Κβαντικη Θεωρια και Υπολογιστες

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κβαντικη Θεωρια και Υπολογιστες"

Transcript

1 Κβαντικη Θεωρια και Υπολογιστες 2 Μαθηματικη Βαση της Κβαντικής Θεωρίας Κλασσικα και Κβαντικα Μαθηματικα Μοντελα Χειμερινο Εξαμηνο Iωαννης E. Aντωνιου Τμημα Μαθηματικων Aριστοτελειο Πανεπιστημιο 54124, Θεσσαλονικη

2 Μαθηματικη Βαση της Κβαντικής θεωρίας. Κλασσικα και Κβαντικα Μαθηματικα Μοντελα Μαθηματικα Μοντελα και Επιστημονικη Ερευνα Δομη Μαθηματικων Μοντελων Κλασσικα και Κβαντικα Συστηματα

3 Μαθηματικα Μοντελα και Επιστημονικη Ερευνα Eμπειρια Μετρηση Επεξεργασια Δεδομενων Εμπειρικοι Νομοι Διαισθηση Κepler Στατιστικη Εκτιμηση Πιθανοτητας, Εκτιμηση Συσχετισεων Εκτιμηση Αιτιοτητας Ληψη Αποφασεων Παιγνια Μαθηση Εξελικτικες Στρατηγικες, Γενετικοι Αλγοριθμοι

4 Δομη Μαθηματικων Μοντελων Ο Xωρος Y των Καταστασεων Η Αλγεβρα A των Παρατηρησιμων Μεγεθων (ΠM) Η Λογικη L των Στοιχειωδων Ερωτησεων Χρονικη Μεταβολη: ως λυση του Δυναμικου Μοντελου (Νομος) Διαφορικη Εξισωση, Εξισωση Διαφορων Ολοκληρωτικη Εξισωση Αρχη Ακροτατου Προβλεψη 1) Εκτιμηση της Τιμης των ΠΜ, από τη διαθεσιμη γνωση της Καταστασης του Συστηματος 2) Εκτιμηση της Τιμης των ΠΜ την χρονικη στιγμη t, από τη διαθεσιμη γνωση της Καταστασης του Συστηματος την αρχικη στιγμη t=0 Πληροφορια και Εντροπια I 1) Εκτιμηση της Πληροφοριας των Παρατηρησεων (των ΠΜ) του Συστηματος, 2) Εκτιμηση της χρονικης μεταβολης της Πληροφοριας των Παρατηρησεων (των ΠΜ) του Συστηματος

5 Xωρος Καταστασεων Y ΚΛΑΣΣΙΚΟ ΣΥΣΤΗΜΑ Α1 Οι καταστασεις (ονομαζονται και Φασεις) ειναι Σημεια y ενός Μετρησιμου Τοπολογικου Χωρου (ΜΤΧ) Y ΣΧΟΛΙΑ 1) Η Δομη του ΜΤΧ Y προσδιοριζεται απο τη φυση του Προβληματος-Μοντελου 2) Στα Δυναμικα Συστηματα Ν- διαστασεων: Y υποσυνολο του Eυκλειδιου Χωρου R Ν 3) Στα Συστηματα Ηamilton (Κλασσικη Μηχανικη) οι καταστασεις y είναι οι γενικευμενες θεσεις q= (q 1, q 2,, q N ) και οι γενικευμενες ορμες p = (p 1, p 2,, p N ) y = (q,p) = (q 1, q 2,, q N, p 1, p 2,, p N ) Y R 2Ν 4) Ο Χωρος Y γενικωτερα μπορει να ειναι Απειροδιαστατος διακριτος η συνεχης, Επιφανεια (Riemann, Lorentz, Symplectic Manifold) ΚΒΑΝΤΙΚΟ ΣΥΣΤΗΜΑ Α1 Οι καταστασεις (ονομαζονται και Κυματοσυναρτησεις) ειναι Διανυσματα ψ ενος Μιγαδικου Διανυσματικου Χωρου (ΔΧ) Y ΣΧΟΛΙΑ 1) Η Δομη του ΔΧ Y προσδιοριζεται απο τη φυση του Προβληματος-Μοντελου 2) Στα πλαισια του Μαθηματος περιοριζομαστε στην απλη περιπτωση: ψ Y C Ν = H 3) Στη θεμελιωση κατα Von Neumann: Y = H, Xωρος Hilbert (XH), συνηθως l 2 = ο XH των τετραγωνικα αθροισιμων (μιγαδικων) ακολουθιων L 2 = ο XH των τετραγωνικα ολοκληρωσιμων (μιγαδικων) συναρτησεων 4) Ο Χωρος Y γενικωτερα μπορει να ειναι Rigged Hilbert Space Dual Pair Locally Convex Topological Vector Space Συνθεση N Συστηματων Y= Y1 x Y2 x x YN Συνθεση N Συστηματων Y= Y1 Y2 YN

6 Αλγεβρα των Παρατηρησιμων Μεγεθων (ΠΜ) A ΚΛΑΣΣΙΚΟ ΣΥΣΤΗΜΑ ΚΒΑΝΤΙΚΟ ΣΥΣΤΗΜΑ Α2 Η Αλγεβρα A των ΠΜ ειναι η Γραμμικη Αλγεβρα των Πραγματικων Συναρτησεων στον ΜΤΧ Y (Τυχαιων Μεταβλητων) Α: Y R : y Α(y) Στα Συστηματα Ηamilton (Κλασσικη Μηχανικη) Α: R 2Ν R : y Α(y)=Α(q,p) = Α(q 1, q 2,, q N, p 1, p 2,, p N ) Α2 Η Αλγεβρα των ΠΜ ειναι η Γραμμικη Αλγεβρα των (Γραμμικων) Τελεστων στον ΔΧ Y Στην απλουστερη περιπτωση Y C Ν τα ΠΜ ειναι ΝxN Πινακες Α: C Ν C Ν : Α 11 Α 1Ν ψ 1 y Α(ψ) Αψ = Α Ν1 Α ΝΝ ψ Ν Μετρησιμες Τιμες: στα Πεδια Τιμων των συναρτησεων Α, Β,... Μετρησιμες Τιμες: οι Φασματικες τιμες των Τελεστων Α, Β,... στα Πεδια Ιδιοτιμων των Τελεστων Α, Β,... Θ1 Η Αλγεβρα A των Πραγματικων Συναρτησεων Ν Μεταβλητων είναι Μεταθετικη Προσεταιριστικη Γραμμικη Αλγεβρα. Η Αλγεβρα A των Πραγματικων Συναρτησεων 2Ν Μεταβλητων είναι Μεταθετικη Γραμμικη Αλγεβρα Poisson-Lie Θ1 Η Αλγεβρα A των Τελεστων ειναι Μη-Μεταθετικη Γραμμικη Αλγεβρα Poisson-Lie

7 Λογικη L των Στοιχειωδων Ερωτησεων ΚΛΑΣΣΙΚΟ ΣΥΣΤΗΜΑ Ο1 Στοιχειωδης Ερωτησις Ανηκει η κατασταση y στο Mετρησιμο συνολο (ελεγχου) Δ? L {1 Δ Δ Mετρησιμο Υποσυνολο του R Ν } 1, y Δ 1 Δ (y)= 0, y Δ η Δεικτρια Συναρτηση του συνολου Δ ΚΒΑΝΤΙΚΟ ΣΥΣΤΗΜΑ Ο1 Στοιχειωδης Ερωτησις Ανηκει η κατασταση ψ στον Διανυσματικο Υποχωρο (ελεγχου) D? L { P D D Διανυσματικος Υποχωρος του H} P D : H D ο Τελεστης Προβολης στον Διανυσματικο Υποχωρο (ΔΥ) D του H L Subsets (R Ν )= το Δυναμοσυνολο του R Ν Θ2 1) Η Λογικη των πεπερασμενων Στοιχειωδων Ερωτησεων ειναι Αλγεβρα Boole 2) Η Λογικη των απειρων Στοιχειωδων Ερωτησεων ειναι σ-αλγεβρα Boole L SubVS (H) = η κλασση των ΔΥ του H Θ2 1) Η Λογικη των πεπερασμενων Στοιχειωδων Ερωτησεων ειναι Modular Orthocomplemented Lattice, αν dim H<+ OrthoModular Lattice, αν dim H<+ 2) Η Λογικη των απειρων Στοιχειωδων Ερωτησεων ειναι σ- Complete Orthomodular Lattice

8 Χρονικη Μεταβολη t η μεταβλητη του μετρουμενου Χρονου t T το πεδιο τιμων του Χρονου ΚΛΑΣΣΙΚΟ ΣΥΣΤΗΜΑ Α3 Νομος Χρονικης μεταβολης: S t : Y Y: y S t (y)= S t y=y t, Για συνεχη χρονο t T R, S t λυση της Διαφορικης Εξισωσης : dy t = Z (y t) dt Στην Κλασσικη Μηχανικη η ΔΕ Ηamilton: d dt q p = H p H q Η=Η(q,p) η Συναρτηση Ηamilton (Ενεργεια) Για διακριτο χρονο t T Z, S t λυση της Εξισωσης Διαφορων : y t+1 = y t + Z (y t ) = S[y t ] ΚΒΑΝΤΙΚΟ ΣΥΣΤΗΜΑ Α3 Νομος Χρονικης μεταβολης: U t : H H: ψ U t (ψ)= U t ψ = ψ t, t συνεχης, t R, U t η λυση της Διαφορικης Εξισωσης Schroedinger: dψ t dt = iηψ t Παραδειγμα: Oι ΔΕ Sturm-Liouville: dψ = 2 ψ + V(x)ψ, dt x 2 Ηψ = i 2 ψ x2 + iv(x)ψ o Τελεστης Ηamilton (Ενεργεια) V(x) η Δυναμικη Ενεργεια του Συστηματος

9 Προβλεψη Εκτιμηση της Τιμης των ΠΜ, από τη διαθεσιμη γνωση της Καταστασης του Συστηματος ΚΛΑΣΣΙΚΟ ΣΥΣΤΗΜΑ ΚΒΑΝΤΙΚΟ ΣΥΣΤΗΜΑ Α4.1 Αν η διαθεσιμη γνωση Α4.1 Αν η διαθεσιμη γνωση της καταστασης του Συστηματος της καταστασης του Συστηματος ειναι η εκτιμηση-προσεγγιση y Y, ειναι η εκτιμηση-προσεγγιση ψ Y Τοτε η Προβλεψη για την τιμη του ΠΜ Α Τοτε η Προβλεψη για την τιμη του ΠΜ Α (ΓΤ) (ΤΜ) ειναι: < Α > ψ = Ε ψ [Α] = Ν a=1 p a a Είναι η τιμη: οπου: Α(y) (Deterministic Prediction) p α η πιθανοτητα το διανυσμα ψ να ανηκει στον α-ιδιοχωρο H α του H Δηλαδη η μετρηση του ΠΜ Α είναι η ιδιοτιμη α με πιθανοτητα p α (Intrinsic Probabilistic Prediction of QM) ΣΧΟΛΙΟ Αν ψ ιδιοδιανυσμα του Τελεστη Α με ιδιοτιμη α: Αψ = αψ Τοτε η τιμη του ΠΜ Α ειναι με βεβαιοτητα η ιδιοτιμη α (Deterministic Prediction of QM)

10 Θ3 < ψ, Αψ > < Α > ψ = ψ 2 = trp ψ Α < Α > ψ = < ψ, Αψ >, αν ψ = 1 Αποδ. < Α > ψ = Ν <ψ,p a=1 p a a = Ν α ψ> a=1 a = ψ 2 = <ψ, Ν a=1 αp a ψ > = <ψ,αψ > ψ 2 ψ οεδ 2 < Α > ψ = Ν a=1 p a a = Ν tr(p ψ P α ) a=1 Ν = trp ψ ap α a=1 οπου: p a = <ψ,p αψ> ψ 2 = tr(pψ Pα) ΛΗΜΜΑ από τη θεωρια των ΧΗ a = trp ψ Α Pα : H Hα = ο Τελεστης Προβολης στον α-ιδιοχωρο Hα του H Ν Α = a=1 αp a το Φασματικο Αναπτυγμα του Α (Spectral Decomposition)

11 ΣΧΟΛΙΟ O τυπος : < Α > ψ = <ψ,αψ> = trp ψ 2 ψ Α εμπεριεχει την Deterministic Prediction Αν Αψ = αψ, τοτε: < Α > ψ = < ψ, Αψ > ψ 2 = < ψ, αψ > ψ 2 = α < ψ, ψ > ψ 2 = α Α4.2 Αν η διαθεσιμη γνωση της καταστασης του Συστηματος ειναι η κατανομη πιθανοτητος ρ(y) στις καταστασεις Τοτε η Προβλεψη για την ΤΜ Α ειναι η Μεση Τιμη: <Α> ρ = Y dy ρ(y)α(y) (Probabilistic Prediction) Α4.2 Αν η διαθεσιμη γνωση της καταστασης του Συστηματος ειναι οι πιθανοτητες w 1, w 2,..., w n το διανυσμα ψ να κειται στους αξονες φ 1, φ 2,..., φ n αντιστοιχα, n dim Y Τοτε η Προβλεψη για την τιμη του ΠΜ Α ειναι η Μεση Τιμη: <Α> w = n ν=1 w ν < Α > ν οπου: < Α > ν =< Α > φν = <φ ν,αφ ν > φ ν 2 = trp ν Α η προβλεπομενη τιμη του Α στην κατασταση φ ν

12 Θ4 <Α> w = tr (ρα) οπου: ρ= n ν=1 w ν P ν o Τελεστης Πυκνοτητος η Στατιστικος Τελεστης του Μειγματος (wν, φν), ν=1,2,,n Η Kβαντικη Πιθανοτητα Αποδειξη <Α>w = n ν=1 w ν < Α > ν = n ν=1 w ν tr(p ν Α) = n = tr( ν=1 w ν P ν )Α = = tr (ρα) Ε ρ [ ]: A R : A Ε ρ [Α] = (ρ Α) = Y dy ρ(y)α(y) the Εxpectation (Linear) Functional Ε ρ [ ]: A R : A Ε ρ [Α] = (ρ Α) = tr (ρα) the Εxpectation (Linear) Functional (QM) (Probabilistic Prediction of QM) ΣΧΟΛΙΟ Απο την Mεση Τιμη υπολογιζουμε τις άλλες στατιστικες παραμετρους (Ροπες, Διασπορα, Συσχετιση, Συνδιασπορα) ΣΧΟΛΙΟ 1) Για ρ=p ψ προκυπτει ο τυπος της Μεσης Τιμης του Θ3 2) Απο την Mεση Τιμη υπολογιζουμε τις άλλες στατιστικες παραμετρους (Ροπες, Διασπορα, Συσχετιση, Συνδιασπορα)

13 Προβλεψη σε βαθος Χρονου Εκτιμηση της Τιμης των ΠΜ την χρονικη στιγμη t, από τη διαθεσιμη γνωση της Καταστασης του Συστηματος την αρχικη στιγμη t=0 ΚΛΑΣΣΙΚΟ ΣΥΣΤΗΜΑ Α5.1 Αν η διαθεσιμη γνωση της αρχικης (t=0) καταστασης του Συστηματος ειναι η εκτιμηση-προσεγγιση y Y, Τοτε η Προβλεψη για το ΠΜ Α (ΤΜ) τη χρονικη στιγμη t, ειναι η Τιμη: Α(S t y) = Αt(y) (Deterministic Prediction) V t : A A : A Α t : Α t (y)= V t A(y)= Α(S t y) H Eξελιξη των ΠΜ The Κoopman Evolution of Observables ΚΒΑΝΤΙΚΟ ΣΥΣΤΗΜΑ Α5.1 Αν η διαθεσιμη γνωση της αρχικης (t=0) καταστασης του Συστηματος ειναι η εκτιμηση-προσεγγιση ψ Y Τοτε η Προβλεψη για την τιμη του ΠΜ Α (ΓΤ) τη χρονικη στιγμη t, ειναι η Τιμη: < Α > ψt = < ψ t, Αψ t > = < U t ψ, ΑU t ψ > = =< ψ, U t ΑU t ψ > = < ψ, A t ψ > a t : A A : A Α t = a t A = U t Α U t H Eξελιξη των ΠΜ The Heisenberg Evolution of Observables

14 ΠΡΟΤΑΣΗ Αν η αρχικη κατασταση ψ ειναι ιδιοδιανυσμα του Τελεστη Η με ιδιοτιμη ε: Ηψ = εψ, Τοτε η Προβλεψη για την τιμη του Τελεστη H τη χρονικη στιγμη t, ειναι η ιδιοτιμη ε. Η ψ καλειται Στασιμη κατασταση (Deterministic Prediction of QM) Αποδ < H > ψt = < ψ t, Hψ t > ψ 2 = < U tψ, HU t ψ > ψ 2 = < U tψ, U t Hψ > ψ 2 = =< Η > ψ = ε < ψ, Hψ > ψ 2 = ΣΧΟΛΙΟ H t =U t H U t = U t U t H = H Η Ενεργεια διατηρειται, ειναι αναλλοιωτο ΠΜ

15 Α5.2 Αν η διαθεσιμη γνωση της αρχικης (t=0) καταστασης του Συστηματος ειναι η κατανομη πιθανοτητος ρ(y) στις καταστασεις Τοτε η Προβλεψη για το ΠΜ Α (ΤΜ) τη χρονικη στιγμη t, ειναι η Μεση Τιμη: <Α t > ρ = Ε ρ [Α t ] = (ρ Α t ) = (ρ V t Α) <Α t > ρ = Y dy ρ(y)α t (y) = Y dy ρ(y)α(s t y) (Probabilistic Prediction) Α5.2 Αν η διαθεσιμη γνωση της αρχικης (t=0) καταστασης του Συστηματος ειναι οι πιθανοτητες w 1, w 2,..., w n το διανυσμα ψ να κειται στους αξονες φ 1, φ 2,..., φ n αντιστοιχα, Τοτε η Προβλεψη για το ΠΜ Α (ΓΤ) τη χρονικη στιγμη t, ειναι η Μεση Τιμη: <Αt>ρ = Ερ[Αt]=(ρ Αt) =(ρ a t Α) = n ν=1 w ν < Α t > ν = tr (ρα t ) οπου: ρ= n ν=1 w ν P ν o Τελεστης Πυκνοτητος του Μειγματος (wν, φν), ν=1,2,,n (Probabilistic Prediction of QM)

16 Πληροφορια και Εντροπια I Εκτιμηση της Πληροφοριας των Παρατηρησεων (των ΠΜ) του Συστηματος ΚΛΑΣΣΙΚΟ ΣΥΣΤΗΜΑ ΚΒΑΝΤΙΚΟ ΣΥΣΤΗΜΑ Α6.1 H Πληροφορια Α6.1.1 H Πληροφορια Shannon (Εντροπια Shannon-Gibbs-Boltzmann) απο την Μετρηση του ΠΜ Α απο την Μετρηση του ΠΜ Α στην κατασταση ψ: n με κατανομη πιθανοτητος p στις καταστασεις: I(Α, ψ) = p α lnp α I = I[Α,p] = n p[ξ ν ]ldp[ξ ν ] οπου: ν=1 n = p ν ldp ν ν=1 Ξ ν τα κελια της διαμερισης που οριζει η ΤΜ Α α=1 n = < ψ, P αψ > ψ 2 ln < ψ, P αψ > ψ 2 α=1 οπου: p a = <ψ,p αψ> ψ 2 η Πιθανοτητα η ψ να ανηκει στον α-ιδιοχωρο H α του H P α : H H α ο Τελεστης Προβολης στον α-ιδιοχωρο H α του H Ν Α = a=1 αp a το Φασματικο Αναπτυγμα του τελεστη A

17 Α6.1.2 H Πληροφορια Shannon απο την Μετρηση του ΠΜ Α, αν η διαθεσιμη πληροφορια για την κατασταση του Συστηματος ειναι οι πιθανοτητες w 1, w 2,..., w n το διανυσμα ψ να κειται στους αξονες φ 1, φ 2,..., φ n αντιστοιχα, n dim Y I(Α, ρ) = p α lnp α n α=1 n = tr(ρp α )lntr(ρp α ) α=1 οπου: ρ= n ν=1 w ν P ν o Τελεστης Πυκνοτητος του Μειγματος (wν, φν), ν=1,2,,n p α = tr (ρ P α ) η πιθανοτητα η ψ να ειναι στον Υποχωρο P α N N α=1 tr (ρ P α ) = tr ρ( α=1 P α ) = tr ρ I=1

18 Α6.2 H Πληροφορια του Κλασσικου Συστηματος απο την Μετρηση των ΠΜ Α,Β, με κατανομη πιθανοτητος p στις καταστασεις, είναι η Kοινη Πληροφορια των ΠΜ Α,Β, I = I[p] = n ρ[ξ ν ]ldρ[ξ ν ] ν=1 n = ρ ν ldρ ν ν=1 I = I[p] = Υdyρ(y)lnρ(y) οπου: Ξ ν τα κελια της διαμερισης που οριζουν οι ΤΜ Α,Β, Θ6 Η Πληροφορια του Κβαντικου Συστηματος απο την Μετρηση των ΠΜ Α,Β, με Τελεστη Πυκνοτητος ρ= n ν=1 w ν P ν είναι η Κοινη Πληροφορια των ΠΜ Α,Β, εάν και μονον τα Α,Β, μετατιθενται: [Α,Β]=0. Α6.2 Ως Πληροφορια του Κβαντικου Συστηματος Προτεινεται η μεγιστη Πληροφορια: I(ρ) = Θ7 I(ρ) = tr(ρldρ) n inf I(Α, ρ) A A I(ρ) = ν=1 w ν ldw ν, αν οι πιθανοτητες w 1, w 2,..., w n είναι ιδιοτιμες του Τελεστη Πυκνοτητος ρ Η Πληροφορια Von Neumann - Shannon

1 ο ΕΤΟΣ 1 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΚΩΔΙΚΟΣ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Θ Α Ε ΔΜ. 2 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΚΩΔΙΚΟΣ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Θ Α Ε ΔΜ

1 ο ΕΤΟΣ 1 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΚΩΔΙΚΟΣ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Θ Α Ε ΔΜ. 2 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΚΩΔΙΚΟΣ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Θ Α Ε ΔΜ 1 ο ΕΤΟΣ 1 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ Α1Υ Α2Υ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΚΑΙ ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ 3 1 1 5 2 2 5 Α3Υ ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Ι 3 1 1 6 Α10Υ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΟΥ ΜΠ&Δ

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Μαρίνα Χαραλαµπίδου Τµήµα Μαθηµατικών Τοµέας Αλγεβρας και Γεωµετρίας Πανεπιστηµίο Αθηνών Σεµινάριο Τοµέα Αλγεβρας και Γεωµετρίας 11/12/2012 1 / 47 Περιεχόµενα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Φεβρουαρίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

329 Στατιστικής Οικονομικού Παν. Αθήνας

329 Στατιστικής Οικονομικού Παν. Αθήνας 329 Στατιστικής Οικονομικού Παν. Αθήνας Σκοπός Το Τμήμα σκοπό έχει να αναδείξει επιστήμονες ικανούς να σχεδιάζουν, να αναλύουν και να επεξεργάζονται στατιστικές καθώς επίσης και να δημιουργούν προγράμματα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Δρ. Τακβόρ Σουκισιάν Κύριος Ερευνητής ΕΛΚΕΘΕ Forecasting is very dangerous, especially about the future --- Samuel Goldwyn 1 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια

Διαβάστε περισσότερα

= (1, 0,1, 0) είναι γραµµικά ανεξάρτητα

= (1, 0,1, 0) είναι γραµµικά ανεξάρτητα ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θέµα α) (µ) Θεωρούµε ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ 7 Ιουλίου 3 (διάρκεια: 3 ώρες

Διαβάστε περισσότερα

ΚΑΤΑΤΑΚΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΠΤΥΧΙΟΥΧΩΝ Α.Ε.Ι. ΣΤΗ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015

ΚΑΤΑΤΑΚΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΠΤΥΧΙΟΥΧΩΝ Α.Ε.Ι. ΣΤΗ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο NATIONAL TECHNICAL UNIVERSITY OF ATHENS ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Ηρώων Πολυτεχνείου 9, Πολυτεχνειούπολη Ζωγράφου, 15780 Αθήνα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ & ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2014-15 (ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1 )

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ & ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2014-15 (ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1 ) ΠΑΡΑΣΚΕΥΗ 19/6/2015 ΠΕΜΠΤΗ 18/6/2015 ΤΕΤΑΡΤΗ 17/6/2015 ΤΡΙΤΗ 16/6/2015 ΔΕΥΤΕΡΑ 15/6/2015 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ

Διαβάστε περισσότερα

Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh

Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ginnhc K. Sarant pouloc jnik Mets bio Poluteqne o Sqol farmosmłnwn Majhmatik n & Fusik n pisthm n TomŁac Majhmatik n 22 Febrouar ou 28 Perieqìmena Συμβολισμός

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΉΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25 e-ail:

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ

ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ 3 ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ 3.1 Εισαγωγη ΣΥΣΤΗΜΑΤΩΝ Τα συστηματα εφαρμοζονται σε αναπτυξιακα προγραμματα, σε μελετες σχεδιασμου εργων, σε προγραμματα διατηρησης ή προστασιας περιβαλλοντος και υδατικων πορων και

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: . Σχολικό βιβλίο σελ.9. Σχολικό βιβλίο σελ.88 3. Σχολικό βιβλίο σελ.5. α) Λ Β. β) Σ γ) Λ δ) Σ ε) Σ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5/5/5 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: Έστω z=+yi. Κάνοντας πράξεις στη

Διαβάστε περισσότερα

Π Ρ Ο Γ Ρ Α Μ Μ Α Ε Ξ Ε Τ Α Σ Ε Ω Ν. ΤΕΧΝΙΚΗ ΚΑΥΣΗΣ & ΑΕΡΙΟΠΟΙΗΣΗΣ Κτ. Χ-Μ Αμφ. 1. ΔΙΑΧΕΙΡΙΣΗ & ΕΛΕΓΧΟΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κτ. Χ-Μ ΑΙΘ.

Π Ρ Ο Γ Ρ Α Μ Μ Α Ε Ξ Ε Τ Α Σ Ε Ω Ν. ΤΕΧΝΙΚΗ ΚΑΥΣΗΣ & ΑΕΡΙΟΠΟΙΗΣΗΣ Κτ. Χ-Μ Αμφ. 1. ΔΙΑΧΕΙΡΙΣΗ & ΕΛΕΓΧΟΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κτ. Χ-Μ ΑΙΘ. ΗΜΕΡΟΜΗΝΙΕΣ 1 ο & 2 Ο ΕΞΑΜΗΝΟ 3 ο & 4 Ο ΕΞΑΜΗΝΟ 5 ο & 6 Ο ΕΞΑΜΗΝΟ 7 ο & 8 Ο ΕΞΑΜΗΝΟ 9 ο ΕΞΑΜΗΝΟ ΜΑΚΡΟΟΙΚΟΝΟΜΙΑ ΤΕΧΝΙΚΗ ΚΑΥΣΗΣ & ΑΕΡΙΟΠΟΙΗΣΗΣ Κτ. Χ-Μ Αμφ. 1 ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΑΝΟΡΓΑΝΗΣ ΧΗΜΕΙΑΣ Κτ. Χ.-Μ. Αιθ.

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 2 Συστήματα Εξισώσεων Διαφορών Συστήματα Εξισώσεων Διαφορών Γραμμικές Εξισώσεις Διαφορών με Σταθερούς Συντελεστές (Linear Constant- Coefficient

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 3 ου ΚΕΦΑΛΑΙΟΥ Άσκηση (Προτάθηκε από pito ) Για ένα φάρμακο σε πειραματικό στάδιο αποδείχθηκε ότι δημιουργεί δύο ειδών παρενέργειες. Η πιθανότητα να δημιουργήσει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 15: O αλγόριθμος SIMPLE Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε τις θέσεις που

Διαβάστε περισσότερα

R n R 2. x 2. x 1. x: συντεταγµένες του z

R n R 2. x 2. x 1. x: συντεταγµένες του z Αναγνώριση Προσώπου µε Σύγκριση Υπερεπιφανειών Θανάσης Ζάγουρας.Π.Μ.Σ Η.Ε.Π, Τµήµα Φυσικής, Πανεπιστήµιο Πατρών Επιβλέποντες: Σπ. Φωτόπουλος Γ. Οικονόµου Ανάλυση Εικόνων Προσώπου Πεδία Αναγνώρισης Προτύπων

Διαβάστε περισσότερα

Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Η κατάταξη πτυχιούχων ΑΕΙ & ΤΕΙ στη Σχολή ΗΜΜΥ, για το ακαδημαϊκό έτος 2010-11, θα γίνει με κατατακτήριες

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

(ΕΞΆΜΗΝΟ εγγραφής 05-06 Εαρινό)

(ΕΞΆΜΗΝΟ εγγραφής 05-06 Εαρινό) (ΕΞΆΜΗΝΟ εγγραφής 05-06 Εαρινό) Για τη λήψη του πτυχίου τους απαιτείται να επιτύχουν σε 36 υποχρεωτικά και σε 4 μαθήματα επιλογής. Από τα προηγούμενα εξάμηνα οφείλουν να έχουν επιτύχει στα κάτωθι μαθήματα:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΥΠΗΡΕΣΙΑ ΣΠΟΥΔΩΝ ΚΑΙ ΦΟΙΤΗΤΙΚΗΣ ΜΕΡΙΜΝΑΣ . Τ.. Α. 1630-1759 1300-1359 .. Ε... .. Ε... 1400-1459. Καούλλας Γιώργος 11910 1330-1459

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΥΠΗΡΕΣΙΑ ΣΠΟΥΔΩΝ ΚΑΙ ΦΟΙΤΗΤΙΚΗΣ ΜΕΡΙΜΝΑΣ . Τ.. Α. 1630-1759 1300-1359 .. Ε... .. Ε... 1400-1459. Καούλλας Γιώργος 11910 1330-1459 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ /0/0 ΥΠΗΡΕΣΙΑ ΣΠΟΥΔΩΝ ΚΑΙ ΦΟΙΤΗΤΙΚΗΣ ΜΕΡΙΜΝΑΣ R0 ΠΡΟΓΡΑΜΜΑ ΔΙΔΑΣΚΑΛΙΑΣ Σελ: 09 - Full Term 08/09-0/ 000 ΜΑΣ 00 60-9 ΧΩΔ0 09 0 06 0006 ΜΑΣ 00 Α 00-9 0 6 0008 ΜΑΣ 00 Β 0-9 0 6 909 ΜΑΣ

Διαβάστε περισσότερα

ιαφάνειες παρουσίασης #1

ιαφάνειες παρουσίασης #1 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Μοντελοποίηση Ηλεκτρικών και Υδραυλικών Συστημάτων

Δυναμική Μηχανών I. Μοντελοποίηση Ηλεκτρικών και Υδραυλικών Συστημάτων Δυναμική Μηχανών I Μοντελοποίηση Ηλεκτρικών και Υδραυλικών Συστημάτων Χειμερινό Εξάμηνο 2014 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δημήτριος Τζεράνης, Ph.D. Περιεχόμενα Μοντελοποίηση Ηλεκτρικών Συστημάτων Μεταβλητές

Διαβάστε περισσότερα

ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD

ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD ΚΕΦΑΛΑΙΟ ΙΙΙ ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD Εισαγωγή To παρόν κεφάλαιο χωρίζεται σε μέρη. Στο (Α), μεταξύ άλλων, εξηγούμε γιατί μας ενδιαφέρει η λεγόμενη ανάλυση σε παράγοντες ειδικούς πίνακες (decompositio)

Διαβάστε περισσότερα

Αφαίρεση και Γενίκευση στα Μαθηματικά

Αφαίρεση και Γενίκευση στα Μαθηματικά 1 Αφαίρεση και Γενίκευση στα Μαθηματικά Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ3 www.p-theodoropoulos.gr ΠΕΡΙΛΗΨΗ Στην εργασία αυτή εξετάζεται εντός του πλαισίου της Διδακτικής των

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011 2012 ΕΠΙΧ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Θέμα: «Γραμμικά μοντέλα παλινδρόμησης

Διαβάστε περισσότερα

Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα

Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα Βασίλειος Παπαντωνίου Ομ. Καθηγητής Πανεπιστημίου Πατρών bipapant@math.upatras.gr Επίκεντρο της παρουσίασης Η εξέλιξη της μαθηματικής σκέψης

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ. ΣΧΟΛΗ : ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ Ηράκλειο Κρήτης, Τ.Κ. 71004, Τηλ.2810379610 Fax.2810379680 ΑΝΑΚΟΙΝΩΣΗ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ. ΣΧΟΛΗ : ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ Ηράκλειο Κρήτης, Τ.Κ. 71004, Τηλ.2810379610 Fax.2810379680 ΑΝΑΚΟΙΝΩΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ : ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ Ηράκλειο Κρήτης, Τ.Κ. 71004, Τηλ.2810379610 Fax.2810379680 ΑΝΑΚΟΙΝΩΣΗ Χρόνος κατάθεσης δικαιολογητικών Η αίτηση και τα δικαιολογητικά

Διαβάστε περισσότερα

Εκτίμηση μη-γραμμικών χαρακτηριστικών

Εκτίμηση μη-γραμμικών χαρακτηριστικών Εκτίμηση μη-γραμμικών χαρακτηριστικών Μη-γραμμικά χαρακτηριστικά ή αναλλοίωτα μέτρα Διάσταση. Ευκλείδια. Τοπολογική 3. Μορφοκλασματική (συσχέτισης, πληροφορίας, μέτρησης κουτιών, ) Εκθέτες Lypunov (μεγαλύτερος,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΤΜΗΜΑ Β Τηλ: 210 344 2478 FAX:

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης Τμήματα Μαθηματικών και Εφαρμοσμένων Μαθηματικών. Πρόγραμμα Μεταπτυχιακών Σπουδών

Πανεπιστήμιο Κρήτης Τμήματα Μαθηματικών και Εφαρμοσμένων Μαθηματικών. Πρόγραμμα Μεταπτυχιακών Σπουδών Πανεπιστήμιο Κρήτης Τμήματα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πρόγραμμα Μεταπτυχιακών Σπουδών Το Πρόγραμμα λειτουργεί από το ακαδημαϊκό έτος 2002-2003 και αποτελεί μετεξέλιξη του Προγράμματος Μεταπτυχιακών

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης Αναγνώριση Προτύπων (Pattern Recognton Μπεϋζιανή Θεωρία Αποφάσεων (Bayesan Decson Theory Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Μπεϋζιανή Θεωρία Αποφάσεων (Bayes Decson theory Στατιστικά

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 3 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Επανάληψη: Διακριτά στοιχεία μηχανικών δυναμικών συστημάτων Δυναμικά

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

http://kesyp.didefth.gr/ 1

http://kesyp.didefth.gr/ 1 248_Τµήµα Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης, Ηράκλειο Προπτυχιακό Πρόγραµµα Σκοπός του Τµήµατος Εφαρµοσµένων Μαθηµατικών είναι η εκαπαίδευση επιστηµόνων ικανών όχι µόνο να υπηρετήσουν και να

Διαβάστε περισσότερα

ψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2

ψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2 Σπουδές στις Φυσικές Επιστήµες ΦΥΕ 40 Κβαντική Φυσική 014-015 ΕΡΓΑΣΙΑ 3 η Υπόδειξη λύσεων ΑΣΚΗΣΗ 1 Η άρτια κυµατοσυνάρτηση θα δίνεται από (x) = A 3 e γ x x < a b / A cos(kx) B sin(kx) a b / < x < b / A

Διαβάστε περισσότερα

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Κεφ. I Εισαγωγή.. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Η ανάγκη µαθηµατικής περιγραφής και µοντελοποίησης συστηµάτων τα οποία εξελίσσονται χρονικά κατά τρόπο που περιέχει, σε µικρό ή µεγάλο βαθµό, τυχαιότητα,

Διαβάστε περισσότερα

Κατανομές Απώλειας. Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος

Κατανομές Απώλειας. Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Κατανομές Απώλειας Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Απαγορεύεται η αναδημοσίευση, η αναπαραγωγή, ολική ή περιληπτική του περιεχομένου αυτού με οποιονδήποτε τρόπο χωρίς προηγούμενη γραπτή άδεια του

Διαβάστε περισσότερα

ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Δ.Π.Θ.

ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Δ.Π.Θ. ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Δ.Π.Θ. ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ-ΜΑΘΗΜΑΤΑ Η διάρκεια φοίτησης στο Τμήμα Πολιτικών Μηχανικών είναι πέντε (5) έτη χωρισμένα σε δέκα εξάμηνα. Στα πρώτα 9 εξάμηνα οι φοιτητές του τμήματος καλούνται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ και ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΔΗΓΟΣ ΜΕΤΑΒΑΤΙΚΩΝ ΔΙΑΤΑΞΕΩΝ 2014 2015

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ και ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΔΗΓΟΣ ΜΕΤΑΒΑΤΙΚΩΝ ΔΙΑΤΑΞΕΩΝ 2014 2015 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ και ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΔΗΓΟΣ ΜΕΤΑΒΑΤΙΚΩΝ ΔΙΑΤΑΞΕΩΝ 2014 2015 Επιτροπή προπτυχιακών σπουδών: Κ. Βασιλάκης Κ. Γιαννόπουλος

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

ΑΝΑΝΕΩΣΗ ΔΗΛΩΣΕΩΝ ΜΑΘΗΜΑΤΩΝ ΓΙΑ ΤΟ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2012-2013

ΑΝΑΝΕΩΣΗ ΔΗΛΩΣΕΩΝ ΜΑΘΗΜΑΤΩΝ ΓΙΑ ΤΟ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2012-2013 ΑΝΑΝΕΩΣΗ ΔΗΛΩΣΕΩΝ ΜΑΘΗΜΑΤΩΝ ΓΙΑ ΤΟ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2012-2013 (εξάμηνα εγγραφής από 09-10 Εαρινό έως και 06-07 Χειμερινό) Οι φοιτητές που θα κάνουν ανανέωση από το 2 ο έως και το 7 ο εξάμηνο σπουδών θα

Διαβάστε περισσότερα

252 Μαθηματικών Αιγαίου (Σάμος)

252 Μαθηματικών Αιγαίου (Σάμος) 252 Μαθηματικών Αιγαίου (Σάμος) Σκοπός Αποστολή του Τμήματος είναι η καλλιέργεια της μαθηματικής σκέψης και παράλληλα η ανάδειξη επιστημόνων που θα αναζητούν, θα επεξεργάζονται και θα προτείνουν θεωρητικά

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΣΕΠΤΕΜΒΡΙΟΥ (5-9-2005) ΟΜΑΔΑ Α ( 40% ) ΛΥΣΗ: ( 2 ) μόνο για αυτή την τιμή ισχύει

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΣΕΠΤΕΜΒΡΙΟΥ (5-9-2005) ΟΜΑΔΑ Α ( 40% ) ΛΥΣΗ: ( 2 ) μόνο για αυτή την τιμή ισχύει ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΣΕΠΤΕΜΒΡΙΟΥ 5-9-5 ΟΜΑΔΑ Α 4% Αν τα ενδεχόμενα Α, Β, Γ ενός δειγματικού χώρου Ω είναι ανεξάρτητα μπορούμε να πούμε το ίδιο για τα α A B, Γ β Α,Β Γ

Διαβάστε περισσότερα

1. ΓΕΝΙΚΟΙ ΚΑΝΟΝΕΣ ΚΑΙ ΠΡΟΥΠΟΘΕΣΕΙΣ ΛΗΨΗΣ ΠΤΥΧΙΟΥ

1. ΓΕΝΙΚΟΙ ΚΑΝΟΝΕΣ ΚΑΙ ΠΡΟΥΠΟΘΕΣΕΙΣ ΛΗΨΗΣ ΠΤΥΧΙΟΥ 1. ΓΕΝΙΚΟΙ ΚΑΝΟΝΕΣ ΚΑΙ ΠΡΟΥΠΟΘΕΣΕΙΣ ΛΗΨΗΣ ΠΤΥΧΙΟΥ Ισχύει ένα πρόγραμμα σπουδών από τον Οκτώβριο του 2013. Για να πάρει κάποιος πτυχίο από το 2014 κι έπειτα απαιτείται να πληροί όλους τους παρακάτω όρους:

Διαβάστε περισσότερα

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Φυσική Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Φυσική Β Γυμνασίου Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 2 Εισαγωγή 1.1 Οι φυσικές επιστήμες και η μεθοδολογία τους Φαινόμενα: Μεταβολές όπως το λιώσιμο του πάγου, η

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

Άσκηση Οικονομετρίας ΙΙ. . (Υποδείγματα με Διαχρονικά Κατανεμημένες Επιδράσεις 1 )

Άσκηση Οικονομετρίας ΙΙ. . (Υποδείγματα με Διαχρονικά Κατανεμημένες Επιδράσεις 1 ) Άσκηση Οικονομετρίας ΙΙ.. (Υποδείγματα με ιαχρονικά Κατανεμημένες Επιδράσεις ) Περιεχόμενα. Γενικά. Οικονομετρικά Υποδείγματα με ιαχρονικά Κατανεμημένες Επιδράσεις. Η Αντίδραση της Μέσης Τιμής της Αμόλυβδης

Διαβάστε περισσότερα

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ).

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ). ΚΕΦΑΛΑΙΟ 2: CAM 2.1 Συστήµατα Μ/Μ/1 2.1.1 Ανασκόπηση θεωρίας Η ουρά Μ/Μ/1 είναι η πιο σηµαντική διαδικασία ουράς Άφιξη: ιαδικασία Poisson Εξυπηρέτηση: Ακολουθεί εκθετική κατανοµή Εξυπηρετητής: Ένας Χώρος

Διαβάστε περισσότερα

Μια εισαγωγή στο φίλτρο Kalman

Μια εισαγωγή στο φίλτρο Kalman 1 Μια εισαγωγή στο φίλτρο Kalman Το 1960, R.E. Kalman δημόσιευσε το διάσημο έγγραφό του περιγράφοντας μια επαναλαμβανόμενη λύση στο γραμμικό πρόβλημα φιλτραρίσματος διακριτών δεδομένων. Από εκείνη τη στιγμή,

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

Ντετερμινιστικά Συστήματα. Στοιχεία Χαοτικής Ανάλυσης Χρονοσειρών

Ντετερμινιστικά Συστήματα. Στοιχεία Χαοτικής Ανάλυσης Χρονοσειρών Ντετερμινιστικά Συστήματα Στοιχεία Χαοτικής Ανάλυσης Χρονοσειρών 1 ΚΕΦΑΛΑΙΟ 1 ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ -ΣΤΟΙΧΕΙΑ ΧΑΟΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΧΡΟΝΟΣΕΙΡΩΝ 1.1 Δυναμικά συστήματα 1.1.1 Ορισμοί Κάθε σύστημα του οποίου

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Αβεβαιότητα πεποιθήσεων πράκτορας θεωρίας

Διαβάστε περισσότερα

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας.

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Περιεχόµενα ιακριτές τυχαίες µεταβλητές Συνεχείς τυχαίες µεταβλητές Μέση τιµή τυχαίων µεταβλητών Ροπές, διασπορά, και τυπική απόκλιση τυχαίων µεταβλητών

Διαβάστε περισσότερα

2 Φωτογραφία εξωφύλλου: Κυµατοσυνάρτηση για ένα ηλεκτρόνιο στο άτοµο του Η.

2 Φωτογραφία εξωφύλλου: Κυµατοσυνάρτηση για ένα ηλεκτρόνιο στο άτοµο του Η. ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΞΕΙ ΙΚΕΥΣΗ ΚΑΘΗΓΗΤΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΤΑΛΑΝΤΩΣΕΙΣ ΣΤΟ ΜΙΚΡΟΚΟΣΜΟ» ΜΠΑΚΑΤΣΕΛΟΥ ΑΙΚΑΤΕΡΙΝΗ ΕΠΙΒΛΕΠΩΝ

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 Λύσεις των θεμάτων Έκδοση η

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,

Διαβάστε περισσότερα

1.1 Ιστορία του Λογισμού των Μεταβολών... 1 1.2 Εισαγωγή στην Θεωρία Βέλτιστου Ελέγχου... 8

1.1 Ιστορία του Λογισμού των Μεταβολών... 1 1.2 Εισαγωγή στην Θεωρία Βέλτιστου Ελέγχου... 8 v Πρόλογος Τ ο βιβλίο αυτό είναι αποτέλεσμα των παραδόσεων, των τελευταίων έξι χρόνων (2002-08), του μαθήματος Θεωρία Βέλτιστου Ελέγχου στο πρόγραμμα Μεταπτυχιακών Σπουδών του Τμήματος Μαθηματικών του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

Φαινόµενα µη τοπικότητας πλησίον του ορίζοντα γεγονότων µιάς µελανής οπής

Φαινόµενα µη τοπικότητας πλησίον του ορίζοντα γεγονότων µιάς µελανής οπής Φαινόµενα µη τοπικότητας πλησίον του ορίζοντα γεγονότων µιάς µελανής οπής Νίκος Ράµµος Η επίσηµη θέση της επιστηµονικής κοινότητας µέχρι σήµερα περί της πιθανότητας διαφυγής προσπίπτουσας ύλης, συνεπώς

Διαβάστε περισσότερα

Μεγιστοποίηση μέσα από το τριώνυμο

Μεγιστοποίηση μέσα από το τριώνυμο Μεγιστοποίηση μέσα από το τριώνυμο Μια από τις πιο όμορφες εφαρμογές του τριωνύμου στη φυσική είναι η μεγιστοποίηση κάποιου μεγέθους μέσα από αυτό. Η ιδέα απλή και βασίζεται στη λογική επίλυσης του παρακάτω

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες)

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Θέματα Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Β. Είναι Σωστή ή Λάθος καθεμιά από τις παρακάτω προτάσεις ; Θέμα α. Αν x

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σύνολα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ορισμός Συνόλου Σύνολο είναι μια συλλογή

Διαβάστε περισσότερα

Κβαντοµηχανική ΙΙ. Πρόχειρες σηµειώσεις του µαθήµατος

Κβαντοµηχανική ΙΙ. Πρόχειρες σηµειώσεις του µαθήµατος Κβαντοµηχανική ΙΙ Πρόχειρες σηµειώσεις του µαθήµατος Κωνσταντίνος Φαράκος, Αν. Καθηγητής Τοµέας Φυσικής Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο 6 Ιανουαρίου 011

Διαβάστε περισσότερα

219 Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Θεσσαλονίκης

219 Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Θεσσαλονίκης 219 Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Θεσσαλονίκης Το Τμήμα Ηλεκτρολόγων Μηχανικών ιδρύθηκε με το ΒΔ.400/72 και άρχισε να λειτουργεί το 1972-73. Το ΑΠΘ είχε τότε ήδη 28.000 φοιτητές. Η ακριβής

Διαβάστε περισσότερα

n i P(x i ) P(X = x i ) = lim

n i P(x i ) P(X = x i ) = lim Κεϕάλαιο 2 Πιθανότητες και Τυχαίες Μεταβλητές Μπορούµε να καταλάβουµε την έννοια της πιθανότητας από τη σχετική συχνότητα εµϕάνισης n i κάποιας τιµής x i µιας διακριτής τ.µ. X. Αν είχαµε τη δυνατότητα

Διαβάστε περισσότερα

«ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ»

«ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ» Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο «ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ» ΜΠΙΘΗΜΗΤΡΗ ΒΑΣΙΛΙΚΗ ΣΤΕΛΛΑ Επιβλέπουσα: Αν. Καθηγήτρια

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ, ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ, ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ, ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗΣ ΕΙΔΙΚΗ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΕΝΑΓΚΑΛΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΕΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΣΕ ΑΝΟΙΚΤΑ ΚΒΑΝΤΙΚΑ

Διαβάστε περισσότερα

ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ 1ου ΕΞΑΜΗΝΟΥ. 8:45-10:30, αμφ.2 13:00-15:00, Εργαστήρια. 10:45-12:30 101, κτ.σεμφε (Τμήμα Α) 102, κτ.

ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ 1ου ΕΞΑΜΗΝΟΥ. 8:45-10:30, αμφ.2 13:00-15:00, Εργαστήρια. 10:45-12:30 101, κτ.σεμφε (Τμήμα Α) 102, κτ. ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ 1ου ΕΞΑΜΗΝΟΥ 9001 ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Ι 9002 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ 9003 ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ 8:45-10:30 Αμφ.4 αμφ.2 15:00-17:00, Εργαστήρια 12:45-14:30 Αμφ.4

Διαβάστε περισσότερα

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πιθανότητες Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 2 Ενότητα 2 η Πιθανότητες Σκοπός Ο σκοπός της 2 ης ενότητας είναι οι μαθητές να αναγνωρίζουν ένα πείραμα τύχης

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα ΕΜΠ - Τοµέας Προγραµµατισµού & ιαχείρισης Τεχνικών Έργων

Επιχειρησιακή Έρευνα ΕΜΠ - Τοµέας Προγραµµατισµού & ιαχείρισης Τεχνικών Έργων 1.1. Σύντοµη Ιστορική Αναδροµή Ο όρος (Operations Research) χρησιµοποιείται ευρέως για να περιγράψει την επιστήµη που ασχολείται µε τη βελτιστοποίηση (optimization) της απόδοσης ενός συστήµατος (Τσαντάς

Διαβάστε περισσότερα

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 4 Κανονική Κατανομή Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 4-4-1 Εισαγωγή Όσο το n αυξάνει, η διωνυμική κατανομή προσεγγίζει... n = 6 n = 1 n = 14 Binomial Distribution:

Διαβάστε περισσότερα