 8.. INTRODUCCIÓN En este capítulo se sistematizan las ecuaciones que gobiernan el comportamiento de vigas. En general se

Διαβάστε περισσότερα

Polinomios. Obxectivos. Antes de empezar. 1.Expresións alxébricas... páx. 64 De expresións a ecuacións Valor numérico Expresión en coeficientes

Polinomios. Obxectivos. Antes de empezar. 1.Expresións alxébricas... páx. 64 De expresións a ecuacións Valor numérico Expresión en coeficientes 4 Polinomios Obxectivos Nesta quincena aprenderás: A traballar con expresións literais para a obtención de valores concretos en fórmulas e ecuacións en diferentes contextos. A regra de Ruffini. O teorema

Διαβάστε περισσότερα

OS PRONOMES RELATIVO INTERROGATIVOS E INDEFINIDOS SINTAXE DA ORACIÓN DE RELATIVO. O INFINITIVO E A SÚA SINTAXE.

OS PRONOMES RELATIVO INTERROGATIVOS E INDEFINIDOS SINTAXE DA ORACIÓN DE RELATIVO. O INFINITIVO E A SÚA SINTAXE. EPAPU OURENSE GREGO 1º BACHARELATO CURSO 2008-09 1 GREGO 1º BACHARELATO 11º QUINCENA OS PRONOMES RELATIVO INTERROGATIVOS E INDEFINIDOS SINTAXE DA ORACIÓN DE RELATIVO. O INFINITIVO E A SÚA SINTAXE. 1º.-

Διαβάστε περισσότερα

ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ KΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 24 ΙΟΥΝΙΟΥ 2005 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΑ ΙΣΠΑΝΙΚΑ

ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ KΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 24 ΙΟΥΝΙΟΥ 2005 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΑ ΙΣΠΑΝΙΚΑ ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ KΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 24 ΙΟΥΝΙΟΥ 2005 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΑ ΙΣΠΑΝΙΚΑ Α. Να αποδώσετε στο τετράδιό σας στην ελληνική γλώσσα το παρακάτω κείμενο,

Διαβάστε περισσότερα

preguntas arredor do ALZHEIMER

preguntas arredor do ALZHEIMER preguntas arredor do ALZHEIMER PRESENTACIÓN A enfermidade de Alzheimer produce unha grave deterioración na vida do individuo que leva con frecuencia a unha dependencia total e absoluta do enfermo coas

Διαβάστε περισσότερα

Las Funciones Trigonométricas

Las Funciones Trigonométricas Caítulo 3 Las Funciones Trigonométricas 3.. El círculo trigonométrico Vamos a suoner conocido el sistema cartesiano en lo que se refiere a concetos fundamentales como son los de abscisa y ordenada de un

Διαβάστε περισσότερα

La experiencia de la Mesa contra el Racismo

La experiencia de la Mesa contra el Racismo La experiencia de la Mesa contra el Racismo Informe Di icultad para identi icarse como discriminado Subsistencia de mecanismos individuales para enfrentar el racismo Las propuestas de las organizaciones

Διαβάστε περισσότερα

MARKSCHEME BARÈME DE NOTATION ESQUEMA DE CALIFICACIÓN

MARKSCHEME BARÈME DE NOTATION ESQUEMA DE CALIFICACIÓN IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI M06/2/ABMGR/SP1/GRE/TZ0/XX/M MARKSCHEME BARÈME DE NOTATION ESQUEMA DE CALIFICACIÓN May / mai / mayo 2006 MODERN GREEK / GREC

Διαβάστε περισσότερα

Métodos Estadísticos en la Ingeniería

Métodos Estadísticos en la Ingeniería Métodos Estadísticos e la Igeiería INTERVALOS DE CONFIANZA Itervalo de cofiaza para la media µ de ua distribució ormal co variaza coocida: X ± z α/ µ = X = X i N µ X... X m.a.s. de X Nµ Itervalo de cofiaza

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

IV FESTIVAL LEA. Concurso entre escuelas de aprendizaje del español

IV FESTIVAL LEA. Concurso entre escuelas de aprendizaje del español IV FESTIVAL LEA El IV Festival Iberoamericano Literatura En Atenas, organizado por la revista Cultural Sol Latino, el Instituto Cervantes de Atenas y la Fundación María Tsakos, dura este año dos semanas:

Διαβάστε περισσότερα

TEMA 6.- BIOMOLÉCULAS ORGÁNICAS IV: ÁCIDOS NUCLEICOS

TEMA 6.- BIOMOLÉCULAS ORGÁNICAS IV: ÁCIDOS NUCLEICOS TEMA 6.- BIMLÉCULAS RGÁNICAS IV: ÁCIDS NUCLEICS A.- Características generales de los Ácidos Nucleicos B.- Nucleótidos y derivados nucleotídicos El esqueleto covalente de los ácidos nucleicos: el enlace

Διαβάστε περισσότερα

TEST DE INDEPENDENCIA EN SERIES TEMPORALES

TEST DE INDEPENDENCIA EN SERIES TEMPORALES TEST DE INDEPENDENCIA EN SERIES TEMPORALES Titulación: Doctorado en Tecnologías Industriales Alumno/a: Salvador Vera Nieto Director/a/s: José Salvador Cánovas Peña Antonio Guillamón Frutos Cartagena, 10

Διαβάστε περισσότερα

Εργαστήριο λογοτεχνικής μετάφρασης: Cruzando fronteras Συντονισμός: Κωνσταντίνος Παλαιολόγος. Armando Quintero Αρμάντο Κιντέρο

Εργαστήριο λογοτεχνικής μετάφρασης: Cruzando fronteras Συντονισμός: Κωνσταντίνος Παλαιολόγος. Armando Quintero Αρμάντο Κιντέρο Εργαστήριο λογοτεχνικής μετάφρασης: Cruzando fronteras Συντονισμός: Κωνσταντίνος Παλαιολόγος Αθήνα, 19 Μαρτίου 2013 Armando Quintero Αρμάντο Κιντέρο Un lugar en el bosque Κάπου στο δάσος Lobo Abuelo cuenta

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΘΗΜ / ΤΞΗ: ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡ: η (ΘΕΡΙΝ) ΗΜΕΡΟΜΗΝΙ: /0/ ΘΕΜ ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

KIT DE DRENAJE DE CONDENSADOS

KIT DE DRENAJE DE CONDENSADOS KIT DE DRENAJE DE CONDENSADOS Estas instrucciones forman parte integrante del manual que acompaña el aparato en el cual está instalado este Kit. Este manual se refiere a ADVERTENCIAS GENERALES y REGLAS

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: συγκρότηση Επιτροπής για την επιλογή ελευθέρων βοηθηµάτων Ισπανικής γλώσσας

ΠΡΟΣ: ΚΟΙΝ.: συγκρότηση Επιτροπής για την επιλογή ελευθέρων βοηθηµάτων Ισπανικής γλώσσας ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθµός Ασφαλείας: Να διατηρηθεί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ REPÚBLICA HELÉNICA MINISTERIO DE FINANZAS

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ REPÚBLICA HELÉNICA MINISTERIO DE FINANZAS ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ HELLENIC REPUBLIC MINISTRY OF FINANCE REPÚBLICA HELÉNICA MINISTERIO DE FINANZAS 1ο αντίγραφο για την Ελληνική Φορολογική Αρχή 1 st copy for the Hellenic Tax Authority

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 6 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 6 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 6 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4 να γράψετε

Διαβάστε περισσότερα

90 LIBERTAS SEGUNDA ÉPOCA. Introducción: La necesidad de una Reforma Institucional

90 LIBERTAS SEGUNDA ÉPOCA. Introducción: La necesidad de una Reforma Institucional 1 3 - - Abstract - - - 90 LIBERTAS SEGUNDA ÉPOCA Introducción: La necesidad de una Reforma Institucional - - - - - - - - - UNA PROPUESTA DE REFORMA MONETARIA PARA ARGENTINA 91 1 políticas establecidas

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΤΑ ΚΕΝΤΡΑ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΤΑ ΚΕΝΤΡΑ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΤΑ ΚΕΝΤΡΑ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ: ΓΛΩΣΣΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: Ισπανικά για τον τουρισμό(α1-α2) Συγγραφέας: Δημήτρης Ε. Φιλιππής

Διαβάστε περισσότερα

A. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

A. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1 ΘΕΜΑ A A. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Η δύναμη που ασκεί ένα παραμορφωμένο ελατήριο κατά x σε σχέση

Διαβάστε περισσότερα

M07/2/ABMGR/SP1/GRE/TZ0/XX/Q

M07/2/ABMGR/SP1/GRE/TZ0/XX/Q IB MODERN GREEK B STANDARD LEVEL PAPER 1 GREC MODERNE B NIVEAU MOYEN ÉPREUVE 1 GRIEGO MODERNO B NIVEL MEDIO PRUEBA 1 Monday 7 May 2007 (morning) Lundi 7 mai 2007 (matin) Lunes 7 de mayo de 2007 (mañana)

Διαβάστε περισσότερα

Un calcolo deduttivo per la teoria ingenua degli insiemi. Giuseppe Rosolini da un università ligure

Un calcolo deduttivo per la teoria ingenua degli insiemi. Giuseppe Rosolini da un università ligure Un calcolo deduttivo per la teoria ingenua degli insiemi Giuseppe Rosolini da un università ligure Non è quella in La teoria ingenua degli insiemi Ma è questa: La teoria ingenua degli insiemi { < 3} è

Διαβάστε περισσότερα

2 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ

2 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ 2 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ Διαθέτουμε τροχό ο οποίος αποτελείται από έναν ομογενή λεπτό δακτύλιο μάζας m = 1 kg και ακτίνας R και τέσσερις λεπτές ομογενείς ράβδους μάζας Μ ρ = ¾m και μήκους l = 2R η

Διαβάστε περισσότερα

Panel lateral/de esquina de la Synergy. Synergy πλαϊνή σταθερή πλευρά τετράγωνης καμπίνας. Rohová/boční zástěna Synergy

Panel lateral/de esquina de la Synergy. Synergy πλαϊνή σταθερή πλευρά τετράγωνης καμπίνας. Rohová/boční zástěna Synergy Instrucciones de instalación Suministrar al usuario ADVERTENCIA! Este producto pesa más de 19 kg, puede necesitarse ayuda para levantarlo Lea con atención las instrucciones antes de empezar la instalación.

Διαβάστε περισσότερα

Puerta corredera de la Synergy Synergy Συρόμενη πόρτα Posuvné dveře Synergy Porta de correr da Synergy

Puerta corredera de la Synergy Synergy Συρόμενη πόρτα Posuvné dveře Synergy Porta de correr da Synergy Instrucciones de instalación Suministrar al usuario ADVERTENCIA! Este producto pesa más de 19 kg, puede necesitarse ayuda para levantarlo Lea con atención las instrucciones antes de empezar la instalación.

Διαβάστε περισσότερα

) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,

Διαβάστε περισσότερα

PAU XUÑO 2015 BIOLOXÍA

PAU XUÑO 2015 BIOLOXÍA PAU XUÑO 2015 Código: 21 BIOLOXÍA Estrutura da proba: a proba componse de dúas opcións (A e B). Só se poderá contestar unha das dúas opcións, desenvolvendo integramente o seu contido. Puntuación: a cualificación

Διαβάστε περισσότερα

με ίσες μάζες ισορροπούν κρεμασμένα από κατακόρυφα ιδανικά ελατήρια με σταθερές k 1 και k 2 /2. Απομακρύνουμε τα σώματα Σ 1

με ίσες μάζες ισορροπούν κρεμασμένα από κατακόρυφα ιδανικά ελατήρια με σταθερές k 1 και k 2 /2. Απομακρύνουμε τα σώματα Σ 1 ΑΣΚΗΣΕΙΣ ( Σε όλα τα προβλήματα - εκτός από το 9 - στα οποία υπεισέρχεται βαρύτητα να θεωρήσετε την τιμή της βαρυτικής επιτάχυνσης ίση με και 10 m/s 2, Να θεωρήσετε επίσης για την τιμή του π ότι π 2 =

Διαβάστε περισσότερα

M14/1/AYMGR/HP1/GRE/TZ0/XX

M14/1/AYMGR/HP1/GRE/TZ0/XX M14/1/AYMGR/HP1/GRE/TZ0/XX 22142045 MODERN GREEK A: LANGUAGE AND LITERATURE HIGHER LEVEL PAPER 1 GREC MODERNE A : LANGUE ET LITTÉRATURE NIVEAU SUPÉRIEUR ÉPREUVE 1 GRIEGO MODERNO A: LENGUA Y LITERATURA

Διαβάστε περισσότερα

Black and White, an innovation in wooden flooring.

Black and White, an innovation in wooden flooring. a m s t e r d a m v i e n n a l o n d o n p a r i s m o s c o w d u b l i n m i l a n c o p e n h a g e n g e n e v a a t h e n s b a r c e l o n a r e y k j a v i c k i e v GB PT ES IT GR Black and White,

Διαβάστε περισσότερα

! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C

Διαβάστε περισσότερα

Μεζνδνινγία επίιπζεο αζθήζεωλ

Μεζνδνινγία επίιπζεο αζθήζεωλ Μεζνδνινγία επίιπζεο αζθήζεωλ ακείσησλ κεραληθώλ ηαιαληώζεωλ Α. H ηππηθή άζθεζε Μηα ηππηθή άζθεζε κεραληθώλ ηαιαληώζεσλ (ρσξίο θόιπα), μεθηλάεη κε δεδνκέλo όηη ην είδνο ηεο θίλεζεο είλαη ΓΑΣ θαη κία από

Διαβάστε περισσότερα

ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΑΠΛΟΤΗΤΑ. Innovación y simplicidad

ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΑΠΛΟΤΗΤΑ. Innovación y simplicidad pro ima pro ima Innovación y simplicidad PROXIMA es la última innovación de Serrature Meroni, un producto diseñado tanto para aquellos que ya disponen de un pomo PremiApri Meroni en su puerta, como para

Διαβάστε περισσότερα

Φυσική Β Λυκειου, Γενικής Παιδείας 2ο Φυλλάδιο - Οµαλή Κυκλική Κίνηση

Φυσική Β Λυκειου, Γενικής Παιδείας 2ο Φυλλάδιο - Οµαλή Κυκλική Κίνηση Φυσική Β Λυκειου, Γενικής Παιδείας - Οµαλή Κυκλική Κίνηση Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://perifysikhs.wordpress.com Οι έννοιες που σχετίζονται µε την µελέτη της κυκλικής κίνησης

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

bab.la Φράσεις: Προσωπική Αλληλογραφία Ευχές ελληνικά-πορτογαλικά

bab.la Φράσεις: Προσωπική Αλληλογραφία Ευχές ελληνικά-πορτογαλικά Ευχές : Γάμος Συγχαρητήρια. Σας ευχόμαστε όλη την ευτυχία του κόσμου. Desejando a vocês toda felicidade do mundo. νιόπαντρο ζευγάρι Θερμά συγχαρητήρια για τους δυο σας αυτήν την ημέρα του σας. Parabéns

Διαβάστε περισσότερα

Gavião. λ Ι œ. Ÿ λ. œ œ œ. α α œ. Score. Cussy de Almeida. Flauta II. Sax Soprano. Violão I. Viola Sertaneja. Violino I. Violino II. Viola.

Gavião. λ Ι œ. Ÿ λ. œ œ œ. α α œ. Score. Cussy de Almeida. Flauta II. Sax Soprano. Violão I. Viola Sertaneja. Violino I. Violino II. Viola. Score Gavião Cussy de Almeida Flauta I Flauta II Ι Ÿ Ι A Ι Ÿ Ι Sax Soprano Violão I α α Viola Sertaneja Violino I Violino II Viola Cello = = = Contrabaixo Birincello Conservatório Pernambucano de Música

Διαβάστε περισσότερα

O clítoris. e os seus segredos. María. María Victoria. Yolanda. M. Elísabeth. Lameiras Fernández. Carrera Fernández.

O clítoris. e os seus segredos. María. María Victoria. Yolanda. M. Elísabeth. Lameiras Fernández. Carrera Fernández. ] O clítoris e os seus segredos María Lameiras Fernández María Victoria Carrera Fernández Yolanda Rodríguez Castro ILUSTRADO POR M. Elísabeth Rodríguez González ] O clítoris e os seus segredos DIFUSORA

Διαβάστε περισσότερα

Nro. 13 - Agosto de 2013

Nro. 13 - Agosto de 2013 SOL Cultura La Tolita, de 400 ac. a 600 dc. En su representación se sintetiza toda la mitología ancestral del Ecuador. Trabajado en oro laminado y repujado. Museo Nacional Banco Central del Ecuador Dirección

Διαβάστε περισσότερα

Pedro Martín Butragueño EL COLEGIO DE MÉXICO VOCALES

Pedro Martín Butragueño EL COLEGIO DE MÉXICO VOCALES 1 LISTADO DE SIGNOS FONÉTICOS: Adaptación del AFI a la variación fónica del español (Windows XP, Arial Unicode MS, Word 2003) versión de 7 de septiembre de 2005 Pedro Martín Butragueño EL COLEGIO DE MÉXICO

Διαβάστε περισσότερα

Μονάδες 5. 1.4 Σε μια ελαστική κρούση δύο σωμάτων

Μονάδες 5. 1.4 Σε μια ελαστική κρούση δύο σωμάτων ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 26 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1 ο Για τις ημιτελείς

Διαβάστε περισσότερα

Análisis de las Enneadas de Plotino. Gonzalo Hernández Sanjorge A Parte Rei 20

Análisis de las Enneadas de Plotino. Gonzalo Hernández Sanjorge A Parte Rei 20 Análisis de las Enneadas de Plotino, Tratado Cuarto de la Enneada Primera Acerca de la felicidad1 Gonzalo Hernández Sanjorge La felicidad vinculada al vivir bien: la sensación y la razón. Identificar qué

Διαβάστε περισσότερα

Lípidos. Clasificación

Lípidos. Clasificación Lípidos Son compuestos encontrados en organismos vivos, generalmente solubles en solventes orgánicos e insolubles en agua. Clasificación Propiedades físicas aceites grasas Estructura simples complejos

Διαβάστε περισσότερα

Tipologie installative - Installation types Type d installation - Installationstypen Tipos de instalación - Τυπολογίες εγκατάστασης

Tipologie installative - Installation types Type d installation - Installationstypen Tipos de instalación - Τυπολογίες εγκατάστασης AMPADE MOOCROMATICHE VIMAR DIMMERABII A 0 V~ - VIMAR 0 V~ DIMMABE MOOCHROME AMP AMPE MOOCHROME VIMAR VARIATEUR 0 V~ - DIMMERFÄHIGE MOOCHROMATICHE AMPE VO VIMAR MIT 0 V~ ÁMPARA MOOCROMÁTICA VIMAR REGUABE

Διαβάστε περισσότερα

Συνέλευση Κανονικών Ορθοδόξων Επισκόπων Λατινικής Αμερικής. Γενική Γραμματεία ΔΕΛΤΙΟ ΤΥΠΟΥ

Συνέλευση Κανονικών Ορθοδόξων Επισκόπων Λατινικής Αμερικής. Γενική Γραμματεία ΔΕΛΤΙΟ ΤΥΠΟΥ Συνέλευση Κανονικών Ορθοδόξων Επισκόπων Λατινικής Αμερικής Γενική Γραμματεία ΔΕΛΤΙΟ ΤΥΠΟΥ «Πορευθέντες μαθητεύσατε πάντα τὰ ἔθνη» Μτ 28, 19 Συνήλθεν άπó τής 20ης έως 23ης Ιανουαρίου άρξαμένου έτους, είς

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012. 7:30-10:30 π.μ.

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012. 7:30-10:30 π.μ. ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 Μάθημα: ΦΥΣΙΚΗ Ημερομηνία και ώρα εξέτασης: Τετάρτη, 6 Ιουνίου 2012 7:30-10:30

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 31 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 31 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 31 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα

Διαβάστε περισσότερα

ΣΧΑΣΗ. Τονετρόνιοκαιησχάση. Πείραµα Chadwick, 1930. Ανακάλυψη νετρονίου

ΣΧΑΣΗ. Τονετρόνιοκαιησχάση. Πείραµα Chadwick, 1930. Ανακάλυψη νετρονίου ΣΧΑΣΗ Τονετρόνιοκαιησχάση Πείραµα Chadwick, 1930 4 9 12 2 α+ 4 Be 6 C+ Ανακάλυψη νετρονίου 1 0 n Irène & Jean Frédéric Joliot-Curie 1934 (Nobel Prize) Σειράπειραµάτων: Βοµβαρδισµόςελαφρών στοιχείων µε

Διαβάστε περισσότερα

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ± Ó³ Ÿ. 009.. 6, º 7(156.. 6Ä69 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŒ ˆ - ˆ ƒ ˆ ˆ ˆŸ Š -Œ ˆ Šˆ ˆ.. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ μ ± Ê É É Ê Ò μ μ, Œμ ± É ÉÓ μ Ò ÕÉ Ö ²μ Í Ò - μ Ò ² É Ö ³ ÖÉÓ Ì ÒÎ ² ÖÌ, μ²ó ÊÕÐ Ì ±μ ± 4- μ Ò. This paper

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2003 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 5 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

TAREAS DE VERANO. GRIEGO 1º BACHILLERATO

TAREAS DE VERANO. GRIEGO 1º BACHILLERATO TAREAS DE VERANO. GRIEGO 1º BACHILLERATO Contenidos que debes repasar y estudiar para el examen de recuperación de septiembre: Morfología nominal: artículos (página 26), declinaciones (primera, segunda

Διαβάστε περισσότερα

PAU XUÑO 2012 BIOLOXÍA

PAU XUÑO 2012 BIOLOXÍA PAU XUÑO 2012 Código: 21 BIOLOXÍA Estrutura da proba: a proba componse de dúas opcións A e B. Só se poderá contestar a unha das dúas opcións, desenvolvendo integramente o seu contido. Puntuación: a cualificación

Διαβάστε περισσότερα

Φυσικές και χημικές ιδιότητες

Φυσικές και χημικές ιδιότητες Φυσικές και χημικές ιδιότητες Φυσικές ιδιότητες Οι ιδιότητες που προσδιορίζονται χωρίς αλλοίωση της χημικής σύστασης της ουσίας (π.χ. σ. τήξεως, σ. ζέσεως, πυκνότητα, χρώμα, γεύση, σκληρότητα). Χημικές

Διαβάστε περισσότερα

LA CONDUZIONE ELETTRICA NEI METALLI

LA CONDUZIONE ELETTRICA NEI METALLI ELETTRODINAMICA ELETTRODINAMICA ELETTRODINAMICA ELETTRODINAMICA LA CONDUZIONE ELETTRICA NEI METALLI CONDUZIONE ELETTRICA CONDUZIONE ELETTRICA!"!##$"%"#&"!'#"($ $ )"$ *$ %""!"&"!##)!"'$'"#&"+!%!%"(!#"(

Διαβάστε περισσότερα

Vocabulario unidad 4: La casa

Vocabulario unidad 4: La casa Αγγελία, η: anuncio Ανακαινισμένος, η, ο: renovado Ανεμιστήρα, η: ventilador Άνετος, η, ο: cómodo Αποθήκη, η: almacén, trastero Απορροφητήρας, ο: extractor Αριθμός, ο: número Ασανσέρ, το: ascensor Αυλή,

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 11 ΙΟΥΝΙΟΥ 013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α γ Α α Α3 γ Α δ (ισχύει: Α5 ασ ισχύον: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κριακή Αριλίο 3 ιάρκεια Εξέτασης: 3

Διαβάστε περισσότερα

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6 # % & ( ) +, %. / % 0 1 / 1 4 5 6 7 8 # 9 # : ; < # = >? 1 :; < 8 > Α Β Χ 1 ; Δ 7 = 8 1 ( 9 Ε 1 # 1 ; > Ε. # ( Ε 8 8 > ; Ε 1 ; # 8 Φ? : ;? 8 # 1? 1? Α Β Γ > Η Ι Φ 1 ϑ Β#Γ Κ Λ Μ Μ Η Ι 5 ϑ Φ ΒΦΓ Ν Ε Ο Ν

Διαβάστε περισσότερα

PAUTA RADIO CEAACES 2015

PAUTA RADIO CEAACES 2015 MES DE MAYO Provincia Emisora Horarios CUÑA 30 SEG. L MA X J V S D L MA X J V S D L MA X J V S 11 12 13 14 15 16 17 1 19 20 21 22 23 24 25 26 27 2 29 30 TOTAL INVERSION EMISORAS NACIONALES CUÑAS US $ 1

Διαβάστε περισσότερα

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν Ε ρ μ ο ύ π ο λ η, 0 9 Μ α ρ τ ί ο υ 2 0 1 2 Π ρ ο ς : Π ε ρ ιφ ε ρ ε ι ά ρ χ η Ν ο τ ίο υ Α ιγ α ί ο υ Α ρ ι θ. Π ρ ω τ. 3 4 2 2 κ. Ι ω ά ν ν η Μ α χ α ι ρ ί δ η F a x : 2 1 0 4 1 0 4 4 4 3 2, 2 2 8 1

Διαβάστε περισσότερα

Χαρακτηριστικά Παλετών του Οίκου SISMEBI

Χαρακτηριστικά Παλετών του Οίκου SISMEBI Χαρακτηριστικά Παλετών του Οίκου SISMEBI Συνήθης Χωρητικότητα παλέτας: 588 φιάλες 0,75lt (στα 75,9 mm διαμέτρου) Η Παλέτα δέχεται όλες τις φιάλες (σε 3 επίπεδα) που έχουν ύψος έως 330 mm. Αδρανείς σε οσμές,

Διαβάστε περισσότερα

VERBOS II: A idéia de tempo, em grego, refere-se à qualidade da ação e não propriamente ao tempo,

VERBOS II: A idéia de tempo, em grego, refere-se à qualidade da ação e não propriamente ao tempo, 43 VERBOS II: A idéia de tempo, em grego, refere-se à qualidade da ação e não propriamente ao tempo, como em português. No presente, por exemplo, temos uma ação durativa ou linear. É uma ação em progresso,

Διαβάστε περισσότερα

Método de Diferenças Finitas Aplicado à Precicação de Opções EDÍLIO ROCHA QUINTINO Dissertação de Mestrado submetida ao Programa de Pós-Graduação em Computação da Universidade Federal Fluminense como requisito

Διαβάστε περισσότερα

Curso OPCIÓN A. TEXTO Título del texto. La madre de Brásidas se informa sobre el comportamiento de su hijo

Curso OPCIÓN A. TEXTO Título del texto. La madre de Brásidas se informa sobre el comportamiento de su hijo UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: GRIEGO II Curso 2014-2015 Modelo INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

Διαβάστε περισσότερα

Οδηγίες λειτουργίας MOVITRAC LTP. Έκδοση 12/2008 16766199 / EL

Οδηγίες λειτουργίας MOVITRAC LTP. Έκδοση 12/2008 16766199 / EL Τεχνολογία μετάδοσης κίνησης \ Αυτοματισμοί μετάδοσης κίνησης \ Ενσωμάτωση συστήματος \ Υπηρεσίες MOVITRAC LTP Έκδοση 12/2008 16766199 / EL Οδηγίες λειτουργίας SEW-EURODRIVE Driving the world Περιεχόμενα

Διαβάστε περισσότερα

Compra y Venta de divisas negociadas en el país por el Sistema Financiero privado

Compra y Venta de divisas negociadas en el país por el Sistema Financiero privado Compra y Venta de divisas negociadas en el país por el Sistema Financiero privado SUBGERENCIA DE PROGRAMACIÓN Y REGULACIÓN DIRECCIÓN NACIONAL DE SÍNTESIS MACROECONÓMICA www.bce.ec Nro. 22 Primer trimestre

Διαβάστε περισσότερα

ipod integration kit Manual del propietario Εγχειρίδιο καтόχου Manual do proprietário Kullanıcı El Kitabı

ipod integration kit Manual del propietario Εγχειρίδιο καтόχου Manual do proprietário Kullanıcı El Kitabı ipod integration kit Manual del propietario Εγχειρίδιο καтόχου Manual do proprietário Kullanıcı El Kitabı cover ES_GR_P_TU.indd 3 21-02-2007 14:03:20 Lea completamente este manual antes de usar ipod integration

Διαβάστε περισσότερα

1. Πηγή αρμονικών κυμάτων συχνότητας 5 Hz εξαναγκάζει το άκρο Ο ενός γραμμικού ελαστικού μέσου, το

1. Πηγή αρμονικών κυμάτων συχνότητας 5 Hz εξαναγκάζει το άκρο Ο ενός γραμμικού ελαστικού μέσου, το Η φάση του αρμονικού κύματος 1. Πηγή αρμονικών κυμάτων συχνότητας 5 Hz εξαναγκάζει το άκρο Ο ενός γραμμικού ελαστικού μέσου, το οποίο ταυτίζεται με τον οριζόντιο ημιάξονα O, να εκτελεί απλή αρμονική ταλάντωση

Διαβάστε περισσότερα

Για τον ορισμό της ισχύος θα χρησιμοποιηθεί η παρακάτω διάταξη αποτελούμενη από ένα κύκλωμα Κ και μία πηγή Π:

Για τον ορισμό της ισχύος θα χρησιμοποιηθεί η παρακάτω διάταξη αποτελούμενη από ένα κύκλωμα Κ και μία πηγή Π: 1. Ηλεκτρικό ρεύμα Το ηλεκτρικό ρεύμα ορίζεται ως ο ρυθμός μιας συνισταμένης κίνησης φορτίων. Δηλαδή εάν στα άκρα ενός μεταλλικού αγωγού εφαρμοστεί μια διαφορά δυναμικού, τότε το παραγόμενο ηλεκτρικό πεδίο

Διαβάστε περισσότερα

PRODUCIÓN DE LEITE NA UE

PRODUCIÓN DE LEITE NA UE COMPOSICIÓN DA DIETA E CALIDADE DO LEITE NAS EXPLOTACIÓNS DE VACÚN DE GALICIA Gonzalo Flores e Sonia Pereira CIAM, 25 de setembro de 2014 PRODUCIÓN DE LEITE NA UE Produción de leite en kg / ha (EU/27,

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 013 - ΕΞΕΤΑΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ Θέμα Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) Στις

Διαβάστε περισσότερα

Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής

Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής Φυσικά Μεγέθη Φυσικά μεγέθη είναι έννοιες που μπορούν να μετρηθούν και χρησιμοποιούνται για την περιγραφή των φαινομένων. Διεθνές σύστημα μονάδων S. I Το διεθνές

Διαβάστε περισσότερα

A edición íntegra da General Estoria de Afonso X o Sabio

A edición íntegra da General Estoria de Afonso X o Sabio A edición íntegra da General Estoria de Afonso X o Sabio (coord. Pedro Sánchez-Prieto Borja, 2009, 10 vols.) 1 Instituto da Lingua Galega - Universidade de Santiago de Compostela... que ajunta con os feitos

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» 1 o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 2011: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» 1 o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 2011: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ : ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. β.. α. 3. δ. 4. α. 5. α-λ, β-σ, γ-λ, δ-λ, ε-σ. ΘΕΜΑ B. Η σωστή απάντηση

Διαβάστε περισσότερα

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ± Ó³ Ÿ. 2010.. 7, º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ Š ˆ œ Š Œ ˆ Œ.. Ëμ μ Î ± É ÉÊÉ ³..., Œμ ± ² É Î ± ³μÉ μ Ëμ ³ μ ²Ó μéμî ÒÌ Ô² ±É μ ÒÌ Êαμ, Ö ±μéμ ÒÌ Î É Î μ É ² μ μ ³, Éμ± ³, ÒÏ ÕÐ ³ ²Ó μ Î Éμ± ²Ó. Ê

Διαβάστε περισσότερα

, όπου Α, Γ, l είναι σταθερές με l > 2.

, όπου Α, Γ, l είναι σταθερές με l > 2. Φυσική Στερεάς Κατάστασης: Εισαγωγή Θέμα 1 Η ηλεκτρική χωρητικότητα ισούται με C=Q/V όπου Q το φορτίο και V η τάση. (α) Εκφράστε τις διαστάσεις του C στις βασικές διαστάσεις L,M,T,I. (β) Σφαίρα είναι φορτισμένη

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ: ΤΑΛΑΝΤΩΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ: ΤΑΛΑΝΤΩΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ: ΤΑΛΑΝΤΩΣΕΙΣ ΘEMA 1 Να γράψετε στη κόλλα σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.1 Το αποτέλεσμα της σύνθεσης δύο αρμονικών

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2013

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΠΝΛΗΠΤΙΚΟ ΙΓΩΝΙΣΜ ΦΥΣΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ 0 ΘΕΜ ο Να γράψετε στο φύλλο απαντήσεών σας τον αριµό καεµιάς από τις ακόλοες ηµιτελείς προτάσεις και δίπλα της το γράµµα πο αντιστοιχεί στο σωστό σµπλήρωµά της..

Διαβάστε περισσότερα