ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ και ΧΑΟΣ. Ioannis E. Antoniou

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ και ΧΑΟΣ. Ioannis E. Antoniou"

Transcript

1 ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ και ΧΑΟΣ 2. MΗNYMATA ως Χρονοσειρες. Αναλογικα και Ψηφιακα Μηνυματα. Δειγματοληψια Ioannis E. Antoniou Mathematics Department Aristotle University 54124,Thessaloniki,Greece

2 Mηνυματα και Γλωσσα Επικοινωνιας Μετατροπη Ψηφιακου σε Αναλογικο Σημα Μετατροπη Αναλογικου σε Ψηφιακο Σημα Δειγματοληψια

3 MHNYMATA και ΓΛΩΣΣΑ ΕΠΙΚΟΙΝΩΝΙΑΣ Επικοινωνια είναι η ανταλλαγη Μηνυματων Τα Μηνυματα είναι χρονοσειρες συμβολων σ από το συνολο Σ Σε διακριτο χρονο ακολουθιες ψ: T Σ: t ψ t, T Z (digital signals) Σε συνεχη χρονο συναρτησεις ψ: T Σ: t ψ(t), T R (analog signals) T = o Xρονος = το διαταγμενο συνολο καταγραφων του Χρονου Ο χρονος μπορει να είναι συνεχης, t, η διακριτος t=nτ, n, τ η μοναδα χρονου = ο στοιχειωδης χρονος = το χρονον (chronon). Τα Μηνυματα είναι στοιχεια του συνολου Σ T των απεικονισεων με πεδιο ορισμου το χρονο T (δεικτες χρονου) και πεδιο τιμων τα συμβολα από το Σ Το συμβολο Σ T περιλαμβανει ολες τις κλασεις Μηνυματων

4 Παραδειγματα Μηνυματων - Συμβολων Μηνυμα Μετρηση Θερμοκρασιας, Πιεσης, Ηλεκτρικου Ρευματος Τηλεγραφημα του 1902 Συμβολα Ρητοι Αριθμοι., _, ΚΕΝΟ Δυαδικο 0,1 Ηχος, Moυσικη Νοτες, Υψη, Διαρκειες Εικονα, Video, Aκολουθια Pixels Κειμενο βιβλιου Εmails, Περιεχομενο Iστοσελιδων Προγραμμα Ενταση (Red, Green, Blue) ASKII χαρακτηρες τα Συμβολα μιας Γλωσσας Προγραμματισμου Πχ. ΜathML DNA Tα 4 Νουκλεοτιδια Α,G,C,T Πρωτεινες Τα 20 Αμινοξεα Α,C,D,E,F,G,H,I, K, L,M,N,P,Q, R,S,T,V,W,Y Παιγνιο με Ζαρια 1,2,3,4,5,6 Βιβλιοθηκη της Βαβελ 22 letters, comma, period, space Βοrges J. L Ficciones, Grove Press 1962

5 The 20 Amino Acids directly encoded by the universal genetic code NAME ΟΝΟΜΑ Abbreviation Symbol Produced by Organism Alanine αλανινη ALA A Non Essential Arginine αργινινη ARG R Conditional Asparagine Ασπαραγινη ΑSN N Non Essential Aspartic acid ασπαρτικο οξυ ASP D Non Essential Cysteine Κυστεινη CYS C Conditional Glutamin acid γλουταμικο οξυ GLU E Non Essential Glutamine γλουταμινη GLN Q Conditional Glycine Γλυκινη GLY G Conditional Histidine ιστιδινη HIS H Essential Isoleucine ισολευκινη ILE I Essential Leucine Λευκινη LEU L Essential Lysine Λυσινη LYS K Essential Methionine μεθειονινη MET M Essential Phenylalanine φαινυλαλανινη PHE F Essential Proline προλινη PRO P Conditional Serine σερινη SER S Conditional Threonine θρεονινη THR T Essential Tryptophan τρυπτοφανη TRP W Essential Tyrosine τυροσινη TYR Y Conditional Valine βαλινη VAL V Essential

6 Ορισμος Μηνυμα μηκους m είναι κάθε πεπερασμενη ακολουθια (ψ) = (ψ t+1, ψ t+2,..., ψ t+m ), ορων που λαμβανονται από n Συμβολα Σ={σ 1, σ 2,... σ n }, ψ t Σ (ψ) Σ m Σ F Xωροι Μηνυματων: Σ m = οι πεπερασμενες ακολουθιες συμβολων από το Σ με m ορους Σ m = οι πεπερασμενες ακολουθιες συμβολων από το Σ με το πολυ m ορους Σ F = οι πεπερασμενες ακολουθιες συμβολων από το Σ Σ N = οι μονοπλευρες (unilateral) ακολουθιες συμβολων από το Σ Σ Z = οι αμφιπλευρες (bilateral) ακολουθιες συμβολων από το Σ

7 Kαθε m-αδα (ψ t+1, ψ t+2,..., ψ t+m ) ειναι ενα διαταγμενο δειγμα μεγεθους m, εκ των n συμβολων {σ 1, σ 2,... σ n }, οπου καθε συμβολο μπορει να επαναλαμβανεται. Ισοδυναμα: (ψ t+1, ψ t+2,..., ψ t+m ) ειναι Επαναληπτικη Διαταξη (σ k1, σ k2,..., σ km ) των n συμβολων {σ 1, σ 2,... σ n } ανα m Το πληθος των μηνυματων μηκους m είναι Το πληθος των Επαναληπτικων Διαταξεων n Στοιχειων ανα m: Υ m = n m

8 Ορισμος Η Κλασση Σ F των πεπερασμενων ακολουθιων συμβολων από το Σ Σ F = Σ * = m N Kleene Closure {A} Σ m To συνολο Σ * εχει απειρο πληθος στοιχειων, ενώ καθε στοιχειο του εχει πεπερασμενο μηκος Παραδειγμα Σ = {0, 1}, Σ* = {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, }.

9 Ορισμος Γλωσσα με Αλφαβητο Σ (L, Σ, G) 1) Σ={σ 1, σ 2,... σ n } το συνολο συμβολων, ψηφιων, γραμματων της Γλωσσας 2) G = η Γραμματικη της Γλωσσας = οι κανονες συνταξης λεξεων-προτασεων που οριζουν ποιες λεξεις (ακολουθιες συμβολων) είναι συντακτικα αποδεκτες (syntactically admissible,valid) 3) L Σ F L(Σ) ένα συνολο μηνυματων = λεξεων με συμβολα από το Σ. Τα δυνατα κειμενα, η «Γραμματεια» της Γλωσσας

10 Παραδειγμα: Η Βιβλιοθηκη της Βαβελ που περιεχει τα βιβλια που γραφτηκαν και θα γραφτουν «the Library is total and that its shelves register all the possible combinations of the twenty-odd orthographical symbols (a number which, though extremely vast, is not infinite): Everything: the minutely detailed history of the future, the archangels' autobiographies, the faithful catalogues of the Library, thousands and thousands of false catalogues, the demonstration of the fallacy of those catalogues, the demonstration of the fallacy of the true catalogue, the Gnostic gospel of Basilides, the commentary on that gospel, the commentary on the commentary on that gospel, the true story of your death, the translation of every book in all languages, the interpolations of every book in all books.» Βοrges J. L Ficciones, Grove Press 1962 The Babel Library has x books the alphabet has 25 symbols. Each book has 410 pages, with 40 lines of 80 characters on each page. Number of symbols in a Book: = Bloch W. G.2008, The Unimaginable Mathematics of Borges Library Of Babel, Oxford University Press The Library of Congress has 3 x 10 7 Books Number of Orthographically correct Books written in English: = Number of English Words: Number of Words per line (including comma, period, space): 30 Number of Words per Book: 410 x 30 x 40 =

11 Symbols Grammar = Rules for Syntax Syntax = message (φραση) construction Μessages, Φρασεις, Logical Forms, Σχηματα Λογου Axioms Inference Rules = Transformation Rules Semantics, Meaning Language Formal System Logic = Logical System Gerber A., Van der Merwe A.,Barnard A. 2008, A Functional Semantic Web architecture, European Semantic Web Conference, ESWC 08, Tenerife

12 ΣΧΟΛΙΑ Συντακτικα Φιλτρα, πχ Ορθογραφος Microsoft Word Η συντακτικη επεξεργασια μεσω της Γραμματικης είναι αναγκαια για την Νοηματοδοτηση (Meaning) των Μηνυματων-κειμενων, αλλα δεν επαρκει Νοηματικη Επεξεργασια (Semantic Processing) Σημασιολογικα Φιλτρα (Semantic Filters) ΕΦΑΡΜΟΓΕΣ Λογικη, Υπολογιστες, Προγραμματισμος, Διαδικτυο Γλωσσολογια Βιολογια Μουσικη

13 References Ginsburg Σ. 1975, Algebraic and automata theoretic properties of formal languages, North-Holland Harrison Μ. 1978, Introduction to Formal Language Theory, Addison-Wesley. Hopcroft J. and Ullman J. 1979, Introduction to Automata Theory, Languages and Computation, Addison-Wesley Publishing, Reading Massachusetts Rozenberg G., Salomaa A. 1997, Handbook of Formal Languages: Volumes I-III, Springer

14 Digital to Analog Conversion = Curve fitting = Smoothing = finding a curve which has the best fit to a series of data points and possibly other constraints includes interpolation (exact fit) regression analysis (approximate fit) extrapolation Interpolation = Παρεμβολη Reconstruction of a function from discrete samples Representation of a function in terms of discrete samples Given the points (y 1, t 1 ), (y 2, t 2 ),, (y N, t N ) Find an Interpolation function f within a specific Class A of functions : y n = f(t n ), n=1,2,,n Regression = Παλινδρομιση Construct a function within a specific Class A of functions with minimal distance from discrete samples Least Squares Regression = Least Squares Fit: the Distance is the L 2 distance Extrapolation is the extension of f (constructed by Interpolation or by Regression) for t > t N

15 Regression, Interpolation, Function Basis of A Extrapolation are called Polynomial Polynomials Rational Fractions of Polynomials Trigonometric Periodic Functions Fourier Analysis Exponential Exponentials Smoothing = Εξομαλυνση A C r is a Class of Smooth functions Wavelet Wavelets Wavelet Analysis

16 Analog to Digital Conversion Sampling = Δειγματοληψια The conversion of Continuous Functions (Signals) to Numerical Sequences (Time Series)

17 Both DAC (Interpolation) and ADC (Sampling) are based on Function Expansion Formulas Harmonic Analysis Ηarmonic Analysis Function Expansion Formulas f(t)= f ν u ν ( ν t) u ν οrthonormal basis of Functions in some HS of real functions on some interval (a,b) f ν = <f, u ν > = (a,b) dt w(t) f(t) u ν (t) w(t)dt = dν(t) the measure on (a,b) L 2 ([a,b), w) the Hilbert Space of square integrable Functions on [a,b) with respect to the measure w(t)dt = dν(t)

18 Approximations of functions with Function Expansion Formulas Ν f [N] (t) = f ν u ν (t) ν=1 Approximation Error: ε Ν = f f [N] (t) Ν f [N] (t) = f ν u ν (t) ν= N Expansions Taylor Expansion Weierstrass Theorem Fourier Series Special Function Expansions Wavelet Expansions

19 Taylor Expansion f(t+x)= f(x)= ν=0 ν=0 1 ν! f(ν) (t)x ν 1 ν! f(ν) (0)x ν Weierstrass Theorem every continuous function defined on a closed interval [a,b] can be uniformly approximated as closely as desired by a polynomial function. Polynomials are among the simplest functions, Computers directly evaluate polynomials Polynomial interpolation. v r = x r is a basis (non-orthonormal) of the Hilbert Space L 2 ([a,b), w(t)dt) generalization to several real variables

20 Fourier Series of the T-Periodic Real Function f (Temporal), T>0 Theorem Riesz-Fisher 1907 f is square integrable lim N f f [N] 2 = lim N dt with f [N] (t) = +N n= N C n e inωt, C n = dt T 0 T f(t) f [N] (t) 2 = 0 T 0 T e inωt f(t) Proof Dym H., McKean Η.1972, Fourier Series and Integrals, Academic Press, New York Dunford, N.,Schwartz, J.T. 1958, Linear operators, Part I, Wiley, New York (IV I3) Corollary u n = e inωt, n Z οrthonormal basis of L 2 (0,T), ω = 2π Τ = the Cyclic Frequency

21 Fourier Transform: L 2 (0,T) l 2 (Z) : f f n = < e inωt, f > Scalar Product of L 2 (0,T): < f, g > = dt T 0 T f (t)g(t) Scalar Product of l 2 (Z): < (f n ), (g n ) > l 2 (Z) = n= f n g n Exponential Expansion Formula for real periodic functions f with period T>0: with + f(t) = C n e inωt T 0 n= C n = < e inωt, f > = dt e inωt f(t) = the n-fourier Amplitude of f, n Z T 0 C 0 =< 1, f > = dt T T f(t) = the Average Value of f over the Period T

22 Definition Trigonometric Series Expansion for real periodic functions f with period T: + f(t) = [α n cos(nωt) + β n sin(nωt)] n=0 The Fourier Coefficients are T 0 α 0 = dt T f(t) T α n = 2 T dt 0 β n = 2 T dt 0 T f(t) cos(nωt), n = 1,2, f(t) si n(nωt), n = 1,2, Aσκηση: {0.1} Δειξτε τους τυπους των συντελεστων Fourier με την παραδοχη ότι ισχυει η ιδιοτητα εναλλαγης Ολοκληρωματος που εχει η Ομοιομορφη συγκλιση Σειρων Συναρτησεων: Τ dt 0 + [α n cos (nωt) + β n sin (nωt)] n=0 + Τ = dt n=0 0 [α n cos (nωt) + β n sin (nωt)]

23 Σχεση Τριγωνομετρικης Εκθετικης Σειρας Fourier α 0 = C 0 α n = 2ReC n, n=1,2, β n = 2ImC n, n=1,2, C n = 1 2 (α n + i β n ), n=1,2, C n =(C n )* = 1 2 (α n i β n ), n=1,2, Proof f(t) = + C n e inωt 1 = C 0 + C n e inωt + + C n e inωt + == C 0 + C n e +inωt + C n e inωt n= n= n=1 n=1 + n=1 ] f real (C n )* = C n : f(t) = C n=1 2Re[C n e inωt ] = C 0 + [α n cosωt + β n sin ωt

24 EXAMPLES Aσκηση: Υπολογιστε το Αναπτυγμα Fourier {0.1} Aσκηση: Υπολογιστε το Αναπτυγμα Fourier {0.1}

25 f(x) = 4 sin(2n 1)x π 2n 1 n=1 Aσκηση: Υπολογιστε το Αναπτυγμα Fourier {0.1} f(x) = θ( x) [2νπ, 2νπ + 2π), ν Z = sin (2n 1)x π 2n 1 Aσκηση: Υπολογιστε το Αναπτυγμα Fourier {0.1} n=1

26 f(x) = π sin n 2π Τ x n n=1 Aσκηση: Υπολογιστε το Αναπτυγμα Fourier {0.1} f(x) = e x (2ν 1)π, (2ν + 1)π, ν Z = 2sinh(π) π ( 1)n 1 + n 2 cos (nx) sin(nx) n=1 Aσκηση: Υπολογιστε το Αναπτυγμα Fourier {0.1}

27 Theorem The Fourier Transform is Unitary < f, g > = < (f n ), (g n ) > l 2 (Z) T dt T 0 f (t)g(t) = f n g n n= Αποδειξη Aσκηση 0.1 Σχεση Διαφορισιμοτητας και Προσεγγισης Fourier Aσκηση: {1} Υπολογιστε τα Αναπτυγματα Fourier σε καποιο διαστημα [0, Τ] f [5] (t) = 5 [α n (f) cos (nωt) + β n (f) sin (nωt) n=0 5 g [5] (t) = [α n (g) cos (nωt) + β n (g) sin (nωt) n=0 των 5 πρωτων ορων μιας λειας συναρτησης f και μιας μη λειας συναρτησης g με 2 ακμες Συγκρινατε τις 2 προσεγγισεις f [5] (t) και g [5] (t) με τις f(t) και g(t) αντιστοιχα.

28 Power of the Periodic function The Norm Square Parseval's Formula T f 2 = dt T 0 f(t) 2 = f n 2 n=

29 Theorem Τhe Fourier basis is an orthonormal basis of eigenfunctions of the differentiation operators Self-Adjoint Differentiation: i d dx e iωt = ωe iωt Laplace Operator: d2 dx 2 e iωt = ω 2 e iωt Early ideas about the Trigonometric Series Expansion of Periodic Functions go back to Pythagoras Solutions of Wave Equation of Strings 2 ψ = t 2 c2 2 ψ x2 as Trigonometric Series Expansions were obtained by J.R. D Alembert 1747 and D. Bernoulli 1853 Solutions of the Heat Equation ψ 2 as Trigonometric Series Expansions were obtained by J.B. Fourier Fourier J.B. 1822, Theorie Analytique de la Chaleur, Didot, Paris. English translation by Freeman E. 1955, Dover, New York. = β 2 ψ t x The notions of Convergence and the classes of functions that can be represented as Trigonometric Series were clarified later Dym H., McKean Η.1972, Fourier Series and Integrals, Academic Press, New York

30 Special Function Expansions Orthonormal bases on spaces of integrable functions solutions of differential equations integrals of elementary functions Sturm-Liouville Equation Second order Linear Eigenvalue Equation: SL[ψ]=λψ a(x) d2 ψ dψ + b(x) dx2 dx = λψ Οι ιδιοσυναρτησεις (Eιδικες Συναρτησεις) αποτελουν oρθοκανονικη βαση στους Χωρους L 2 [(α,β),w] {Tαξινομιση Ειδικων Συναρτησεων. Θεωρημα Rodriguez} Dennery P., Krzywicki A. 1969, Mathematics for Physicists, Harper, New York Miller 1968, Lie Theory and Special Functions, Academic Press, New York Wawrzynczyk Α. 1984, Group Representations and Special Functions, D.Reidel Publishing Company, Dordrecht

31 Oι 3 βασικες Ειδικες Συναρτησεις ως βασεις ιδιοσυναρτησεων Τελεστων Sturm-Liouville Interval Sturm-Liouville Equation (, ) Hermite Equation [0, ) Laguerre Equation a(x) d2 y dy + b(x) dx2 dx = λy Eigenfunctions Basis Weight in the Scalar Product w(x) d2 y dy + 2x dx2 dx = 2n y Hermite Polynomials e x2 x d2 y dy + [ γ + x 1] dx2 dx = λy Laguerre Functions e x [ 1,1] Legendre Equation [ (1 x 2 )] d2 y dy + [2x] dx2 dx = n(n + 1)y Legendre Polynomials 1

32 Κατασκευη βασεων σε Xωρους Συναρτησεων επι οιουδηποτε διαστηματος (α,β) Μετασχηματισμοι Von Neumann Definition Von Neumann Transforms of Functions on (t 1, t 2 ) to functions on (x 1, x 2 ) are the Unitary Transformations of square Integrable functions supported on (t 1, t 2 ) to square Integrable functions supported on (x 1, x 2 ) V: L 2 (t 1, t 2 ) L 2 (x 1, x 2 ) : f Vf with f (t) (Vf)(x): < Vf, Vg > = < f, g > dx (Vf) (x)(vg)(x) x 2 x 1 t 2 = dt f t 1 (t)g(t) Misra B., Speiser D.,Targonski G. 1961, Integral Operators in the Theory of Scattering, Helv. Phys. Acta 36, Von Neumann J. 1935, Charakterisierung des Spektrums eines Integraloperators, Actualites Scientifiques et Industrielles No. 229

33 VN Transforms Example 1: V: L 2 (-, ) L 2 (0, ) : f Vf with f (t) (Vf)(x) = 1 x f(lnx) V -1 : L 2 (0, ) L 2 (-, ) : f V -1 f with f (t) (V -1 f)(x) = e x 2f(e x ) Aσκηση: Δειξτε ότι ο Μετασχηματισμος V είναι Unitary {0.5} VN Transforms Example 2: V: L 2 (0, ) L 2 1 (0, 1) : f Vf with f (t) (Vf)(x) = f x 1 x 1 x V -1 : L 2 (0, 1) L 2 (0, ) : f V -1 f with f (t) (V -1 1 f)(x) = f x 1+x 1+x Aσκηση: Δειξτε ότι ο Μετασχηματισμος V είναι Unitary {0.5} VN Transforms Example 3: V: L 2 [0,T) L 2 [a,b) : f Vf : with f (t) Vf(x)= T b a f x a b a T V -1 : L 2 [a,b) L 2 [0,T) : f Vf : Vf(t)= b a T f b a T t + a Aσκηση: Δειξτε ότι ο Μετασχηματισμος V είναι Unitary {0.5}

34 Wavelet Expansions Wavelets are functions ψ(x) whose translations and dilations ψ β,α βψ(βx α) provide bases for expansion of integrable functions Μultiresolution Analysis

35 Haar Wavelet Στις Αρχες του 20 ου αιωνα πιστευαν πως ολες οι ορθοκανονικες βασεις συναρτησεων ειναι ιδιοσυναρτησεις Διαφορικων Τελεστων ως λειες συναρτησεις Υπαρχουν Μη Διαφορισιμες βασεις συναρτησεων? Ηaar Wavelets Haar A. 1910, Zur Theorie der orthogonalen Funktionensysteme, Mathematische Annalen 69 no. 3, ψ(x) = 1, 0 x < 1 2 1, 1 2 x < 1 0, otherwise

36 ψ ν α = ψ(2 ν x α), ν, α Integers Antoniou I., Gustafson K. 1998, Haar s Wavelets and Differential Equations, J. Diff. Equations Antoniou I., Gustafson K. 1999, Wavelets and Stochastic Processes, Math.and Computers in Simulation 49, Antoniou I., Gustafson K. 2000, The Time Operator of Wavelets, Chaos, Solitons and Fractals 11, Antoniou I., Suchanecki Z. 2000, Non-uniform Time Operator, Chaos and Wavelets on the Interval, Chaos, Solitons and Fractals 11, Walter G. 1994, Wavelets and other Orthogonal Systems With Applications, CRC, Boca Raton Frazier M. 1999, An Introduction to Wavelets Through Linear Algebra, Springer, New York Jorgensen P. 2006, Analysis and Probability Wavelets, Signals, Fractals, Springer, New York Fractals, Generalized Functions, Chaos

37 Shannon Wavelet Shannon Interpolation Formula If a function f(t) contains no frequencies higher than W hertz, f(t) = 1 2π dω F(ω)eiωt = 1 2π 2πW dω F(ω)eiωt 2πW the Fourier Amplitudes F(ω) vanish outside [ πw, πw]: F(ω) = 0, for ω > πw Then it is completely determined by giving its ordinates at a series of points spaced 1/(2W) seconds apart. f(t) = + f n sin π(2wt n) n= = + f(nt) sin π T n = + 2W π(2wt n) n= f(nt) u π t n (t) T n n= where: f n = f n = f(nt) the samples 2W t T = 1 2W the sampling period u n (t) = sin π t T n π t T n = sinc π t n the Shannon Wavelet T

38 sinc(x) = sinx x = the sinus cardinalis function

39 Shannon C. 1949, Communication in the presence of Noise, Proc. Institute of Radio Engineers 37, Reprint as classic paper in: Proc. IEEE, Vol. 86, No. 2, (Feb 1998) Jerri A. 1977, "The Shannon sampling theorem: its various extensions and applications: A tutorial review" Proc. IEEE 65, pp Higgins J. 1985, "Five short stories about the Cardinal Series" Bull. Amer. Math. Soc. 12, pp Marks II R. 1991, Introduction to Shannon Sampling and Interpolation Theory, Springer, New York. Higgins J. 1996, Sampling Theory in Fourier and Signal Analysis Foundations, Clarendon Press, Oxford, New York Smale S., Zhou D.-X. 2004, Shannon Sampling and Function Reconstruction from Point Values, Bulletin AMS 41 (3), Pages Aσκηση: {0.8} Παραδειγμα Δειγματοληψιας Shannon

40 Theorem 1) {sinc(t k), k inz } is an orthonormal basis of bandlimited real functions with highest frequency π 2) sinλx λx, solutions of the Differential Equation: Aποδειξη: Aσκηση {0.1}

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

BIOXHMEIA, TOMOΣ I ΠANEΠIΣTHMIAKEΣ EKΔOΣEIΣ KPHTHΣ ΑΠΕΙΚΟΝΙΣΗ ΜΟΡΙΑΚΩΝ ΔΟΜΩΝ

BIOXHMEIA, TOMOΣ I ΠANEΠIΣTHMIAKEΣ EKΔOΣEIΣ KPHTHΣ ΑΠΕΙΚΟΝΙΣΗ ΜΟΡΙΑΚΩΝ ΔΟΜΩΝ BIOXHMEIA, TOMOΣ I ΠANEΠIΣTHMIAKEΣ EKΔOΣEIΣ KPHTHΣ ΑΠΕΙΚΟΝΙΣΗ ΜΟΡΙΑΚΩΝ ΔΟΜΩΝ ΑΠΕΙΚΟΝΙΣΗ ΜΟΡΙΑΚΩΝ ΔΟΜΩΝ ΜΟΡΙΑΚΑ ΜΟΝΤΕΛΑ 1: ΧΩΡΟΠΛΗΡΩΤΙΚΟ ΜΟΝΤΕΛΟ (SPACE-FILLING) 1: ΧΩΡΟΠΛΗΡΩΤΙΚΟ ΜΟΝΤΕΛΟ (SPACE-FILLING)

Διαβάστε περισσότερα

BIOXHMEIA, TOMOΣ I ΠANEΠIΣTHMIAKEΣ EKΔOΣEIΣ KPHTHΣ ΑΠΕΙΚΟΝΙΣΗ ΜΟΡΙΑΚΩΝ ΔΟΜΩΝ

BIOXHMEIA, TOMOΣ I ΠANEΠIΣTHMIAKEΣ EKΔOΣEIΣ KPHTHΣ ΑΠΕΙΚΟΝΙΣΗ ΜΟΡΙΑΚΩΝ ΔΟΜΩΝ BIOXHMEIA, TOMOΣ I ΠANEΠIΣTHMIAKEΣ EKΔOΣEIΣ KPHTHΣ ΑΠΕΙΚΟΝΙΣΗ ΜΟΡΙΑΚΩΝ ΔΟΜΩΝ ΑΠΕΙΚΟΝΙΣΗ ΜΟΡΙΑΚΩΝ ΔΟΜΩΝ ΜΟΡΙΑΚΑ ΜΟΝΤΕΛΑ 1: ΧΩΡΟΠΛΗΡΩΤΙΚΟ ΜΟΝΤΕΛΟ (SPACE-FILLING) 1: ΧΩΡΟΠΛΗΡΩΤΙΚΟ ΜΟΝΤΕΛΟ (SPACE-FILLING)

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

MAΘΗΜΑ 4 ο AMINOΞΕΑ-ΠΕΠΤΙ ΙΑ-ΠΡΩΤΕΪΝΕΣ

MAΘΗΜΑ 4 ο AMINOΞΕΑ-ΠΕΠΤΙ ΙΑ-ΠΡΩΤΕΪΝΕΣ MAΘΗΜΑ 4 ο AMIΞΕΑ-ΠΕΠΤΙ ΙΑ-ΠΡΩΤΕΪΝΕΣ Αλανίνη (Αla) Αλανυλοσερίνη (Αla-Ser) Αλβουµίνη ρα. Κουκουλίτσα Αικατερίνη Χηµικός Εργαστηριακός Συνεργάτης Τ.Ε.Ι Αθήνας ckoukoul@teiath.gr AMIΞΕΑ 2 λειτουργικές οµάδες

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Introduction to Time Series Analysis. Lecture 16.

Introduction to Time Series Analysis. Lecture 16. Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Εισαγωγή στις πρωτεΐνες Δομή πρωτεϊνών Ταξινόμηση βάσει δομής Βάσεις με δομές πρωτεϊνών Ευθυγράμμιση δομών Πρόβλεψη 2D δομής Πρόβλεψη 3D δομής

Εισαγωγή στις πρωτεΐνες Δομή πρωτεϊνών Ταξινόμηση βάσει δομής Βάσεις με δομές πρωτεϊνών Ευθυγράμμιση δομών Πρόβλεψη 2D δομής Πρόβλεψη 3D δομής Εισαγωγή στις πρωτεΐνες Δομή πρωτεϊνών Ταξινόμηση βάσει δομής Βάσεις με δομές πρωτεϊνών Ευθυγράμμιση δομών Πρόβλεψη 2D δομής Πρόβλεψη 3D δομής Τι είναι η πρωτεΐνη Τι εννοούμε με δομή πρωτεϊνών Οικογένειες

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1 Ήχος και φωνή Φύση του ήχου Ψηφιοποίηση µε µετασχηµατισµό Ψηφιοποίηση µε δειγµατοληψία Παλµοκωδική διαµόρφωση Αναπαράσταση µουσικής Ανάλυση και σύνθεση φωνής Μετάδοση φωνής Τεχνολογία Πολυµέσων 4-1 Φύση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΑΤΡΙΒΗ ΤΟΥ ΕΥΘΥΜΙΟΥ ΘΕΜΕΛΗ ΤΙΤΛΟΣ Ανάλυση

Διαβάστε περισσότερα

ΠΡΟΫΠΗΡΕΣΙΑΚΗ ΚΑΤΑΡΤΙΣΗ ΠΡΥ 017 ΤΕΧΝΟΛΟΓΙΑ Διαλέξεις 8 και 9 ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΠΡΟΫΠΗΡΕΣΙΑΚΗ ΚΑΤΑΡΤΙΣΗ ΠΡΥ 017 ΤΕΧΝΟΛΟΓΙΑ Διαλέξεις 8 και 9 ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗ ΚΑΤΑΡΤΙΣΗ ΠΡΥ 7 ΤΕΧΝΟΛΟΓΙΑ Διαλέξεις 8 και 9 ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Δρ. Ηλίας Κυριακίδης ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Αναλογικά

Διαβάστε περισσότερα

Formula for Success a Mathematics Resource

Formula for Success a Mathematics Resource A C A D E M I C S K I L L S C E N T R E ( A S C ) Formula for Success a Mathematics Resource P e t e r b o r o u g h O s h a w a Contents Section 1: Formulas and Quick Reference Guide 1. Formulas From

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ Βιογραφικό Σημείωμα Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ Ημερομηνία Γέννησης: 23 Δεκεμβρίου 1962. Οικογενειακή Κατάσταση: Έγγαμος με δύο παιδιά. EKΠΑΙΔΕΥΣΗ 1991: Πτυχίο Οικονομικού Τμήματος Πανεπιστημίου

Διαβάστε περισσότερα

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker Ειδική Ερευνητική Εργασία Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker ΚΑΡΑΔΗΜΑΣ ΗΛΙΑΣ Α.Μ. 323 Επιβλέπων: Σ. Φωτόπουλος Καθηγητής, Μεταπτυχιακό Πρόγραμμα «Ηλεκτρονική και Υπολογιστές», Τμήμα Φυσικής,

Διαβάστε περισσότερα

Κβαντικη Θεωρια και Υπολογιστες

Κβαντικη Θεωρια και Υπολογιστες Κβαντικη Θεωρια και Υπολογιστες 1 Εισαγωγη Χειμερινο Εξαμηνο Iωαννης E. Aντωνιου Τμημα Μαθηματικων Aριστοτελειο Πανεπιστημιο Θεσσαλονικη 54124 iantonio@math.auth.gr http://users.auth.gr/iantonio Κβαντική

Διαβάστε περισσότερα

FSM Toolkit Exercises

FSM Toolkit Exercises ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τηλεπικοινωνιών Αναπληρωτής Καθηγητής: Αλέξανδρος Ποταμιάνος Ονοματεπώνυμο: Α Μ : ΗΜΕΡΟΜΗΝΙΑ: ΤΗΛ 413 : Συστήματα Επικοινωνίας

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *2517291414* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2013 1 hour 30 minutes

Διαβάστε περισσότερα

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΥΣΗ FOURIER (H ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER) Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΓΕΩΠΟΝΙΚΗ ΣΧΟΛΗ ΤΟΜΕΑΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΡΙΑΣ ΦΩΤΙΟΥ ΠΤΥΧΙΟΥΧΟΥ ΓΕΩΠΟΝΟΥ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΓΕΩΠΟΝΙΚΗ ΣΧΟΛΗ ΤΟΜΕΑΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΡΙΑΣ ΦΩΤΙΟΥ ΠΤΥΧΙΟΥΧΟΥ ΓΕΩΠΟΝΟΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΓΕΩΠΟΝΙΚΗ ΣΧΟΛΗ ΤΟΜΕΑΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΡΙΑΣ ΦΩΤΙΟΥ ΠΤΥΧΙΟΥΧΟΥ ΓΕΩΠΟΝΟΥ Συγκέντρωση των ελεύθερων αµινοξέων στο αµνιακό υγρό σε σχέση µε την εβδοµάδα

Διαβάστε περισσότερα

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram? HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΜΕΤΑΤΡΟΠΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΣΕ ΨΗΦΙΑΚΟ

ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΜΕΤΑΤΡΟΠΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΣΕ ΨΗΦΙΑΚΟ ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΜΕΤΑΤΡΟΠΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΣΕ ΨΗΦΙΑΚΟ 5.1 Tο θεώρημα δειγματοληψίας. Χαμηλοπερατά σήματα 5.2 Διαμόρφωση πλάτους παλμού 5.3 Εύρος ζώνης καναλιού για ένα PAM σήμα 5.4 Φυσική δειγματοληψία

Διαβάστε περισσότερα

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ

Διαβάστε περισσότερα

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Σχολή ασολογίας και Φυσικού Περιβάλλοντος,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Διπλωματική Εργασία του φοιτητή του τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

ÂÓÈÎ ÁÈ ÙÔ K ÙÙ ÚÔ 1 Ô KÂÊ Ï ÈÔ 1.1 E Ë Î ÙÙ ÚˆÓ 1.1.1 ÚÔÎ Ú ˆÙÈÎ Î ÙÙ Ú

ÂÓÈÎ ÁÈ ÙÔ K ÙÙ ÚÔ 1 Ô KÂÊ Ï ÈÔ 1.1 E Ë Î ÙÙ ÚˆÓ 1.1.1 ÚÔÎ Ú ˆÙÈÎ Î ÙÙ Ú 11 1 Ô KÂÊ Ï ÈÔ ÂÓÈÎ ÁÈ ÙÔ K ÙÙ ÚÔ 1.1 E Ë Î ÙÙ ÚˆÓ Στο κεφάλαιο αυτό θα αναφερθούμε σύντομα στο κύτταρο, τα είδη (ευκαρυωτικά και προκαρυωτικά) και γενικά στα διάφορα στοιχεία του, όπως πυρήνα, κυτταρόπλασμα

Διαβάστε περισσότερα

Test Data Management in Practice

Test Data Management in Practice Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?

Διαβάστε περισσότερα

Η ΔΙΑΣΤΡΕΥΛΩΣΗ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ ΜΕΣΩ ΤΩΝ SOCIAL MEDIA ΤΗΝ ΤΕΛΕΥΤΑΙΑ ΠΕΝΤΑΕΤΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΗΣ ΑΝΑΣΤΑΣΙΑΣ-ΜΑΡΙΝΑΣ ΔΑΦΝΗ

Η ΔΙΑΣΤΡΕΥΛΩΣΗ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ ΜΕΣΩ ΤΩΝ SOCIAL MEDIA ΤΗΝ ΤΕΛΕΥΤΑΙΑ ΠΕΝΤΑΕΤΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΗΣ ΑΝΑΣΤΑΣΙΑΣ-ΜΑΡΙΝΑΣ ΔΑΦΝΗ Η ΔΙΑΣΤΡΕΥΛΩΣΗ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ ΜΕΣΩ ΤΩΝ SOCIAL MEDIA ΤΗΝ ΤΕΛΕΥΤΑΙΑ ΠΕΝΤΑΕΤΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΗΣ ΑΝΑΣΤΑΣΙΑΣ-ΜΑΡΙΝΑΣ ΔΑΦΝΗ Τμήμα Δημοσίων Σχέσεων & Επικοινωνίας Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ιονίων

Διαβάστε περισσότερα

IMES DISCUSSION PAPER SERIES

IMES DISCUSSION PAPER SERIES IMES DISCUSSION PAPER SERIES Will a Growth Miracle Reduce Debt in Japan? Selahattin mrohorolu and Nao Sudo Discussion Paper No. 2011-E-1 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 2-1-1

Διαβάστε περισσότερα

*2354431106* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009

*2354431106* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009 UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *2354431106* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009 1 hour 30 minutes

Διαβάστε περισσότερα

Σύντομο Βιογραφικό Σημείωμα

Σύντομο Βιογραφικό Σημείωμα Σύντομο Βιογραφικό Σημείωμα Προσωπικά Στοιχεία Όνομα Παντελής Επώνυμο Μπουμπούλης Υπηκοότητα Ελληνική Ημ/νία Γέννησης 23/02/1976 Διεύθυνση Σερφιώτου 86-88 Πειραιάς Τηλέφωνο 210-4533469, 210-4537064 e-mail

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

ΑΠΟΣΠΑΣΜΑ Π Ρ Α Κ Τ Ι Κ ΟΥ 3 ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ ΣΧΟΛΗΣ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

ΑΠΟΣΠΑΣΜΑ Π Ρ Α Κ Τ Ι Κ ΟΥ 3 ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ ΣΧΟΛΗΣ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΑΠΟΣΠΑΣΜΑ Π Ρ Α Κ Τ Ι Κ ΟΥ 3 ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ ΣΧΟΛΗΣ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Σήμερα 7-02-2013, ημέρα Πέμπτη και ώρα 10.00 συνήλθε σε συνεδρίαση το Συμβούλιο της Σχολής Τεχνολογικών Εφαρμογών του ΤΕΙ Αθήνας

Διαβάστε περισσότερα

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ» ΓΔΩΠΟΝΗΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΩΝ ΣΜΗΜΑ ΑΞΙΟΠΟΙΗΗ ΦΤΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗ ΜΗΥΑΝΙΚΗ ΣΟΜΕΑ ΕΔΑΦΟΛΟΓΙΑ ΚΑΙ ΓΕΩΡΓΙΚΗ ΥΗΜΕΙΑ ΕΙΔΙΚΕΤΗ: ΕΦΑΡΜΟΓΕ ΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΣΟΤ ΦΤΙΚΟΤ ΠΟΡΟΤ «ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ

Διαβάστε περισσότερα

ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΙΗ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ

ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΙΗ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ Δ ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΙΗ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ ΣΜΗΜΑ ΠΔΡΙΦΔΡΔΙΑΚΗ ΓΙΟΙΚΗΗ ΣΔΛΙΚΗ ΔΡΓΑΙΑ Θέκα: Αμηνιφγεζε κίαο δηαπξαγκάηεπζεο. Μειέηε Πεξίπησζεο: Ζ αλέγεξζε ηεο Νέαο Δζληθήο Λπξηθήο θελήο, ηεο Νέαο

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Μελέτη των υλικών των προετοιμασιών σε υφασμάτινο υπόστρωμα, φορητών έργων τέχνης (17ος-20ος αιώνας). Διερεύνηση της χρήσης της τεχνικής της Ηλεκτρονικής Μικροσκοπίας

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΒΙΟΛΟΓΙΑ Ηµεροµηνία: Παρασκευή 25 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω

Διαβάστε περισσότερα

Ημιτονοειδή σήματα Σ.Χ.

Ημιτονοειδή σήματα Σ.Χ. Ημιτονοειδή σήματα Σ.Χ. Αρμονική ταλάντωση και επειδή Ω=2πF Περιοδικό με βασική περίοδο Τ p =1/F Ημιτονοειδή σήματα Σ.Χ. 1 Ημιτονοειδή σήματα Σ.Χ. Σύμφωνα με την ταυτότητα του Euler Το ημιτονοειδές σήμα

Διαβάστε περισσότερα

DETERMINATION OF THERMAL PERFORMANCE OF GLAZED LIQUID HEATING SOLAR COLLECTORS

DETERMINATION OF THERMAL PERFORMANCE OF GLAZED LIQUID HEATING SOLAR COLLECTORS ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΕΡΕΥΝΑΣ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΜΟΚΡΙΤΟΣ / DEMOKRITOS NATIONAL CENTER FOR SCIENTIFIC RESEARCH ΕΡΓΑΣΤΗΡΙΟ ΟΚΙΜΩΝ ΗΛΙΑΚΩΝ & ΑΛΛΩΝ ΕΝΕΡΓΕΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ LABORATORY OF TESTIN SOLAR & OTHER ENERY

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER Ανάλυση σημάτων και συστημάτων Ο μετασχηματισμός Fourier (DTFT και DFT) είναι σημαντικότατος για την ανάλυση σημάτων και συστημάτων Εντοπίζει

Διαβάστε περισσότερα

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

Δρ. Ιωάννης Τσαγκατάκης Σύμβουλος Διατροφικής Αγωγής. Οι Πρωτεΐνες. Ένωση Ελλήνων Χημικών Περιφερειακό Τμήμα Κρήτης

Δρ. Ιωάννης Τσαγκατάκης Σύμβουλος Διατροφικής Αγωγής. Οι Πρωτεΐνες. Ένωση Ελλήνων Χημικών Περιφερειακό Τμήμα Κρήτης Δρ. Ιωάννης Τσαγκατάκης Σύμβουλος Διατροφικής Αγωγής Οι Πρωτεΐνες Ένωση Ελλήνων Χημικών Περιφερειακό Τμήμα Κρήτης Αμινοξέα, Πεπτίδια, Πρωτεΐνες, Ένζυμα Πεπτιδικός δεσμός Αμινοξέα Πεπτίδια (

Διαβάστε περισσότερα

Από τις χημικές ενώσεις στο κύτταρο: πως γεννήθηκε η Ζωή

Από τις χημικές ενώσεις στο κύτταρο: πως γεννήθηκε η Ζωή Από τις χημικές ενώσεις στο κύτταρο: πως γεννήθηκε η Ζωή Γιώργος Ανωγειανάκις Καθηγητής Φυσιολογίας Της Ιατρικής Σχολής του Α.Π.Θ. «Πως δουλεύει το σώμα μας: μια εισαγωγή στη φυσιολογία του ανθρώπου» Τη

Διαβάστε περισσότερα

ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ Socm09008@soc.aegean.gr

ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ Socm09008@soc.aegean.gr ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΤΟΠΙΚΗ ΚΟΙΝΩΝΙΚΗ ΑΝΑΠΤΥΞΗ ΚΑΙ ΣΥΝΟΧΗ» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Θέμα: Διερεύνηση των απόψεων

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

MATH 150 Pre-Calculus

MATH 150 Pre-Calculus MATH 150 Pre-Calculus Fall, 014, WEEK 11 JoungDong Kim Week 11: 8A, 8B, 8C, 8D Chapter 8. Trigonometry Chapter 8A. Angles and Circles The size of an angle may be measured in revolutions (rev), in degree

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3: 4 Πρόλογος Η παρούσα διπλωµατική εργασία µε τίτλο «ιερεύνηση χωρικής κατανοµής µετεωρολογικών µεταβλητών. Εφαρµογή στον ελληνικό χώρο», ανατέθηκε από το ιεπιστηµονικό ιατµηµατικό Πρόγραµµα Μεταπτυχιακών

Διαβάστε περισσότερα

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΒΑΓΙΑΣ ΒΛΑΧΟΥ Ιούλιος 2013

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΒΑΓΙΑΣ ΒΛΑΧΟΥ Ιούλιος 2013 ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΒΑΓΙΑΣ ΒΛΑΧΟΥ Ιούλιος 2013 Διεύθυνση: Τομέας Θεωρητικών Μαθηματικών, Τμήμα Μαθηματικών Πανεπιστήμιο Πατρών, 26500, Ρίο Ελλάδα. Τηλέφωνο: 2610-997391. e-mail: vvlachou@math.upatras.gr

Διαβάστε περισσότερα

LECTURE 2 CONTEXT FREE GRAMMARS CONTENTS

LECTURE 2 CONTEXT FREE GRAMMARS CONTENTS LECTURE 2 CONTEXT FREE GRAMMARS CONTENTS 1. Developing a grammar fragment...1 2. A formalism that is too strong and too weak at the same time...3 3. References...4 1. Developing a grammar fragment The

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΝΤΑΓΟΓΡΑΦΗΣΗΣ ΚΑΙ Η ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΤΗΣ ΣΤΗΝ ΕΛΛΑΔΑ: Ο.Α.Ε.Ε. ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΚΑΣΚΑΦΕΤΟΥ ΣΩΤΗΡΙΑ

ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΝΤΑΓΟΓΡΑΦΗΣΗΣ ΚΑΙ Η ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΤΗΣ ΣΤΗΝ ΕΛΛΑΔΑ: Ο.Α.Ε.Ε. ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΚΑΣΚΑΦΕΤΟΥ ΣΩΤΗΡΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΔΙΟΙΚΗΣΗ ΤΗΣ ΥΓΕΙΑΣ ΤΕΙ ΠΕΙΡΑΙΑ ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΝΤΑΓΟΓΡΑΦΗΣΗΣ ΚΑΙ Η ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΤΗΣ ΣΤΗΝ ΕΛΛΑΔΑ: Ο.Α.Ε.Ε. ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ

Διαβάστε περισσότερα

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΝΟΜΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΙΣΤΟΡΙΑΣ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΤΟΥ ΔΙΚΑΙΟΥ Διπλωματική εργασία στο μάθημα «ΚΟΙΝΩΝΙΟΛΟΓΙΑ ΤΟΥ ΔΙΚΑΙΟΥ»

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ Προοπτικές Εναρμόνισης της Ελληνικής Αγοράς Ηλεκτρικής Ενέργειας με τις Προδιαγραφές του Μοντέλου

Διαβάστε περισσότερα

ΟΡΟΙ ΚΑΙ ΠΡΟΥΠΟΘΕΣΕΙΣ ΣΧΕΔΙΟΥ

ΟΡΟΙ ΚΑΙ ΠΡΟΥΠΟΘΕΣΕΙΣ ΣΧΕΔΙΟΥ ΟΡΟΙ ΚΑΙ ΠΡΟΥΠΟΘΕΣΕΙΣ ΣΧΕΔΙΟΥ 1. Η διαφήμιση της Τράπεζας για τα "Διπλά Προνόμια από την American Express" ισχύει για συναλλαγές που θα πραγματοποιηθούν από κατόχους καρτών Sunmiles American Express, American

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση»

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση» ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Προστασία ηλεκτροδίων

Διαβάστε περισσότερα

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ Πρόγραμμα Μεταπτυχιακών Σπουδών «Επιστήμη και Τεχνολογία Τροφίμων και Διατροφή του Ανθρώπου» Κατεύθυνση: «Διατροφή, Δημόσια

Διαβάστε περισσότερα

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις» Τα μητρώα καταρτίστηκαν με απόφαση της Ακαδημαϊκής Συνέλευσης της ΣΝΔ της 18ης Απριλίου 2013. Η ανάρτησή τους στον ιστότοπο της ΣΝΔ εγκρίθηκε με απόφαση του Εκπαιδευτικού Συμβουλίου της 24ης Απριλίου 2013.

Διαβάστε περισσότερα

Information Theory Θεωρία της Πληροφορίας. Vasos Vassiliou

Information Theory Θεωρία της Πληροφορίας. Vasos Vassiliou Information Theory Θεωρία της Πληροφορίας Vasos Vassiliou Network/Link Design Factors Transmission media Signals are transmitted over transmission media Examples: telephone cables, fiber optics, twisted

Διαβάστε περισσότερα

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας» ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ «ΠΑΙ ΙΚΟ ΒΙΒΛΙΟ ΚΑΙ ΠΑΙ ΑΓΩΓΙΚΟ ΥΛΙΚΟ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που εκπονήθηκε για τη

Διαβάστε περισσότερα

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ

Διαβάστε περισσότερα

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships

Διαβάστε περισσότερα

2007 Classical Greek. Intermediate 2 Translation. Finalised Marking Instructions

2007 Classical Greek. Intermediate 2 Translation. Finalised Marking Instructions 2007 Classical Greek Intermediate 2 Translation Finalised Marking Instructions Scottish Qualifications Authority 2007 The information in this publication may be reproduced to support SQA qualifications

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΑΝΔΡΕΟΥ ΣΤΕΦΑΝΙΑ Λεμεσός 2012 i ii ΤΕΧΝΟΛΟΓΙΚΟ

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

ΕΡΙΤΟΡΕΣ ΚΑΙ ΑΝΘΩΡΟΙ ΚΛΕΙΔΙΑ ΑΝΑΘΕΣΘ ΑΓΩΝΑ ΓΑΦΕΙΟ ΑΓΩΝΩΝ ΟΓΑΝΩΤΙΚΘ ΕΡΙΤΟΡΘ. ζεκηλαρηο 1 ΡΑΓΚΟΣΜΙΑ ΟΜΟΣΡΟΝΔΙΑ (ISAF) ΕΛΛΘΝΙΚΘ ΟΜΟΣΡΟΝΔΙΑ (Ε.Ι.Ο.

ΕΡΙΤΟΡΕΣ ΚΑΙ ΑΝΘΩΡΟΙ ΚΛΕΙΔΙΑ ΑΝΑΘΕΣΘ ΑΓΩΝΑ ΓΑΦΕΙΟ ΑΓΩΝΩΝ ΟΓΑΝΩΤΙΚΘ ΕΡΙΤΟΡΘ. ζεκηλαρηο 1 ΡΑΓΚΟΣΜΙΑ ΟΜΟΣΡΟΝΔΙΑ (ISAF) ΕΛΛΘΝΙΚΘ ΟΜΟΣΡΟΝΔΙΑ (Ε.Ι.Ο. ΑΝΑΘΕΣΘ ΑΓΩΝΑ ΕΡΙΤΟΡΕΣ ΚΑΙ ΑΝΘΩΡΟΙ ΚΛΕΙΔΙΑ ΡΑΓΚΟΣΜΙΑ ΟΜΟΣΡΟΝΔΙΑ (ISAF) ΕΛΛΘΝΙΚΘ ΟΜΟΣΡΟΝΔΙΑ (Ε.Ι.Ο.) ΚΛΑΣΘ 6/6/2009 1 ΟΡΓΑΝΩΣΙΚΗ ΕΠΙΣΡΟΠΗ ΓΡΑΦΕΙΟ ΑΓΩΝΩΝ ΕΠΙΣΡΟΠΗ ΑΓΩΝΩΝ ΕΠΙΣΡΟΠΗ ΕΝΣΑΕΩΝ ΕΠΙΣΡΟΠΗ ΚΑΣΑΜΕΣΡΗΕΩΝ

Διαβάστε περισσότερα

SOAP API. https://bulksmsn.gr. Table of Contents

SOAP API. https://bulksmsn.gr. Table of Contents SOAP API https://bulksmsn.gr Table of Contents Send SMS...2 Query SMS...3 Multiple Query SMS...4 Credits...5 Save Contact...5 Delete Contact...7 Delete Message...8 Email: sales@bulksmsn.gr, Τηλ: 211 850

Διαβάστε περισσότερα

Επι Mένοντας Διεθνώς. Λίζα Μάγιερ. Managing Director, Fortis Venustas

Επι Mένοντας Διεθνώς. Λίζα Μάγιερ. Managing Director, Fortis Venustas Επι Mένοντας Διεθνώς Λίζα Μάγιερ Managing Director, Fortis Venustas Reinventing your Business Διαγράφοντας το παρελθόν και χαράζοντας το μέλλον Υπάρχει μέλλον μετά την κρίση; Ηκρίσηοδηγεί στην αναζήτηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΝΑΥΤΙΛΙΑ ΑΤΥΧΗΜΑΤΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΣΤΗ ΝΑΥΤΙΛΙΑ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΝΑΥΤΙΛΙΑ ΑΤΥΧΗΜΑΤΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΣΤΗ ΝΑΥΤΙΛΙΑ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΝΑΥΤΙΛΙΑ ΑΤΥΧΗΜΑΤΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΣΤΗ ΝΑΥΤΙΛΙΑ Ηρώ Ρέτσου Διπλωματική Εργασία που υποβλήθηκε στο Τμήμα Ναυτιλιακών Σπουδών

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ DTFT και Περιοδική/Κυκλική Συνέλιξη Διακριτός μετασχηματισμός συνημιτόνου DCT discrete cosine transform Η σχέση αποτελεί «πυρήνα»

Διαβάστε περισσότερα

Εκδηλώσεις Συλλόγων. La page du francais. Τα γλωσσοψυχο -παιδαγωγικά. Εξετάσεις PTE Δεκεμβρίου 2013

Εκδηλώσεις Συλλόγων. La page du francais. Τα γλωσσοψυχο -παιδαγωγικά. Εξετάσεις PTE Δεκεμβρίου 2013 296 Αύγουστος 2013 ΓΙΑΝΝΗΣ ΜΙΧΑΗΛΙΔΗΣ ΑΠΟΔΕΙΞΑΜΕ ΟΤΙ ΜΕ ΟΜΑΔΙΚΟΤΗΤΑ ΠΕΡΝΑΜΕ ΤΑ ΕΜΠΟΔΙΑ Με την έναρξη της σχολικής χρονιάς βρισκόμαστε στην αφετηρία σε μια δύσκολη κούρσα με τεχνητά εμπόδια, που ακόμη και

Διαβάστε περισσότερα

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ:ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example: UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου ΕΡΓΑΣΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΙΚΗΣ - ΟΠΟΗΛΕΚΡΟΝΙΚΗΣ & LASER ΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & /Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΙΚΗ FOURIER Γ. Μήτσου Μάρτιος 8 Α. Θεωρία. Εισαγωγή Η επεξεργασία οπτικών δεδοµένων, το φιλτράρισµα χωρικών συχνοτήτων

Διαβάστε περισσότερα

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2 SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin

Διαβάστε περισσότερα

English PDFsharp is a.net library for creating and processing PDF documents 'on the fly'. The library is completely written in C# and based

English PDFsharp is a.net library for creating and processing PDF documents 'on the fly'. The library is completely written in C# and based English PDFsharp is a.net library for creating and processing PDF documents 'on the fly'. The library is completely written in C# and based exclusively on safe, managed code. PDFsharp offers two powerful

Διαβάστε περισσότερα

Γιπλυμαηική Δπγαζία. «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ. Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο

Γιπλυμαηική Δπγαζία. «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ. Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΥΟΛΗ ΝΑΤΠΗΓΩΝ ΜΗΥΑΝΟΛΟΓΩΝ ΜΗΥΑΝΙΚΩΝ Γιπλυμαηική Δπγαζία «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο Σπιμελήρ Δξεηαζηική

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ. Είναι γνωστό άτι καθημερινά διακινούνται δεκάδες μηνύματα (E~mail) μέσω του διαδικτύου

ΠΕΡΙΛΗΨΗ. Είναι γνωστό άτι καθημερινά διακινούνται δεκάδες μηνύματα (E~mail) μέσω του διαδικτύου GREEKLISH: ΜΙΑ ΝΕΑ ΔΙΑΛΕΚΤΟΣ ΤΟΥ ΔΙΑΔΙΚΤΥΟΥ; Α.Καράκος, Λ.Κωτούλας ΠΕΡΙΛΗΨΗ Είναι γνωστό άτι καθημερινά διακινούνται δεκάδες μηνύματα (E~mail) μέσω του διαδικτύου {INTERNEη από την μια άκρη του κόσμου

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Business English Ενότητα # 9: Financial Planning Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

English PDFsharp is a.net library for creating and processing PDF documents 'on the fly'. The library is completely written in C# and based

English PDFsharp is a.net library for creating and processing PDF documents 'on the fly'. The library is completely written in C# and based English PDFsharp is a.net library for creating and processing PDF documents 'on the fly'. The library is completely written in C# and based exclusively on safe, managed code. PDFsharp offers two powerful

Διαβάστε περισσότερα

Cross sectional area, square inches or square millimeters

Cross sectional area, square inches or square millimeters Symbols A E Cross sectional area, square inches or square millimeters of Elasticity, 29,000 kips per square inch or 200 000 Newtons per square millimeter (N/mm 2 ) I Moment of inertia (X & Y axis), inches

Διαβάστε περισσότερα

Αναερόβια Φυσική Κατάσταση

Αναερόβια Φυσική Κατάσταση Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής

Διαβάστε περισσότερα