Εισαγωγή στους Γενετικούς Αλγορίθμους

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή στους Γενετικούς Αλγορίθμους"

Transcript

1 ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΓΝΩΡΙΣΗΣ ΠΡΟΤΥΠΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών & Πληροφορικής Τομέας Εφαρμογών και Θεμελιώσεων της Επιστήμης των Υπολογιστών. Διευθυντής Εργαστηρίου Σ. Λυκοθανάσης Ε-mail: Εισαγωγή στους Γενετικούς Αλγορίθμους Ευστράτιος Φ. Γεωργόπουλος Σπυρίδων Δ. Λυκοθανάσης ΠΑΤΡΑ 1999

2 1. ΕΙΣΑΓΩΓΗ Τα τελευταία τριάντα χρόνια, παρατηρείται ένα συνεχώς αυξανόμενο ενδιαφέρον για την ανάπτυξη συστημάτων επίλυσης προβλημάτων βασισμένων στις αρχές της Φυσικής Εξέλιξης. Τα συστήματα αυτού του είδους λειτουργούν διατηρώντας έναν πληθυσμό κωδικοποιημένων πιθανών λύσεων του προβλήματος που προσπαθούμε να επιλύσουμε, και εφαρμόζοντας πάνω σε αυτόν διάφορες διαδικασίες εμπνευσμένες από τη βιολογική εξέλιξη. Έτσι, περνώντας από γενιά σε γενιά, τα συστήματα αυτά δημιουργούν συνεχώς νέους πληθυσμούς πιθανών λύσεων εξελίσσοντας τους προηγούμενους πληθυσμούς. Οι Γενετικοί Αλγόριθμοι (Genetic Algorithms) είναι ένα παράδειγμα τέτοιου συστήματος που μαζί με τον Εξελικτικό Προγραμματισμό (Evolutionary Programming.), τις Στρατηγικές Εξέλιξης (Evolution Strategies), τα Συστήματα Ταξινόμησης (Classifier Systems) και το Γενετικό Προγραμματισμό (Genetic Programming) αποτελούν μια κατηγορία συστημάτων επίλυσης προβλημάτων που είναι ευρύτερα γνωστή με τον όρο Εξελικτικοί Αλγόριθμοι (Evolutionary Algorithms). Η πρώτη εμφάνιση των Γενετικών Αλγόριθμων (Γ.Α.) χρονολογείται στις αρχές του 1950, όταν διάφοροι επιστήμονες από το χώρο της βιολογίας αποφάσισαν να χρησιμοποιήσουν υπολογιστές στην προσπάθειά τους να προσομοιώσουν πολύπλοκα βιολογικά συστήματα. Η συστηματική τους ανάπτυξη όμως, που οδήγησε στην μορφή με την οποία είναι γνωστοί σήμερα, πραγματοποιήθηκε στις αρχές του 1970 από τον John Holland [Holland 1975] και τους συνεργάτες του στο Πανεπιστήμιο του Michigan. Η βασική ιδέα που κρύβεται πίσω από τους Γ.Α. είναι η μίμηση των μηχανισμών της βιολογικής εξέλιξης που απαντώνται στη φύση. Ας πάρουμε, για παράδειγμα, τους λαγούς και τον τρόπο που αναπαράγονται και εξελίσσονται από γενιά σε γενιά [Michalewicz, 1996]. Έστω ότι αρχίζουμε να παρατηρούμε ένα συγκεκριμένο πληθυσμό από λαγούς σε ένα οικοσύστημα. Όπως είναι φυσικό, κάποιοι από αυτούς θα είναι πιο γρήγοροι και πιο εύστροφοι από άλλους. Αυτοί οι λαγοί έχουν περισσότερες πιθανότητες να επιβιώσουν 2

3 στο φυσικό τους περιβάλλον (δηλαδή να εξασφαλίζουν τροφή και να ξεφεύγουν από τα διάφορα αρπακτικά που τους καταδιώκουν, όπως για παράδειγμα τις αλεπούδες) από ότι κάποιοι πιο αργοί ή λιγότερο έξυπνοι λαγοί. Φυσικά δεν είναι λίγοι οι αργοί ή λιγότερο έξυπνοι λαγοί που καταφέρνουν να επιβιώνουν εξαιτίας της τύχης ή άλλων παραγόντων. Όλοι αυτοί οι λαγοί, που καταφέρνουν να επιβιώσουν, θα αρχίσουν την παραγωγή της επόμενης γενιάς τους, μιας γενιάς που θα συνδυάζει με διάφορους τρόπους όλα τα χαρακτηριστικά των μελών της προηγούμενης. Έτσι, μερικοί αργοί λαγοί θα αναμειχθούν με κάποιους γρήγορους, κάποιοι γρήγοροι με άλλους γρήγορους, κάποιοι εύστροφοι λαγοί με κάποιους μη εύστροφους και ούτω καθεξής, δημιουργώντας έτσι σταδιακά έναν πληθυσμό που απαρτίζεται από λαγούς που κατά μέσο όρο είναι εξυπνότεροι και ταχύτεροι από τους προγόνους τους. Ευτυχώς όμως, για τη διατήρηση της φυσικής ισορροπίας, και τα αρπακτικά υφίστανται την ίδια διαδικασία εξέλιξης από γενιά σε γενιά, διαφορετικά οι λαγοί θα γίνονταν υπερβολικά γρήγοροι και έξυπνοι για να μπορούν να τους πιάσουν. Οι Γ.Α. χρησιμοποιούν ορολογία δανεισμένη από το χώρο της Φυσικής Γενετικής. Αναφέρονται σε άτομα (individuals) ή γενότυπους (genotypes) μέσα σε ένα πληθυσμό. Κάθε άτομο ή γενότυπος αποτελείται από χρωμοσώματα (chromosomes). Στους Γ.Α. αναφερόμαστε συνήθως σε άτομα με ένα μόνο χρωμόσωμα. Τα χρωμοσώματα αποτελούνται από γονίδια (genes) που είναι διατεταγμένα σε γραμμική ακολουθία. Κάθε γονίδιο επηρεάζει την κληρονομικότητα ενός ή περισσότερων χαρακτηριστικών. Τα γονίδια που επηρεάζουν συγκεκριμένα χαρακτηριστικά γνωρίσματα του ατόμου βρίσκονται και σε συγκεκριμένες θέσεις του χρωματοσώματος που καλούνται loci. Κάθε χαρακτηριστικό γνώρισμα του ατόμου (όπως για παράδειγμα το χρώμα μαλλιών) έχει τη δυνατότητα να εμφανιστεί με διάφορες μορφές, ανάλογα με την κατάσταση στην οποία βρίσκεται το αντίστοιχο γονίδιο που το επηρεάζει. Οι διαφορετικές αυτές καταστάσεις που μπορεί να πάρει το γονίδιο καλούνται alleles (τιμές χαρακτηριστικού γνωρίσματος). Κάθε γενότυπος αναπαριστά μια πιθανή λύση σε ένα πρόβλημα. Το «αποκωδικοποιημένο» περιεχόμενο ενός συγκεκριμένου χρωμοσώματος καλείται φαινότυπος (phenotype) (π.χ. ένας ζωντανός οργανισμός είναι ο φαινότυπος των 3

4 χρωμοσωμάτων του). Μια διαδικασία εξέλιξης που εφαρμόζεται πάνω σε ένα πληθυσμό αντιστοιχεί σε ένα εκτενές ψάξιμο στο χώρο των πιθανών λύσεων. Απαραίτητη προϋπόθεση για την επιτυχημένη έκβαση ενός τέτοιου ψαξίματος αποτελεί η εξισορρόπηση δύο διαδικασιών που είναι προφανώς αντικρουόμενες, της εκμετάλλευσης και διατήρησης των καλύτερων λύσεων, και της όσο το δυνατόν καλύτερης εξερεύνησης όλου του διαστήματος. Οι Γ.Α. διατηρούν έναν πληθυσμό πιθανών λύσεων, του προβλήματος που μας ενδιαφέρει, πάνω στον οποίο δουλεύουν, σε αντίθεση με άλλες μεθόδους αναζήτησης που επεξεργάζονται ένα μόνο σημείο του διαστήματος αναζήτησης. Ετσι ένας Γ.Α. πραγματοποιεί αναζήτηση σε πολλές κατευθύνσεις και υποστηρίζει καταγραφή και ανταλλαγή πληροφοριών μεταξύ αυτών των κατευθύνσεων. Ο πληθυσμός υφίσταται μια προσομοιωμένη γενετική εξέλιξη. Σε κάθε γενιά, οι σχετικά "καλές" λύσεις αναπαράγονται, ενώ οι σχετικά "κακές" απομακρύνονται. Ο διαχωρισμός και η αποτίμηση των διαφόρων λύσεων γίνεται με την βοήθεια μιας αντικειμενικής συνάρτησης (objective ή fitness function), η οποία παίζει το ρόλο του περιβάλλοντος μέσα στο οποίο εξελίσσεται ο πληθυσμός. Η δομή ενός απλού Γ.Α. έχει σε γενικές γραμμές ως εξής [Michalewicz, 1996]: Κατά την διάρκεια της γενιάς t, ο Γ.Α. διατηρεί ένα πληθυσμό P(t) από n πιθανές λύσεις (individuals): P(t)={x t 1,.,x t t n}. Κάθε individual x i αποτιμάται και δίνει ένα μέτρο της καταλληλότητας και ορθότητάς του. Αφού ολοκληρωθεί η αποτίμηση όλων των μελών του πληθυσμού, δημιουργείται ένας νέος πληθυσμός (γενιά t+1) που προκύπτει από την επιλογή των πιο κατάλληλων στοιχείων του πληθυσμού της προηγούμενης γενιάς. Μερικά μέλη από τον καινούργιο αυτό πληθυσμό υφίστανται αλλαγές με την βοήθεια των γενετικών διαδικασιών της διασταύρωσης και της μετάλλαξης σχηματίζοντας νέες πιθανές λύσεις. Η διασταύρωση συνδυάζει τα στοιχεία των χρωμοσωμάτων δύο γονέων για να δημιουργήσει δύο νέους απογόνους ανταλλάσσοντας κομμάτια από τους γονείς. Για παράδειγμα, έστω ότι δύο γονείς αναπαριστώνται με χρωματοσώματα πέντε γονιδίων (a 1,b 1,c 1,d 1,e 1 ) και (a 2,b 2,c 2,d 2,e 2 ) αντίστοιχα, τότε οι απόγονοι που θα προκύψουν από διασταύρωση με σημείο διασταύρωσης (crossover point) το σημείο 2 είναι οι 4

5 (a 1,b 1,c 2,d 2,e 2 ) και (a 2,b 2,c 1,d 1,e 1 ). Διαισθητικά μπορούμε να πούμε ότι η διασταύρωση εξυπηρετεί την ανταλλαγή πληροφοριών μεταξύ διαφορετικών πιθανών λύσεων. Η διαδικασία της μετάλλαξης αλλάζει αυθαίρετα ένα ή περισσότερα γονίδια ενός συγκεκριμένου χρωμοσώματος. Πραγματοποιείται με τυχαία αλλαγή γονιδίων με πιθανότητα ίση με το ρυθμό μετάλλαξης (mutation rate). Για παράδειγμα, έστω ότι ένας individual αναπαρίσταται με το διάνυσμα πέντε διαστάσεων (a 1,b 1,c 1,d 1,e 1 ), τότε ο individual που θα προκύψει με μετάλλαξη στη δεύτερη και στην τέταρτη διάσταση είναι ο (a 1,b 1,c 1,d 1,e 1 ). Διαισθητικά μπορούμε να πούμε ότι η μετάλλαξη εξυπηρετεί την εισαγωγή νέων πιθανών λύσεων, διαφορετικών από τις υπάρχουσες, στον ήδη υπάρχοντα πληθυσμό. Συνοψίζοντας μπορούμε να πούμε ότι ένας Γ.Α. για ένα συγκεκριμένο πρόβλημα πρέπει να αποτελείται από τα παρακάτω πέντε συστατικά: 1. Μια γενετική αναπαράσταση των πιθανών λύσεων του προβλήματος. 2. Έναν τρόπο δημιουργίας ενός αρχικού πληθυσμού από πιθανές λύσεις (αρχικοποίηση). 3. Μια αντικειμενική συνάρτηση αξιολόγησης των μελών του πληθυσμού, που παίζει το ρόλο του περιβάλλοντος. 4. Γενετικούς τελεστές για τη δημιουργία νέων μελών (λύσεων). 5. Τιμές για τις διάφορες παραμέτρους που χρησιμοποιεί ο Γ.Α. (μέγεθος πληθυσμού, πιθανότητες εφαρμογής των γενετικών τελεστών, κ.τ.λ.). 1.1 Πλεονεκτήματα των Γενετικών Αλγορίθμων Μερικά από τα σημαντικότερα πλεονεκτήματα που έχει η χρήση Γ.Α. για την επίλυση προβλημάτων είναι τα εξής: 1) Μπορούν να επιλύουν δύσκολα προβλήματα γρήγορα και αξιόπιστα. Ένας από τους σημαντικούς λόγους χρήσης των Γ.Α. είναι η μεγάλη τους αποδοτικότητα. Τόσο η θεωρία, όσο και η πράξη έχουν δείξει ότι προβλήματα που έχουν πολλές, δύσκολα 5

6 προσδιορισμένες λύσεις μπορούν να αντιμετωπιστούν καλύτερα από Γ.Α. Είναι δε αξιοσημείωτο ότι συναρτήσεις που παρουσιάζουν μεγάλες διακυμάνσεις και καθιστούν ανεπαρκείς άλλες μεθόδους στην εύρεση των ακρότατών τους, για τους Γ.Α. δεν αποτελούν σημεία δυσχέρειας. 2) Μπορούν εύκολα να συνεργαστούν με τα υπάρχοντα μοντέλα και συστήματα. Οι Γ.Α. προσφέρουν το σημαντικό πλεονέκτημα της χρήσης τους με προσθετικό τρόπο στα μοντέλα που χρησιμοποιούνται σήμερα, μη απαιτώντας την επανασχεδίασή τους. Μπορούν εύκολα να συνεργαστούν με τον υπάρχοντα κώδικα, χωρίς μεγάλο κόπο. Αυτό συμβαίνει, διότι χρησιμοποιούν μόνο πληροφορίες της διαδικασίας ή συνάρτησης που πρόκειται να βελτιστοποιήσουν, δίχως να ενδιαφέρει άμεσα ο ρόλος της μέσα στο σύστημα ή η όλη δομή του συστήματος. 3) Είναι εύκολα επεκτάσιμοι και εξελίξιμοι. Όπως θα γίνει σαφές στα επόμενα κεφάλαια, οι Γ.Α. δεν αντιστέκονται σε αλλαγές, επεκτάσεις και μετεξελίξεις, ανάλογα με την κρίση του σχεδιαστή. Σε πολλές εφαρμογές, έχουν αναφερθεί λειτουργίες των Γ.Α. που δεν είναι δανεισμένες από τη φύση ή που έχουν υποστεί σημαντικές αλλαγές, πάντα προς όφελος της απόδοσης. Παραλλαγές στο βασικό σχήμα δεν είναι απλά αναγκαίες, αλλά σε ορισμένες περιπτώσεις επιβάλλονται. 4) Μπορούν να συμμετέχουν σε υβριδικές μορφές με άλλες μεθόδους. Αν και η ισχύς των Γ.Α. είναι μεγάλη, σε μερικές ειδικές περιπτώσεις προβλημάτων, όπου άλλες μέθοδοι συμβαίνει να έχουν πολύ υψηλή αποδοτικότητα, λόγω εξειδίκευσης, υπάρχει η δυνατότητα χρησιμοποίησης ενός υβριδικού σχήματος Γ.Α. με άλλη μέθοδο. Αυτό είναι αποτέλεσμα της μεγάλης ευελιξίας των Γ.Α. 5) Εφαρμόζονται σε πολύ περισσότερα πεδία από κάθε άλλη μέθοδο. Το χαρακτηριστικό που τους εξασφαλίζει αυτό το πλεονέκτημα είναι η ελευθερία επιλογής των κριτηρίων που καθορίζουν την επιλογή μέσα στο τεχνικό περιβάλλον. Έτσι, Γ.Α. μπορούν να χρησιμοποιηθούν στην οικονομία, στο σχεδιασμό μηχανών, 6

7 στην επίλυση μαθηματικών εξισώσεων, στην εκπαίδευση Νευρωνικών Δικτύων και σε πολλούς άλλους τομείς. 6) Δεν απαιτούν περιορισμούς στις συναρτήσεις που επεξεργάζονται. Ο κύριος λόγος που καθιστά τις παραδοσιακές μεθόδους δύσκαμπτες και ακατάλληλες για πολλά προβλήματα είναι η απαίτησή τους για ύπαρξη περιορισμών, όπως ύπαρξη παραγώγων, συνέχεια, όχι "θορυβώδεις" συναρτήσεις κ.τ.λ. Τέτοιου είδους ιδιότητες είναι αδιάφορες για τους Γ.Α. πράγμα που τους κάνει κατάλληλους για μεγάλο φάσμα προβλημάτων. 7) Δεν ενδιαφέρει η σημασία της υπό εξέταση πληροφορίας. Η μόνη "επικοινωνία" του Γ.Α. με το περιβάλλον του είναι η αντικειμενική συνάρτηση. Αυτό εγγυάται την επιτυχία του ανεξάρτητα από την σημασία του προβλήματος. Βέβαια, δεν σημαίνει ότι δεν υπάρχουν άλυτα προβλήματα για τους Γ.Α. Όπου όμως δεν τα καταφέρνουν, η αιτία είναι η φύση του χώρου που ερευνούν και όχι το πληροφοριακό περιεχόμενο του προβλήματος. 8) Έχουν από τη φύση τους το στοιχείο του παραλληλισμού. Οι Γ.Α. σε κάθε τους βήμα επεξεργάζονται μεγάλες ποσότητες πληροφορίας, αφού κάθε άτομο θεωρείται αντιπρόσωπος πολλών άλλων. Έχει υπολογιστεί ότι η αναλογία αυτή είναι της τάξεως O(n 3 ), δηλαδή 10 άτομα αντιπροσωπεύουν περίπου Είναι, λοιπόν, προφανές ότι μπορούν να καλύψουν με αποδοτικό ψάξιμο μεγάλους χώρους σε μικρούς χρόνους. 9) Είναι μία μέθοδος που κάνει ταυτόχρονα εξερεύνηση του χώρου αναζήτησης και εκμετάλλευση της ήδη επεξεργασμένης πληροφορίας. Ο συνδυασμός αυτός σπάνια συναντάται σε οποιαδήποτε άλλη μέθοδο. Με το τυχαίο ψάξιμο γίνεται καλή εξερεύνηση του χώρου, αλλά δεν γίνεται εκμετάλλευση της πληροφορίας. Αντίθετα, με το hill-climbing γίνεται καλή εκμετάλλευση της πληροφορίας, αλλά όχι καλή εξερεύνηση. Συνήθως τα δύο αυτά χαρακτηριστικά είναι ανταγωνιστικά και το επιθυμητό είναι να συνυπάρχουν και τα δύο προς όφελος της όλης διαδικασίας. Οι 7

8 Γ.Α. επιτυγχάνουν το βέλτιστο συνδυασμό εξερεύνησης και εκμετάλλευσης, πράγμα που τους κάνει ιδιαίτερα αποδοτικούς και ελκυστικούς. 10) Επιδέχονται παράλληλη υλοποίηση. Οι Γ.Α. μπορούν να εκμεταλλευτούν τα πλεονεκτήματα των παράλληλων μηχανών, αφού λόγω της φύσης τους, εύκολα μπορούν να δεχτούν παράλληλη υλοποίηση. Το χαρακτηριστικό αυτό αυξάνει ακόμη περισσότερο την απόδοσή τους, ενώ σπάνια συναντάται σε ανταγωνιστικές μεθόδους. 1.2 Τι Προκαλεί Δυσπιστία Η τεχνολογία των Γ.Α., αν και δεν αποτελεί πρόσφατη ανακάλυψη, άρχισε ουσιαστικά να εφαρμόζεται τα τελευταία χρόνια. Η δυσπιστία με την οποία αντιμετώπιζαν οι επιστήμονες το όλο θέμα έχει αρχίσει πλέον να υποχωρεί.. Ποιοι είναι όμως οι κυριότεροι λόγοι που ίσως θα μπορούσαν να σταθούν εμπόδιο στην εξάπλωση αυτής της τεχνολογίας; 1) Προβλήματα εξοικείωσης με τη Γενετική. Για τους περισσότερους, που ασχολούνται με την Επιστήμη των Υπολογιστών, οι έννοιες της Εξέλιξης και της Φυσικής Επιλογής μπορεί να μην ηχούν παράξενα, αλλά δεν είναι και από τις πιο οικείες. Η Βιολογία δεν έχει άμεση σχέση με τους υπολογιστές, γι' αυτό και οι γνώσεις σχεδόν όλων είναι σε πολύ γενικό επίπεδο. Παρ' όλ' αυτά, δεν απαιτούνται γνώσεις Γενετικής και Βιολογίας. Εκείνο που συμβαίνει με τους Γ.Α. είναι ότι μιμούνται με αφαιρετικό τρόπο κάποιες διαδικασίες που παρατηρούνται στη φύση, χωρίς να ενδιαφέρει σε μεγάλο βαθμό λεπτομέρειας η λειτουργία τους και χωρίς να είναι απαραίτητο το γνωστικό υπόβαθρο που έχουν οι βιολόγοι για να μελετήσουν αυτά τα φαινόμενα. Οι όροι είναι δανεισμένοι από τη βιολογία με σκοπό την καλύτερη εισαγωγή και κατανόηση του θέματος και όχι την παραπομπή του μελετητή στα άγνωστα πεδία μιας ξένης επιστήμης και, τελικά, τη σύγχυσή του. Θα μπορούσε ίσως, να παραληφθεί η αναφορά στη Γενετική και να γίνει μια παρουσίαση των Γ.Α. ως 8

9 "προσωπικές διαδικασίες για αναζήτηση και βελτιστοποίηση", αυτό όμως μάλλον θα έκανε τα πράγματα δυσκολότερα. Εξάλλου, είναι συνηθισμένο το φαινόμενο θεωρίες που είναι δανεισμένες από άλλες επιστήμες να διατηρούν την αυθεντική τους ορολογία (π.χ. στα Νευρωνικά Δίκτυα: νευρώνες, συνάψεις, κ.τ.λ.). Επιπλέον, το μέλλον και η εξέλιξη των Γ.Α. δεν εξαρτώνται σε καμία περίπτωση από τις αντίστοιχες θεωρίες της Βιολογίας. Το αρχικό μοντέλο είναι δανεισμένο από εκεί, όμως η εφαρμογή του στα Τεχνητά Συστήματα έγινε με πλήθος διαφοροποιήσεων, προσαρμόσεων και "παρεκτροπών" με στόχο πάντα τη βελτίωση της απόδοσης. Πλέον, μπορούμε να μιλάμε για εξέλιξη και απογόνους των πρώτων Γ.Α. και για μια πορεία τους στο χρόνο που είναι πλήρως ανεξάρτητη και αυτοδύναμη. 2) Το πρόβλημα του χρόνου. Στη φύση ως γνωστό, η εξέλιξη λειτουργεί με ρυθμούς πολύ αργούς. Χρειάζονται να περάσουν χιλιάδες γενιές, άρα και αρκετός χρόνος, για να αλλάξουν τα χαρακτηριστικά των ειδών και να διαφοροποιηθούν οι ικανότητες και η συμπεριφορά τους. Θέτουν έτσι ορισμένοι το ερώτημα: πώς είναι δυνατό ένα μοντέλο αναζήτησης λύσεων να έχει καλές επιδόσεις χρόνου, όταν είναι εμπνευσμένο από μια φυσική διαδικασία που εξελίσσεται με ρυθμούς απίστευτα αργούς; Η απάντηση εδώ είναι απλή. Κατ' αρχήν, ακόμη και στη φύση, η εξέλιξη δεν είναι από μόνη της μια αργή διαδικασία. Εξέλιξη των ειδών συμβαίνει όταν αλλάζει τα περιβάλλον τους και πρέπει να προσαρμοστούν στα καινούργια δεδομένα, ώστε να επιβιώσουν. Αλλαγές όμως του περιβάλλοντος γίνονται με πολύ αργούς ρυθμούς και κατά συνέπεια και η εξέλιξη ακολουθεί αυτούς τους ρυθμούς. Αν οι αλλαγές του περιβάλλοντος γίνονται με γρηγορότερο τρόπο, τότε επιταχύνεται και η εξέλιξη. Αυτό άλλωστε παρατηρείται και στα βιολογικά εργαστήρια, όπου μικροοργανισμοί αλλάζουν την συμπεριφορά τους αμέσως, όταν τοποθετούνται σε νέες συνθήκες. Επιπλέον, στο πεδίο των υπολογιστών τα άτομα κωδικοποιούνται συνήθως ως συμβολοσειρές και οι συνθήκες του περιβάλλοντος μοντελοποιούνται με απλές μαθηματικές σχέσεις. Έτσι, το μοντέλο με το οποίο δουλεύει ο υπολογιστής δεν παρουσιάζει ιδιαίτερο υπολογιστικό φόρτο, συγκρινόμενο πάντα με αντίστοιχες μεθόδους. Το πλήθος των ατόμων που κάθε φορά εξετάζεται είναι από λίγες δεκάδες έως μερικές χιλιάδες, δηλαδή αρκετές τάξεις μεγέθους κάτω από το πλήθος των 9

10 γονιδίων των χρωμοσωμάτων μιας έμβιας οντότητας. Ο ρυθμός που μπορούν να ζευγαρώνουν τα άτομα στους πιο γρήγορους υπολογιστές μπορεί να φτάσει το ένα εκατομμύριο ανά δευτερόλεπτο. Όσο μεγάλος και αν είναι ο χώρος που καλείται ο αλγόριθμος να ψάξει, η επεξεργασία μερικών μόνο ατόμων αρκεί, γιατί, όπως θα αναπτυχθεί και παρακάτω, τα άτομα αυτά θεωρούνται αντιπρόσωποι ολόκληρων κλάσεων. Έτσι λοιπόν, οι ταχύτητες που μπορούν να επιτύχουν οι Γ.Α. είναι πολύ υψηλές. 1.3 Βασικά Χαρακτηριστικά Γενετικών Αλγορίθμων Όπως αναφέρθηκε, οι Γ.Α. πλεονεκτούν αισθητά στη λύση προβλημάτων αναζήτησης και βελτιστοποίησης από τις παραδοσιακές μεθόδους. Αυτό συμβαίνει, διότι διαφέρουν θεμελιωδώς από αυτές. Τα κυριότερα νέα χαρακτηριστικά που τους διαφοροποιούν, αλλά και τους δίνουν υπεροχή, σύμφωνα με τον D. Goldberg [Goldberg, 1989], είναι τα εξής: 1) Οι Γ.Α. δουλεύουν με μια κωδικοποίηση του συνόλου τιμών που μπορούν να λάβουν οι μεταβλητές και όχι με τις ίδιες τις μεταβλητές του προβλήματος: Για παράδειγμα, αναφέρεται το εξής πρόβλημα βελτιστοποίησης: Έστω ένα μαύρο κουτί με πέντε δυαδικούς διακόπτες (on-off). Για κάθε συνδυασμό s των διακοπτών παράγεται μία έξοδος f(s). Ζητείται ο συνδυασμός των διακοπτών που μεγιστοποιεί την έξοδο. Με τις παραδοσιακές μεθόδους, το μέγιστο θα εντοπιζόταν με "παίξιμο" των διακοπτών πηγαίνοντας από συνδυασμό σε συνδυασμό με ψάξιμο στα τυφλά, καθ ότι δεν είναι γνωστός ο τύπος της συνάρτησης. Σε ένα Γ.Α. όμως, η πρώτη ενέργεια είναι η κωδικοποίηση των διακοπτών ως συμβολοσειρές πεπερασμένου μήκους. Μια απλή κωδικοποίηση θα μπορούσε να γίνει θεωρώντας μια δυαδική συμβολοσειρά μήκους πέντε, όπου η κάθε θέση αναπαριστά ένα διακόπτη. Το 0 αντιστοιχεί στη θέση off και το 1 στη θέση on. Δηλαδή, η συμβολοσειρά κωδικοποιεί το συνδυασμό κατά τον οποίο οι πρώτοι τέσσερις διακόπτες είναι on και ο τελευταίος off. Η κωδικοποίηση δεν είναι απαραίτητο να είναι πάντα δυαδική. Όπως θα φανεί και 10

11 αργότερα, μπορεί να γίνει με πολλούς τρόπους, αρκετοί από τους οποίους ίσως και να μην είναι προφανείς. Το στοιχείο της κωδικοποίησης, όπως εξηγείται παρακάτω, είναι εκείνο που επιτρέπει στους Γ.Α. να κάνουν παράλληλη επεξεργασία δεδομένων. 2) Οι Γ.Α. κάνουν αναζήτηση σε πολλά σημεία ταυτόχρονα και όχι μόνο σε ένα: Σε πολλές μεθόδους βελτιστοποίησης, η επεξεργασία γίνεται βήμα προς βήμα, πηγαίνοντας προσεκτικά από σημείο σε σημείο του πεδίου ορισμού του προβλήματος. Αυτό το βήμα προς βήμα ενέχει αρκετούς κινδύνους, ο κυριότερος από τους οποίους είναι να περιοριστεί η αναζήτηση σε μια περιοχή τοπικού ακρότατου, που δεν είναι ολικό. Οι Γ.Α. εξαλείφουν αυτόν τον κίνδυνο ενεργώντας ταυτόχρονα πάνω σε ένα ευρύ σύνολο σημείων (σύνολο από συμβολοσειρές). Έτσι μπορούν να "ανεβαίνουν" πολλούς λόφους (hill-climbing) την ίδια στιγμή, ελαχιστοποιώντας την πιθανότητα να βρουν μια λάθος κορυφή. Γυρίζοντας στο παράδειγμα με το μαύρο κουτί, οι κλασσικές μέθοδοι θα ξεκινούσαν το ψάξιμο από ένα συνδυασμό των διακοπτών και στη συνέχεια, εφαρμόζοντας κάποιο κανόνα μετάβασης, θα δοκίμαζαν τον επόμενο (ψάξιμο δηλαδή σημείο προς σημείο). Αντιθέτως, ένας Γ.Α. αρχίζει το ψάξιμό του από ένα πληθυσμό συνδυασμών συμβολοσειρών και κατόπιν παράγει διαδοχικά καινούριους. Ένας αρχικός πληθυσμός θα μπορούσε να είναι, π.χ , 11000, και Έπειτα, "τρέχοντας" ο αλγόριθμος δημιουργεί νέους πληθυσμούς που συγκλίνουν προς την επιθυμητή λύση. Διαλέγοντας ένα πληθυσμό που να καλύπτει αντιπροσωπευτικά ένα μεγάλο εύρος τιμών μπορούν να προκύψουν ικανοποιητικά αποτελέσματα. 3) Οι Γ.Α. χρησιμοποιούν μόνο την αντικειμενική συνάρτηση και καμία επιπρόσθετη πληροφορία: Πολλές μέθοδοι αναζήτησης απαιτούν αρκετές βοηθητικές πληροφορίες για τη συνάρτηση που επεξεργάζονται. Τέτοιου είδους πληροφορίες δεν προαπαιτούνται από τους Γ.Α. Το ψάξιμό τους είναι κατά κάποιο τρόπο "τυφλό". Αξιοποιούν μόνο όση πληροφορία περιέχεται στην αντικειμενική συνάρτηση πράγμα που τους προσδίδει μεγάλη ευελιξία. Έτσι όμως, προκύπτει το ερώτημα αν συμφέρει να αγνοούνται οι βοηθητικές πληροφορίες. Γι' αυτό ακριβώς το λόγο έχουν 11

12 αναπτυχθεί μορφές Γ.Α. που αξιοποιούν και τέτοιου είδους πληροφορίες (Knowledge-Based Genetic Algorithms). 4) Οι Γ.Α. χρησιμοποιούν πιθανοθεωρητικούς κανόνες μετάβασης και όχι ντετερμινιστικούς: H χρήση πιθανοτικών κανόνων μετάβασης είναι κυρίαρχο γνώρισμα των Γ.Α., χωρίς αυτό να σημαίνει ότι η όλη διαδικασία βαδίζει στην τύχη. Δε λαμβάνονται αποφάσεις με το "στρίψιμο ενός νομίσματος". Το στοιχείο της τύχης χρησιμοποιείται ως οδηγός για αναζήτηση σε περιοχές που αναμένεται να δώσουν καλά αποτελέσματα. Τα τέσσερα προαναφερθέντα χαρακτηριστικά συμβάλουν αποφασιστικά ώστε να έχουν οι Γ.Α. την πολυπόθητη ιδιότητα της ευρωστίας. 12

13 2. ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΓΕΝΕΤΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ Σε αυτή την ενότητα θα παρουσιάσουμε τα βασικά χαρακτηριστικά ενός απλού Γενετικού Αλγορίθμου μέσα από την επίλυση ενός προβλήματος βελτιστοποίησης. Έστω ότι το πρόβλημα βελτιστοποίησης που θέλουμε να επιλύσουμε είναι ένα πρόβλημα μεγιστοποίησης μιας συνάρτησης f - στην περίπτωση τώρα που αντιμετωπίζουμε ένα πρόβλημα ελαχιστοποίησης μιας συνάρτησης f, αυτό μπορούμε να το μετασχηματίσουμε σε πρόβλημα μεγιστοποίησης της συνάρτησης g = -f. Επιπλέον, υποθέτουμε ότι η αντικειμενική συνάρτηση f παίρνει μόνο θετικές τιμές - διαφορετικά μπορούμε να εισάγουμε μια θετική σταθερά C, έτσι ώστε max g(x) = max {f(x) + C} Έστω, λοιπόν, ότι θέλουμε να μεγιστοποιήσουμε μια συνάρτηση k μεταβλητών, f(x 1,,x k ):R k R. Κάθε μεταβλητή x i παίρνει τιμές στο διάστημα D i =[a i,b i ] R και f(x i,,x k )>0, x i D i, i=1,,k.. Επιθυμούμε να βελτιστοποιήσουμε την f με κάποια απαιτούμενη ακρίβεια q δεκαδικών ψηφίων για κάθε μεταβλητή. Ενα από τα βασικά χαρακτηριστικά του γενετικού αλγορίθμου είναι η γενετική αναπαράσταση των υποψηφίων λύσεων, η οποία στο συγκεκριμένο πρόβλημα θα είναι η δυαδική. Για να επιτευχθεί η ζητούμενη ακρίβεια, θα πρέπει κάθε διάστημα τιμών D i =[a i, b i ] να διαχωριστεί σε (b i -a i ) 10 q ίσα υποδιαστήματα. Έστω m i ο μικρότερος ακέραιος για τον οποίο ισχύει q i ( b ) 10 2 m i a i 1. Τότε, η αναπαράσταση των μεταβλητών σαν δυαδικές συμβολοσειρές μήκους mi ικανοποιεί την απαίτηση για ακρίβεια q δεκαδικών ψηφίων. Η ακόλουθη σχέση μετατρέπει κάθε τέτοια δυαδική συμβολοσειρά bin_str στον αντίστοιχο πραγματικό αριθμό: bi ai x i = ai + decimal( bin _ str) m 2 i, 1 όπου decimal(bin_str) επιστρέφει την αντίστοιχη δεκαδική τιμή για το δυαδικό αριθμό που περιέχει η bin_str. 13

14 Κατ' αυτόν τον τρόπο, κάθε χρωμόσωμα αναπαρίσταται από μια δυαδική συμβολοσειρά μήκους m = k m i i= 1. Τα πρώτα m1 δυαδικά ψηφία κωδικοποιούν τη μεταβλητή x 1, δηλαδή το διάστημα [a 1, b 1 ], τα επόμενα m 2 κωδικοποιούν τη x 2 στο διάστημα [a 2, b 2 ], κ.ο.κ. Τα βασικά βήματα του απλού Γενετικού Αλγορίθμου, που επιλύει το παραπάνω πρόβλημα μεγιστοποίησης, είναι τα εξής: 1. Δημιουργία, με τυχαίο τρόπο, ενός αρχικού πληθυσμού δυνατών λύσεων (Αρχικοποίηση - Initialization). 2. Αξιολόγηση κάθε λύσης χρησιμοποιώντας τη συνάρτηση f σαν αντικειμενική συνάρτηση. 3. Επιλογή ενός νέου πληθυσμού με βάση την απόδοση κάθε μέλους (δυνατής λύσης) του προηγούμενου πληθυσμού (Επιλογή - Selection). 4. Εφαρμογή στον πληθυσμό που προκύπτει μετά τη διαδικασία της επιλογής των γενετικών τελεστών της διασταύρωσης (Crossover) και της μετάλλαξης (Mutation). 5. Με την ολοκλήρωση του προηγούμενου βήματος, έχει δημιουργηθεί η επόμενη γενιά, οπότε επιστρέφουμε στο βήμα Μετά από κάποιον αριθμό γενιών, και αφού καμιά βελτίωση δεν παρατηρείται πλέον, ο Γενετικός Αλγόριθμος τερματίζεται. Το καλύτερο χρωμόσωμα αντιστοιχεί σε μια βέλτιστη λύση (πιθανώς καθολικά βέλτιστη). Στη συνέχεια θα περιγράψουμε πιο αναλυτικά τα βήματα του αλγορίθμου. Αρχικοποίηση Στη φάση της αρχικοποίησης δημιουργούμε έναν αρχικό πληθυσμό από δυνατές λύσεις. Αυτό γίνεται παράγοντας τυχαία (pop_size m) δυαδικά ψηφία., όπου pop_size είναι το μέγεθος του πληθυσμού που θα επεξεργαστεί ο Γ.Α. Το μέγεθος του πληθυσμού παραμένει σταθερό καθ όλη τη διάρκεια λειτουργίας του Γ.Α. 14

15 Επιλογή Για τη διαδικασία επιλογής ενός νέου πληθυσμού χρησιμοποιείται μια ρουλέτα με σχισμές (slotted roulette wheel). Η επιλογή γίνεται με βάση την απόδοση κάθε μέλους (ατόμου - δυνατής λύσης) του πληθυσμού, έτσι όσο καλύτερο είναι κάποιο μέλος τόσο μεγαλύτερη πιθανότητα έχει να επιλεγεί και να περάσει στην επόμενη γενεά. Τα διάφορα μέλη του πληθυσμού τοποθετούνται στη ρουλέτα ανάλογα με την απόδοσή τους (μέλη με μεγάλη απόδοση κατέχουν μεγαλύτερες σχισμές της ρουλέτας). Η κατασκευή μιας τέτοιας ρουλέτας γίνεται ως εξής: Υπολογίζουμε την απόδοση eval(v i ) κάθε μέλους v i, i=1,,pop_size του πληθυσμού. pop _ size Υπολογίζουμε τη συνολική απόδοση του πληθυσμού F = eval( ). Υπολογίζουμε την πιθανότητα επιλογής p i κάθε μέλους v i, i=1,,pop_size: pi = eval( vi ) / F. Τέλος, υπολογίζουμε την αθροιστική (cumulative) πιθανότητα q i κάθε μέλους v i, i=1,,pop_size: q i = p j. i j= 1 Για την επιλογή των μελών του νέου πληθυσμού εκτελούμε pop_size περιστροφές της ρουλέτας. Αυτό γίνεται ως εξής: 1. Επιλέγουμε τυχαία έναν πραγματικό αριθμό r μεταξύ 0 και Αν r<q 1, τότε επιλέγουμε το πρώτο χρωμόσωμα v 1, διαφορετικά επιλέγουμε το v i (2 i pop_size), έτσι ώστε (q i-1 < r q i ). i= 1 v i Προφανώς, με αυτή τη μέθοδο επιλογής είναι δυνατόν κάποια μέλη του πληθυσμού να επιλεχθούν περισσότερες από μία φορές, με αυτά που είχαν την καλύτερη απόδοση στην προηγούμενη γενιά να έχουν τις περισσότερες πιθανότητες γι αυτό. Διασταύρωση Στη συνέχεια, εφαρμόζεται ο τελεστής της διασταύρωσης - ο οποίος στο συγκεκριμένο Γ.Α. είναι διασταύρωση ενός σημείου - στο νέο πληθυσμό. Θεωρούμε ότι η πιθανότητα 15

16 κάθε μέλους του πληθυσμού να επιλεγεί για διασταύρωση είναι p c. Για κάθε μέλος του πληθυσμού κάνουμε τα εξής: Επιλέγουμε τυχαία έναν πραγματικό αριθμό r μεταξύ 0 και 1. Αν r<p c, επιλέγουμε το τρέχον μέλος του πληθυσμού για διασταύρωση. Μετά την επιλογή μελών του πληθυσμού για διασταύρωση (ο αναμενόμενος αριθμός αυτών των μελών είναι p c pop_size), σχηματίζουμε ζευγάρια από μέλη και για κάθε ζευγάρι επιλέγεται τυχαία ένας ακέραιος αριθμός pos στο διάστημα [1, m-1], όπου m είναι το μήκος σε δυαδικά ψηφία του (μοναδικού στην περίπτωσή μας) χρωμοσώματος κάθε μέλους. Ο αριθμός pos προσδιορίζει το σημείο διασταύρωσης. Τα επιλεγμένα ζευγάρια διασταυρώνονται και την θέση τους στον πληθυσμό την παίρνουν οι απόγονοί τους. Ετσι, η διασταύρωση των δυο παρακάτω ατόμων: θα δώσει το ακόλουθο ζευγάρι απογόνων: ( bb b b b ) 1 2 pos pos + 1 m ( cc c c c ) 1 2 pos pos + 1 m ( bb b c c ) 1 2 pos pos + 1 m ( cc c b b ) 1 2 pos pos + 1 m. Απόγονοι οι οποίοι θα αντικαταστήσουν τους «γονείς» τους στον πληθυσμό. Μετάλλαξη Η μετάλλαξη επιλέγει με τυχαίο τρόπο γονίδια από τα χρωμοσώματα των μελών του πληθυσμού και μεταβάλει την τιμή τους. Επειδή στο συγκεκριμένο Γ.Α. τα γονίδια παίρνουν μόνο δυαδικές τιμές ο τελεστής της μετάλλαξης απλώς τα αντιστρέφει. Ετσι στο Γ.Α. που παρουσιάζουμε η μετάλλαξη αντιμετωπίζει τον πληθυσμό των ατόμων σαν μια ακολουθία από δυαδικά ψηφία. Κάθε δυαδικό ψηφίο έχει την ίδια πιθανότητα να επιλεγεί προκειμένου να μεταλλαχθεί. Η πιθανότητα αυτή ισούται με την πιθανότητα μετάλλαξης p m. Ο αναμενόμενος αριθμός των ανεστραμμένων ψηφίων μετά τη διαδικασία της μετάλλαξης θα είναι (p m m pop_size). Η διαδικασία έχει ως εξής: 16

17 Για κάθε χρωμόσωμα μέλους και κάθε γονίδιο μέσα στο χρωμόσωμα: Επιλέγουμε τυχαία έναν πραγματικό αριθμό r μεταξύ 0 και 1. Αν r<p m, τότε μεταλλάζουμε το γονίδιο (αντιστρέφουμε το δυαδικό ψηφίο). 17

18 2.1 ΕΦΑΡΜΟΓΗ ΜΕΓΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΗΣ Στην ενότητα αυτή θα εφαρμόσουμε τον Γ.Α., που περιγράψαμε παραπάνω, για τη μεγιστοποίηση της συνάρτησης: f ( x1, x2 ) = x1 sin(4 π x1 ) + x2 sin(20 π x2 ), με 3.0 x και 4.1 x Yποθέτουμε ότι το μέγεθος του πληθυσμού που θα επεξεργαστεί ο Γ.Α. είναι pop_size=20, και οι πιθανότητες διασταύρωσης και μετάλλαξης είναι p c =0.25 και p m =0.01 αντίστοιχα. Εστω ότι η επιθυμητή ακρίβεια για κάθε μεταβλητή είναι τέσσερα δεκαδικά ψηφία. Το διάστημα τιμών της μεταβλητής x 1 έχει μήκος 15.1(=12.1-(-3.0)), οπότε το διάστημα [- 3.0, 12.1] θα πρέπει να διαχωριστεί σε ίσα υποδιαστήματα. Αυτό σημαίνει ότι απαιτούνται 18 δυαδικά ψηφία για τη δυαδική αναπαράσταση της x 1 (και τα οποία θα αποτελούν το πρώτο τμήμα του χρωμοσώματος κάθε ατόμου), αφού: < Με παρόμοιο τρόπο υπολογίζουμε ότι για τη δυαδική αναπαράσταση της x 2 απαιτούνται 15 δυαδικά ψηφία (Επαληθεύστέ το). Επομένως, το συνολικό μήκος του μοναδικού χρωμοσώματος κάθε μέλους του πληθυσμού θα είναι m = = 33 δυαδικά ψηφία. Έστω λοιπόν το ακόλουθο άτομο: ( ) Τα πρώτα 18 δυαδικά ψηφία ( ) αναπαριστούν το δεκαδικό αριθμό: 15.1 x 1 = = = , και τα επόμενα 15 δυαδικά ψηφία ( ) τον αριθμό x 2 = (Επαληθεύστέ το). Δηλαδή, το άτομο αυτό αντιστοιχεί στο ζεύγος x 1,x 2 = , Η απόδοση αυτού του ατόμου είναι f( , ) = (Επαληθεύστέ το). 18

19 Εδώ θα πρέπει να σημειώσουμε ότι μιας και τα άτομα που επεξεργάζεται ο Γ.Α. αποτελούνται από ένα μόνο χρωμόσωμα στη συνέχεια όταν αναφερόμαστε σε άτομα ή χρωμοσώματα θα εννοούμε το ίδιο πράγμα. Αρχικοποίηση Υποθέτουμε ότι μετά την αρχικοποίηση προκύπτει ο ακόλουθος πληθυσμός: v 1 = ( ) v 2 = ( ) v 3 = ( ) v 4 = ( ) v 5 = ( ) v 6 = ( ) v 7 = ( ) v 8 = ( ) v 9 = ( ) v 10 = ( ) v 11 = ( ) v 12 = ( ) v 13 = ( ) v 14 = ( ) v 15 = ( ) v 16 = ( ) v 17 = ( ) v 18 = ( ) v 19 = ( ) v 20 = ( ) 19

20 Επιλογή Αρχικά αποκωδικοποιούμε κάθε χρωμόσωμα και υπολογίζουμε την απόδοσή του. Ετσι έχουμε: eval(v 1 ) = f( , ) = eval(v 2 ) = f( , ) = eval(v 3 ) = f( , ) = eval(v 4 ) = f( , ) = eval(v 5 ) = f( , ) = eval(v 6 ) = f( , ) = eval(v 7 ) = f( , ) = eval(v 8 ) = f( , ) = eval(v 9 ) = f( , ) = eval(v 10 ) = f( , ) = eval(v 11 ) = f( , ) = eval(v 12 ) = f( , ) = eval(v 13 ) = f( , ) = eval(v 14 ) = f( , ) = eval(v 15 ) = f( , ) = eval(v 16 ) = f( , ) = eval(v 17 ) = f( , ) = eval(v 18 ) = f( , ) = eval(v 19 ) = f( , ) = eval(v 20 ) = f( , ) = Είναι εμφανές ότι το άτομο v 15 είναι αυτό με την καλύτερη απόδοση και το άτομο v 2 με τη χειρότερη απόδοση στον αρχικό πληθυσμό. Στην συνέχεια κατασκευάζουμε μια ρουλέτα (roulette wheel). Η συνολική απόδοση (fitness) του πληθυσμού είναι: 20

21 F = 20 i= 1 eval( v i ) = Η πιθανότητα επιλογής p i κάθε μέλους το πληθυσμού v i, i=1,,20, είναι: p 1 = eval(v 1 )/F = p 11 = eval(v 11 )/F = p 2 = eval(v 2 )/F = p 12 = eval(v 12 )/F = p 3 = eval(v 3 )/F = p 13 = eval(v 13 )/F = p 4 = eval(v 4 )/F = p 14 = eval(v 14 )/F = p 5 = eval(v 5 )/F = p 15 = eval(v 15 )/F = p 6 = eval(v 6 )/F = p 16 = eval(v 16 )/F = p 7 = eval(v 7 )/F = p 17 = eval(v 17 )/F = p 8 = eval(v 8 )/F = p 18 = eval(v 18 )/F = p 9 = eval(v 9 )/F = p 19 = eval(v 19 )/F = p 10 = eval(v 10 )/F = p 20 = eval(v 20 )/F = Οι αθροιστικές πιθανότητες (cumulative probabilities) q i για κάθε άτομο v i,i=1,,20 του πληθυσμού είναι: q 1 = q 6 = q 11 = q 16 = q 2 = q 7 = q 12 = q 17 = q 3 = q 8 = q 13 = q 18 = q 4 = q 9 = q 14 = q 19 = q 5 = q 10 = q 15 = q 20 = Τώρα είμαστε έτοιμοι να περιστρέψουμε τη ρουλέτα 20 φορές; σε κάθε περιστροφή επιλέγουμε και ένα άτομο για το νέο πληθυσμό. Υποθέτουμε ότι έχουμε παράγει την εξής ακολουθία 20 τυχαίων αριθμών στο διάστημα [0, 1]:

22 Ο πρώτος αριθμός r = είναι μεγαλύτερος του q 10 και μικρότερος του q 11, γεγονός που σημαίνει ότι το άτομο v 11 επιλέγεται για να «περάσει» στο νέο πληθυσμό. Ο δεύτερος αριθμός r = είναι μεγαλύτερος του q 3 και μικρότερος του q 4, οπότε το άτομο v 4 επιλέγεται για το νέο πληθυσμό. Συνεχίζοντας με τον ίδιο τρόπο κατασκευάζουμε το νέο πληθυσμό: v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 11 v 12 v 13 v 14 v 15 v 16 v 17 v 18 v 19 v 20 = ( ) (v 11 ) = ( ) (v 4 ) = ( ) (v 7 ) = ( ) (v 11 ) = ( ) (v 19 ) = ( ) (v 4 ) = ( ) (v 15 ) = ( ) (v 5 ) = ( ) (v 11 ) = ( ) (v 3 ) = ( ) (v 15 ) = ( ) (v 9 ) = ( ) (v 6 ) = ( ) (v 8 ) = ( ) (v 20 ) = ( ) (v 1 ) = ( ) (v 10 ) = ( ) (v 13 ) = ( ) (v 15 ) = ( ) (v 16 ) 22

23 Διασταύρωση Στο νέο πληθυσμό που έχει προκύψει εφαρμόζουμε τον τελεστή της διασταύρωσης. Έχουμε αρχικά υποθέσει ότι η πιθανότητα διασταύρωσης είναι p c =0.25, οπότε περιμένουμε ότι κατά μέσο όρο το 25% των μελών του πληθυσμού μας θα επιλεγούν για τη διαδικασία της διασταύρωσης. Για το συγκεκριμένο μέγεθος πληθυσμού (20) περιμένουμε να επιλεγούν κατά μέσο όρο 5 άτομα. Έτσι, για κάθε μέλος του πληθυσμού διαλέγουμε έναν τυχαίο πραγματικό αριθμό r στο διάστημα [0,1]. Αν r<0.25 τότε επιλέγουμε το συγκεκριμένο άτομο. Ας υποθέσουμε, λοιπόν, ότι παράχθηκε η παρακάτω ακολουθία τυχαίων αριθμών: Άρα τα άτομα v 2, v 11, v 13 και v 18 επιλέγονται για διασταύρωση. Στο σημείο αυτό σταθήκαμε τυχεροί μιας και ο αριθμός των ατόμων που επιλέχθηκαν είναι άρτιος, οπότε το ζευγάρωμα τους είναι εύκολο. Αν ο αριθμός τους ήταν περιττός θα έπρεπε, είτε να επιλέξουμε (τυχαία πάντα) ένα άτομο ακόμα από τον πληθυσμό, είτε να απορρίψουμε κάποιο από τα ήδη επιλεγμένα. Στη συνέχεια ζευγαρώνουμε τα επιλεγμένα άτομα τυχαία; έστω λοιπόν ότι ζευγαρώνουν το v 2 με το v 11 και το v 13 με το v 18. Για καθένα από τα δύο ζευγάρια παράγουμε τυχαία έναν ακέραιο αριθμό pos στο διάστημα [1, 32] (το συνολικό μήκος, δηλαδή ο συνολικός αριθμός bits, κάθε χρωματοσώματος είναι 33). Ο αριθμός pos καθορίζει το σημείο διασταύρωσης (crossing point) του χρωματοσώματος. Έστω λοιπόν ότι για το πρώτο ζευγάρι (v 2, v 11 ) επιλέχθηκε σημείο διασταύρωσης pos = 9: v 2 = ( ) v 11 = ( ) 23

24 Αυτά τα χρωμοσώματα θα «κοπούν» μετά το 9 ο bit και θα αντικατασταθούν από το ακόλουθο ζεύγος απογόνων: v 2 = ( ) v 11 = ( ) Έστω τώρα ότι για το δεύτερο ζευγάρι (v 13, v 18 ) επιλέχθηκε σημείο διασταύρωσης, pos = 20: v 13 = ( ) v 18 = ( ) Αυτά τα χρωμοσώματα θα «κοπούν» μετά το 20 ο bit και θα αντικατασταθούν από το ακόλουθο ζεύγος απογόνων: v 13 = ( ) v 18 = ( ) Οπότε, η τρέχουσα μορφή του πληθυσμού θα είναι ως εξής: v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 11 v 12 v 13 v 14 = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) 24

25 v 15 v 16 v 17 v 18 v 19 v 20 = ( ) = ( ) = ( ) = ( ) = ( ) = ( ) Μετάλλαξη Η μετάλλαξη πραγματοποιείται bit-by-bit. Δηλαδή ο τελεστής της μετάλλαξης αντιμετωπίζει ολόκληρο τον πληθυσμό σαν ένα συρμό από δυαδικά ψηφία όπου κάθε ψηφίο έχει την ίδια πιθανότητα να μεταλλαχθεί. Έτσι με δεδομένο ότι η πιθανότητα μετάλλαξης είναι p m = 0.01 αναμένουμε ότι κατά μέσο όρο το 1% όλων των binary bits του πληθυσμού θα αντιστραφούν. Ο πληθυσμός μας αποτελείται από m pop_size = = 660 δυαδικά ψηφία, άρα αναμένουμε κατά μέσο όρο 6.6 μεταλλάξεις σε κάθε γενιά. Για κάθε δυαδικό ψηφίο, παράγουμε έναν τυχαίο πραγματικό αριθμό r στο διάστημα [0,1]. Εάν r<0.01, τότε αντιστρέφουμε το δυαδικό ψηφίο. Έτσι πρέπει να παράγουμε συνολικά 660 τυχαίους αριθμούς στο διάστημα [0, 1]. Σε ένα δοκιμαστικό τρέξιμο παράχθηκαν 5 αριθμοί μικρότεροι από Οι αριθμοί αυτοί, οι θέσεις στον πληθυσμό των δυαδικών ψηφίων που επιλέχθηκαν, ο αριθμός του ατόμου που αντιστοιχούν, καθώς και η θέση τους στα αντίστοιχα άτομα φαίνονται στον παρακάτω πίνακα: Τυχαίος Θέση Ψηφίου στον Αριθμός ατόμου Θέση Ψηφίου στο Αριθμός Πληθυσμό (χρωμοσώματος) Χρωμόσωμα

26 Αυτό σημαίνει ότι τέσσερα άτομα του πληθυσμού θα υποστούν μετάλλαξη - στο 13 ο άτομο μεταλλάσσονται δύο ψηφία. Οπότε ο πληθυσμός που προκύπτει μετά και τη διαδικασία της μετάλλαξης είναι ο ακόλουθος (τα ψηφία που έχουν μεταλλαχθεί είναι bold): v 1 = ( ) v 2 = ( ) v 3 = ( ) v 4 = ( ) v 5 = ( ) v 6 = ( ) v 7 = ( ) v 8 = ( ) v 9 = ( ) v 10 = ( ) v 11 = ( ) v 12 = ( ) v 13 = ( ) v 14 = ( ) v 15 = ( ) v 16 = ( ) v 17 = ( ) v 18 = ( ) v 19 = ( ) v 20 = ( ) 26

27 Μόλις τελειώσαμε, λοιπόν, την πρώτη γενεά του Γ.Α. Είναι ενδιαφέρον να δούμε την απόδοση των μελών του πληθυσμού που προέκυψε στο τέλος αυτής της πρώτης γενεάς. eval(v 1 ) = f( , ) = eval(v 2 ) = f( , ) = eval(v 3 ) = f( , ) = eval(v 4 ) = f( , ) = eval(v 5 ) = f( , ) = eval(v 6 ) = f( , ) = eval(v 7 ) = f( , ) = eval(v 8 ) = f( , ) = eval(v 9 ) = f( , ) = eval(v 10 ) = f( , ) = eval(v 11 ) = f( , ) = eval(v 12 ) = f( , ) = eval(v 13 ) = f( , ) = eval(v 14 ) = f( , ) = eval(v 15 ) = f( , ) = eval(v 16 ) = f( , ) = eval(v 17 ) = f( , ) = eval(v 18 ) = f( , ) = eval(v 19 ) = f( , ) = eval(v 20 ) = f( , ) = Παρατηρούμε ότι η συνολική απόδοση F του νέου πληθυσμού είναι , πολύ μεγαλύτερη από τη συνολική απόδοση του αρχικού πληθυσμού που ήταν Επίσης, το χρωμόσωμα (v 11 ) με την καλύτερη απόδοση ( ) στον τρέχοντα πληθυσμό, έχει υψηλότερη απόδοση από το χρωμόσωμα (v 15 ) με την καλύτερη απόδοση ( ) στον αρχικό πληθυσμό. 27

28 Ο Γ.Α. συνεχίζει με τη φάση της επιλογής και τα διάφορα βήματα (επιλογήδιασταύρωση-μετάλλαξη) επαναλαμβάνονται κυκλικά έως ότου ικανοποιηθεί το κριτήριο τερματισμού του αλγορίθμου. Συνήθως, το κριτήριο τερματισμού ενός Γ.Α. είναι είτε ένας συγκεκριμένος (μέγιστος) αριθμός γενεών, είτε ένα συγκεκριμένο ποσοστό βελτίωσης του καλύτερου ατόμου ή του συνολικού πληθυσμού σε σχέση με κάποιον αριθμό προηγούμενων γενεών. Ετσι στο συγκεκριμένο Γ.Α. αν θεωρήσουμε ως συνθήκη τερματισμού τις 1000 γενέες ο τελικός πληθυσμός (ο πληθυσμός στο τέλος της 1000στης γενεάς) θα έχει ώς εξής: v 1 = ( ) v 2 = ( ) v 3 = ( ) v 4 = ( ) v 5 = ( ) v 6 = ( ) v 7 = ( ) v 8 = ( ) v 9 = ( ) v 10 = ( ) v 11 = ( ) v 12 = ( ) v 13 = ( ) v 14 = ( ) v 15 = ( ) v 16 = ( ) v 17 = ( ) v 18 = ( ) v 19 = ( ) v 20 = ( ) Οι αντίστοιχες αποδόσεις είναι: 28

29 eval(v 1 ) = f( , ) = eval(v 2 ) = f( , ) = eval(v 3 ) = f( , ) = eval(v 4 ) = f( , ) = eval(v 5 ) = f( , ) = eval(v 6 ) = f( , ) = eval(v 7 ) = f( , ) = eval(v 8 ) = f( , ) = eval(v 9 ) = f( , ) = eval(v 10 ) = f( , ) = eval(v 11 ) = f( , ) = eval(v 12 ) = f( , ) = eval(v 13 ) = f( , ) = eval(v 14 ) = f( , ) = eval(v 15 ) = f( , ) = eval(v 16 ) = f( , ) = eval(v 17 ) = f( , ) = eval(v 18 ) = f( , ) = eval(v 19 ) = f( , ) = eval(v 20 ) = f( , ) = Η συνολική απόδοση F του τελικού πληθυσμού ειναι πολύ υψηλότερη από την απόδοση του πληθυσμού στο τέλος της πρώτης γενεάς ( ). Η απόδοση του καλύτερου μέλους του τελικού πληθυσμού είναι

30 3. ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ ΤΩΝ ΓΕΝΕΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ Η θεωρητική θεμελίωση των Γ.Α. βασίζεται στην αναπαράσταση των δυνατών λύσεων σαν δυαδικές συμβολοσειρές, καθώς και στην έννοια του σχήματος (schema) - μιας φόρμας (template) που επιτρέπει τον προσδιορισμό της ομοιότητας μεταξύ των χρωμοσωμάτων. Ένα σχήμα κατασκευάζεται εισάγοντας το λεγόμενο αδιάφορο σύμβολο (don't care symbol) στο αλφάβητο Σ (={0,1})των γονιδίων. Ένα σχήμα αναπαριστά όλες τις συμβολοσειρές (ένα υπερεπίπεδο ή άλλο υποσύνολο του χώρου αναζήτησης), οι οποίες ταιριάζουν σε όλες τις θέσεις εκτός από αυτές με το αδιάφορο σύμβολο. Ας θεωρήσουμε, για παράδειγμα, τις συμβολοσειρές και τα σχήματα μήκους 10. Στο σχήμα ( ) ταιριάζουν οι δύο συμβολοσειρές: { , } ενώ στο σχήμα ( ) ταιριάζουν οι τέσσερις συμβολοσειρές: { , , , } Φυσικά το σχήμα ( ) αναπαριστά μία μόνο συμβολοσειρά, την ( ) ενώ το σχήμα ( ) αναπαριστά όλες τις συμβολοσειρές μήκους 10. Είναι προφανές ότι κάθε σχήμα αναπαριστά 2 r συμβολοσειρές, όπου r είναι ο αριθμός των αδιάφορων συμβόλων στο σχήμα (Γιατί;). Από την άλλη πλευρά, κάθε συμβολοσειρά μήκους m ταιριάζει σε 2 m διαφορετικά σχήματα (Γιατί;). Για παράδειγμα, ας θεωρήσουμε τη συμβολοσειρά ( ). Η συμβολοσειρά αυτή ταιριάζει στα ακόλουθα 2 10 σχήματα: ( ) ( ) ( ) ( ) 30

31 ( ) ( ) ( ) ( ) ( ) ( ) ( ) Διαφορετικά σχήματα έχουν και διαφορετικά χαρακτηριστικά. Θα πρέπει να έχει ήδη γίνει σαφές ότι ο αριθμός των αδιάφορων συμβόλων σε ένα σχήμα καθορίζει τον αριθμό των συμβολοσειρών που ταιριάζουν σε αυτό το σχήμα. Υπάρχουν δύο σημαντικά μεγέθη που χαρακτηρίζουν τα σχήματα: η τάξη (order) και το ορίζων μήκος (defining length). Το Αποτέλεσμα των Σχημάτων (Schema Result) θα διατυπωθεί με βάση τα μεγέθη αυτά. Η τάξη ενός σχήματος S,η οποία συμβολίζεται o(s), είναι ο αριθμός των σταθερών θέσεων του σχήματος, δηλαδή των θέσεων που δεν περιέχουν το αδιάφορο σύμβολο - θέσεις με 0 ή 1. Με άλλα λόγια, είναι το μήκος του σχήματος μείον τον αριθμό των αδιάφορων συμβόλων. Η τάξη προσδιορίζει την ειδικότητα (specialty) ενός σχήματος, δηλαδή το πόσο ειδικό είναι το συγκεκριμένο σχήμα. Για παράδειγμα, τα ακόλουθα τρία σχήματα, όλα μήκους 10, 31

32 S 1 =( ), S 2 =( 00 0 ), S 3 =( ), έχουν τις ακόλουθες τάξεις: o(s 1 )=6, o(s 2 )=3 και o(s 3 )=8, και το σχήμα S 3 είναι το πιο συγκεκριμένο (ειδικό-special) ή, με άλλα λόγια, το λιγότερο γενικό, αφού αναπαριστά μόνο τέσσερις συμβολοσειρές, σε αντίθεση με τα S 1 και S 2 που αναπαριστούν 16 και 128 συμβολοσειρές αντίστοιχα. Η έννοια της τάξης ενός σχήματος είναι χρήσιμη στον υπολογισμό της πιθανότητας επιβίωσης του σχήματος κατά τη διαδικασία της μετάλλαξης. Το ορίζων μήκος ενός σχήματος S (συμβολίζεται δ(s)) είναι η απόσταση μεταξύ της πρώτης και της τελευταίας σταθερής θέσης. Προσδιορίζει την πυκνότητα (compactness) της πληροφορίας που περιέχεται στο σχήμα. Έτσι για τα προηγούμενα σχήματα έχουμε: δ(s 1 )=10-4=6, δ(s 2 )=9-5=4 και δ(s 3 )=10-1=9. Ένα σχήμα με μια μοναδική σταθερή θέση έχει ορίζων μήκος μηδέν. Η έννοια του ορίζοντος μήκους ενός σχήματος είναι χρήσιμη στον υπολογισμό της πιθανότητας επιβίωσης του σχήματος κατά τη διαδικασία της διασταύρωσης. Ως γνωστόν η διαδικασία εξέλιξης ενός Γ.Α. αποτελείται από τέσσερα επαναλαμβανόμενα βήματα: 1) t t+1 2) επέλεξε νέο (προσωρινό) πληθυσμό P(t) από τον P(t-1) 3) ανασυνδύασε τον P(t) 4) εκτίμησε τον P(t) Το πρώτο βήμα (t t+1) απλά αυξάνει το "ρολόι" της διαδικασίας κατά ένα (δηλαδή η διαδικασία προχωρά στην επόμενη γενιά). Στο τελευταίο βήμα (εκτίμησε τον P(t)) γίνεται η εκτίμηση του τρέχοντος πληθυσμού. Τα σημαντικότερα βήματα της εξελικτικής 32

33 διαδικασίας είναι τα υπόλοιπα δύο: επιλογή και ανασυνδυασμός. Ακολουθεί μια συζήτηση σχετικά με τις επιδράσεις των δύο αυτών βημάτων στον αριθμό και το είδος των σχημάτων που περιέχονται στον πληθυσμό. Η συζήτηση θα γίνει με βάση ένα παράδειγμα. Ας υποθέσουμε ότι ο πληθυσμός έχει μέγεθος pop_size = 20 και ότι το μήκος της συμβολοσειράς (επομένως και το μήκος του σχήματος) είναι m = 33 (όπως και στο παράδειγμα του προηγούμενου κεφαλαίου). Ακόμη, ας υποθέσουμε ότι τη στιγμή (ή βήμα ή γενιά) t ο πληθυσμός αποτελείται από τις ακόλουθες συμβολοσειρές: v 1 = ( ) v 2 = ( ) v 3 = ( ) v 4 = ( ) v 5 = ( ) v 6 = ( ) v 7 = ( ) v 8 = ( ) v 9 = ( ) v 10 = ( ) v 11 = ( ) v 12 = ( ) v 13 = ( ) v 14 = ( ) v 15 = ( ) v 16 = ( ) v 17 = ( ) v 18 = ( ) v 19 = ( ) v 20 = ( ) 33

34 Έστω ξ(s,t) είναι ο αριθμός των συμβολοσειρών στον πληθυσμό τη στιγμή t που ταιριάζουν στο σχήμα S. Για παράδειγμα, για το σχήμα S 0 =( 111 ), είναι ξ(s 0,t) =3, αφού υπάρχουν τρεις συμβολοσειρές (οι v 13,v 15 και v 16 ), οι οποίες ταιριάζουν με το σχήμα S 0. Η τάξη του S 0 είναι o(s 0 )=3 και το ορίζων μήκος του είναι δ(s 0 )=7-5=2. Μια άλλη ιδιότητα ενός σχήματος είναι η απόδοσή (fitness) του τη στιγμή t ή eval(s,t) - ορίζεται ως η μέση απόδοση όλων των συμβολοσειρών του πληθυσμού τη στιγμή t που ταιριάζουν με το σχήμα S. Έστω ότι υπάρχουν p συμβολοσειρές {v i1,,v ip } στον πληθυσμό που ταιριάζουν τη στιγμή t με το σχήμα S. Τότε, p eval(s, t) = ( eval( v )) / p. j= 1 i j Κατά τη διάρκεια της επιλογής, δημιουργείται ένας προσωρινός πληθυσμός. Κάθε συμβολοσειρά αντιγράφεται μηδέν, μία ή περισσότερες φορές, σύμφωνα με την απόδοσή της. Όπως είδαμε στην προηγούμενη ενότητα, σε μια απλή επιλογή συμβολοσειράς, η συμβολοσειρά v i επιλέγεται με πιθανότητα p i = eval(v i )/F(t), όπου F(t) είναι το άθροισμα των αποδόσεων ολόκληρου του πληθυσμού. Μετά το βήμα της επιλογής, αναμένεται ότι ξ(s,t+1) συμβολοσειρές θα ταιριάζουν με το σχήμα S. Επειδή, 1) για μια συμβολοσειρά που ταιριάζει με το σχήμα S, η πιθανότητα επιλογής της είναι eval(s,t)/f(t), 2) ο αριθμός των συμβολοσειρών που ταιριάζουν με το σχήμα S είναι ξ(s,t) και 3) ο αριθμός των επιλογών σε κάθε βήμα είναι pop_size, θα πρέπει να είναι σαφές ότι: ξ ( S, t + 1) = ξ ( S, t) pop _ size eval ( S, t) / F ( t) 34

ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΕΚΠΑΙ ΕΥΣΗΣ ΑΠΟ ΑΠΟΣΤΑΣΗ ΕΚΠΑΙ ΕΥΤΙΚΟ ΥΛΙΚΟ ΚΕΦΑΛΑΙΟ 5

ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΕΚΠΑΙ ΕΥΣΗΣ ΑΠΟ ΑΠΟΣΤΑΣΗ ΕΚΠΑΙ ΕΥΤΙΚΟ ΥΛΙΚΟ ΚΕΦΑΛΑΙΟ 5 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΕΚΠΑΙ ΕΥΣΗΣ ΑΠΟ ΑΠΟΣΤΑΣΗ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ P-INF-003 ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΚΠΑΙ ΕΥΤΙΚΟ ΥΛΙΚΟ ΚΕΦΑΛΑΙΟ 5 ΕΞΕΛΙΞΗ ΓΕΝΕΤΙΚΩΝ

Διαβάστε περισσότερα

Υπολογιστική Νοηµοσύνη

Υπολογιστική Νοηµοσύνη Υπολογιστική Νοηµοσύνη Σηµερινό Μάθηµα Η θεωρία της Εξέλιξης των Ειδών οµή Γενετικού Αλγόριθµου Κύρια χαρακτηριστικά ενός Γενετικού Αλγορίθµου (ΓΑ) Γενετική ιαδικασία 1 Η θεωρία της Εξέλιξης των Ειδών

Διαβάστε περισσότερα

Θεµελίωση Γενετικών Αλγορίθµων

Θεµελίωση Γενετικών Αλγορίθµων Θεµελίωση Γενετικών Αλγορίθµων Σηµερινό Μάθηµα Προβληµατισµοί Σχήµατα Τάξη Οριστικό Μήκος ΘεώρηµατωνΣχηµάτων Υπόθεση δοµικών Στοιχείων Πλάνη 1 Προβληµατισµοί Τι προβλέψεις µπορούν να γίνουν για τη χρονική

Διαβάστε περισσότερα

Τυπικά θέματα εξετάσεων. ΠΡΟΣΟΧΗ: Οι ερωτήσεις που παρατίθενται ΔΕΝ καλύπτουν την πλήρη ύλη του μαθήματος και παρέχονται απλά ενδεικτικά

Τυπικά θέματα εξετάσεων. ΠΡΟΣΟΧΗ: Οι ερωτήσεις που παρατίθενται ΔΕΝ καλύπτουν την πλήρη ύλη του μαθήματος και παρέχονται απλά ενδεικτικά ΤΕΙ Κεντρικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταπτυχιακό Πρόγραμμα Τηλεπικοινωνιών & Πληροφορικής Μάθημα : 204a Υπολογιστική Ευφυία Μηχανική Μάθηση Καθηγητής : Σπύρος Καζαρλής Ενότηα : Εξελικτική

Διαβάστε περισσότερα

Ανάλυση των Γενετικών Αλγορίθµων

Ανάλυση των Γενετικών Αλγορίθµων Ανάλυση των Γενετικών Αλγορίθµων Σηµερινό Μάθηµα ΠρόβληµαΒελτιστοποίησης Βελτιστοποίηση συνάρτησης µιας µεταβλητής Βελτιστοποίηση συνάρτησης k µεταβλητών Περιορισµοίτουπεδίουορισµού Περιορισµοί πλεοναζουσών

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Διαχείριση Υδατικών Πόρων

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Βελτιστοποίηση Προχωρημένες Μέθοδοι Προβλήματα με την «κλασική» βελτιστοποίηση Η αντικειμενική συνάρτηση σπανίως

Διαβάστε περισσότερα

Συστήματα Επιχειρηματικής Ευφυίας

Συστήματα Επιχειρηματικής Ευφυίας Συστήματα Επιχειρηματικής Ευφυίας Γενετικοί αλγόριθμοι (GA) : Από τον Δαρβίνο (1859) στον J. Holland (1975). (Ένα ταξίδι στον υπέροχο κόσμο της επιλογής, της διασταύρωσης και της μετάλλαξης). Charles Darwin

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ

ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ http://prlab.ceid.upatras.gr/courses/simeiwseis/yp2/chap1.htm Page 1 of 1 1. ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΝΕΤΙΚΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ Οι Γενετικοί Αλγόριθμοι (Genetic Algorithms) είναι ένα μοντέλο μηχανισμού μάθησης του

Διαβάστε περισσότερα

Τεχνολογία Συστημάτων Υδατικών Πόρων

Τεχνολογία Συστημάτων Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση:Προχωρημένες Μέθοδοι Χρήστος Μακρόπουλος, Επίκουρος Καθηγητής ΕΜΠ Σχολή Πολιτικών

Διαβάστε περισσότερα

Γενετικοί Αλγόριθμοι. Εισαγωγή

Γενετικοί Αλγόριθμοι. Εισαγωγή Τεχνητή Νοημοσύνη 08 Γενετικοί Αλγόριθμοι (Genetic Algorithms) Εισαγωγή Σε αρκετές περιπτώσεις το μέγεθος ενός προβλήματος καθιστά απαγορευτική τη χρήση κλασικών μεθόδων αναζήτησης για την επίλυσή του.

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΑ σε ΓΕΝΕΤΙΚΟΥΣ

ΕΡΩΤΗΜΑΤΑ σε ΓΕΝΕΤΙΚΟΥΣ ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Quiz Γενετικών Αλγορίθµων 1 ΕΡΩΤΗΜΑΤΑ σε ΓΕΝΕΤΙΚΟΥΣ ΚΩ ΙΚΟΠΟΙΗΣΗ ΕΡΩΤΗΜΑ 1.1 Ο φαινότυπος ενός ατόµου α.αναπαριστά ένα άτοµο στο χώρο λύσεων του προβλήµατος β.κωδικοποιεί

Διαβάστε περισσότερα

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης.

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Ένα από τα γνωστότερα παραδείγματα των ΕΑ είναι ο Γενετικός

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Προβλήματα Βελτιστοποίησης Περιγραφή προβλήματος με αρχική κατάσταση, τελική

Διαβάστε περισσότερα

4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ

4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση Προχωρημένες Μέθοδοι Προβλήματα με την «κλασική» βελτιστοποίηση Η αντικειμενική συνάρτηση

Διαβάστε περισσότερα

Κεφάλαιο 7. Γενετικοί Αλγόριθµοι. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 7. Γενετικοί Αλγόριθµοι. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 7 Γενετικοί Αλγόριθµοι Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Εισαγωγή Σε αρκετές περιπτώσεις το µέγεθος ενός προβλήµατος καθιστά απαγορευτική

Διαβάστε περισσότερα

1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2

1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2 1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2 Άσκηση Δίνεται ο αρχικός πληθυσμός, στην 1 η στήλη στον παρακάτω πίνακα και οι αντίστοιχες καταλληλότητες (στήλη 2). Υποθέστε ότι, το ζητούμενο είναι η μεγιστοποίηση

Διαβάστε περισσότερα

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Διαχείριση Υδατικών Πόρων

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Βελτιστοποίηση Προχωρημένες Μέθοδοι Προβλήματα με την «κλασική» βελτιστοποίηση Η στοχική συνάρτηση σπανίως

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΤΡΙΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

Μελέτη εξελικτικών αλγορίθμων εκπαίδευσης για Ασαφή Γνωστικά Δίκτυα ΚΑΡΝΑΒΑΣ ΔΗΜΗΤΡΙΟΣ Α.Μ 104

Μελέτη εξελικτικών αλγορίθμων εκπαίδευσης για Ασαφή Γνωστικά Δίκτυα ΚΑΡΝΑΒΑΣ ΔΗΜΗΤΡΙΟΣ Α.Μ 104 ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΤΕΡΕΑΣ ΕΛΛΑΔΟΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ Μελέτη εξελικτικών αλγορίθμων εκπαίδευσης για Ασαφή Γνωστικά Δίκτυα ΚΑΡΝΑΒΑΣ ΔΗΜΗΤΡΙΟΣ Α.Μ 104 ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Υπεύθυνος Παπαγεωργίου

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη

Υπολογιστική Νοημοσύνη Υπολογιστική Νοημοσύνη Εξελικτική Βελτιστοποίηση Γενετικοί Αλγόριθμοι Αναστάσιος Ντούνης, Καθηγητής Εργαστήριο Υπολογιστικής Νοημοσύνης Ευφυούς Ελέγχου Τμήμα Μηχανικών Αυτοματισμού Σχολή Τεχνολογικών Εφαρμογών

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 5η διάλεξη (2017-18) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Ε ανάληψη. Α ληροφόρητη αναζήτηση

Ε ανάληψη. Α ληροφόρητη αναζήτηση ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,

Διαβάστε περισσότερα

Νευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές

Νευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Νευρωνικά ίκτυα και Εξελικτικός Προγραµµατισµός Σηµερινό Μάθηµα επανάληψη Γενετικών Αλγορίθµων η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Κωδικοποίηση Αντικειµενική Συνάρτ Αρχικοποίηση Αξιολόγηση

Διαβάστε περισσότερα

Ανάπτυξη εξελικτικού αλγορίθμου για πολυκριτηριακή βελτιστοποίηση

Ανάπτυξη εξελικτικού αλγορίθμου για πολυκριτηριακή βελτιστοποίηση ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΕΛΕΓΧΟΥ Ανάπτυξη εξελικτικού αλγορίθμου για πολυκριτηριακή βελτιστοποίηση ΜΕΤΑΠΤΥΧΙΑΚΗ

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Παρασκευή 9 Ιανουαρίου 2007 5:00-8:00 εδοµένου ότι η

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών 44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.

Διαβάστε περισσότερα

ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ: θεωρητικό Πλαίσιο

ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ: θεωρητικό Πλαίσιο ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ: θεωρητικό Πλαίσιο EVOLOTIONARY ALGORITHMS 1 ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ Η Λογική (1/2) Ο Εξελικτικός Υπολογισµός (evolutionary computation) χρησιµοποιεί τα υπολογιστικά µοντέλα εξελικτικών

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΤΡΙΤΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος: 2011-2012

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 26 Ιανουαρίου 2004 ιάρκεια: 2 ώρες (9:00-:00) Στην παρακάτω

Διαβάστε περισσότερα

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Βασισμένο σε μια εργασία των Καζαρλή, Καλόμοιρου, Μαστοροκώστα, Μπαλουκτσή, Καλαϊτζή, Βαλαή, Πετρίδη Εισαγωγή Η Εξελικτική Υπολογιστική

Διαβάστε περισσότερα

Γενετικοί Αλγόριθμοι (ΓΑ) Genetic Algorithms (GAs) Είναι το πιο αντιπροσωπευτικό και δημοφιλές είδος Εξελικτικού Αλγόριθμου Χρησιμοποιούνται κυρίως

Γενετικοί Αλγόριθμοι (ΓΑ) Genetic Algorithms (GAs) Είναι το πιο αντιπροσωπευτικό και δημοφιλές είδος Εξελικτικού Αλγόριθμου Χρησιμοποιούνται κυρίως Σπύρος Καζαρλής Γενετικοί Αλγόριθμοι (ΓΑ) Genetic Algorithms (GAs) Είναι το πιο αντιπροσωπευτικό και δημοφιλές είδος Εξελικτικού Αλγόριθμου Χρησιμοποιούνται κυρίως ως αλγόριθμοι γενικής βελτιστοποίησης

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΘΕΜΑ ο (.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Πέµπτη 7 Ιανουαρίου 8 5:-8: Σχεδιάστε έναν αισθητήρα (perceptron)

Διαβάστε περισσότερα

Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης

Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης Καθ. Καρατζάς Γεώργιος Υπ. Διδ. Δόκου Ζωή Σχολή Μηχανικών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Ακέραιος Γραμμικός Προγραμματισμός

Ακέραιος Γραμμικός Προγραμματισμός Τμήμα Πληροφορικής & Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων 2018-2019 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος- Γεωργία Φουτσιτζή Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ Η γλώσσα προγραμματισμού C ΕΡΓΑΣΤΗΡΙΟ 3: Πίνακες, βρόχοι, συναρτήσεις 1 Ιουνίου 2017 Το σημερινό εργαστήριο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Λύσεις 2η σειράς ασκήσεων Προθεσμία παράδοσης: 18 Μαίου 2015 Πρόβλημα 1. (14

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ ΚΑΤΕΡΓΑΣΙΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΟ ΘΕΜΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ ΚΑΤΕΡΓΑΣΙΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΟ ΘΕΜΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ ΚΑΤΕΡΓΑΣΙΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΟ ΘΕΜΑ ΣΥΝΘΕΣΗ ΣΥΣΤΗΜΑΤΩΝ ΚΑΤΕΡΓΑΣΙΩΝ ΜΕ ΒΑΣΗ ΕΝΑΛΛΑΚΤΙΚΑ ΦΑΣΕΟΛΟΓΙΑ ΣΑΚΕΛΛΑΡΙΟΥ ΦΩΤΙΟΣ

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Νικόλαος - Σπυρίδων Αναστασίου Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Χρήση Εξελικτικών Αλγορίθμων για την εκπαίδευση

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 5η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ

ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ Ηλίας Κ. Ξυδιάς 1, Ανδρέας Χ. Νεάρχου 2 1 Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων, Πανεπιστήμιο Αιγαίου, Σύρος

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

d k 10 k + d k 1 10 k d d = k i=0 d i 10 i.

d k 10 k + d k 1 10 k d d = k i=0 d i 10 i. Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός Κεφάλαιο 5ο: Ακέραιος προγραμματισμός 5.1 Εισαγωγή Ο ακέραιος προγραμματισμός ασχολείται με προβλήματα γραμμικού προγραμματισμού στα οποία μερικές ή όλες οι μεταβλητές είναι ακέραιες. Ένα γενικό πρόβλημα

Διαβάστε περισσότερα

Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Θεωρία Πληροφορίας Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διακριτή πηγή πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 26: Καθολική Μηχανή Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 12/10/2017

Διαβάστε περισσότερα

Προβλήματα, αλγόριθμοι, ψευδοκώδικας

Προβλήματα, αλγόριθμοι, ψευδοκώδικας Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΙΜΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ

ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΙΜΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΙΜΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ Μανινάκης Ανδρέας 1 Πολυτεχνείο Κρήτης Τμήμα Μηχανικών Παραγωγής και Διοίκησης Επιβλέπων καθηγητής:

Διαβάστε περισσότερα

ΦΥΕ 43: ΓΕΝΕΤΙΚΗ ΟΔΗΓΟΣ ΕΠΙΛΥΣΗΣ ΑΣΚΗΣΕΩΝ ΚΩΣΤΑΣ ΜΠΟΥΡΤΖΗΣ ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ

ΦΥΕ 43: ΓΕΝΕΤΙΚΗ ΟΔΗΓΟΣ ΕΠΙΛΥΣΗΣ ΑΣΚΗΣΕΩΝ ΚΩΣΤΑΣ ΜΠΟΥΡΤΖΗΣ ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΦΥΕ 43: ΓΕΝΕΤΙΚΗ ΟΔΗΓΟΣ ΕΠΙΛΥΣΗΣ ΑΣΚΗΣΕΩΝ ΚΩΣΤΑΣ ΜΠΟΥΡΤΖΗΣ ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ 1 Χρήσιμες οδηγίες για την επίλυση ασκήσεων Γενετικής

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016

Διαβάστε περισσότερα

Συνδυαστικά Λογικά Κυκλώματα

Συνδυαστικά Λογικά Κυκλώματα Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική

Διαβάστε περισσότερα

6. Στατιστικές μέθοδοι εκπαίδευσης

6. Στατιστικές μέθοδοι εκπαίδευσης 6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,

Διαβάστε περισσότερα

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4 Διακριτά Μαθηματικά Ι Επαναληπτικό Μάθημα 1 Συνδυαστική 2 Μεταξύ 2n αντικειμένων, τα n είναι ίδια. Βρείτε τον αριθμό των επιλογών n αντικειμένων από αυτά τα 2n αντικείμενα. Μεταξύ 3n + 1 αντικειμένων τα

Διαβάστε περισσότερα

Ακέραιος Γραμμικός Προγραμματισμός

Ακέραιος Γραμμικός Προγραμματισμός Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

Προβλήματα Υφαλμύρισης Καρστικών Υδροφορέων

Προβλήματα Υφαλμύρισης Καρστικών Υδροφορέων Προβλήματα Υφαλμύρισης Καρστικών Υδροφορέων Καθ. Καρατζάς Γεώργιος Πρόεδρος Τμήμα Μηχανικών Περιβάλλοντος ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Χανιά Υπόγεια ύδατα Βασική παράμετρος ρ υδρολογικού κύκλου Ζωτικής σημασίας

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Ακέραιος Γραμμικός Προγραμματισμός

Ακέραιος Γραμμικός Προγραμματισμός Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ ΕΠΛ 035 - ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΓΙΑ ΗΛΕΚΤΡΟΛΟΓΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΚΑΙ ΜΗΧΑΝΙΚΟΥΣ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδηµαϊκό έτος 2017-2018 Υπεύθυνος εργαστηρίου: Γεώργιος

Διαβάστε περισσότερα

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής Θεωρία Παιγνίων και Αποφάσεων Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Παίγνια μηδενικού αθροίσματος PessimisIc play Αμιγείς max-min και

Διαβάστε περισσότερα

2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. 2.1 Αριθμητικά συστήματα

2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. 2.1 Αριθμητικά συστήματα 2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ 2.1 Αριθμητικά συστήματα Κάθε πραγματικός αριθμός χ μπορεί να παρασταθεί σε ένα αριθμητικό σύστημα με βάση β>1 με μια δυναμοσειρά της μορφής, -οο * = ± Σ ψ β " (2 1) η - ν

Διαβάστε περισσότερα

Στοχαστικές Στρατηγικές

Στοχαστικές Στρατηγικές Στοχαστικές Στρατηγικές 3 η ενότητα: Εισαγωγή στα στοχαστικά προβλήματα διαδρομής Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εφαρμογή σε Άλλα Προβλήματα Διαχείρισης Έργων Π. Γ. Υψηλάντης ΓΠ στη Διοίκηση Έργων Προβλήματα μεταφοράς και δρομολόγησης Αναθέσεις προσωπικού Επιλογή προμηθευτών Καθορισμός τοποθεσίας

Διαβάστε περισσότερα

Πληθυσμιακή και Εξελικτική Γενετική

Πληθυσμιακή και Εξελικτική Γενετική Οικολογία και Προστασία Δασικών Οικοσυστημάτων Πληθυσμιακή και Εξελικτική Γενετική Μεταλλάξεις Εργαστήριο Δασικής Γενετικής Αριστοτέλης Χ. Παπαγεωργίου Μεταλλάξεις και εξέλιξη Η πρώτη ύλη της εξέλιξης

Διαβάστε περισσότερα

i=1 f i = F i SF [0, f 1 ), [f 1, f 1 + f 2 ), [f 1 + f 2, f 1 + f 2 + f 3 ),..., [f 1 + f f P 1, 1) i 1

i=1 f i = F i SF [0, f 1 ), [f 1, f 1 + f 2 ), [f 1 + f 2, f 1 + f 2 + f 3 ),..., [f 1 + f f P 1, 1) i 1 ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ (216-17) Εργασία 4 Πολύ συχνά, ένα υπολογιστικό πρόβλημα έχει περισσότερες από μία λύση. Για παράδειγμα, αν θέλουμε να βρούμε ένα υποσύνολο ενός συνόλου ακεραίων, που το άθροισμα

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 25 Αυγούστου 26 :-4: Κατασκευάστε έναν αισθητήρα (perceptron)

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο

Διαβάστε περισσότερα

3. Προσομοίωση ενός Συστήματος Αναμονής.

3. Προσομοίωση ενός Συστήματος Αναμονής. 3. Προσομοίωση ενός Συστήματος Αναμονής. 3.1. Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων,

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΣΧΕΔΙΑΣΗΣ ΠΡΟΪΟΝΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΣΧΕΔΙΑΣΗΣ ΠΡΟΪΟΝΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΣΧΕΔΙΑΣΗΣ ΠΡΟΪΟΝΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ & ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Πρόγραμμα μεταπτυχιακών σπουδών: «Σχεδίαση διαδραστικών

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ολοκληρωμένη μαθηματική τεχνική βελτιστοποίησης Ευρύτατο φάσμα εφαρμογών Εισαγωγή ακέραιων/λογικών/βοηθητικών μεταβλητών Δυνατότητα γραμμικοποίησης με 0-1 μεταβλητές

Διαβάστε περισσότερα

Γενετικοί αλγόριθµοι - ΓΑ Genetic algorithms - GA

Γενετικοί αλγόριθµοι - ΓΑ Genetic algorithms - GA Γενετικοί αλγόριθµοι - ΓΑ Genetic algorithms - GA ΕΦΑΡΜΟΓΗ στην ΕΠΕΞΕΡΓΑΣIΑ ΣΗΜΑΤΟΣ και στην ΑΣΑΦΗ ΛΟΓIΚΗ Σ. Φωτόπουλος ΠΑΝΕΠ. ΠΑΤΡΩΝ Τµ. ΦΥΣΙΚΗΣ ΠΜΣ ΗΕΠ ΓΑ - Εισαγωγικά Γενετικοί αλγόριθµοι (Genetic algorithms)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 2 Σεπτεµβρίου 2005 5:00-8:00 Σχεδιάστε έναν αισθητήρα ercetro

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX ΚΕΦΑΛΑΙΟ 3 ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX 3.1 Εισαγωγή Ο αλγόριθμος Simplex θεωρείται πλέον ως ένας κλασικός αλγόριθμος για την επίλυση γραμμικών προβλημάτων. Η πρακτική αποτελεσματικότητά του έχει

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα ΙΙ

Τηλεπικοινωνιακά Συστήματα ΙΙ Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 11: Κωδικοποίηση Πηγής Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Αλγόριθμοι κωδικοποίησης πηγής Αλγόριθμος Fano Αλγόριθμος Shannon Αλγόριθμος Huffman

Διαβάστε περισσότερα

Διαδικτυακό Περιβάλλον Διαχείρισης Ασκήσεων Προγραμματισμού

Διαδικτυακό Περιβάλλον Διαχείρισης Ασκήσεων Προγραμματισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Διπλωματική Εργασία με θέμα: Διαδικτυακό Περιβάλλον Διαχείρισης Ασκήσεων Προγραμματισμού Καραγιάννης Ιωάννης Α.Μ.

Διαβάστε περισσότερα

J-GANNO. Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β, Φεβ.1998) Χάρης Γεωργίου

J-GANNO. Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β, Φεβ.1998) Χάρης Γεωργίου J-GANNO ΓΕΝΙΚΕΥΜΕΝΟ ΠΑΚΕΤΟ ΥΛΟΠΟΙΗΣΗΣ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΙΚΤΥΩΝ ΣΤΗ ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ JAVA Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β,

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση

Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση Ανδρέας Ευστρατιάδης & Δημήτρης Κουτσογιάννης Σχολή Πολιτικών Μηχανικών, Αθήνα Άδεια

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ

Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός

Διαβάστε περισσότερα

Σύνοψη Προηγούμενου. Πίνακες (Arrays) Πίνακες (Arrays): Βασικές Λειτουργίες. Πίνακες (Arrays) Ορέστης Τελέλης

Σύνοψη Προηγούμενου. Πίνακες (Arrays) Πίνακες (Arrays): Βασικές Λειτουργίες. Πίνακες (Arrays) Ορέστης Τελέλης Σύνοψη Προηγούμενου Πίνακες (Arrays Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς Διαδικαστικά θέματα. Aντικείμενο Μαθήματος. Aντικείμενα, Κλάσεις, Μέθοδοι, Μεταβλητές.

Διαβάστε περισσότερα

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η επιχειρησιακή έρευνα επικεντρώνεται στη λήψη αποφάσεων από επιχειρήσεις οργανισμούς, κράτη κτλ. Στα πλαίσια της επιχειρησιακής έρευνας εξετάζονται οι ακόλουθες περιπτώσεις : Γραμμικός προγραμματισμός

Διαβάστε περισσότερα