TERMOENERGETIKA. Boričić Aleksandra

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "TERMOENERGETIKA. Boričić Aleksandra"

Transcript

1 TERMOENERGETIKA Boričić Aleksandra

2 Šta proučava termodinamika? Termodinamika je nauka koja proučava pojave vezane za međusobno pretvaranje jednog oblika energije u drugi. Termodinamika analizira i definiše razne forme tog pretvaranja-prvi princip Termodinamika analizira i definiše uslove pod kojima je to moguće-drugi princip

3 Koju vrstu energije čovečanstvo danas koristi?

4 Šta je energija?

5 Šta je energija? Energija je jedan od oblika kretanja materije. Energija predstavlja sposobnost nekog tela da vrši rad. E=m c² Gde je c - brzina svetlosti, m - masa tela

6 Oblici energije Mehanička energija(energija kretanja spoljašnjih vidljivih tela), Toplotna energija(kretanje unutar tela, unutrašnja energija), Električna, Hemijska, Nuklearna...

7 Energija može biti: Potencijalna E koja se ispoljava u mogučnosti tela da se kreću i Kinetička E koja se ispoljava u samom kretanju tela. Zakon o održanju E: Energija se ne može ni stvoriti ni uništiti, već može menjati svoj oblik postojanja tj. odnosno pretvarati se iz jednog oblika u drugi.

8 Radno telo-sistem To je ono telo koje smo uzeli da posmatramo u odnosu na druga tela-okolina. Radno telo može da: - bude različitog agregatnog stanja, - ima veću ili manju sposobnost da vrši rad, - menja svoje stanje, - utiče na promenu stanja drugih tela u okolini.

9 Termodinamički sistem Radno telo sa okolinom čini jedan termodinamički sistem koji može biti: - Otvoren(m#cons.), - Zatvoren(m=const.) i - Izolovan sistem (nema razmene E sa okolinom) - Adijabatski ( Q=0 )

10 Idealan gas Idealan gas predstavlja idealizovano gasovito telo čiji su molekuli predstavljeni kao materijalne tačke. Radno telo je bliže idealnom, ukoliko je ono što više udaljeno od tečnog stanja. Temperature prelaska nekih elemenata u tečno stanje: - azot C - vodonik C - vodena para C - pare etera + 34,6 C

11 Idealan gas- plazma Jedan te isti gas je utoliko bliži idealnom gasu, ukoliko mu je temperatura pri nekom određenom pritisku viša, ili ukoliko mu je pritisak pri nekoj određenoj stalnoj temperaturi niži. Plazma predstavlja visokojonizovani gas čija je većina čestica naelektrisana.

12 Osnovne veličine stanja radnog tela Ovo su veličine koje određuju spoljašnje karakteristike toplotnog kretanja. TEMPERATURA, PRITISAK i SPECIFIČNA ZAPREMINA.

13 Temperatura Temperatura se karakteriše kao stepen zagrejanosti tela ili kao, Mera srednje kinetičke energije translatornog kretanja molekula. mv² / 2= BT gde je: m masa tela v brzina kretanja molekula B koeficijent proporcionalnosti T - temperatura

14 Temperatura Temperatura ne može prelaziti sa tela na telo, nego prelazi toplota, a temperature se izjednačavaju.

15 Temperatura Meri se termometrima koji mogu imati: Celzijusovu, Reomirovu ili Farenhajtovu skalu. T = t T2 T1 = t2 t1 9 t F = tc + 32( F) 5 5 t C = tf 32 C 9 ( )( )

16 Pritisak Definiše se kao sila na jedinicu površine. Jedinica za merenje je Pa (=) N / m² i bar (=) 10 5 Pa. Instrumenti za merenje pritiska u zatvorenom sudu daju najčešće razliku apsolutnog i barometarskog pritiska. Za natpritisak: p = p b + p m Za vakuum: gde su: p = p b - p v p apsolutni pritisak p b barometarski pritisak p m pritisak na manometru p v pritisak na vakuumetru.

17 Specifična zapremina (v) Predstavlja zapreminu jedinice mase(m 3 /kg). Recipročna vrednost specifične zapremine jeste gustina ρ(kg/m 3 ). Zato sledi da je: v = 1/ρ odnosno ρ=1/v.

18 Termodinamička ravnoteža Prirodno stanje gasa ostvaruje se ukoliko nema spoljašnjih uticaja. Ako, p, T, i v imaju iste vrednosti u svim tačkama zapremine sistema, za taj sistem kažemo da je u stanju termodinamičke ravnoteže. Svako ravnotežno stanje ima odgovarajuću vrednost p, T i v.

19 Promena stanja Sistem može da prelazi kroz neravnotežna stanja pod uticajem različitih spoljašnjih sila. Sa prestankom delovanja spoljašnjih sila, sistem se vraća u novo ravnotežno stanje. Takav proces pri kome se menjaju veličine stanja naziva se promena stanja. Procesi koji se pri promenama stanja odvijaju mogu biti povratni(reverzibilni) i nepovratni(ireverzibilni)

20 Povratni i nepovratni procesi Povratni procesi ostvaruju se, ako se procesi odigravaju lagano, i pri tome sistem prolazi kroz međustanja koja podrazumevaju postojanje termičke, mehaničke i hemijske ravnoteže. Nepovratni procesi su procesi kod kojih se sistem i okolina ne mogu vratiti u svoja početna stanja bez dodatnog(spoljnjeg) utroška energije.

21 Povratni i nepovratni procesi Povratni procesi ostvaruju se, ako se procesi odigravaju lagano, i pri tome sistem prolazi kroz međustanja koja podrazumevaju postojanje termičke, mehaničke i hemijske ravnoteže. Nepovratni procesi su procesi kod kojih se sistem i okolina ne mogu vratiti u svoja početna stanja bez dodatnog(spoljnjeg) utroška energije.

22 Jednačina stanja idealnog gasa Osnovne veličine stanja, p, T i v su međusobno povezane tzv. jednačinom stanja. f(p, v, T)= 0 Ova jednačina zavisi od vrste radne supstance.za idealan gas, po definiciji na svim pritiscima i temperaturama važi: za 1 (kmol) gasa pv m = R u T za n (kmol) gasa pv= nr u T za m (kg) gasa pv= mrt za 1 (kg) gasa pv= RT za 1 (m 3 ) gasa p= ρrt

23 Gde su: V zapremina v m molarna zapremina v m = V/n, gde je n broj molova fluida v specifična zapremina v = V/m, m masa fluida ρ gustina gasa ρ = m/v R gasna konstanta(predstavlja karakteristiku datog gasa) R = R u /M R u univerzalna gasna konstanta M molarna masa U tehničkim proračunima često se usvaja vrednost R u, i iznosi : R u = 8,315KJ/kmolK Vrednosti molarnih masa date su u posebnim tablicama.

24 Avogadrov zakon Razni idealni gasovi koji se nalaze u jednakim zapreminama, na istoj temperaturi i pri istom pritisku, imaju isti broj molekula. N 1 = N 2 gde je N broj molekula Na osnovu Avogadrovog zakona, mase raznih idealnih gasova, koji se nalaze u istim uslovima T i p imaju iste odnose i molekulskih težina: m 1/ m 2 = M 1 /M 2 Prema Avogadrovom zakonu zapremina mola(mv) za sve idealne gasove mora biti ista(u istim uslovima) Mv = 22,4m 3 /mol v = 22,4/M, odnosno ρ = M/22,4

25 Normalni uslovi gasa Normalni uslovi gasa podrazumevaju: p = 760mm Hg i T = 273K Iz karakteristične jednačine stanja može se izračunati: R = pv/t R = R u /M R = 8315(J/kgK)

26 Smeša idealnih gasova Gasovi u prirodi najčešće predstavljaju mešavine različitih pojedninačnih gasova. Mešavinu čine dve ili više komponenata. Komponente su različiti idealni gasovi, koji međusobno hemijski ne reaguju. Zato za takve mešavine važe svi zakoni idealnih gasova i jednačina stanja.

27 Daltonov zakon Svaki gas, kao komponenta mešavine gasova, zauzima ceo prostor u kome se mešavina nalazi, stvarajući određeni pritisak na zidove suda. Pritisak koji bi imala posmatrana komponenta kada bi se sama nalazila u čitavoj zapremini i na temperaturi mešavine naziva se parcijalni pritisak. Ukupni pritisak mešavine mora da bude veći od parcijalnog pritiska, jer je veći i broj molekula koji uzrokuju ukupni pritisak. Pri konstantnoj temperaturi mešavine, ukupan pritisak mešavine gasova jednak je zbiru parcijalnih pritisaka (Daltonov zakon): p = p 1 + p p n gde je n broj komponenata u datoj mešavini.

28 Sastavi mešavine Sastav mešavine može biti dat po masi maseni sastav, po zapremini zapreminski sastav i po molovima molarni sastav. Maseni sastav mešavine je određen masenim udelom, to jest odnosom mase neke komponente prema masi čitave mešavine: g 1 = m 1 /m, g 2 = m 2 /m,... g k = m n /m, gde indeksi 1,2,...,k,...n označavaju redosled komponente. Maseni udeo je bezdimenzioni broj, manji od jedinice. Masa mešavine, zato mora da bude jednaka zbiru masa komponenata: m 1 + m m n = m. Deljenjem poslednje jednačine masom mešavine m dobija se m 1 /m + m 2 /m m n /m = 1 ili g 1 + g g n = 1.

29 Sastavi mešavine Zbir svih masenih udela daje jedinicu ili 100%, ako se izražava u procentima. Zapreminski sastav mešavine je određen zapreminskim udelom: r 1 = V 1 /V, r 2 = V 2 /V,..., r k = V k /V, gde su V 1, V 2,..., V k zapremine redukovane (parcijalne) zapremine. I zbir zapreminskih udela je takođe jednak jedinici, to jest: r 1 + r r n = 1 ili izraženo u procentima 100%. Molarni sastav mešavine je određen molarnim udelom, koji predstavlja odnos broja molova proizvoljne k-te komponente prema broju molova mešavine: v k = n k / n. Međutim može da se pokaže da je brojno molarni udeo jednak zapreminskom udelu,odnosno v k = r k.

30 Jednačine stanja mešavine

31 HVALA NA PAŽNJI

32 Energija radnog tela(sistema) Kretanje materije u prirodi je neprekidno. Ono može biti vidljivo: - kretanje reka, - kretanje vazdušnih masa, - kretanje automobila,... Ili može biti nevidljivo: - kretanje molekula, - kretanje elektrona, - kretanje elektromagnetnih talasa,...

33 Zato kažemo da se kretanje javlja u više različitih oblika: - mehaničko, - toplotno, - električno, - magnetno, - hemijsko, - nuklearno,... Univerzalna mera kretanja materije naziva se ENERGIJA.

34 Da bi objasnili toplotno kretanje, potrebno je objasniti nevidljivi svet mikročestica. Tri stanja iste supstance mogu se nalaziti u čvrstom, tečnom i gasovitom stanju. Razlika je u međusobnom kretanju njihovih mikročestica. Gasovito stanje je primer potpunog nereda, kad je kretanje njegovih čestica u pitanju. Sama reč gas potiče od grčke reči haos, što znači nered. U jednom kubnom centimetru vazduha ima oko molekula, a rastojanje između njih je deset puta veće od samih molekula.

35 Unutrašnja energija i količina toplote Kretanje radnog gasovitog tela sastoji iz: - Translatornog kretanja molekula, - Obrtanja molekula (usled njihovih sudara) i - Unutarmolekulskog oscilovanja atoma. Rezultat ovih kretanja je kinetička energija molekula i atoma. Postoji i potencijalna energija, koja je rezultat dejstva međumolekulskih privlačnih sila, koje se kod idealnog gasa zanemaruju. Zbir energija mikročestica tela čini unutrašnju energiju (U) tela.

36 Unutrašnja energija tri termodinamička sistema na istoj temperaturi

37 Unutrašnja energija vode u čaši

38 Nepostojane energije Nepostojane energije predstavljaju one vrste energija koje traju samo onoliko koliko i proces energetske razmene izmedju sistema i okoline. Kada se pri ovoj razmeni energije granična površina izmedju sistema i okoline pomera (dolazi i do promene zapremine radne materije). Energija koja se razmenjuje naziva se mehaničkim radom.kada nema pomeranja te granične površine, tada se razmenjuje toplota.

39 To znači da svako radno telo (sistem) ima i određenu unutrašnju energiju koja je određena veličinama tog stanja (p,v i t), pa je zbog toga i unutrašnja energija veličina stanja. u unutrašnja energija jedinice mase (za 1 kg) radnog tela u = f 1 (v,t) u = f 2 (p,t) u = f 3 (p,v) U unutrašnja energija (za m kg radnog tela) U = m u

40 Za idealan gas, gde zanemarujemo međumolekulske privlačne sile: u = f(t) Određena količina toplote može biti dovedena ili odvedena od radnog tela i time bi se izvršio odnosno utrošio neki spoljašnji mehanički rad. Ako se ne vrši nikakav rad, onda je količina toplote upravo jednaka promeni unutrašnje energije: Δu = u 2 u 1 ili, ako se promena stanja odvija bez promene unutrašnje energije, količina toplote jednaka je spoljašnjem mehaničkom radu.

41 Količina toplote ne zavisi od osnovnih veličina stanja, pa samim tim ona nije veličina stanja. Jedinica za merenje energije i količine toplote je džul (J). Količina toplote se označava: q količina toplote za 1 kg radnog tela, Q količina toplote za m kg radnog tela. q = Q/m (J/kg)

42 Specifična toplota Mayer-ova jednačina Da bi se ista količina različitih supstanci zagrejala ili ohladila za određenu teperaturnu razliku, potrebna je različita količina toplote. Pod specifičnom toplotom podrazumeva se ona količina toplote koja je potrebna da se jedinica količine nekog tela zagreje za 1 o c. c masena specifična toplota (J/kgK) za 1 kg, c zapreminska specifična toplota (J/m 3 K) za 1 m 3 mase, C molska specifična toplota (J/molK) za 1 mol mase.

43 Prelaz od masene na zapreminsku i molsku specifičnu toplotu i obrnuto dat je izrazima: c = c ρ c = C/m c = ρ C/m = C/M v Za normalne uslove M v = 22,4 sledi c = C/22,4 = M c/22,4 Specifična toplota za gasovita tela (masena, zapreminska ili molska) može da se meri : - pri stalnoj zapremini c v, c v,c v - pri stalnom pritisku c p, c p, C p

44 Primer: sud sa pokretnim klipom. Ako se specifična toplota meri pri v = const, klip se nalazi stalno u položaju 1, a ako se meri pri p = const, klip se pomera od položaja 1 do položaja 2. To znači da se pri p = const klip kreće i vrši neki rad. ΔW = p A Δh = p Δv = R ΔT Za T = 1K ; ΔW = R(J/kgK) gde je A površina klipa

45 Elementarni rad širenja Ako se u nekom cilindru nalazi gas pod pritiskom onda on deluje na klip silom. Kada se klip pomeri za udaljenje dh, Unutrašnja energija i rad u cilindru sa klipom

46 Zaključak : Specifična toplota pri stalnom pritisku je za vrednost gasne konstante R veća od specifične toplote pri stalnoj zapremini, tj. Mayer-ova jednačina: c p = c v + R M c p = M c v +M R kako je R u = M R = 8315 J/molK, sledi C p = C v Gornji izraz predstavlja Mayer-ovu jednačinu za 1 mol idealnog gasa.

47 Zavisnost specifične toplote od temperature (misli se na idealan gas) c = f(t) Ako se jednom kg gasa dovede izvesna količina toplote Δq, i ako se pri tom podigne temperatura od t 1 na t 2, tada će u granicama tih temperatura postojati neka srednja specifična toplota: c = q / t t ( ) odnosno ili c C = Q / T T J / K ( )( ) C Q = = m mt T 12 ( ) ( ) 2 1 J / kgk

48 ( )( ) Q = mc T T J Razmenjena količina toplote za neku promenu stanja radnog tela, ili po jedinici mase Q = 12 = / ( )( ) q c T T J kg m

49 Specifična toplota gasne smeše Masena specifična toplota gasne smeše može se izračunati ako su poznati relativni maseni sastav smeše i masene specifične toplote pojedinih komponenata u smeši, tj. da bi se 1 kg gasne smeše zagrejao za 1 o c potrebno je dovesti: g 1 c 1 + g 2 c toplote, a to znači: n c = gc s k k 1 za 1kg, masena specifična toplota gasne smeše

50 n c = rc s k k 1 za 1m 3, zapreminska specifična toplota gasne smeše s s s k k k k k 1 1 molska specifična toplota gasne smeše n C = M c = rm c = rc n

Idealno gasno stanje-čisti gasovi

Idealno gasno stanje-čisti gasovi Idealno gasno stanje-čisti gasovi Parametri P, V, T i n nisu nezavisni. Odnos između njih eksperimentalno je utvrđeni izražava se kroz gasne zakone. Gasni zakoni: 1. ojl-maritov: PVconst. pri konstantnim

Διαβάστε περισσότερα

C 273,15, T 273,15, 1 1 C 1 50 C 273,15 K 50K 323,15K 50K 373,15K C 40 C 40 K

C 273,15, T 273,15, 1 1 C 1 50 C 273,15 K 50K 323,15K 50K 373,15K C 40 C 40 K 1 Zadatak temperatura K- C Telo A se nalazi na temperaturi 50 C i zagreje se za 50 K. Telo B se nalazi na temperaturi 313 K.i zagreje se za 40 C. Koje je telo toplije posle zagravanja i kolika je razlika

Διαβάστε περισσότερα

GASNO STANJE.

GASNO STANJE. GASNO STANJE http://www.ffh.bg.ac.rs/geografi_fh_procesi.html AGREGATNA STANJA MATERIJE Četiri agregatna stanja materije na osnovu stepena uređenosti, tj. odnosa termalne energije čestica i energije međumolekulskih

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem.

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. 1.OSNOVNI POJMOVI TOPLOTA Primjeri * KALORIKA Nauka o toploti * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. * TD SISTEM To je bilo koje makroskopsko tijelo ili grupa tijela,

Διαβάστε περισσότερα

BIOFIZIKA TERMO-FIZIKA

BIOFIZIKA TERMO-FIZIKA BIOFIZIKA TERMO-FIZIKA Akademik, prof. dr Jovan P. Šetrajčić jovan.setrajcic@df.uns.ac.rs Univerzitet u Novom Sadu Departman za fiziku PMF Powered byl A T E X 2ε! p. / p. 2/ Termika FENOMENOLOŠKA TEORIJA

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Termodinamika se bavi materijom u svim agregatnim stanjima.

Termodinamika se bavi materijom u svim agregatnim stanjima. Termodinamika - Termo toplota - Dinamika promena, snaga Termodinamika je oblast fizike koja se bavi odnosima između toplote i drugih oblika energije. Konkretno objašnjava kako se toplotna energija pretvara

Διαβάστε περισσότερα

Drugi zakon termodinamike

Drugi zakon termodinamike Drugi zakon termodinamike Uvod Drugi zakon termodinamike nije univerzalni prirodni zakon, ne važi za sve sisteme, naročito ne za neobične sisteme (mikrouslovi, svemirski uslovi). Zasnovan je na zajedničkom

Διαβάστε περισσότερα

U unutrašnja energija H entalpija S entropija G 298. G Gibsova energija TERMOHEMIJA I TERMODINAMIKA HEMIJSKA TERMODINAMIKA

U unutrašnja energija H entalpija S entropija G 298. G Gibsova energija TERMOHEMIJA I TERMODINAMIKA HEMIJSKA TERMODINAMIKA HEMIJSKA TERMODINAMIKA Bavi se energetskim promenama pri odigravanju hemijskih reakcija. TERMODINAMIČKE FUNKCIJE STANJA U unutrašnja energija H entalpija S entropija Ako su određene na standardnom pritisku

Διαβάστε περισσότερα

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

Molekularna fizika i termodinamika. Molekularna fizika i termodinamika. Molekularna fizika i termodinamika. Molekularna fizika i termodinamika

Molekularna fizika i termodinamika. Molekularna fizika i termodinamika. Molekularna fizika i termodinamika. Molekularna fizika i termodinamika Molekularna fizika proučava strukturu i svojstva supstanci polazeći od molekularno -kinetičke teorije: supstance su sastavljene od vrlo malih čestica (molekula, atoma i jona) koji se nalaze u stalnom haotičnom

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

TERMODINAMIČKI PARAMETRI su veličine kojima opisujemo stanje sistema.

TERMODINAMIČKI PARAMETRI su veličine kojima opisujemo stanje sistema. TERMODINAMIKA U svakodnevnom govoru, često dolazi greškom do koriščenja termina temperatura i toplota u istom značenju. U fizici, ova dva termina imaju potpuno različito značenje. Razmatračemo kako se

Διαβάστε περισσότερα

TOPLOTA I RAD, PRVI ZAKON TERMODINAMIKE

TOPLOTA I RAD, PRVI ZAKON TERMODINAMIKE TOPLOTA I RAD, PRI ZAKON TERMODINAMIKE Mehanički rad u termodinamici uvek predstavlja razmenu energije izmedju sistema i okoline. Mehanički rad se javlja kao rezultat delovanja sile duž puta: W Fdl W Fdl

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Energetska priroda toplote Mejer i Džul (R. Mayer, , i J. Joul, ) W. Thomson S. Carnot J. W. Gibbs

Energetska priroda toplote Mejer i Džul (R. Mayer, , i J. Joul, ) W. Thomson S. Carnot J. W. Gibbs ERMODINAMIKA ermodinamika naučna disciplina koja proučava energetske promene koje prate univerzalne procese u prirodi kao i vezu tih promena sa osobinama materije koja učestvuje u njima. ermodinamika je

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

TERMODINAMIKA osnovni pojmovi energija, rad, toplota

TERMODINAMIKA osnovni pojmovi energija, rad, toplota TERMODINAMIKA osnovni pojmovi energija, rad, toplota TERMODINAMIKA TERMO TOPLO nauka o kretanju toplote DINAMO SILA Termodinamika-nauka odnosno naučna disciplina koja ispituje odnose između promena u sistemima

Διαβάστε περισσότερα

NULTI I PRVI ZAKON TERMODINAMIKE

NULTI I PRVI ZAKON TERMODINAMIKE NULTI I PRVI ZAKON TERMODINAMIKE NULTI ZAKON (princip)termodinamike ako su dva sistema A i B u međusobnom termičkom kontaktu, i u ravnoteži sa trećim sistemom C onda su u ravnoteži i jedan sa drugim Ako

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

PRELAZ TOPLOTE - KONVEKCIJA

PRELAZ TOPLOTE - KONVEKCIJA PRELAZ TOPLOTE - KONVEKCIJA Prostiranje toplote Konvekcija Pri konvekciji toplota se prostire kretanjem samog fluida (tečnosti ili gasa): kroz fluid ili sa fluida na čvrstu površinu ili sa čvrste površine

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

2. TERMODINAMIKA 2.1. Prvi zakon termodinamike

2. TERMODINAMIKA 2.1. Prvi zakon termodinamike . ERMODINAMIKA.. rvi zakon termodinamike ermodinamika je naučna disciplina koja proučava energetske promene koje prate univerzalne procese u prirodi kao i vezu tih promena sa osobinama materije koja učestvuje

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Prvi zakon termodinamike

Prvi zakon termodinamike Prvi zakon termodinamike Uvod Prvi princip termodinamike je apsolutni prirodni zakon koji važi za sve pojave koje se odigravaju na svim prostornim nivoima (mikro, makro i mega svetu). Zasnovan je na brojnim

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Termohemija. C(s) + O 2 (g) CO 2 (g) H= -393,5 kj

Termohemija. C(s) + O 2 (g) CO 2 (g) H= -393,5 kj Termohemija Termodinamika proučava energiju i njene promene Termohemija grana termodinamike odnosi izmeñu hemijske reakcije i energetskih promena koje se pri tom dešavaju C(s) + O 2 (g) CO 2 (g) H= -393,5

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1 OSNOVNI ZAKONI TERMALNOG ZRAČENJA Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine Ž. Barbarić, MS1-TS 1 Plankon zakon zračenja Svako telo čija je temperatura

Διαβάστε περισσότερα

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja: Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

Test pitanja Statika fluida

Test pitanja Statika fluida Test pitanja Statika fluida 1. Agregatna stanja. čvrsto stanje - telo ima određeni oblik i zapreminu; tečno stanje - telo ima određenu zapreminu, a oblik zavisi od suda u kome se nalazi; gasovito stanje

Διαβάστε περισσότερα

Fizička svojstva fluida i definicije

Fizička svojstva fluida i definicije Fizička svojstva fluida i definicije Pod fluidima se podrazumevaju materijali (substance) koji pod dejstvom tangencijalnih sila ili napona struje ili teku. Fluidi (tečnosti i gasovi) se mogu definisati

Διαβάστε περισσότερα

M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VII predavanje, 2017.

M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VII predavanje, 2017. M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VII predavanje, 2017. Konzervativne sile i potencijalna energija 1 Konzervativne sile Definicija konzervativne sile. Sila je konzervativna ako rad te sile

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Termodinamika. Termodinamika

Termodinamika. Termodinamika ermodinamika Postoje brojne definicije termodinamike kao nauke o toploti. ako na primjer, prema Enriku Fermiju: Glavni sadržaj termodinamike je opisivanje transformacije toplote u mehnaički rad i obratno

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

VISKOZNOST TEČNOSTI Viskoznost

VISKOZNOST TEČNOSTI Viskoznost VISKOZNOST VISKOZNOST TEČNOSTI Viskoznost predstavlja otpor kojim se pojedini slojevi tečnosti suprostavljaju kretanju jednog u odnosu na drugi, odnosno to je vrsta unutrašnjeg trenja koja dovodi do protoka

Διαβάστε περισσότερα

Mašinsko učenje. Regresija.

Mašinsko učenje. Regresija. Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

OSNOVI HEMIJSKE TERMODINAMIKE I TERMOHEMIJA

OSNOVI HEMIJSKE TERMODINAMIKE I TERMOHEMIJA OSNOVI HEMIJSKE TERMODINAMIKE I TERMOHEMIJA OSNOVI HEMIJSKE TERMODINAMIKE Hemjska termodnamka proučava promene energje (toplotn efekat) pr odgravanju hemjskh reakcja. MATERIJA ENERGIJA? Energja je dskontnualna

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc.

Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc. Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc. Lidija Furač Pri normalnim uvjetima tlaka i temperature : 11 elemenata su plinovi

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

H T. C P,m C V,m = R C P C V = nr U T U V T H P. Izotermski procesi: I zakon termodinamike. Izotermski reverzibilni zapreminski rad gasa u I.G.S.

H T. C P,m C V,m = R C P C V = nr U T U V T H P. Izotermski procesi: I zakon termodinamike. Izotermski reverzibilni zapreminski rad gasa u I.G.S. I zakon termodinamike du dq dw dh du pd C U dw e C,m C,m = R C C = nr C H du C d U d C d d u dh C p d H d Izotermski procesi: w nr ln R ln w p Izotermski reverzibilni zapreminski rad gasa u I.G.S. Izotermski

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα